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MIXTURE MODELS FOR EXTREMES

A.-L. FOUG�ERES, J. P. NOLAN, AND H. ROOTZ�EN

Abstract. This paper develops \logistic" multivariate extreme value distribu-
tions obtained by mixing with positive stable distributions. The mixing variables
are used as a modelling tool, to introduce new classes of mixture models for ex-
treme value data, and as a road to better understanding and use of the models. A
distinguishing feature is that the models lead to extreme value distributions both
conditionally on the mixing variables and unconditionally. In many situations
this is important for easy interpretation and extrapolation and it is natural for
data obtained as maxima of other underlying variables. One way of understand-
ing the models is as block-size mixtures of extreme value distributions, where
the mixing is by positive stable distributions. For Gumbel distributions a second
interpretation is as exponential-stable location mixtures of independent Gumbel
distributions with the same scale parameter. The corresponding interpretation
for non-Gumbel EV distributions is as power-stable scale mixtures of indepen-
dent EV distributions. A third interpretation is through a Peaks over Thresholds
model with random intensity. We develop analogues of the components of vari-
ance models in ANOVA, and new time series, spatial, and continuous parameter
models for extreme value data. The results are applied to data from a pitting
corrosion investigation and to an interest rate time series. The models present
many challenging problems of interpretation and use, on numerical methods for
estimation, and on asymptotic analysis.

1. Introduction

Multivariate models for extreme value data is attracting substantial interest, see
e.g. Kotz and Nadarajah (2000) and Foug�eres (2004). However, with the exception
of Smith (2004) and He�ernan and Tawn (2004), few applications involving more
than two or three dimensions have been reported. One main application area is envi-
ronmental extremes. Dependence between extreme wind speeds and rain fall can be
important for reservoir safety (Anderson and Nadarajah (1993), Ledford and Tawn
(1996)), high mean water levels occurring together with extreme waves may cause
ooding (Bruun and Tawn (1998), de Haan and de Ronde (1998)), and simultane-
ous high water levels at di�erent spatial locations pose risks for large oods (Coles
and Tawn (1991)). Another set of applications is in economics where multivariate
extreme value theory has been used to model the risk that extreme uctuations of
several exchange rates or of prices of several assets, such as stocks, occur together
(Mikosch (2004), Smith (2004), St�aric�a (1999)). A third use, perhaps somewhat
unlikely, is in the theory of rational choice (McFadden (1978)). Below we will also
consider a fourth problem, analysis of pitting corrosion measurements.

1991 Mathematics Subject Classi�cation. Primary 62P30, secondary 62G32.
Key words and phrases. logistic distribution, multivariate extreme value distribution, random

e�ect, max-stable, pitting corrosion.
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2 A.-L. FOUG�ERES, J. P. NOLAN, AND H. ROOTZ�EN

The most popular choice of multivariate extreme value distributions are various
families of \logistic" distributions. The �rst such family was described early by
Gumbel (1960). The most general versions, termed the asymmetric logistic distri-
bution and the nested logistic distribution were introduced by Tawn (1990) and
McFadden (1978) and further studied in Coles and Tawn (1991). Tawn built on
earlier results in survival analysis (Hougaard (1986), Crowder (1989)), and obtained
the distributions assuming independence conditionally on a positive stable variable.
He also gave a physical motivation for the models (see below).
In this paper we attempt to use the stable mixing variables as a modelling tool.

This allows new understanding, physical motivation, and use of the models. In
particular, the starting point for our work was a need for analogues of the random
e�ects model in analysis of variance, for use in analysis of pit corrosion measure-
ments. One of our results is that the symmetric logistic distribution indeed provides
such a model. Further insights obtained from this result are better understanding
of identi�ability of parameters, and new model checking tools.
By suitable choices of the mixing variables we also obtain natural time series

models, spatial models, and continuous parameter models for extreme value data.
The �rst two of these are subfamilies of the general asymmetric logistic distribution,
but their special signi�cance doesn't seem to have been realized before. In partic-
ular, these models provide conceptually, analytically and computationally tractable
models for extreme value data which go beyond dimensions two and three.
It is not immediately obvious from the form of the multivariate distributions how

to simulate values from them, see e.g. Kotz and Nadarajah (1999, Section 3.7).
However the representation as stable mixtures makes simulation straightforward.
According to it, one can �rst simulate the stable variables, using the method of
Chambers et al. (1976), and then simulate independent variables from the con-
ditional distribution given the stable variables, cf. Stephenson (2003). This adds
substantially to the usefulness of the models.
The results can be presented in two very closely related ways, as mixture mod-

els for Gumbel distributions, and as mixture models for the generalized Extreme
Value (EV) distribution. The Gumbel models are more parsimonious, and we �rst
present the results in this setting. An additional reason is that we think that the
Gumbel distribution has a special importance in extreme value theory, for several
reasons. One is that it occurs as the limit of maxima of most standard distributions,
speci�cally so for the normal distribution. In fact, it is the only possible limit for
the entire range of tail behavior between polynomial decrease and (essentially) a
�nite endpoint. Another reason is the (approximate) lack of memory property of
the locally exponential tails of the underlying variables which goes together with the
Gumbel distribution for maxima. Finally, from experience, the Gumbel distribution
is known to �t well in many situations. In particular this is the case for most pit
corrosion measurements, see Kowaka (1994).
However, we also develop the models in the EV setting. In it, two out of three

physical motivations for the model, as \block size mixtures" and as maxima in a
Peaks over Thresholds (PoT) model with a doubly stochastic Poisson number of large
values are the same as for the Gumbel model. The counterpart to the remaining
Gumbel interpretation, as a location parameter mixture, is that the multivariate EV
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distributions are obtained as scale mixtures with an accompanying location change
which keeps the endpoints of the distributions �xed.
In the models both conditional and unconditional distributions are Gumbel (or

