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The Kac Equation
with a Thermostatted Force Field

B. Wennberg1 and Y. Wondmagegne1

We consider the Kac equation with a thermostatted force field
and prove the existence of a global in time solution that converges
weakly to a stationary state. As there is no an obvious candidate
for the entropy functional, in this case, the convergence result is
obtained via Fourier transform techniques.

Key Words: Boltzmann equation, Kac equation, Gaussian ther-
mostat.

1 Introduction

We consider the Kac equation with a particular kind of force field that
conserves energy:

∂

∂t
f + E

∂

∂v

((
1− ζ(t) v

)
f
)

= Q(f, f), (1)

where

ζ(t) =
∫

R
v f(v, t) dv. (2)

In the right hand side, Q is the collision term

Q(f, f)(v, t) =
∫

R

∫ π

−π

[
f(v′, t)f(v′∗, t)− f(v, t)f(v∗, t)

] dθ
2π
dv∗. (3)

This equation is derived as the limit when N →∞ of systems of N particles
with one-dimensional velocities, just like in [8]. The particle positions are

1Department of Mathematical Sciences, Chalmers University of Technology and Göte-
borg University, SE-412 96 Göteborg, Sweden.
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not taken into account, and just as in the original Kac model, and collisions
between two particles with velocities v and v∗ are modeled as rotations in
the (v, v∗)-plane (see equation (6)). The term E ∂

∂v

((
1− ζ(t) v

)
f
)

in (1)
which is new with respect to the original work of Kac, comes from adding a
force field which accelerates the particles in the intervals between collisions.
A simple model would be to accelerate each individual particle in the N-
particle system with the same constant force,

dvj

dt
= E, (j = 1, . . . ,N),

but then clearly energy would continuously be added to the system, and
to compensate that, the field is modified by a so-called thermostat in the
following way. Denoting the N-dimensional master vector V = (v1, · · · vN),
the accelerating master field is

E− E ·V
|V|2

V, (4)

where E = E(1, 1, . . . , 1) ∈ RN. To apply the thermostat amounts to
projecting the constant master field onto the surface of constant energy,
|V| = const.

Thermostatted force fields have been introduced in statistical physics and
in particular in molecular dynamics, because they are useful when studying
non equilibrium stationary states (see e.g. [9]). In a previous paper [11],
we proved existens of stationary solutions to equation (1). Depending on
E, the strength of the field, these stationary states may have a singularity,
but they always have a density.

In this paper we prove existence and uniqueness of a solution to the time
dependent problem, and we also prove that the solutions converge to a
stationary state. The existence result is based on integration along charac-
teristics and successive approximations, and is rather straight forward. The
proof of convergence to the stationary state is complicated by the lack of a
natural entropy. Instead we prove that the Fourier transform of the solu-
tions to (1) converges point-wise to the Fourier transform of the stationary
solution.

The Kac equation is one of the simplest possible models of the Boltzmann
equation, and it does not share all the physically relevant properties. In
particular, momentum is not preserved by the collisions, and this changes
the long time behavior. In fact, the Boltzmann equation with a thermostat-
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ted force field corresponding to (1) would be

∂

∂t
f + E∇ ·

((
1− ζ1(t)v

)
f
)

= Q(f, f), (5)

where in this case v ∈ R3, and Q is the usual collision operator for
the Boltzmann equation. Here ζ1(t) is the first component of ζ(t) =∫

R3 v f(v, t) dv ∈ R3. This corresponds to the case where each particle
is accelerated by a field of type (E, 0, 0) before the thermostat is applied.
In this case the collision operator does not contribute to the evolution
of ζ(t), which converges exponentially fast to (1, 0, 0). It follows that
f(v, t) → δ(1,0,0) when t → ∞, and so the stationary states are trivial.
They are also in equilibrium, because the Dirac mass is a degenerated
Maxwellian.

Indeed, the nonlinear Boltzmann equation may not be the most natural
place to introduce thermostatted fields. We first learned about thermostats
in the context of the Lorentz gas [3], and seen from that point of view, it
is rather be the linear Boltzmann equation that is relevant. However, if for
example a linear collision term were added, then one would again obtain a
system with non trivial stationary states.

A different type of modified Boltzmann equations, which have attracted
much interest recently, and which also lead to non equilibrium situations,
are models for granular media. There the collisions are dissipative, and in
order to find non trivial stationary states, either the equations are rescaled
according to the actual energy, or energy is added by putting the particles
in a thermal bath. Such models are described e.g. in [2, 4, 5].

This paper is organized as follows. First, in Section 2 we give a formal
derivation of the force field in the Kac equation. This is formal because
we assume the propagation of chaos. Then in Section 3, the existence
and uniqueness theorem is stated and proven. This section is essentially a
condensed form of the second author’s doctoral thesis [12]. In Section 4 we
study the Fourier transform of equation (1), and use this to prove that the
solutions converge to a stationary state when t → ∞. Finally, Section 5
contains some numerical calculations to illustrate the theoretical results.
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2 The thermostatted Kac equation

In [8], Kac derived a nonlinear Boltzmann equation as the limit, when N
goes to infinity, of a stochastic N-particle system. He considered a spatially
homogeneous gas consisting of N point-particles with one-dimensional ve-
locities vj ∈ R, j = 1, 2, . . . ,N. The time evolution of the gas forms a
stochastic process, where at exponentially distributed time intervals, bi-
nary collisions take place as follows: a pair of velocities, say vi and vj , are
selected randomly, and are assigned new velocities, v′i and v′j , by a random
rotation in R2, namely

v′i = vi cos θ − vj sin θ
v′j = vi sin θ + vj cos θ, (6)

where the scattering angle, θ, is chosen from a uniform distribution over
[−π, π). Distributions favoring some collisions over others have also been
considered e.g. in [6]. Clearly v2

i +v2
j = v′i

2+v′j
2, and thus the total energy,∑N

i=1 v
2
i , is conserved in the process. Hence, the Kac model defines a jump

process on the (N − 1)-dimensional sphere SN−1, which is normalized to
have radius

√
N. For this process to mimic a system of real particles, one

takes the collision frequency, i.e. the rate in the exponential distribution,
to be proportional to N.

