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Error detection with a class of cyclic codes *

Rossitza Dodunekova' Stefan Dodunekov?
Mathematical Sciences Institute of Mathematics and
Chalmers University of Technology Informatics
and Gaoteborg University Bulgarian Academy of Sciences
412 96 Goteborg, Sweden 1113 Sofia, Bulgaria

Abstract. We study a parametric class of g-ary two-weight cyclic codes and
their dual codes, with regard to properness or goodness in detecting errors on
a g-ary symmetric memoryless channel. We prove that for some parameters the
codes and their duals are proper, while the remaining codes and their duals are
not good.

1 Introduction

Baumert and McEliece [1], and also Wolfmann [14], consider a parametric class of
g-ary irreducible cyclic codes C(q,r,t,s) with positive integer parameters such
that ¢ isa prime power, r > 1, t>1, s>1, and s|q¢"+1. The dimension
k and the length n of the code C(q,r,t,s) are

2rt -1
k=2t n=1———, (1.1)
S

and its non-zero weights and the weight distribution are

2rt—1 t rt—1
q + (—=1)"(s —1)gq
le(q_l) ( i( ) ) AT1:n7
q2rt7] _ (_l)tqrtf] (12)
n=(q—-1)- . , A, =n(s—1)

(semiprimitive case). When ¢ =2, (1.1) and (1.2) describe the parameters and
the weight distribution of the Delsarte and Goethals irreducible binary cyclic
codes introduced in [2].
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The error-detection performance of the binary codes and their duals has been
studied in [10], where a complete classification has been given by showing that
C(2,r,t,s) and C*(2,r,t,5) are both either proper for error detection or not
good. A similar study of C(q,r,t,s) with ¢ > 2 carried out in [6] revealed that
the codes are not good for a large set of parameter values, and for the remaining
values it was determined whether C(q,r,t,s) is proper or not.

In this work we give a complete classification of the codes C(g,r,t,s) and
Ct(q,rt,s) with ¢ > 2 regarding properness and goodness in error detection.
It turns out, like in the binary case, that C(q,r,t,s) and C*(q,r,t,5) are both
either proper for error detection or not good. The results have been partially
presented in [6] and [7].

We recall that when a g-ary linear [n, k, d] code C' isused to detect errors on
a symmetric memoryless channel with symbol error probability &, the probability
of undetected error is given by

“ € i . qg—1
P,.(C, ) = A7(—) 1—e)"", 86[0, —}, 1.3
A=Y a(;5) -9 q (13
where {Ag, Ay, ..., A,} is the Hamming weight distribution of the code. In
terms of the dual weight distribution {By, By, ..., B,},

£
qi

P (C, £) = q<"’f>i§n;3i(1 - 1)i (1), ec {0, %} (1.4)

C'is proper for error detection if P,.(C, £) is increasing in € € [0, (¢ —1)/q|, and
it is good if P,.(C, ) is bounded by its value at the biggest possible & (the worst
case channel condition), i.e., if

PUE(C7 8) S ]Due (C; %) - qin(qk - 1)7 SS [07 (q - 1)/(]]7 (15)
see [12] and [13].

Thus a proper error-detecting code is also good, but a proper code performs
certainly better on better channels, i.e., channels with smaller symbol error prob-
ability.

Often the symbol error probability of the channel is not known exactly and
it would then be natural to prefer a proper error-detecting code to a good one,
or a good error-detecting code to one that is not good.

Examples of proper codes are the Perfect codes over finite fields, the Maxi-
mum Distance Separable codes, some Reed-Muller codes, some Near Maximum
Distance Separable codes, the Maximum Minimum Distance codes and their du-
als, some Griesmer codes and their duals, as well as many cyclic codes. More
examples may be found in the survey [8]. The concept of properness has been



extended to non-linear block codes, and examples of proper non-linear codes are
the Kerdock and the Preparata codes, as well as non-linear codes which satisfy
or achieve the Grey-Rankin bound, see [9].

2 Main results

Our study regarding goodness or properness of the non-binary codes C(q,r,t,s)
and their duals will show the following.

Theorem.

(i) The codes C(3,r,t,2), C(3,1,2,4), and their duals are proper.
(i) The remaining codes C(q,r,t,s) with ¢ > 3 and their duals are not good.

In the binary case, the codes and their duals are proper when % is even or
when ¢ is odd and s = 3, and not good in the remaining cases, as shown in [10].

3 Proofs

Throughout the proofs we will use the notation m = ¢".