EV) and maxima of all kinds, e.g. over a number of \groups" with di�ering numbers
of elements, are also Gumbel (or EV). This is natural in settings where all obser-
vations are obtained as maxima of some underlying variables and it also leads to
substantial economies of understanding, analysis and prediction.
The basic motivation and explanation of the models for the Gumbel case is given

in Section 2 below. In Section 3 we rederive and remotivate the asymmetric and
nested logistic multivariate Gumbel distributions and introduce new classes of mul-
tivariate Gumbel models for time series, spatial, and continuous parameter applica-
tions. Properties of the exponential-stable mixing distributions are given in Section
4. In Section 5 we �rst discuss estimation in the random e�ects model and in a
hidden MA(1) model. These models are then used to analyze two data sets. The
�rst one is from an investigation of risks of penetration by pitting corrosion on the
lower hemange of a car door. The second one concerns a time series of extreme
interest rate uctuations. The section also uses new model checking tools.
Section 6 translates the Gumbel results and models from Sections 2, 3, and 5 to

the general EV family. Section 7 contains a small concluding discussion.

2. Mixtures of Gumbel distributions

We will motivate our models by two physical situations. The �rst one is a standard
type of pitting corrosion measurement. In it a number of test specimens of a metal
are divided up into subareas, here called test areas, and the deepest corrosion pit in
each of the test areas is measured. The presumption is that there may be an extra
variation between specimens which is not present between test areas from the same
specimen. In Section 5 below we analyze such an experiment. In this experiment
the extra variation was caused by randomness in the proportion of the surface which
was covered by corrosion-preventing glue or coating.
The second situation is from Tawn (1990) and concerns maximum windspeeds at

di�erent locations. Tawn assumes that the yearly maximum at a location is obtained
as the largest of the maximum wind speeds in the individual storms which a�ected
the location that year. The highest wind speed in individual storms are assumed
to be i.i.d, but the number of storms varies randomly between years. There is an
unavoidable Poisson variation in this number. Tawn assumes there is an additional
variation between \stormy" and \stormfree" years, and that this may a�ect nearby
locations in a similar way.
In the present section we introduce the ideas in the one-dimensional case. The

physical motivations, however, extend directly to the multivariate models which are
the main interest of this paper, and are treated in the subsequent sections.
The mathematical basis is the following observation. Let S be a standard positive

�-stable variable, speci�ed by its Laplace transform

(2.1) E(e�tS) = e�t
�
; t � 0;

where necessarily � 2 (0; 1]. (When � = 1, S is taken to be identically 1, see the
discussion in Section 4.) Further, let the random variable X be Gumbel distributed
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conditionally on S,

(2.2) P (X � xjS) = exp(�Se�
x��
� ) = exp(�e�

x�(�+� log(S))
� ):

Then by (2.1),

(2.3) P (X � x) = exp(�(e�
x��
� )�) = exp(�e

�x��
�=� ):

Hence unconditionally X also has a Gumbel distribution, but the mixing increases
the scale parameter � of the Gumbel distribution by 100(1=� � 1)%.
We will sometimes use the terminology that the distribution ofX is directed by the

stable variable S. Let G � Gumbel(�; �) mean that the random variable G has the

distribution function (d.f.) exp(�e�
x��
� ). If S has the distribution speci�ed by (2.1),

the variableM = �+� log(S) will be called exponential-stable with parameters �; �;
and �. The symbols M � ExpS(�; �; �) will be used to denote such a distribution.
Now, equation (2.3) has the following three interpretations:

(i) Gumbel distribution as a location mixture of Gumbel distributions: Replacing
� in (2.2) and (2.3) by �1+�2, it follows that if G and M are independent and G �
Gumbel(�1; �) and M � ExpS(�; �2; �) then G+M � Gumbel(�1 + �2; �=�).
For the pitting corrosion measurements, the interpretation would be that the

maximal pit depth in a test area had a Gumbel distribution with a random location
parameter �1+M . The value ofM would depend on the proportion of the specimen
which was exposed to corrosion. The form of this dependence is made more clear
in the next interpretation.
Briey going beyond the one-dimensional model, it would be natural to assume

that di�erent test areas would have di�erent G-s but that the variable M would be
the same for all test areas on the same specimen, and di�erent for di�erent test
specimens. A further remark is that in this model it is not possible to separate �1
and �2. However, the parameters can be made identi�able by assuming that either
�1 or �2 is zero.

(ii)Gumbel distribution as a size mixture of Gumbel distributions: If the maximum

over a unit block has the Gumbel d.f. exp(�e�
x��1
� ) and blocks are independent

then the maximum over n blocks, or equivalently over one block of size n, has the
d.f.

(2.4) (exp(�e�
x��1
� ))n = exp(�ne�

x��1
� ):

In this equation it also can make sense to think of non-integer block sizes and random
block sizes. In particular, it makes sense to replace n by Se�2=� in (2.4) to obtain the

d.f. exp(�Se�2=�e�
x��1
� ). It then again follows from (2.1) that the unconditional

distribution is Gumbel(�1+�2; �=�). Thus the Gumbel(�1+�2; �=�) distribution is
obtained as a \size mixture" of Gumbel(�1; �) distributions, by using the stable size

distribution Se�2=�. As before, to make the model identi�able, one should assume
that either �1 or �2 is zero.