Let ΨN be the probability density of points in phase space each of which
evolve according to the above Kac process. Then ΨN satisfies the master
equation

∂

∂t
ΨN(V, t) = K(ΨN)(V, t), (7)

where V = (v1, . . . , vN) ∈ SN−1
(√

N
)
. K is the linear operator given by

K(ΨN) = N
(
K̃− I

)
(ΨN), (8)

where I denotes the identity operator, and K̃ is defined by

K̃(ψN)(V, t) =
(

N
2

)−1 ∑
1≤i<j≤N

1
2π

∫ π

−π

ΨN

(
Aij(θ)V, t

)
dθ,

with Aij(θ)V =
(
v1, . . . , v

′
i, . . . , v

′
j , . . . , vN

)
.

Let k ≤ N be fixed. Define the k-particle marginal fN
k by

fN
k (v1, . . . , vk, t) =

∫
Ωk

ΨN(v1, . . . , vN, t) dσk, (9)
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where Ωk = SN−1−k
(√

N−
∑k

i=1 v
2
i

)
and dσk denotes the normalized sur-

face measure on Ωk. The family {ΨN}∞N=1 of probability densities is said
to have the Boltzmann property, if

lim
N→∞

fN
k (v1, . . . , vk, t) =

k∏
j=1

lim
N→∞

fN
1 (vj , t).

The main result in [8] is that, under suitable conditions on the initial data,
the one particle marginal, fN

1 , converges, as N →∞, to a solution f of the
Kac equation,

∂

∂t
f(v, t) = Q(f, f)(v, t), (10)

where the collision term, Q, has the form (3).

In this paper Kac’s original stochastic model is modified by incorporating
an external uniform force field which accelerates the particles between the
collisions. This field acts equally on each particle, and in order to keep
the total energy constant, it is projected onto the tangent plane to the
energy surface – SN−1

(√
N

)
. More precisely, between collisions, V evolves

according to

dV
dt

= E − E ·V
|V|2

V, (11)

where E = E(1, . . . , 1) ∈ RN. Equation (11) can also be written component-
wise as

dvi

dt
= E

(
1− J

U
vi

)
, i = 1, . . . ,N,

where J =
1
N

N∑
i=1

vi and U =
1
N

N∑
i=1

v2
i .

Let ΨN(V, 0) be an initial probability distribution of points on SN−1
(√

N
)
.

If each of these points evolve according to the modified Kac process, then
ΨN(V, t) satisfies the master equation

∂

∂t
ΨN + ∇ ·

(
FΨN

)
= K

(
ΨN

)
, (12)

where K is as in (8), and F is the thermostatted force field given by

F = E − E ·V
|V|2

V = E
(

1− J
U
v1, . . . , 1−

J
U
vN

)
.
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Assume that the family {ΨN}∞N=1 form a sequence of C1-solutions to (12).
We differentiate fN

1 with respect to t, use (12), and rearrange the resulting
terms to get

∂

∂t
fN
1 (v1, t) +

∫
Ω1

∇ ·
(
FΨN

)
dσ1 =

∫
Ω1

K(ΨN) dσ1. (13)

If the densities ΨN are symmetric with respect to permutation of the argu-
ments, and if the family {ΨN}∞N=1 satisfies the Boltzmann property for all
t, then it is not difficult to show that the right hand side of (13) converges
to the collision operator (3), when N → ∞. The difficulty lies in prov-
ing that the Boltzmann property propagates in time. One says then that
“chaos propagates”, and Kac proved that this is true in the case of the Kac
model. In this paper we assume that the propagation of chaos, still holds
with a force term, and hence that the right-hand side does not change by
the addition of a force term.

The second term on the left-hand side of (13) is studied in [12], where it
is shown that under the assumption of propagation of chaos, and some
additional regularity condition,∫

Ω1

∇ ·
(
FΨN

)
dσ1 → E

∂

∂v1

((
1− ζ(t) v1

)
f
)
,

when N →∞. The function ζ(t) is given by (2), and it is tacitly assumed
that U, the mean energy of a particle, is equal to one. The main effort is
made in proving that∫

Ω1

(
1− J

U
v1

)
ΨN dσ1 →

(
1− ζ(t) v1

)
f ,

when N → ∞. This then shows, at least formally, that, if f(v, t) =
lim

N→∞
fN
1 (v, t) exists, then f satisfies (1), which constitutes the thermostat-

ted Kac equation. To make the proof rigorous, one needs to prove that
propagation of chaos holds.

