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Error detetion with a lass of yli odes �Rossitza DodunekovayMathematial SienesChalmers University of Tehnologyand G�oteborg University412 96 G�oteborg, Sweden
Stefan DodunekovzInstitute of Mathematis andInformatisBulgarian Aademy of Sienes1113 So�a, BulgariaAbstrat. We study a parametri lass of q-ary two-weight yli odes andtheir dual odes, with regard to properness or goodness in deteting errors ona q-ary symmetri memoryless hannel. We prove that for some parameters theodes and their duals are proper, while the remaining odes and their duals arenot good.1 IntrodutionBaumert and MEliee [1℄, and also Wolfmann [14℄, onsider a parametri lass ofq-ary irreduible yli odes C(q; r; t; s) with positive integer parameters suhthat q is a prime power, r � 1; t > 1; s > 1; and sj qr+1: The dimensionk and the length n of the ode C(q; r; t; s) arek = 2rt; n = q2rt � 1s ; (1.1)and its non-zero weights and the weight distribution are�1 = (q � 1) � q2rt�1 + (�1)t(s� 1)qrt�1s ; A�1 = n;�2 = (q � 1) � q2rt�1 � (�1)tqrt�1s ; A�2 = n(s� 1) (1.2)(semiprimitive ase). When q = 2; (1.1) and (1.2) desribe the parameters andthe weight distribution of the Delsarte and Goethals irreduible binary yliodes introdued in [2℄.�Partially supported by the European Community under projet MTKD-CT-2004-003006.yPartially supported by the Swedish Researh Counil under grant 621-2003-5325.zPartially supported by the Bulgarian NSF under Contrat MM1405/2004.1



The error-detetion performane of the binary odes and their duals has beenstudied in [10℄, where a omplete lassi�ation has been given by showing thatC(2; r; t; s) and C?(2; r; t; s) are both either proper for error detetion or notgood. A similar study of C(q; r; t; s) with q > 2 arried out in [6℄ revealed thatthe odes are not good for a large set of parameter values, and for the remainingvalues it was determined whether C(q; r; t; s) is proper or not.In this work we give a omplete lassi�ation of the odes C(q; r; t; s) andC?(q; r; t; s) with q > 2 regarding properness and goodness in error detetion.It turns out, like in the binary ase, that C(q; r; t; s) and C?(q; r; t; s) are botheither proper for error detetion or not good. The results have been partiallypresented in [6℄ and [7℄.We reall that when a q-ary linear [n; k; d ℄ ode C is used to detet errors ona symmetri memoryless hannel with symbol error probability "; the probabilityof undeteted error is given byPue(C; ") = nXi=d Ai� "q � 1�i(1� ")n�i; " 2 h0; q � 1q i; (1.3)where fA0; A1; : : : ; Ang is the Hamming weight distribution of the ode. Interms of the dual weight distribution fB0; B1; : : : ; Bng;Pue(C; ") = q�(n�k) nXi=0 Bi� 1� "q � 1�i � (1� ")n; " 2 h0; q � 1q i: (1.4)C is proper for error detetion if Pue(C; ") is inreasing in " 2 [0; (q� 1)=q℄ , andit is good if Pue(C; ") is bounded by its value at the biggest possible " (the worstase hannel ondition), i.e., ifPue(C; ") � Pue�C; q � 1q � = q�n(qk � 1); " 2 [0; (q � 1)=q℄; (1.5)see [12℄ and [13℄.Thus a proper error-deteting ode is also good, but a proper ode performsertainly better on better hannels, i.e., hannels with smaller symbol error prob-ability.Often the symbol error probability of the hannel is not known exatly andit would then be natural to prefer a proper error-deteting ode to a good one,or a good error-deteting ode to one that is not good.Examples of proper odes are the Perfet odes over �nite �elds, the Maxi-mum Distane Separable odes, some Reed-Muller odes, some Near MaximumDistane Separable odes, the Maximum Minimum Distane odes and their du-als, some Griesmer odes and their duals, as well as many yli odes. Moreexamples may be found in the survey [8℄. The onept of properness has been2