The interpretation in the corrosion example is simply that Se�2=� is the size of the
area which is exposed to corrosion. This size of course cannot be negative. Further
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it could reasonably be expected to be determined as the sum of many individu-
ally negligible contributions. Suitably interpreted, these two properties together
characterize the positive stable distributions.
Next, a variant of the Tawn (1990) physical motivation. It is well known that

maxima of underlying i.i.d. variables asymptotically has a Gumbel distribution if
the point process of large values asymptotically is a Poisson process. Slightly more
precisely, if fYn;ig are suitably linearly renormalized values of an i.i.d. sequence
fYig and ti = i=n, then the point process

P
i �(ti;Yn;i) tends to a Poisson process in

the plane with intensity d� = dt � d(e�(x��)=�) if and only if the probability that

max1�i�n Yn;i � x tends to exp(�e�
x��
� ), see e.g. Leadbetter et al. (1983). One

direction of this result is immediate. Speci�cally, it follows since max1�i�n Yn;i is
less than x precisely if the point process has no points in (0; 1] � (x;1) and since

the latter event has probability exp(��f(0; 1]�(x;1)g) = exp(�e�
x��
� ). Our third

interpretation of the Gumbel mixture model is obtained by replacing the constant
intensity in the point process by a stable one.

(iii) Gumbel distribution as the maximum of a conditionally Poisson point process:
Suppose X is the maximum y-coordinate of a point process in (0; 1] � R such that
conditionally on the stable variable S the point process is Poisson with intensity
d� = Se�2=�dt�d(e�(x��1)=�). Then, by the same argument as above, conditionally

on S the variable X has d.f. exp(�Se�2=�e�
x��1
� ), and as for (2.3), it follows that

the unconditional distribution of X is Gumbel(�1 + �2; �=�).

Tawn's interpretation is that the points in the point process correspond to the
maximum wind speeds in the storms that occur during a year. The random intensity
Se�2=� then describes an extra stochastic variation from year to year (which may
be similar for nearby locations). Again this has to be positive and perhaps obtained
as the sum of many individually negligible inuences, and hence perhaps positive
stable. The interpretation in the corrosion experiment is the same as for (ii) above.
As above, one of �1 or �2 should be assumed to be zero for identi�ability.
It may also be noted that in some situations it may be possible to use PoT

observations, i.e. to actually observe the underlying large values, say all large storms
during a year or all deep corrosion pits in each square. Such measurements could
also be handled within the present framework, by substituting the likelihoods in this
paper with the corresponding point process (or PoT) likelihoods. However, we will
not pursue this further in the present paper.

3. New classes of Gumbel processes

In this section we introduce a number of concrete Gumbel models directed by
linear stable processes: a random e�ects model, time series models with directing
stable linear processes, and a spatial model with a stable moving average as directing
process. We also consider a hierarchical setup and continuous parameter models.
We �rst state a slight generalization (a restriction on the size of the set A is

removed) of the main result of Tawn (1990). The result is given in three variations
which correspond to the three interpretations in Section 2. Let T and A be discrete
index sets, where in addition T is assumed to be �nite. Further let fct;ag be non-
negative constants and let fSa; a 2 Ag be independent positive �-stable variables
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with distribution speci�ed by (2.1). We assume without further comment thatP
a2A ct;aSa converges almost surely for each t.

Proposition 1. Conditions (i) and (ii) as stated below are equivalent, and Condi-
tion (iii) implies the other two:

(i)

Xt = Gt + �t log(
X
a2A

ct;aSa); t 2 T;

where Gt �Gumbel(�t; �t), and all variables are mutually independent,

(ii) the random variables Xt; t 2 T are conditionally independent given Sa; a 2 A,
with marginal distributions

(3.1) P (Xt � xtjSa; a 2 A) = exp

 
�(
X
a2A

ct;aSa)e
�

xt��t
�t

!
; t 2 T;

and

(iii) for t 2 T , Xt is the maximum y-coordinate of a point process in (0; 1]�R such

that conditionally on Sa; a 2 A the point processes are independent and Poisson with
intensities

�P
a2A ct;aSa

�
dt� d(e�(x��t)=�t).

Further, if either one of the conditions hold then

(3.2) P (Xt � xt; t 2 T ) =
Y
a2A

exp

 
�(
X
t2T

ct;ae
�

xt��t
�t )�

!
:

Clearly (i) and (ii) of the proposition are just di�erent ways of saying the same
thing, and that (iii) implies the others follows as in the discussion of the interpreta-
tion (iii) in Section 2. Further, that (ii) implies (3.2) follows immediately from (2.1)
since, by conditional independence,

P (Xt � xt; t 2 T ) = E

 
exp(�

X
t2T

X
a2A

ct;aSae
�

xt��t
�t )

!
=
Y
a2A

E

 
exp[�Sa(

X
t2T

ct;ae
�

xt��t
�t )]

!
:

As discussed in the introduction, for modelling the most useful case is when all
kinds of maxima have distribution of the same type as the marginal distributions.
This holds when all the scale parameters have the same value, i.e. when �t = �, for
t 2 T , and then, if T0 � T ,

(3.3) P (max
t2T0

Xt � x) =
Y
a2A

exp

0
@�(X

t2T0

ct;ae
�t
� )�e

� x
�=�

1
A ;

or equivalently

max
t2T0

Xt � Gumbel

0
@(�=�) log(X

a2A

(
X
t2T0

ct;ae
�t=�)�); �=�

1
A :
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In particular, by letting T0 be a one point set we see that in this case marginals are
Gumbel distributed,

Xt � Gumbel

 
(�=�) log(

X
a2A

(ct;ae
�t=�)�); �=�

!
:

Conditions (i) - (iii) in Proposition 1 correspond to the three \physical" inter-
pretations in Section 2. We now turn to a number of speci�c models. Which
interpretation is most relevant of course varies from model to model. E.g the �rst
model below is the standard logistic model for extreme value data, but with a new
interpretation as a random e�ects model. We will use it on a pit corrosion example,
where perhaps interpretation (ii) is most compelling. However, to streamline pre-
sentation, we will for the rest of this section formulate the models as in (i), but of
course could equally well have used (ii) or (iii).