3 Existence of solution

In this section we study the initial value problem to equation (1). The
main result of this section is
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Theorem 1 Let f0 ≥ 0 with
∫

R f0(v) dv = 1 be given. Then there exists
a non-negative f ∈ C

(
(0,∞);L1(R)

)
, which is a mild solution to (1)-(2)

with f(v, 0) = f0(v), and such that
∫

R f(v, t) dv =
∫

R v
2 f(v, t) dv = 1.

We first state and prove a result concerning the function ζ(t).

Lemma 1 Let f0 ≥ 0 with
∫

R f0(v) dv = 1 be given. Assume that there
exists f ≥ 0, solution to (1)-(2) such that

∫
R f(v, t) dv = 1, and |v|f(v, t) →

0 as |v| → ∞, for each t ≥ 0. Then ζ(t) fulfills

d

dt
ζ(t) = E

(
1− ζ(t)2

)
− ζ(t), (14)

ζ(0) = ζ0 ≡
∫

R
v f0(v) dv. (15)

This can be solved explicitly as

ζ(t) =
ζ+(ζ− − ζ0) − ζ−(ζ+ − ζ0)e−

√
1+4E2 t

(ζ− − ζ0) − (ζ+ − ζ0)e−
√

1+4E2 t
, (16)

where

ζ± =
2E

1±
√

1 + 4E2
. (17)

Proof. Since
∫

R f(v, t) dv = 1, the collision term can be written asQ(f, f) =
Q+(f, f)− f , where

Q+(f, f)(v, t) =
∫

R

∫ π

−π

f(v′, t)f(v′∗, t)
1
2π

dθ dv∗.

Because
∫

R v Q+(f, f) dv = 0, we get∫
R
v Q(f, f) dv = − ζ(t). (18)

From the definition of ζ(t) it also follows that

d

dt
ζ(t) =

∫
R
v
∂

∂t
f(v, t) dv.

Using (1) and doing a partial integration directly leads to equation (14)–
(15) which has the unique solution (16). �
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Next we study the initial value problem

∂

∂t
f + E

∂

∂v

((
1− ζ̄(t) v

)
f
)

= Q(f, f), (t > 0), (19)

f(v, 0) = f0(v) , (20)

where ζ̄(t) is given by (16). This is exactly like (1)–(2) except that ζ(t) =∫
R v f(v, t)dv is replaced by the known function ζ̄(t).

First we rewrite (19) as

∂

∂t
f + E

(
1− ζ̄(t) v

) ∂
∂v
f +

(
1− E ζ̄(t) v

)
f = Q+(f, f). (21)

This constitutes a first-order semi-linear equation that can be solved by
integration along characteristics and iterative procedure as used by Ark-
eryd [1]. After integration along characteristics (21) becomes

d

dt
f# +

(
1− E ζ̄(t)

)
f# = Q+(f, f)#, (22)

where, for each v ∈ R, we use the notations

f#(v, t) = f
(
V (v, t), t

)
, (23)

Q+(f, f)#(v, t) = Q+(f, f)(V (v, t), t). (24)

Here we make use of the transformation

V (v, t) = ψt(v) ≡ v e−λ(t) + E e−λ(t)

∫ t

0

eλ(s) ds, (25)

where λ(t) = E
∫ t

0
ζ̄(s)ds. The Jacobian of the transformation in (25) is

J = e−λ(t) > 0. Moreover,

ψ−1
t (V ) = V eλ(t) − E

∫ t

0

eλ(s) ds. (26)

For notational convenience, we write Λ(t) =
∫ t

0

(
1−E ζ̄(s)

)
ds or, in other

words Λ(t) = t− λ(t).

Let T > 0 be fixed. The integral form of (22) in the time interval [0, T ] is

f#(v, t) = e−Λ(t)f#(v, 0) + e−Λ(t)

∫ t

0

eΛ(τ)Q+(f, f)#(v, τ)dτ. (27)

Using (26), and the notations in (23) and (24), we can rewrite (27) in
terms of f

f(v, t) = Γf0(f)(v, t), (28)
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where

Γf0(f)(v, t) = e−Λ(t)f0
(
ψ−1

t (v)
)

+ e−Λ(t)

∫ t

0

eΛ(τ)Q+

(
f, f

)(
ψτ ◦ ψ−1

t (v), τ
)
dτ. (29)

Theorem 1 is an immediate consequence of the following proposition.

Proposition 1 Let f0 ≥ 0 with
∫

R f0(v) dv = 1, and
∫

R |v|
3 f0(v) dv < ∞

be given. Then there exists a unique, non-negative f ∈ C
(
(0,∞);L1(R)

)
,

which is a mild solution to (19)-(20). This solution satisfies
∫
v f(v, t) dv =

ζ̄(t), in addition to mass and energy being one.

Remark 1 The condition that
∫

R |v|
3 f0(v) dv be bounded could surely be

relaxed, but we keep it here for convenience.

Proof. We define two different sequences of approximations, based on
equation (28),

{
f (n)(·, t)

}∞
n=1

and
{
g(n)(·, t)

}∞
n=1

. The first one is obtained
as

f (1)(v, t) = 0, (30)

f (n)(v, t) = Γf0

(
f (n−1)

)
(v, t), (n > 1) (31)

and has the merit of being monotonous, from which one may conclude that
there is a limit f ∈ L1, and that this limit is non-negative. The second
sequence is defined in the same way, except that

g(1)(v, t) = f0(v).