extended to non-linear blok odes, and examples of proper non-linear odes arethe Kerdok and the Preparata odes, as well as non-linear odes whih satisfyor ahieve the Grey-Rankin bound, see [9℄.2 Main resultsOur study regarding goodness or properness of the non-binary odes C(q; r; t; s)and their duals will show the following.Theorem.(i) The odes C(3; r; t; 2 ); C(3; 1; 2; 4 ); and their duals are proper.(ii) The remaining odes C(q; r; t; s) with q � 3 and their duals are not good.In the binary ase, the odes and their duals are proper when t is even orwhen t is odd and s = 3; and not good in the remaining ases, as shown in [10℄.3 ProofsThroughout the proofs we will use the notation m = qrt:Proof of part (i) of the Theorem. Consider �rst the odes C(3; r; t; 2): From(1.1){(1.3) we obtainPue(C (3; r; t; 2 ); " ) = n h �"2��1 (1� ")n��1 + �"2��2 (1� ")n��2 i; 0 � " � 2=3;where n = (3rt � 1)=2 and �1 and �2 are�1 = m2 �m3 ; �2 = m2 +m3when t is odd, while for t even their values are interhanged. Hene without lossof generality we an assume that �1 and �2 are as above. With"1 = �1n < 23 ; "2 = �2n > 23 ;the properness of C(3; r; t; 2) follows from2�2 P 0ue(C (3; r; t; 2 ); " )n2 ("2 � ") " �2�1 (1� ")n��2�1 = 1� 2�2��1 g(") � 1� 2�2��1 g(2=3) = 2m + 1 ;where the funtion g(") = "� "1"2 � " � 1� "" � �2��13



is inreasing for " 2 (0; 2=3℄ sineg0(") = n� 1"2 "2 � "1("2 � ")2 � 1� "" ��2��1�1 � 23 � "�� 2n+ 13(n� 1) � "�:To show the properness of C?( 3; r; t; 2 ) we use (1.4). Di�erentiating andusing the substitution Æ = 1� 1q (1� ") (3.2)we easily obtain P 0ue(C? (3; r; t; 2 ); " )n(1� ")n�1 = 1� 3n�kH(Æ) (3.3)with H(Æ) = �12�1 Æ�1�1(1� Æ)n��1 + �22�2 Æ�2�1(1� Æ)n��2 :The term xa(1� x)b with a > 0 and b > 0 inreases for 0 � x � a=(a+ b) anddereases for a=(a+ b) � x � 1; whih implies that Pue(C; ") in (1.3) inreasesfor 0 � " � d=n: Applied in (3.3) this gives1� 3n�kH(Æ) � 0; 2=3 � Æ � Æ0 = (2n� 9)=(3n� 9) = 23 � m2 � 10m2 � 7 ; (3.4)sine the minimum ode distane of C? (3; r; t; 2 ) equals 3:It is lear from (3.3) and (3.4) that the result will follow if we show thatH 0(Æ) � 0 for 0 < Æ � Æ0: We do this below. DenotingÆ1 = (�1 � 1)=(n� 1) < 2=3; Æ2 = (�2 � 1)=(n� 1) > 2=3;we have for 0 < Æ � Æ0 2�2 H 0(Æ)�2 (n� 1)(Æ2 � Æ)Æ�2�2(1� Æ)n��2�1 = 1� h(Æ) � 1� h(Æ0); (3.5)sine the funtion h(Æ) = �1 2�2��1�2 Æ � Æ1Æ2 � Æ�1� ÆÆ ��2��1is inreasing for 0 < Æ � Æ0: Indeed, we haveh0(Æ) = �1�2 2�2��1 Æ2 � Æ1(Æ2 � Æ)2 1Æ2 �1� ÆÆ ��2��1�1 h1(Æ);where h1(Æ) = (n� 2)Æ2 � (�1 + �2 � 3)Æ + (�1 � 1)(�2 � 1)n� 1 :4