Example: A one-way random e�ects model. This is the model

(3.4) Xi;j = �+ �i +Gi;j ; 1 � i � m; 1 � j � ni

with � a constant, �i �ExpS(�; 0; �), Gi;j �Gumbel(0; �) and all variables indepen-
dent.
Setting T = f(i; j); 1 � i � m; 1 � j � nig; A = f1; 2; : : : mg and c(i;j);k =

1fi=kg, this is a special case of the situation in Proposition 1 and we directly get the
distribution function

(3.5) P (Xi;j � xi;j; 1 � i � m; 1 � j � ni) =
mY
i=1

exp(�(

niX
j=1

e�
xi;j��

� )�):

According to Proposition 1 this model is max-stable, and explicit formulas are
directly available for the distribution of all kinds of unconditional and conditional
maxima. In particular the marginal distributions are Gumbel(�; ��) for �� = �=�.
�

This model can be extended to higher order random e�ects models which are
\linear on an exponential scale". We next turn to time series models. A linear
stationary positive stable process may be obtained as Ht =

P1
i=�1 biSt�i, where

the bi are nonnegative constants, and the sum converges if
P

b�i <1. De�ning

(3.6) Xt = �t + � log(Ht) +Gt;

for some constants �t, then gives a Gumbel time series model. In particular (3.6)
includes hidden ARMA models. We will look closer at the two simplest cases of
this.

Example: A hidden MA-process model. Suppose Ht = b0St + b1St�1 + : : : bqSt�q
and Xt is de�ned by (3.6), where the Si have distribution (2.1), Gt �Gumbel(0; �)
and all variables are mutually independent. Then, by Proposition 1 with T =
f1; : : : ng and A = f0;�1; : : : g,

(3.7) P (Xt � xt; 1 � t � n) =

nY
k=1�q

exp(�(

n^(k+q)X
t=1_k

bt�ke
�

xt��t
� )�):
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�

Example: A hidden AR-process model. For 0 < � < 1 de�ne the positive stable
AR-process Ht by Ht =

P1
i=0 �

iSt�i, and let Xt be given by (3.6), with the Si and
Gt as before. From the de�nition of Ht,

H0 =
1X
i=0

�iS�i(3.8)

H1 = �H0 + S1
...

Hn = �nH0 + �n�1S1 + � � �+ �Sn�1 + Sn;

and in addition, by (2.1) H0 has the same distribution as

(

1X
i=0

�i�)1=�S0 = (1 � ��)�1=�S0;

and is independent of S1; : : : Sn. Thus, the model is again of the form considered in
Proposition 1, with T = f0; : : : ng, A = f0;�1; : : : g and ct;0 = �t(1���)�1=�; ct;a =
�t�a for a = 1; : : : t and ct;a = 0 otherwise. Thus by Proposition 1 the distribution
function is

P (Xt � xt; 0 � t � n) = exp[�(1���)�1(
nX
t=0

�te�
xt��t

� )�]
nY
i=1

exp(�(
nX
t=i

�t�ie�
xt��t

� )�):

�

In the next example we consider models on the integer lattice in the plane. Let
n(i;j) be a system of neighborhoods with the standard properties (i; j) 2 n(i;j) and
(k; l) 2 n(i;j) , (i; j) 2 n(k;l). A simple example is when the neighbors are the four
closest points and the point itself, i.e. when n(i;j) = f(i; j); (i�1; j); (i+1; j); (i; j �
1); (i; j + 1)g.

Example: A spatial hidden MA-process model. Let fSi;j;�1 < i; j < 1g be
independent standard positive �-stable variables and set Hi;j =

P
(k;l)2n(i;j)

ÆSk;l
where Æ is a positive constant. Put

Xi;j = �i;j + � log(Hi;j) +Gi;j ; 1 � i; j � n;

where the Gi;j are mutually independent and independent of the Si;j, and Gi;j �
Gumbel(0; �). Again this is of the form considered in Proposition 1, now with
c(i;j);(k;l) = Æ if (i; j) 2 n(k;l) and zero otherwise. To write down the joint distribution
function it is convenient to use the notation �n(k;l) = n(k;l) \ f(i; j); 1 � i; j � ng.
We then get that

P (Xi;j � xi;j; 1 � i; j � n) =
Y
(k;l)

exp(�Æ�(
X

(i;j)2�n(k;l)

e�
xi;j��i;j

� )�):

�
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We now turn to a situation not covered by Proposition 1, the so-called nested
logistic model of McFadden (see Tawn (1990)).

Example: A two-layer hierarchical model. Consider the model

Xi;j;k = �+ �i + �i;j +Gi;j;k; 1 � i � m; 1 � j � ni; 1 � k � ri;j;

with � a constant, �i �ExpS(�; 0; �=�)
1=�, �i;j �ExpS(�; 0; �), Gi;j �Gumbel(0; �),

and all variables independent. By repeated conditioning we obtain, after some
calculations similar to the proof of Proposition 1,

P (Xi;j;k � xi;j;k; 1 � i � m; 1 � j � ni; 1 � k � ri;j)

=
mY
i=1

exp[�f

niX
j=1

(

ri;jX
k=1

e�
xi;j;k��

� )�g�]:

�

There also are continuous parameter versions of Proposition 1. Let fSj(s); s 2
Rkg be independently scattered positive stable noise (see Samorodnitsky and Taqqu
(1994, Chapter 3)). We assume that the noise is standardized, so that for nonnega-
tive functions f 2 L�,

(3.9) E[expf�

Z 1

�1
f(s)Sj(ds)g] = exp(�

Z 1

�1
f(s)�ds):

In the sequel we will without comment assume that functions are such that integrals
converge, and integrals are taken to be over Rk.