This sequence is not necessarily monotonous, but has the advantage that
moments up to the order two can be computed explicitly (and have the
desired values), and that higher order moments may be easily estimated.
In fact we claim that for each t ≥ 0, and for each n∫

R
g(n)(v, t) dv = 1, (32)∫

R
v g(n)(v, t) dv = ζ̄(t), (33)∫

R
v2 g(n)(v, t) dv = 1. (34)

where ζ̄ is given in (16), and moreover that all higher moments that initially
are bounded remain bounded.
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To prove the proposition, it suffices to show that g(n) → f in L1 which, in
view of the boundedness of

∫
R v

2 g(n)(v, t) dv, would imply that
∫

R v f(v, t) dv =
ζ̄(t).

We recall the following easy relations (the first one being a direct conse-
quence of the bilinearity of Q+)

Q+(f, f) − Q+(g, g) = Q+(f − g, f) + Q+(g, f − g), (35)∫
R
Q+(g, g)(w, τ) dw =

(∫
R
g(w, τ) dw

)2

, (36)∫
R
w Q+(g, g)(w, τ) dw = 0, (37)∫

R
w2 Q+(g, g)(w, τ) dw =

∫
R
g(w, τ) dw

∫
R
w2 g(w, τ) dw. . (38)

Using (29), (35), and the positivity of Q+, it follows immediately that if
fn ≤ gn, then fn+1 ≤ gn+1. But f1 ≤ g1, and so fn ≤ gn holds for all n
(this is detailed below). We thus have∫

R

∣∣f − g(n)
∣∣ dv = 2

∫
{f≥g(n)}

(
f − g(n)

)
dv −

∫
R

(
f − g(n)

)
dv.

But
∫

R f(v, t)dv =
∫

R g
(n)(v, t)dv = 1, so we find∫

R

∣∣f − g(n)
∣∣ dv = 2

∫
{f≥g(n)}

(
f − g(n)

)
dv

≤ 2
∫

R

(
f − f (n)

)
dv → 0,

when n → ∞. From the remark above, we know that
∫

R |v|
3g(n)dv and

from that we may conclude also that
∫

R v
2f(v, t) dv = 1.

The same argument implies the uniqueness result in Theorem 1. In fact, if
f∗(v, t) is any solution to (28) then

f∗(v, t) = Γf0

(
f∗

)
(v, t).

The monotonicity of Q+, and thus that of Γf0 , then implies that, for all n,

f (n)(v, t) ≤ f∗(v, t),

and the same holds for f(v, t) = limn→∞ f (n)(v, t). But∫
R
f∗(v, t)dv =

∫
R
f(v, t)dv = 1,
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and thus f∗ = f .

To conclude the proof of the theorem we need to prove that the sequences{
f (n)(·, t)

}∞
n=1

and
{
g(n)(·, t)

}∞
n=1

behave as stated. We begin by the first
one of these.

From the monotonicity of Q+ and the assumption that f0 ≥ 0 we deduce
that the iterates are all non-negative: It is immediate that

f (2)(v, t) = e−Λ(t)f0
(
ψ−1

t (v)
)
, (39)

from which we see f (2)(v, t) ≥ f (1)(v, t) for all v ∈ R. Suppose now, for
some n ≥ 3, that f (n−1) ≥ f (n−2). The result now follows by induction
and the formula

e−Λ(t)

∫ t

0

eΛ(τ)
[
Q+

(
f (n−1) − f (n−2), f (n−1)

)
+ Q+

(
f (n−2), f (n−1) − f (n−2)

)]
dτ. (40)

Since
∫

R f0(v)dv = 1, the result in (39) gives
∫

R f
(2)(v, t)dv = e−t ≤ 1.

Suppose now, for some n ≥ 3, that
∫

R f
(n−1)(v, t)dv ≤ 1. Then∫

R
f (n)(v, t)dv = e−t + e−t

∫ t

0

eτ

∫
R
Q+

(
f (n−1), f (n−1)

)
(z, τ)dz dτ.

Using (36) and writing M (n)(t) =
∫

R f
(n)(v, t)dv, we find that

M (n)(t) = e−t + e−t

∫ t

0

eτM (n−1)(τ)2dτ.

Using the induction hypothesis gives

M (n)(t) =
∫

R
f (n)(v, t) dv ≤ e−t + e−t

∫ t

0

eτdτ = 1.

The bounded, monotonically increasing sequence
{
f (n)(·, t)

}∞
n=1

of non-
negative terms has a non-negative limit f(·, t) in L1(R) such that f (n) → f
as n→∞. Writing M(t) =

∫
R f(v, t)dv, we find that

M(t) = e−t + e−t

∫ t

0

eτM(τ)2dτ ,

which has the unique solution M(t) ≡ 1. From this we conclude, by Levi’s
theorem that

∫
R f(v, t)dv = 1. This says that f solves (28), as stated.

11



Next we turn to show that the sequence
{
g(n)(·, t)

}∞
n=1

satisfies (32), (33),
and (34). The assumption on f0 gives that

∫
R g

(1)(v, t) dv = 1. We prove,
by induction, that the same holds for all n. Suppose, for some n ≥ 2,
that

∫
R g

(n−1)(v, t) dv = 1. Integrating (31) with fn replaced by gn, and
using (25) and (35), gives

et

∫
R
g(n)(v, t)dv =

∫
R
f0(v) dv +

∫ t

0

eτ dτ.

The right hand side sums up to be et. With this we conclude, for all t ≥ 0,
and by induction for all n, that∫

R
g(n)(v, t) dv = 1.