Simple algebrai omputations show that h1(Æ) ahieves its minimum at a pointlarger than 2/3 and also thath1(Æ0) = 2 + 36(m2 � 7)2 � 3m2 � 3 � 49 �1� 3m2 � 7�2 > 0 for m = 3rt � 32;implying h0(Æ) > 0 for 0 < Æ � Æ0: Evaluation of h(Æ0) in (3.5) with Æ0 as in(3.4) gives the funtionh(Æ0) = f(m) = �m� 1m+ 1�2 � m2 � 2m� 9m2 + 2m� 9 � � m2 � 1m2 � 10�2m=3;whih inreases for m � 9; hene h(Æ0) = f(m) < limm!1 f(m) = 1 andonsequently, H 0(Æ) � 0 for 0 < Æ � Æ0: The fat that f(m) inreases an beestablished by onsidering� ln f(m)�0 = 4m2 � 1 + 4(m2 + 9)(m2 � 9)2 � 4m2+ 23 ln�1 + 9m2 � 10�� 12m2(m2 � 1)(m2 � 10)> 4m2 � 1 + 4(m2 + 9)(m2 � 10)2 + 23 ln�1 + 9m2 � 10�� 12m2(m2 � 1)(m2 � 10) :Sine the logarithmi funtion above is bounded below by the �rst two terms ofits Taylor series we obtain� ln f(m)�0 > 4m2 � 1 + 4" 1m2 � 10 + 19(m2 � 10)2#+ 6m2 � 10 � 27(m2 � 10)2 � 12" 1m2 � 10 + 1(m2 � 1)(m2 � 10)#> 4m2 � 1 � 2m2 � 10 � 12(m2 � 1)(m2 � 10) > 0:This ompletes the proof for the odes C?( 3; r; t; 2 ):We prove the properness of C( 3; 1; 2; 4) and C?( 3; 1; 2; 4) by using thesuÆient onditions for properness derived in [4℄ and [5℄, see also [3℄. Aordingto these onditions, if the extended binomial momentsA�̀ = X̀i=d `(`� 1) : : : (`� i+ 1)n(n� 1) : : : (n� i+ 1) Ai; ` = d; � � � ; n;of a q-ary linear [n; k; d ℄ ode with weight distribution fA1; A2; : : : ; An g anddual ode distane d? satisfyA�̀ � q A�̀�1 for ` = d+ 1; : : : n� d? + 1;5



then the ode is proper, and ifA�n�` � q A�n�`+1 � qk�`(q � 1) for ` = d? + 1; : : : n� d+ 1;then the dual ode is proper. It is straightforward to hek that the extendedbinomial moments of C( 3; 1; 2; 4 ) satisfy both the above onditions.To prove part (ii) of the Theorem we treat separately the ases t odd and teven. The main idea of the proof is to show that at a ertain point, de�ned bythe ode parameters, the probability of undeteted error of the ode exeeds theupper bound in (1.5). Basi for the proofs is the following Lemma, whih extendspart 1 of Theorem 3.4.2 in [12℄ to non-binary linear odes.Lemma. Let C be a q-ary linear [n; k; d ℄ ode. If for some Æ0 2 � 0; (q�1)=q �holds qn�kPue(C; Æ0 ) � 1; (3.6)then C? is not good.Proof. Applying the substitution (3.2) in (1.4) we obtain the inequalityPue(C?; ")q�k � q�n > 1 + 1(qn�k � 1) (1� Æ)nhqn�k Pue(C; Æ)� 1iwhih implies Pue(C?; "0) > q�k � q�n for "0 = 1� 1q (1� Æ0) ;i.e., C? is not good.Note that a ode for whih (3.6) holds is not good. Suh odes are alled ugly[11℄. Thus the Lemma says that if a ode is ugly then its dual is not good.We will now modify the Lemma to be suitable for appliation to the odesC(q; r; t; s): From (1.1){(1.3) we getPue(C (q; r; t; s ); " ) = (qk � 1)G("); (3.7)whereG(") = 1s"� "q � 1 � �1 (1� ")n��1 + (s� 1)� "q � 1 � �2�1� ")n��2 #: (3.8)Corollary. Consider C(q; r; t; s) with q � 3 and the orresponding funtionG("); de�ned by (3.7){(3.8). If for some Æ0 2 � 0; (q � 1)=q � we have�1� 1=qk� qnG(Æ0) � 1 (3.9)or qnG(Æ0) � 1:013; (3.10)then C (q; r; t; s ) and C? (q; r; t; s ) are not good.6