Proposition 2. Suppose that there are non negative functions fj(t; s) with t 2 R`,

s 2 Rk such that

Xt = Gt + �t log(

mX
j=1

Z
fj(t; s)Sj(ds)); t = t1; : : : tn;

where Gt �Gumbel(�; �t), and all variables are mutually independent. Then

(3.10) P (Xti � xti ; i = 1; : : : n) =

mY
j=1

exp(�

Z
(

nX
i=1

fj(ti; s)e
�

xti
��ti
�ti )�ds):

The proof follows from (3.9) in the same way as Proposition 1 follows from (2.1).
The interpretations (ii), as size mixtures, and (iii) as a random Poisson intensity
could equally well have been used as assumptions. However, this we leave to the
reader.
Proposition 2 gives a natural model for environmental extremes, such as yearly

maximum wind speeds or water levels, at irregularly located measuring stations.
E.g. one could assume years to be independent and obtain a simple isotropic model
for one year by choosing k = ` = 2; m = 1 and f1(t; s) = exp(�djt� sj�), for some
constants d; � > 0. One extension to non-isotropic situations is by letting D be a
diagonal matrix with positive diagonal elements and taking f1(t; s) = exp(�((t �
s)tD(t � s)�). (Formally the entire distribution function for n years is also of the
form (3.10), as can be seen by taking ` = 3; m = n and letting the di�erent Sj
correspond to di�erent years.) It is possible to derive recursion formulas for the
densities of these models in a similar but more complicated way as for the random
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Figure 4.1. Plot of densities of standardized exponential-stable dis-
tributions ExpS(�; 0; 1), with varying �.

e�ects model. If the number of measuring stations is not too large, these expressions
may be numerically tractable. However, we will not investigate this further in this
paper.

4. Some properties of the mixing distribution

This section discusses some of the basic facts about the models. In the notation
of Samorodnitsky and Taqqu (1994), the r.v. S in (2.1) is S�((cos ��=2)

1=�; 1; 0);
in the notation of Zolotarev (1986), S � SC(�; 1; 1). It has characteristic function

E exp(itS) = exp f� cos(��=2)jtj� [1� i tan(��=2)(sign t)]g :

Let FS(s) be the d.f. and fS(s) be the density of S. If M �ExpS(�; �; �),
then the d.f. and density of M are FM (x) = FS [expf(x � �)=�g] and fM (x) =
expf(x� �)=�gfS [expf(x� �)=�g]=�. Using the programs for computing with sta-
ble distributions described in Nolan (1997), it is possible to compute densities, d.f.,
quantiles and simulate values forM . Figure 4.1 shows the density of some log-stable
distributions. The densities all have support (�1;1) and appear to be unimodal.
Note that as � " 1, S converges in distribution to 1 and hence M = logS converges
in distribution to 0.
It is well-known that the upper tail of S is asymptotically Pareto: as x ! 1,

P (S > x) � c�x
�� where c� = �(�) sin(��)=�. This implies that the right tail of
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M �ExpS(�; �; �) is asymptotically exponential: as t!1,

P (M > t) = P

�
S > exp

�
t� �

�

��
� c� exp

�
�
t� �

�=�

�
:

The left tail of S is light, see e.g. Section 2.5 of Zolotarev (1986), so the left tail of
M is even lighter. Thus all moments of M exist; in particular, using the results of
Section 3.6 of Zolotarev (1986),

E(M) = �+ �Euler

�
1

�
� 1

�
; Var(M) =

�2�2

6

�
1

�2
� 1

�
;

where Euler � 0:57721 is Euler's constant.
As a simple consequence we derive the correlation between two variables in the

same group in the random e�ects model (3.4). Thus, suppose Xi = �+ � +Gi; i =
1; 2 with � �ExpS(�; 0; �); Gi �Gumbel(0; �) and the three variables independent.

Then Cov(X1;X2) = Var(�) and Var(Xi) = Var(�)+Var(Gi). Since Var(Gi) =
�2�2

6

we obtain that Cor(X1;X2) = 1� �2, which varies from 0 in the independent case
� = 1 to 1 as �! 0, as it should since the limit corresponds to full dependence.

5. Data analysis

In this section we illustrate the random e�ects model and the hidden MA(1)
model from Section 3 by using them to analyze a set of pit corrosion measurements
and an interest rate data set. As preliminaries we �rst discuss maximum likelihood
estimation in the two models.

5.1. Estimation in the random e�ects model. Let 0 < � < ��, �1 < �� <1,
so � := �=�� 2 (0; 1). Assume a data set X that comes from m groups,

group 1 : X1;1;X1;2; : : : ;X1;n1

group 2 : X2;1;X2;2; : : : ;X2;n2(5.1)

...

group m : Xm;1;Xm;2; : : : ;Xm;nm :

The groups are assumed to be independent and the ith group comes from a Gumbel(0; �)
distribution, where the location parameter �i for group i is drawn from an ExpS(� =
�=��; ��; �) distribution. The goal is to estimate the three parameters � = (�; ��; ��)
from the data by maximum likelihood.
The likelihood L(�jX) =

Qm
i=1 Li(�jXi;1; : : : ;Xi;ni) is the product of the group

likelihoods. Each of these terms can be derived by di�erentiating (3.5) with respect
to x1; : : : ; xn. The direct calculations are complicated, but Property (1) of Shi (1995)
gives the likelihood function for the group. To simplify formulas we suppress the
group index i and get

(5.2)