To prove (33), we multiply both sides of (31) (with f replaced by g) by v,
and integrate the result∫

R
v g(n)(v, t)dv = e−Λ(t)

∫
R
vf0

(
ψ−1

t (v)
)
dv +

e−Λ(t)

∫
R

∫ t

0

eΛ(τ)vQ+

(
g(n−1), g(n−1)

) (
ψτ ◦ ψ−1

t (v), τ
)
dτdv. (41)

Use of (26) makes the first term in the above sum to be

e−t−λ(t)
(
ζ0 + E q(0, t)

)
, (42)

where, for τ ≤ t, q(τ, t) =
∫ t

τ
eλ(s) ds.

Using (25) and (26) once more, the second term in the sum (41) equals

e−t−λ(t)

∫
R

∫ t

0

eτ
[
veλ(τ) + Eq(τ, t)

]
Q+

(
g(n−1), g(n−1)

)
(v, τ)dτdv.

Because
∫

R w Q+(g, g)(w, τ) dw = 0, this reduces to

E e−t−λ(t)

∫ t

0

eτ q(τ, t) dτ. (43)

Combining (42) and (43) makes the sum in (41) to take the form

e−t−λ(t)

(
ζ0 + E q(0, t) + E

∫ t

0

eτ q(τ, t) dτ
)
.

We further note, through integration by parts, that∫ t

0

eτ q(τ, t) dτ = −q(0, t) +
∫ t

0

es+λ(s) ds.

12



Thus we have∫
R
v g(n)(v, t) dv = ζ0 e

−t−λ(t) + E e−t−λ(t)

∫ t

0

es+λ(s) ds. (44)

We are now left to show that the right hand side of (44) and ζ̄(t) are equal.
Towards this, we let

ζ̂(t) = ζ0 e
−t−λ(t) + E e−t−λ(t)

∫ t

0

es+λ(s) ds.

and note that, ζ̂(t) fulfills

d

dt

(
et ζ̂(t)

)
= E et

(
1− ζ̄(t) ζ̂(t)

)
,

with ζ̂(0) = ζ0. Similarly, ζ̄(t) satisfies

d

dt

(
et ζ̄(t)

)
= E et

(
1− ζ̄(t) ζ̄(t)

)
,

with ζ̄(0) = ζ0.

Since ζ̄(t) is bounded we conclude that ζ̂(t) = ζ̄(t). This together with (44)
finally implies the result that∫

R
v g(n)(v, t) dv = ζ̄(t).

To prove (34) we first note

eΛ(t)

∫
R
v2 g(n)

(
ψt(v), t

)
dv =

∫
R
v2 f0(v) dv

+
∫

R

∫ t

0

eΛ(τ)v2Q+

(
g(n−1), g(n−1)

)(
ψτ (v), τ

)
dτ dv. (45)

Use of (25), with the results from (32) and (33), makes the left hand side
to be equal to

et+2λ(t)M
(n)
2 (t) − 2E ζ̄(t) q(0, t) et+λ(t) + E2 q(0, t)2 et,

where M
(n)
2 (t) =

∫
R v

2g(n)(v, t)dv.

Use of (25) and (26) with the remarks in (36)-(38) makes the second term
in the sum at the right hand side of (45) to take the form∫ t

0

eτ+2λ(τ)M
(n−1)
2 (τ) dτ + E2

∫ t

0

eτ q(τ)2 dτ.

13



We put these pieces together, rearrange the terms to rewrite (45) as

et+2λ(t)M
(n)
2 (t) = 2Eζ̄(t)q(0, t)et+λ(t) − E2q(0, t)2et + 1

+
∫ t

0

eτ+2λ(τ)M
(n−1)
2 (τ)dτ + E2

∫ t

0

eτ q(τ)2dτ. (46)

Next we study the time derivatives of both sides of (46). But first we note

2E
d

dt

(
ζ̄(t) q(0, t) et+λ(t)

)
= 2λ′′(t) q(0, t) et+λ(t)

+ 2
(
λ′(t) + λ′(t)2

)
q(0, t) et+λ(t) + 2λ′(t) et+2λ(t).

We also have λ′′(t) = E2 − λ′(t)− λ′(t)2 , so that

2E
d

dt

(
ζ̄(t) q(0, t) et+λ(t)

)
= 2E2 q(0, t) et+λ(t) + 2λ′(t) et+2λ(t).

Since d
dtq(0, t) = eλ(t),

−E2 d

dt

(
q(0, t)2 et

)
= −2E2q(0, t)et+λ(t) − E2q(0, t)2et.

Combining this with a trivial differentiation of the last two terms in (46)
gives

d

dt

(
et+2λ(t)M

(n)
2 (t)

)
= 2λ′(t) et+2λ(t) + et+2λ(t)M

(n−1)
2 (t).

We rewrite the right hand side of this and get

d

dt

(
et+2λ(t)M

(n)
2 (t)

)
= 2λ′(t) et+2λ(t) + et+2λ(t) + et+2λ(t)

(
M

(n−1)
2 (t)− 1

)
.

Supposing that M (n−1)
2 (t) = 1, then the last term in the above sum is zero

so that the remaining terms can be rewritten as

d

dt

(
et+2λ(t)M

(n)
2 (t)

)
=

d

dt

(
et+2λ(t)

)
.

Integration and rearrangement of the terms gives

M
(n)
2 (t) =

(
M

(n)
2 (0)− 1

)
e−t−2λ(t) + 1.