Proof. We haveqn�kPue(C (q; r; t; s ); "; ) = �1� 1=qk� qnG(") � 1when (3.9) holds and�1� 1=qk� qnG(") � �1� 1=34� � 1:013 > 1; q � 3;when (3.10) does. The statement thus follows by the Lemma.We will also make use of the well known fat that the funtions (1+ 1x)x and(1� 1x)x are inreasing for x > 1 and�1 + 1x�x ! e; �1� 1x�x ! e�1; when x!1; (3.11)as well as of the Bernoulli inequality(1 + x)� > 1 + �x for jxj < 1 and � � 1: (3.12)Proof of part (ii) of the Theorem for t odd. The two non-zero weightsof the ode C(q; r; t; s) are�1 = q � 1q � m2 � (s� 1)ms ; �2 = q � 1q � m2 +ms : (3.13)De�ne Æs 2 ( 0; (q � 1)=q) asÆs = q � 1q (1� zs); where zs = s(q � 1)m: (3.14)A substitution from (3.13) and (3.14) in (3.8) givesqnG(Æs) = 1sh(1� zs) q�1�1 + (q � 1) zs�i m2qs� (1� zs) (q�1)ms � 1q �1 + (q � 1) zs��( q�1q + 1m ) ms (3.15)� "�1 + (q � 1) zs1� zs � (q�1)mq + (s� 1)#:Assume that q0; 1; 2; and 3; are onstants suh thatq � q0; ms � 1; (q � 1)ms � 2; q � 1q + 1m � 3: (3.16)
7



Using these onstants and the monotoniity of the onvergene in (3.11) we ob-tain lower bounds for the power fators in (3.15). First we apply the Bernoulliinequality (3.12) to geth(1� zs) q�1�1 + (q � 1) zs�i m2qs > �1� (q � 1)2 z2s � m2qs= �1� s2m2� m2qs � �1� 121 � 21q0 �s: (3.17)Next we have(1� zs) (q�1)ms � 1q = �1� s(q � 1)m� (q�1)ms � 1q � �1� 12� 2q0 ; (3.18)(1 + (q � 1) zs )�( q�1q + 1m ) ms = �1 + sm��( q�1q + 1m ) ms > e�3 : (3.19)Finally, from (1� zs )� (q�1)mq = �1� s(q � 1)m�� (q�1)mq > e sqand (1 + (q � 1) zs ) (q�1)mq = �1 + sm� (q�1)mq > �1 + 11� 1 s e� sqwe obtain �1 + (q � 1) zs1� zs � (q�1)mq > �1 + 11�1 s: (3.20)Applying in (3.15) the lower bounds obtained in (3.17){(3.20), with q0; 1; 2;and 3 as in (3.16), we obtainqnG(Æs) > 1s�1� 121 � 21q0 �s � �1� 12� 2q0 � e�3 � "�1 + 11�1 s + s� 1#: (3.21)We now treat separately seven di�erent ases of possible values of the param-eters of C(q; r; t; s): In eah ase we hoose onstants q0; 1; 2; and 3; andreplae them in (3.21) to ompute a lower bound for qnG(Æs): As we will see,either the obtained lower bound exeeds 1.013 or �1� 1=qk� qnG(Æ0) > 1; thenby the Corollary C(q; r; t; s) and its dual are not good.Case q > 3; s > 3: With q0 = 4; 1 = 12:8; 2 = 38:4; 3 = 1; where 1 isomputed from ms � qrtqr + 1 � qtq + 1 � 435 = 12:8;8