@n

@x1 : : : @xn
P (X1 � x1; : : : ;Xn � xn) =

�n

�n
z1�n=�e�zQn(z; �)

nY
j=1

e�(xj��)=� ;
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where z =
�Pn

j=1 e
�(xj��)=�

��
and Qn(z; �) is a polynomial in z de�ned by

(5.3) Qn(z; �) =

�
n� 1

�
� 1 + z

�
Qn�1(z; �)� z

@Qn�1(z; �)

@z
; Q1(z; �) = 1:

The conditions show that Qn(z; �) is a polynomial of degree n�1, say Qn(z; �) =Pn�1
j=0 qn;jz

j . Using this in (5.3) gives a recursive equation for the coeÆcients:

qn;j =

8><
>:
�
n�1
� � 1

�
qn�1;0 j = 0�

n�1
� � j

�
qn�1;j + qn�1;j�1 j = 1; : : : ; n� 2

1 j = n� 1:

Usually this makes it straightforward to �nd maximum likelihood estimates by
numerical optimization. However, if a group is large or � is small, the coeÆcients
of Qn(z; �) can be very large. E.g. the constant term is

qn;0 =

�
n� 1

�
� 1

��
n� 2

�
� 1

��
n� 3

�
� 1

�
� � �

�
1

�
� 1

�
:

This can in bad cases cause numerical overow in the optimization routines. Further,
if all groups only have one value or if there is only one group then parameters are
not identi�able. Presumably parameter estimates will be bad also if data is close to
these situations.
An alternative way to derive the likelihood, which in addition indicates a possi-

bility to compute it by simulation, is as follows: A group likelihood, conditional on
� , is

nY
j=1

1

�
e�

xj����

� exp

�
�e�

xj����

�

�
=

1

�n
Sne�

Pn
j=1

xj��

� exp

8<
:�S

nX
j=1

e�
xj��

�

9=
; ;

where � = � logS and S is a standard ��stable variable, as previously. Hence, a
group likelihood is

1

�n
e�
Pn

j=1

xj��

� E

2
4Sn exp

8<
:�S

nX
j=1

e�
xj��

�

9=
;
3
5 :

Let � = z1=� =
Pn

j=1 e
�(xj��)=� . Then, the expectation in the last expression

reduces to

E
�
Sne�S�

�
= E

�
dn

d�n

�
e�S�

	�
= (�1)n

dn

d�n

�
e��

�	
;

where the second equality makes one more use of the stable distribution of S. The
last expression of course is the same as (5.2).
The maximum likelihood algorithm has been implemented in S-Plus. The esti-

mation procedure numerically evaluates `(�jX) = logL(�jX) and numerically max-
imizes it to �nd the estimate of �. The search is initialized at �0 := (�0=2; �0; �0),
where �0 and �0 are estimates of the Gumbel parameters for the (ungrouped) data
set X. This estimate is found by using the probability-weighted moment estimator,
see e.g. Section 1.7.6 of Kotz and Nadarajah (2000).
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5.2. Estimation in the hidden MA(1) model. By (3.7) the hidden MA(1)
model with constant location parameter, �t = � and, for identi�ability, b0 = 1; b1 = b
has distribution function

(5.4) F = P (Xt � xt; 1 � t � n) = exp

 
�

(
(bz1)

� +

n�1X
t=1

(zt + bzt+1)
� + z�n

)!
;

where zt = exp(�(xt � �)=�). The parameters of the model are � = (�; b; �; �). By
di�erentiation with respect to x1; : : : ; xn the likelihood function can be seen to be
of the form

L(�jX) = QnF

nY
t=1

zt
�
;

with F from (5.4) and Qn de�ned recursively as follows. Set u1 = bz1, ut = zt�1+bzt
for t = 2; : : : ; n, un+1 = zn. Then F = exp(�

Pn+1
t=1 u

�
t ) and

Q0 = 1; Q1 = �
�
bu��11 + u��12

�
;

Qi = �Qi�2�(�� 1)bu��2i +Qi�1�
�
bu��1i + u��1i+1

�
; i = 2; : : : ; n:

When b = 0, the Q1 term above should be interpreted as Q1 = �u��12 , which makes
the likelihood formula valid in the case where the xt are independent. This has been
implemented in S-Plus, where

logfL(�jX)g = logQn �

n+1X
t=1

u�t �

nX
t=1

�
xt � �

�

�
� n log �

is computed and numerically maximized. As default the search is started at (� =
�0; b = 0; � = �0=0:5; � = 0:5), where (�0; �0) are the Gumbel power weighted
moment estimators for the data set. However, for small sample sizes results were
sensitive to the choice of starting values. In such cases we started the search at many
di�erent randomly chosen points and chose as estimator the �nal values which gave
the highest likelihood.

5.3. Pitting corrosion data analysis. The pitting corrosion investigation which
generated this data set was briey mentioned in the beginning of Section 2. Specif-
ically, pieces (or \test specimens") were cut out from di�erent parts of the bottom
hemange of the aluminum back door of a twelve year old station wagon. The
corrosion products were dissolved from the pieces, and the deepest corrosion pit
was measured in a number of one centimetre long test areas on each specimen.
The hemange had been glued together and had also been treated with a corrosion
preventing coating. Surface areas where the glue or coating was intact showed no
corrosion. However, in some places the glue and coating had not penetrated well or
had fallen of, leaving the surface exposed to corrosion. The proportion of the area
which could corrode varied between specimens, and this was a potential cause of
extra variation in the corrosion measurements.
Interest was centered on the risk of penetration by deepest corrosion pit on the

outer surface of the hemange. The data set for this surface consisted of microscope
measurements (in microns) of the maximum pit depth in 11 to 15 test areas on each
of 12 specimens. There was no corrosion on 5 of the test specimens, and on one only
two test areas showed any corrosion. These 6 specimens were excluded from our
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Figure 5.1. Gumbel plot for the pooled corrosion measurements.
A di�erent symbol is used for each group.