Proof of part (i) of the Theorem. Consider first the codes C(3,r,t,2). From
(1.1)-(1.3) we obtain

Pu(C(3,1.t,2),2)=n [ (g) S L (g) -] 0<e <23,
where n = (3" —1)/2 and 7, and 7, are
m* —m m* +m
= 3 To =
3 3

when ¢ is odd, while for ¢ even their values are interchanged. Hence without loss
of generality we can assume that 71 and 7, are as above. With

B 2 T2 2

— E9g = — >

g1 = < = —
n 3 n 3

the properness of C(3,r,t,2) follows from

o P(C(3, 1 2), ) )
ue y Iy by ) —1_9nmn > 1_ 9m— 9/3) —
n2 (62 _ 6) em2—1 (1 _ 8) n—7o—1 (](8) - q( / ) m + 1’

e—¢e (1l—e\m=m
9(e) = ( )
€9 — € 5

where the function
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is increasing for ¢ € (0, 2/3] since
,(8)_n—1 €9 — €1 (15)72711(2 5)( 2n + 1 6)
T =" (€9 —€)? £ 3 3(n—1) '

To show the properness of C*(3, 7, ¢, 2) we use (1.4). Differentiating and
using the substitution

1
=1- s (3.2)

we easily obtain

'P’lte(c’L (37 T’ t’ 2)) 6)

ST — 13"k [ (5) (3.3)

with

H(8) = 567 (L= 0)" 7+ 6™ (1= 6)" ™.

The term z%(1—2)® with @ > 0 and b > 0 increases for 0 < x < a/(a+b) and
decreases for a/(a+b) < x <1, which implies that P,.(C, £) in (1.3) increases
for 0 < e <d/n. Applied in (3.3) this gives

m? — 10
m2—7"

13" H()>0, 2/3>6>d0=2n-9)/3n—-9)= % - (3.4)

since the minimum code distance of C* (3, r, ¢, 2) equals 3.
It is clear from (3.3) and (3.4) that the result will follow if we show that
H'(6) > 0 for 0 < d < dy. We do this below. Denoting

=(n—-1)/(n—-1)<2/3, dg=(mp—1)/(n—1)>2/3,
we have for 0 < < ¢

27 ')

Ty (n — 1)((52 — 6)572*2(1 _ 5)71,77271 =1~ h((S) >1- h((s[]); (35)

since the function

71277 6-(51(1 —(5>727'1
T2 62 ) )
is increasing for 0 < § < dy. Indeed, we have

! _Non—mn 52*6] 1 /1 —-45\2—7-1
MO =52 (525)252( 5 ) 7 (9),

h(s) =

where
T — 1)(7’2 — 1)

n—1

hi(6) = (n — 2)6* — (7 +Tg—3)5+(




Simple algebraic computations show that h;(d) achieves its minimum at a point
larger than 2/3 and also that

36 3 4( 3
(m?2—=7)2 m?2-3 9 m?—7

2
ha(89) = 2+ ) >0 for m=3">3,

implying A'(6) > 0 for 0 < § < §y. Evaluation of h(dy) in (3.5) with dy as in
(3.4) gives the function

h((so):f(m):(m+1> .m2+2m—9.(m2f10) ’

which increases for m > 9, hence h(dy) = f(m) < lim,, o f(m) = 1 and
consequently, H'(6) > 0 for 0 < 6 < dy. The fact that f(m) increases can be
established by considering

4 4(m?* + 9)

(In f(m)) = mZ—1 " (m%—9)%— 4m?
2 (1+ ’ ) - L2
3 m? — 10 (m? — 1)(m? — 10)
. 4 +4(m2+9)+21n(1+ 9 )7 12m?
m? -1 (m?-10)>2 3 m? — 10 (m? —1)(m? —10)

Since the logarithmic function above is bounded below by the first two terms of
its Taylor series we obtain

(In f(m))" > 1 +4[ ! + 19 ]

m? —1 m?—10  (m? —10)?
L6 27 b . 1
m?—10  (m?—10)? m?—10  (m? —1)(m? — 10)
4 2 12
> > 0.

m2—1 m2—10 (m?—1)(m? —10)
This completes the proof for the codes C+(3, r, t, 2).

We prove the properness of C(3,1,2,4) and C*(3,1,2,4) by using the
sufficient conditions for properness derived in [4] and [5], see also [3]. According
to these conditions, if the extended binomial moments

of a g-ary linear [n, k, d]| code with weight distribution { A;, As, ..., A, } and
dual code distance d* satisfy

Ay >qA; , for L=d+1,...n—d"+1,
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then the code is proper, and if
Ar > qAn —¢*%q-1) for L=d"+1,...n—d+1,

then the dual code is proper. It is straightforward to check that the extended
binomial moments of C(3, 1, 2, 4) satisfy both the above conditions. [

To prove part (ii) of the Theorem we treat separately the cases ¢ odd and ¢
even. The main idea of the proof is to show that at a certain point, defined by
the code parameters, the probability of undetected error of the code exceeds the
upper bound in (1.5). Basic for the proofs is the following Lemma, which extends
part 1 of Theorem 3.4.2 in [12] to non-binary linear codes.