we obtain from (3.21)qnG(Æs) > 1s �0:77s �0:77 �0:36[ 2:6s+s�1 ℄ > 0:27 h2ss + s� 1s �0:77 si = 0:27 f(s):It is easy to see that f 0(s) > 0 for positive s and then, sine s > 3; we haveqnG(Æs) � 0:27 f(4) > 1:15:Case q = 3; s > 3: In this ase we ompute the right hand side of (3.21) withthe onstants q0 = 3; 1 = 6:75; 2 = 13:5; 3 = 0:704; and obtainqnG(Æs) > 1s � 0:7138s � 0:7072 � 0:4946 � 2:5408s + s� 1 �> 0:3497 h1:8136ss + s� 1s � 0:7138 si = 0:3498 f1(s):Sine the funtion f1(s) is inreasing for s > 3 we haveqnG(Æs) � 0:3498 f1(4) > 1:014:The results of the evaluation of the right hand side of (3.21) in the remainingases are presented in the table below, where in the last olumn we have usedthe notation T (Æs) = �1� 1=qk� qnG(Æs):Case q0 1 2 3 qnG(Æs) T (Æs)q � 5; s = 3: 5 141:66 166:66 1 > 1:2 �q = 4; s = 3: 4 21:33 2:64 0:77 > 1:1 �q = 5; s = 2: 5 62:5 250 0:81 > 1:009 > 1:008q = 7; s = 2: 7 171:5 1029 0:861 > 1:1 �q � 9; s = 2: 9 364:5 2916 1 > 1:1 �
Proof of part (ii) of the Theorem for t even. We follow the ideas of theprevious proof. The two non-zero weights of the ode C(q; r; t; s) are in this ase�1 = q � 1q � m2 + (s� 1)ms ; �2 = q � 1q � m2 �ms :9



Now the point under onsideration isÆ0 = q � 1q (1� z0) with z0 = 1(q � 1)(m� 1) :A substitution in (3.8) gives�qnG(Æ0)�s = h(1� z0) q�1�1 + (q � 1) z0�i m2q� �1 + (q � 1) z01� z0 � (q�1)mq �1 + (q � 1) z0��1� " 1� 1s  1� � 1� z01 + (q � 1) z0� (q�1)mq !#s: (3.22)Withs0 � s; q0 � q; 1 � m�1; 2 � (q � 1)mq �1; 3 = � 22 + 1�2+1 (3.23)we obtain lower bounds for the fators in the right hand side of (3.22).h(1� z0) q�1�1 + (q � 1) z0�i m2q > �1� (q � 1)2 z20 � m2q= �1� 1(m� 1)2�(m�1)2 � m2q(m�1)2 � �1� 121 �q30 ; (3.24)�1 + (q � 1) z01� z0 � (q�1)mq= �1 + q(q � 1)m� q� (q�1)mq > �1 + 12�2; (3.25)(1 + (q � 1) z0 )�1 = m� 1m � 11 + 1 ; (3.26)" 1� 1s  1� � 1� z01 + (q � 1) z0� (q�1)mq !#s=" 1� 1s  1� �1� q(q � 1)m� (q�1)mq !#s�" 1� 1s  1� �1� 12 + 1�2+1!#s � � 1� 1� 3s0 �s0 : (3.27)10



From (3.22) and (3.24){(3.27) with s0; q0; 1; 2; and 3 as in (3.23) we obtain�qnG(Æ0)�s > �1� 121 �q30 � �1 + 12�2 � 11 + 1 � � 1� 1� 3s0 �s0: (3.28)In the same manner we treat di�erent ases of possible values of the parametersof C(q; r; t; s) separately. In eah ase we determine onstants s0; q0; 1; 2;and 3; and insert them into (3.28) to evaluate a lower bound for �qnG(Æ0)�s:It turns out that either qnG(Æ0) > 1:013 or �1� 1=qk�s �qnG(Æ0)�s > 1; thusC(q; r; t; s) and its dual are not good, by the Corollary.We present the results of the evaluation in two tables below. In the asesmarked by * we have derived better lower bounds for the term in the left handside of (3.24) than the one obtained there, and in the evaluation of the right handside of (3.28) we have replaes the �rst power fator by these bounds. We showthe improved lower bounds immediately after the table with the ases to whihthese bounds are related. In the ase q = 4; s = 5; r = 1; t = 2; the lowerbound of qnG(Æ0) has been omputed from (3.22). In the last olumn of thetables we have denoted T1(Æ0) = �1� 1=qk�s �qnG(Æ0)�s:To ompute lower bounds for T1(Æ0) in the ases where s is not �xed we haveused that s � qr + 1 to obtain�1� 1=qk�s � �1� 1=q40�q0+1:The �rst table presents all possible ases with q > 3; s > 3:Case s0 q0 1 2 3 �qnG(Æ0)�s qnG(Æ0) T1(Æ0)q > 4; s � 4: 4 5 24 19 0:358 > 1:01 � > 1:0003q = 4; s � 7:� 7 4 15 11 0:358 > 1:02 � > 1:0002q = 4; s = 5;r � 3:� 5 4 4095 3071 0:3678 > 1:07 > 1:013 �q = 4; s = 5;r = 1; t � 4:� 5 4 224 191 0:36 > 1:04 > 1:007 > 1:03q = 4; s = 5;r = 1; t = 2: > 1:1 > 1:019 �11