This leads to the result that M (n)
2 (t) = 1, namely∫

R
v2 g(n)(v, t) dv = 1.

Hence we have proven that (32), (33), and (34) hold, and this concludes
the proof of Proposition 1. �
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Remark 2 In very much the same way one can prove that all moments
that initially are bounded remain bounded. In fact, one can find a closed
system of ordinary differential equations for the moments Mk(t), (k =
1, 2, . . .) , of the solutions to the thermostatted Kac equation:

d

dt
Mk(t) = k EMk−1(t)−k E ζ(t)Mk(t)−Mk(t)+

∫
R
vkQ+(f, f)(v)dv, (47)

where the last term can be computed explicitly in terms of Mj(t), j ≤ k.

In [11] we studied the stationary problem corresponding to (1), namely

E
d

dv

((
1− ζ v

)
f(v)

)
= Q(f, f)(v), (48)

where ζ = ζ+ is given by (17). The main result in [11] is

Theorem 2 For all field strengths E > 0, the stationary problem (48) has
a solution f∞ > 0, that satisfies

i)
∫

R f∞(v)dv = 1,
∫

R v f∞(v)dv = ζ, and
∫

R v
2 f∞(v)dv = 1.

ii) Moments of any order of f∞ are finite.

iii) f∞ ∈ C
(
R r {κ}

)
, where κ = 1

ζ .

iv) For E <
√

2, f∞ ∈ C(R);
for E =

√
2, f∞ has a logarithmic singularity near v =

√
2; and

for E >
√

2, f∞ has a singularity of the form |v − κ|γ near v = κ,
where γ = 1

E ζ − 1.

4 Convergence to a stationary state

The purpose of this section is to prove that the solutions to (1) converge
to the stationary state as t → ∞. For the Boltzmann equation, this is
usually achieved by showing that the entropy is a decreasing functional
attaining its infimum only at the equilibrium solution. In the current case,
there is no obvious choice of an entropy, and so instead we will use a method
introduced in [7, 10]. We recall the technique, which is based on the Fourier
transform.

The Fourier transform of equation (1) without the force term, obtained by
multiplication by exp(ivξ) and integration over R, is

∂f̂(ξ, t)
∂t

=
∫ π

−π

(
f̂(ξ cos θ, t)f̂(ξ sin θ, t)− f̂(ξ, t)f̂(0, t)

) dθ

2π
. (49)
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The mass is conserved (and set equal to one, f̂(0, t) ≡ 1) and therefore (49)
can be written as

∂f̂(ξ, t)
∂t

+ f̂(ξ, t) = Q̂+(f̂ , f̂)(ξ), (50)

where

Q̂+(f̂ , ĝ)(ξ) =
∫ π

−π

f̂(ξ cos θ, t)ĝ(ξ sin θ, t)
dθ

2π
.

Also energy is conserved (equal to one), so −f̂ ′′(0, t) =
∫

R v
2 f(v, t) dv ≡ 1 1

and if in addition
∫

R f(v, 0) dv = 0, then it remains zero, and so f̂ ′(0, t) ≡ 0.

If f and g are two such solutions, their difference satisfies f̂(ξ, t)− ĝ(ξ, t) =
o(ξ2), and if moments of order three of f and g are both bounded then for
all p ∈ [0, 1),

w(ξ, t) =
f̂(ξ, t)− ĝ(ξ, t)

|ξ|2+p

is bounded for all times, and

∂w(ξ, t)
∂t

+ w(ξ, t) =
∫ π

−π

(
w(ξ cos θ, t)| cos θ|2+pf̂(ξ sin θ, t)+

w(ξ sin θ, t)| sin θ|2+pĝ(ξ cos θ, t)
) dθ

2π
. (51)

From this we can deduce that for any X > 0,

sup
|ξ|<X

∣∣∣∣∂w(ξ, t)
∂t

+ w(ξ, t)
∣∣∣∣ ≤ sup

|ξ|<X

|w(ξ, t)|
∫ π

−π

(
| cos θ|2+p + | sin θ|2+p

) dθ
2π

and it follows that

sup
|ξ|<X

|w(ξ, t)| ≤ sup
|ξ|<X

|w(ξ, 0)| e−(1−α) t,

where α =
∫ π

−π

(
| cos θ|2+p + | sin θ|2+p

)
dθ
2π < 1. Thus f̂ − ĝ converges

point-wise to zero, exponentially in time. In the particular case where g
is the Maxwellian with correct moments, this proves that the probability
density f converges to equilibrium in distribution.

When the force term is added to (49) we cannot obtain exactly the same
result, because if̂ ′(0, t) = ζf (t) =

∫
R f(v, t)vdv, which depends on time.

1In this section, the symbol ′, always denotes a derivative with respect to ξ.
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(Note the subscript f on ζ, which is important when two different functions
are considered). Instead we will now study

u(ξ, t) = f̂(ξ, t) + i
(
ζf (t)− ζg(t)

)
φ(ξ) − ĝ(ξ, t) . (52)

where φ(ξ) is a smooth bounded function that satisfies φ(ξ) = ξ for |ξ| ≤ 1.
The Fourier coefficients of u up to order two vanish, so u(ξ, t)/|u|2+p is
well-defined for all t, if 0 ≤ p < 1.

The Fourier transform of equation (1) is

∂f̂(ξ, t)
∂t

+ iEξf̂(ξ, t) + Eζf (t)ξf̂ ′(ξ, t) + f̂(ξ, t) = Q̂+(f̂ , f̂)(ξ, t).