analysis. Also in the remaining specimens there were some corrosion free test areas,
and the data we used for analysis hence consisted of 6 groups (=test specimens)
with varying numbers (ranging from 4 to 14) of measured maximum pit depths.
The engineers who performed the experiment disregarded the group structure and

considered the pooled data set as an i.i.d Gumbel sample. The maximum likelihood
parameter estimates under this model were (�pool; �pool) = (145:6; 69:4). It was
remarked by the engineers that there seemed to be some deviation from a straight
line in Gumbel plot, see Figure 5.1.
We instead analysed the data with the random e�ects Gumbel model from Sub-

section 5.1. The aim was both to see if this model �tted better and to check wether
it lead to a substantially di�erent risk estimate. In addition to the extra varia-
tion between test specimens there might also be a short range dependence between
neighboring test areas. We tried to judge the size of this e�ect by �tting a hidden
MA(1) model.
The maximum likelihood estimates in the random e�ects Gumbel model were

(�; �; �) = (140:9; 54:1; 0:716) with standard deviations (21:75; 5:71; 0:118) estimated
from the inverse of the empirical information matrix. A very rough calculation of the
risk of perforation can then be made as follows. There are about 15 test specimens
on a hemange. Let us assume, as was the case with the present data, that typically
about 6 of the test specimens will show corrosion and that on average about 11 test



MIXTURES 15

areas on each specimen will be corroded. Then, by (3.3) the estimated distribution
function of the maximum pit depth for one car would be

F̂ (x) = exp(�6(11e�
x�140:9
54:1 )54:1=75:6):

The thickness of the aluminum was 1.1 mm = 1100 microns and hence we estimate
that there on the average will be perforation in one out of 1=(1 � F̂ (1100)) = 9671
cars. A delta method 95% con�dence interval for this estimate is (8392; 10950).
If we instead, following the engineering analysis, use the pooled Gumbel model
with the assumption that typically there are 6 � 11 = 66 corroded test areas on a
hemange, the risk estimate is that on the average there is penetration in one out of

(1 � exp(�66e�
1100�145:6

69:4 )�1 � 14374 cars. A delta method 95% con�dence interval
is (13115; 15632).
The formulation as a random e�ects model gives a number of possibilities for

model checking. From Figure 5.2 can be seen that the Gumbel distribution �ts
reasonably well to the separate groups, that there indeed seems to be an extra
variation between groups, and that the �tted lines are approximately parallel. As
a further formal check of the assumption that the �- s in the group were equal, we
made a conditional analysis, �tting separate Gumbel distributions to the groups by
maximum likelihood. In this we considered two di�erent models, one with separate
�-s and �-s for the groups and one where all groups were assumed to have the same
�. A likelihood ratio test between the models gave p = :53. The � estimate from
the latter model was 47:6, which is reasonably close to the � estimate 54:1 in the
random e�ects model.
Similarly, �� = 75:6 and �pool = 69:4 are rather close, as they should be. A

further comparison is that the correlation coeÆcient estimated nonparametrically
from the data was 0:44. This can be compared with the correlation coeÆcient
1� �̂2 = 0:49 computed from the �tted model. Finally, from looking at simulations
of the �tted random e�ects model, we thought the apparent deviations from the
marginal Gumbel distribution in the pooled Gumbel plot in Figure 5.1 seemed well
within the range of what could be expected.
As a check on the �t of the mixing distribution, Figure 5.3 shows the quantiles of

the estimated �-s against the quantiles of the �tted exponential-stable distribution.
According to the model, the �-s are exponential-stable, and hence, apart from esti-
mation error, the estimated �-s are expected to be exponential-stable. The plot also
shows a reasonable �t, and in fact looks much like the same qq-plots from simulated
values from the model.
As a �nal control we �tted the hidden MA(1) model from Subsection 5.2 to the

data. In this we assumed groups were independent and had their own �-s, but that
�; � and b were the same in all 6 groups. Thus there were in all 9 parameters, the six
group means �1; �2; �3; �4; �5; �6 and the parameters �; �; b. Maximum likelihood
estimation using the default initial values got stuck in a local maximum, and we
hence did the optimization for 100 di�erent starting values for �; �; b, chosen at
random from the cube [7; 54] � [0:1; 0:99] � [0; 2]. As estimates we took the �nal
values which gave the highest likelihood. For the �-s in the 6 groups these were
87:3; 142:0; 132:4; 140:0; 67:6; 214:8 and the estimators for the remaining parameters
were �̂ = 29:6; �̂ = 0:58; b̂ = 0:13.
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Figure 5.2. Gumbel plots made separately for the 6 groups. The
solid lines are the di�erent theoretical Gumbel �ts for each group.

From the model, the marginal distributions in the groups are Gumbel with loca-
tion parameter �+ �

� log(1 + b�) and scale parameter �=�. The estimates of these
agreed to within 5% with their initial values, which indicated that these parameters
were reasonably well determined by the data. The remaining two parameters, �
and b, model the dependence structure. The smaller the � and the closer b is to
one, the higher is the dependence. These parameters seemed harder to estimate.
Their estimated values indicated a rather weak local dependence, and we stopped
the analysis at this point. If this dependence had been judged important, we in
principle could have �tted a model which included both random group means and a
local MA(1) dependence. However, such an analysis would perhaps have been more
than the present data set could bear.
There are weak points in this analysis. An obvious one is the assumption that

a hemange has 6 test specimens with 11 corroded test areas each. However the
most important one may well be that the variation in pit depths from car to car
is disregarded. If measurements on several cars had been available, it would have
been natural to try to �t the hierarchical model from Section 3.