The improved lower bounds used above are as follows.q = 4; s � 7: From (1� z0)3(1 + 3z0) > 1� 6z20 we obtain[(1� z0)3(1 + 3z0℄m24 > (1� 6z20)m24 = �1� 23(m� 1)2�m24> �1� 23 � 152� 1624 > 0:827:q = 4; s = 5; r � 3: We have�1� 121�21� m2q(m�1)2 � �1� 121 � 21 � 4124(46�1)2 > 0:7787:q = 4; s = 5; r = 1; t � 4:�1� 121�21� m2q(m�1)2 � �1� 121 � 21 � 484(44�1)2 > 0:77:The omputations in the remaining ases, q > 3 and s = 2 or 3 and q = 3; s � 4;give the following.Case s0 q0 1 2 3 �qnG(Æ0)�s qnG(Æ0) T (Æ0)q � 7; s = 2: 2 7 48 41 0:363 > 1:05 > 1:02 �q � 7; s = 3: 3 7 48 41 0:363 > 1:1 > 1:03 �q = 5; s = 2:� 2 5 24 19 0:358 > 1:02 > 1:009 > 1:01q = 5; s = 3:� 3 5 24 19 0:358 > 1:07 > 1:02 �q = 3; s � 4;rt � 4:� 4 3 80 53 0:364 > 1:03 � > 1:02Below we give the improved lower bounds used in the ases marked by *.q = 5; s = 2:[(1� z0)4(1 + 4z0℄m25 > (1� 10z20)m25 = �1� 58(m� 1)2�m25> �1� 58 21�(1+1)2=5 > 0:873:12



q = 5; s = 3: The improved lower bound is as above.q = 3; s � 4:We have rt � 4; sine when rt < 4 we obtain the ode C(3; 1; 2; 4)from part (i). Thus[(1� z0)2(1 + 2z0℄m23 > (1� 3z20)m23 = �1� 34(m� 1)2�m23> �1� 34 21� (1+1)23 > 0:773:The proof of the Theorem is now omplete.Referenes[1℄ L. D. Baumert and R. J. MEliee, Weights of irreduible yli odes. In-formation and Control 20, 158{175, 1972.[2℄ P. Delsarte, J.-M. Goethals, Irreduible binary yli odes of even dimen-sion. Pro. Seond Chapel Hill onferene on Combinatorial Mathematisand its appliations, Univ. of N. Carolina, Chapel Hill, N.C., May 1970,100{113.[3℄ R. Dodunekova, Extended binomial moments of a linear ode and the un-deteted error probability. Problemy Peredahi Informatsii 39, no. 3, 28{39,2003, English translation in Problems Inform. Transmission 39, no. 3, 255{265, 2003.[4℄ R. Dodunekova, S. Dodunekov, SuÆient onditions for good and propererror deteting odes. IEEE Trans. Inform. Theory 43, no. 6, 2023{2026,1997.[5℄ R. Dodunekova, S. Dodunekov, SuÆient onditions for good and propererror deteting odes via their duals. Math. Balkania (N.S.) 11, no 3-4,375{381, 1997.[6℄ R. Dodunekova, S. Dodunekov, Error detetion with a lass of q-ary two-weight odes. Pro. IEEE International Symposium on Information Theory,Adelaide, September 2005, to appear.[7℄ R. Dodunekova, S. Dodunekov, Error detetion with a lass of yli odes.Pro. Fourth International Workshop on Optimal Codes and Related topis,Pamporovo, June 2005, to appear.
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