(More correctly, one could have written Q̂+(f̂(·, t), f̂(·, t))(ξ) in the right
hand side.) Then

∂u

∂t
+ u = iφ(ξ)

(
dζf
dt

− dζg
dt

)
+ iφ(ξ)(ζf − ζg)

− iEξf̂ − Eζfξf̂
′ + iEξĝ + Eζgξĝ

′

+ Q̂+(f̂ − ĝ, f̂) + Q̂+(ĝ, f̂ − ĝ)

After rearranging the terms, we find

∂u

∂t
+ u = i

(
dζf
dt

− dζg
dt

)
φ− Eξ(ζf − ζg)f̂ ′

− Eξζgu+ Eiξζg(ζf − ζg)φ′ − iEξu− Eξ(ζf − ζg)φ

+ Q̂+(u, f̂)− i(ζf − ζg)Q̂+(φ, f̂)

+ Q̂+(ĝ, u)− i(ζf − ζg)Q̂+(ĝ, φ).

Next we note that

E ξ
(
ζf − ζg

)
f̂ ′ = Eξ(ζf − ζg)

(
f̂ ′ + iζfφ

′ + φ
)

+ i E ξ ζf
(
ζf − ζg

)
φ′ + E ξ

(
ζf − ζg

)
φ,

and that the first of these terms is O(|ξ|3) near ξ = 0, and that it is bounded
by C(1 + |ξ|). Moreover, d

dtζf = E(1− ζ2
f )− ζf . A new rearrangement of

the terms now gives

∂u

∂t
+u+ iEξu+ Eξζgu = Q̂+(u, f̂) + Q̂+(ĝ, u)

+ E i
(
ζ2
f − ζ2

g

)
(ξφ′ − φ)− Eξ

(
ζf − ζg

) (
f̂ ′ + iζfφ

′ + φ
)

− i
(
ζf − ζg

) (
Q̂+(φ, f̂) + Q̂+(ĝ, φ)

)
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For |ξ| ≤ 1, φ(ξ) = ξ, and so in this interval

Q̂+(φ, f̂) =
∫ π

−π

φ(ξ) cos(θ)f̂(ξ sin(θ))
dθ

2π

= φ(ξ)
∫ π

−π

cos(θ)
(
f̂(ξ sin(θ))− 1 + iζfφ(ξ) sin(θ)

) dθ

2π

+ φ(ξ)2
∫ π

−π

cos(θ) (1− iζfφ(ξ) sin(θ))
dθ

2π
.

The second of these integrals vanish, and the first one is O(|ξ|3) for small ξ.
For large ξ, the expression is bounded. A similar calculation can be done
for Q̂+(ĝ, φ), and in summary we obtain

∂u

∂t
+u+ iEξu+ Eξζgu =

Q̂+(u, f̂) + Q̂+(ĝ, u) + (ζf − ζg) (EξR1(ξ, t) +R2(ξ, t)) ,

where |R1(ξ, t)| ≤ min
(
C, |ξ|2

)
and |R2(ξ, t)| ≤ min

(
C, |ξ|3

)
for some con-

stant C.

Although the calculations can be carried out in exactly the same way
for a general solution ĝ, we now concentrate on the case where ĝ is the
Fourier transform of the stationary solution to (1). Then ζg = ζ+ =(
1 +

√
1 + 4E2

)
/2E, and it follows directly from (16) that ζf (t) − ζg s

bounded by C exp(−
√

1 + 4E2t).

For any function w(ξ, t), we now define w](ξ, t) = w
(
eEζ+tξ, t

)
. Expressed

in this way,

∂u]

∂t
+ u] + EiξeEζ+t = Q̂+(u], f̂ ]) + Q̂+(ĝ], u])

+ (ζf − ζ+)
(
EξeEζ+tR]

1 + R]
2

)
.

We have used the fact that Q̂+(u, v)] = Q̂+(u], v]), which is easily verified.

Next with v(ξ, t) = u](ξ, t) et,

∂v

∂t
+ EiξeEζ+tv = Q̂+(v, f̂) + Q̂+(ĝ, v)

+ et(ζf − ζ+)
(
EξeEζ+tR]

1 +R]
2

)
,
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from which it follows that

∂|v|
∂t

≤ Q̂+

(
|v|, |f̂ |

)
+ Q̂+

(
|ĝ|, |v|

)
+ et

∣∣∣(ζf − ζ+)
(
EξeEζ+tR]

1 + R]
2

)∣∣∣ ,
or, using that |f̂ | ≤ 1 and |ĝ| ≤ 1,

|v(ξ, t)| ≤ |v(ξ, 0)|+
∫ t

0

∫ π

−π

(|v(ξ cos θ, τ)|+ |v(ξ cos θ, τ)|) dθ
2π

dτ

+
∫ t

0

eτ
∣∣∣(ζf (τ)− ζ+)

(
EξeEζ+,τR]

1(ξτ) +R]
2(ξ, τ)

)∣∣∣ dτ.
(53)