5.4. Interest rate data analysis. As a �nal example we considered a time series
of extreme four week uctuations of an interest rate, as shown in Figure 5.4, left
plot. The data comes from the US Federal reserve system1 and is the long-term or

1Available online at http://www.federalreserve.gov/releases/h15/data.htm
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estimated �-s from the conditional analysis with the same � in all
groups.

capital market interest rate for \constant maturity, nominal 1 month". The unit is
percentage points. The data are not seasonally adjusted, and concern business days
(�ve days, Monday-Friday), for the time period Oct 9, 2001 to Jan 21, 2005. The
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Figure 5.4. Left: Four week uctuations of an interest rate in terms
of time. Right: Gumbel plot for the uctuations data shown on the
left.
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\extreme four week uctuation" was computed as the maximum interest rate over
the four week period minus the minimum interest rate over the four week period.
There were in all 43 four week periods in the time span of the data, and hence the
time series consists of 43 values.
The maximum likelihood estimates from �tting the hidden MA(1) model to the

data set were �̂ = 0:096, �̂ = 0:017, �̂ = 0:269, b̂ = 0:033. Figure 5.4, right
plot, shows a reasonable �t of the marginal Gumbel distribution. The �rst four
partial autocorrelations were 0.476, -0.070, -0.004 and -0.261, which supports a 1-
dependent model for the time series. To assess whether the �tted parameters capture
the observed dependence, one thousand simulated time series of length 43 were
generated with the parameters estimated above (�̂ = 0:017, �̂ = 0:269, b̂ = 0:033).
In the simulations, the mean one-lag correlation was 0.314; this compares to the
one-lag correlation coeÆcient of 0.476 found in the data. Neither of these checks
contradicted the choice of model.

6. Mixtures of generalized extreme value distributions

The mixture models for the Gumbel distribution discussed so far in the paper
carry over to the (generalized) Extreme Value distribution in a straightforward man-
ner. However, the interpretation (i) is di�erent.

The EV distribution has d.f. exp(�(1 +  x��
� )�1=) with parameters �;  2 R

and � > 0. For positive  this distribution has a �nite left endpoint Æ = � � �=
and for  negative it has a �nite right endpoint Æ = �+�=jj. In analogy with (2.1)
- (2.3) let S be positive stable with Laplace transform (2.1) and assume that

(6.1) P (X � xjS) = exp[�S(1 + 
x� �

�
)�1= ] = exp[�(

x� Æ

S�
)�1= ]:

Then by (2.1),

(6.2) P (X � x) = exp

"
�

�
1 + (=�)

x� �

(�=�)

��1=(=�)#
:

Thus, in the terminology of (ii) of Section 2, if X is a positive stable size mixture
of an EV distribution with location �, scale � and shape parameter  then also X
itself has an EV distribution with the same location � and the same right endpoint
Æ, but with a new scale parameter �=� and new shape parameter =�. Hence in
particular the unconditional distribution of X has heavier tails than the conditional
one.
The physical motivations (ii) and (iii) from Chapter 2 carry over to the present

situation without change. Further, from (6.1) it can be seen that X may be obtained
as a special random location-scale transformation of an EV distribution. Speci�cally,
if E has an EV distribution with parameters �; �;  and S is positive �-stable and
independent of E, then X may be represented as

(6.3) X = SE + (1� S)Æ:

Thus X is obtained as a scale mixture with mixing distribution S , but in addition
there is an accompanying location change which is tailored to keep the endpoint of
the distribution unchanged. This, of course, may be the most natural way to make
scale mixtures of distributions with �nite endpoints.
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With this change, the motivations from Section 2 and the models from Section
3 carry over to the EV distribution. If the models in Section 3 are written as size
mixtures, i.e. in the form (ii), the only changes needed to go from Gumbel to EV

are to replace e�
x��
� by (1 +  x��

� )�1= in all expressions. The recursions for the
likelihood functions from section 5 translate to the EV case similarly.
It is also straightforward to translate speci�cations using (i) to the EV case. E.g,

in the formulation (i) the random e�ects model (3.4) becomes

Xi;j = S
i Ei;j + (1� S

i )Æ;

where Ei;j has an EV distribution with parameters �; �;  and S is positive �-stable,
and all variables are mutually independent. In the same way, the hidden time series
model (3.6) in EV form can be written as

Xt = H
t Et + (1�H

t )Æ;

with Ht a linear stable process and Et is EV distributed, and all variables are
mutually independent.
Next,

log(X � Æ) =  log S + log(E � Æ);

and if X is of the form (6.3) with  > 0 then log(E � Æ) has a Gumbel distribution
with location parameter log(�=�) and scale parameter . For  < 0 we instead write

log(Æ �X) =  log S + log(Æ �E);

where log(Æ �E) has a Gumbel distribution with location parameter log(�=�) and
scale parameter . Thus the diagnostic plots for Gumbel mixtures could be used
also for EV mixtures, except that Æ isn't known. A pragmatic way to control the
model assumptions then is to replace Æ by some suitable estimate.

7. discussion

The pitting corrosion example discussed in Section 5 was the starting point for
the present research. There it seemed important to use models where conditional
and unconditional distributions and maxima over blocks of varying sizes all had
Gumbel distributions, since this leads to simple and understandable results, and
credible extrapolation into extreme tails. It seems important to stay within the
extreme value framework throughout for many other applications too. This is the
main reason for the present work.
The results include a large number of possibilities for new models. We have given

some examples of this. They also throw new light on some much studied existing
logistic models. In particular they point to possibilities for new kinds of model
diagnostics.
However, we believe that the major part of the possibilities opened up still remains

to be exploited. This will be examined in future research.
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