The next step is to divide this expression by |ξ|2+p, and to take the supre-
mum over |ξ| ≤ X just like in the case with no force term. To estimate the
source term, recall that R1 and R2 are bounded and of the order |ξ|2 and
|ξ|3, respectively, when ξ is small. Hence, for any X > 0,

sup
|ξ|≤X

|R]
1(ξ, t)|
|ξ|1+p

= sup
|ξ|≤X

|R1(ξeEζ+t, t)|
|ξ|1+p

≤ C e(1+p)Eζ+t,

and

sup
|ξ|≤X

|R]
2(ξ, t)|
|ξ|2+p

≤ C e(2+p)Eζ+t,

where the constants are independent of X. Estimating the first integral on
the right hand side of equation (53) in the same way as the estimate of Q̂+

in (51) we get

sup
|ξ|≤X

|v(ξ, t|
|ξ|2+p

≤ sup
|ξ|≤X

|v(ξ, 0|
|ξ|2+p

+ α

∫ t

0

sup
|ξ|≤X

|v(ξ, τ |
|ξ|2+p

dτ

+
∫ t

0

eτe(2+p)Eζ+τ |(ζf (τ)− ζ+)| dτ ,

where α =
∫ π

−π

(
| sin θ|2+p + | cos θ|2+p

)
dθ
2π . Because |(ζf (τ) − ζ+)| ≤

Ce−
√

1+4E2t, the second integral is bounded by C(E, p)e
(
1+(2+p)Eζ+−

√
1+4E2

)
t,

and using the Gronwall inequality,

sup
|ξ|≤X

|v(ξ, t)|
|ξ|2+p

≤ sup
|ξ|≤X

|v(ξ, 0)|
|ξ|2+p

eα t +C(E, p)e
(
1+(2+p) E ζ+−

√
1+4E2

)
t.
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This holds for all X, and hence, with v(ξ, t) = etu
(
ξ eEζ+t, t

)
,

sup
|ξ|

|u(ξeEζ+t, t)|
|ξ|2+p

≤ sup
|ξ|

|u(ξ, 0)|
|ξ|2+p

e(α−1)t +C(E, p)e
(
(2+p)Eζ+−

√
1+4E2

)
t.

Then, for all ξ, and all t ≥ 0,∣∣u(ξeEζ+t, t)
∣∣ ≤ |ξ|2+p

(
C0 e

(α−1)t + C(E, p) e
(
(2+p)Eζ+−

√
1+4E2

)
t

)
,

or, which is the same,

|u(ξ, t)| ≤ |ξ|2+p
(
C0e

(α−1−(2+p)Eζ+)t + C(E, p)e−
√

1+4E2t
)
,

where C0 depends only on the initial data. Now we recall that u(ξ, t) =
f̂(ξ, t) − ĝ(ξ) + iφ(ξ)(ζf (τ) − ζ+), where ĝ is the Fourier transform of the
solution to the stationary equation, and therefore∣∣∣f̂(ξ, t)− ĝ(ξ)

∣∣∣ ≤ |ξ|2+p
(
C0e

(α−1−(2+p)Eζ+)t + C(E, p)e−
√

1+4E2t
)

+ φ(ξ) |ζf (t)− ζ+| .

This implies that |f̂(ξ, t) − ĝ(ξ)| → 0 point-wise, exponentially fast, and
also that

sup
|ξ|≤X

|f̂(ξ, t)− ĝ(ξ)|
|ξ|

≤ C X1+pe−
√

1+4E2t

In conclusion we have proven the following theorem:

Theorem 3 Let f̂(ξ, t) be the Fourier transform of the solution to equa-
tion (1), and let ĝ(ξ) be the Fourier transform of the solution to the sta-
tionary problem. Then

|f̂(ξ, t)− ĝ(ξ)| ≤
(
|ξ|2+p + |ξ|

)
e−

√
1+4E2t ,

which implies that f(v, t) converges in distribution to the stationary state

5 Simulation results

In this section we present some numerical approximations of the solutions to
the thermostatted Kac equation using the Monte Carlo method. This cor-
responds to simulating a large number of trajectories to the jump processes
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defined on SN−1
(√
N

)
, where N is the number of particles. These trajec-

tories can be computed exactly thanks to the fact that there is an explicit
solution to the evolution of V in between the jumps.

For sufficiently large N we expect the one-particle marginal fN
1 (v, t) to

approach f(v, t)–the solution to (48). Figure 1 shows the time evolution
starting from an initial data consisting of two Dirac masses. The number
of particles, N was 5000, and the force field had strength E =

√
2. As

time evolves, the density approaches the stationary state, which according
to the study in [11], has a logarithmic singularity in this case.

Having a closed system of ordinary differential equations for Mk(t) =∫
R v

k f(v, t) dv we can explicitly compute the first few. Figure 2 shows the
time evolution of the first five moments of the solution according to (47)
with E =

√
2 .

For the three dimensional Boltzmann equation, the density converges to a
Dirac mass when t→∞. This is illustrated in the last example, where the
force field is E = (0.1, 0, 0), and the simulation is carried out with 5000
particles. The initial distribution of the velocities is taken to be

f0(v1, v2, v3) =
1
2
(
δ−1(v1) + δ+1(v1)

) 1
2π

exp
(
− v2

2 − v2
3

)
.

The v1-marginal,
∫
f(v1, v2, v3, t) dv2dv3 is shown in Figure 3. The other

marginals converge to a Dirac measure at zero.
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Figure 1: Time evolution of f(v, t), the solution to the thermostatted Kac
equation. (simulated with N = 5000,E =

√
2.)
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Figure 2: Time evolution of the first five moments of f according to (47).
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Figure 3: Time evolution of the v1-marginal of f(v, t) of the solution to
the thermostatted Boltzmann equation. (simulated with 5000 particles)
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