Lemma. Let C be a q-ary linear [n, k, d] code. If for some g € (0, (q—l)/q)
holds

q" "P.(C, 0y) > 1, (3.6)
then C* is not good.
Proof. Applying the substitution (3.2) in (1.4) we obtain the inequality

P,(Ct, ¢) 1

>1+ qnikp'u,ec’:(s -1
gk —qm (" = 1) (1—d) (6.9
which implies
1
P,.(C*, >qgF g f =1 —,
( €0) > ¢ q or &o a (1 0y)
i.e., Ct is not good. n

Note that a code for which (3.6) holds is not good. Such codes are called ugly
[11]. Thus the Lemma says that if a code is ugly then its dual is not good.

We will now modify the Lemma to be suitable for application to the codes
C(q,r,t,s). From (1.1)-(1.3) we get

Pu(C(q,r, t,s),2) = (¢" — 1) G(e), (3.7)

where

G(e) =

1
5

( - )TI(I—é)W”ﬂL(S—l)( €1>TZ(1_5)nw]‘ (38)

qg—1 q—

Corollary. Consider C(q,r,t,s) with ¢ > 3 and the corresponding function
G(g), defined by (3.7)~(3.8). If for some & € (0, (¢ —1)/q) we have

(1-1/¢") ¢" G(6) > 1 (3.9)

or

" G(5,) > 1.013, (3.10)
then C(q, 1, t, s) and C*(q, r, t, s) are not good.
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Proof. We have
qnikp’u,e(c (q: T, t: S): &€, ) = (1 - l/qk) qn G(&) Z 1
when (3.9) holds and

(1-1/¢")¢"G(e) > (1—1/3") - 1.013 > 1, ¢ > 3,

when (3.10) does. The statement thus follows by the Lemma. u
We will also make use of the well known fact that the functions (14 1)* and
(1 — )™ are increasing for z > 1 and
1\* e
(1+—) — e, (1——) —e , when x — o0, (3.11)
as well as of the Bernoulli inequality
(1+2)? >1+ B2 for |z/<1 and B>1. (3.12)

Proof of part (ii) of the Theorem for t odd. The two non-zero weights
of the code C(q,r,t,s) are

g—1 m*>—(s—1)m g—1 m?’+m

T — y Ty — (313)
q S q S
Define d§; € (0, (¢ —1)/q) as
q—1 S
ds = ——(1 — 25), where z;= (3.14)
q (¢—1)m
A substitution from (3.13) and (3.14) in (3.8) gives
1 m?
0" G,) = - [(1 ) 1+ (-1 2)] "
(@-D)m =l 1ym
x(1—z) = T (14(g—1)z) T w5 (3.15)
1+ (¢g—1) zs> am
-1
( 1— 2z, + (S )
Assume that ¢, ¢1, ¢o, and c3, are constants such that
) —1)m -1 1
q 2 qo, TZCh uzcz, q—+—§03- (3.16)
s S q m



Using these constants and the monotonicity of the convergence in (3.11) we ob-
tain lower bounds for the power factors in (3.15). First we apply the Bernoulli
inequality (3.12) to get

[(1 —z)" (1+(¢—1) zs)] m_j > (1 ~ _22 ZQ) ¢ (3.17)

2

Next we have

(g=1)m 1 c2
(G=1)m : P I\
(- i= (1o ) >(1--)", (3.18)
(¢—1)m C2
- m s\ ()
(14 (g—1)z) T % = (1 + i) >e . (3.19)
m
Finally, from
(g=1)m
(g=1)m S T g s
1 2) S = (1f > e
(=2 (¢—1)m ’
and
(g=1)m S w 1yas s
(+G-Dz) " =(1+2) > (14=)" e
) 1
we obtain (1)
1 -1 . % 1\cis
(M) > (e )" (3.20)
1— 2z, C1

Applying in (3.15) the lower bounds obtained in (3.17)—(3.20), with g, ¢, ¢s,
and c3 as in (3.16), we obtain

7" G(8,) > 1(1l2)_ (1l>_p

5 a Co

1\c1s
<1+—> vso1]. (3.21)
1

We now treat separately seven different cases of possible values of the param-
eters of C(q,r,t,s). In each case we choose constants qp, ¢1, ¢, and c3, and
replace them in (3.21) to compute a lower bound for ¢" G(ds). As we will see,
either the obtained lower bound exceeds 1.013 or (1 —1/¢*) ¢" G(6y) > 1, then
by the Corollary C(q,r,t,s) and its dual are not good.

Caseq >3, s>3. With ¢q9 = 4, ¢ = 12.8, ¢y = 384, ¢35 = 1, where ¢ is
computed from
ri t 4’3
My & 5 9 52 95,
S g+1  qg+1 5}




we obtain from (3.21)

1 20 51
" G(6,) > —-0.77°-0.77-0.36[ 2.6°+s 1] > 0.27 | =+ °
S S

0.77°| = 0.27 f(s).
It is easy to see that f’(s) > 0 for positive s and then, since s > 3, we have

"G (8,) > 0.27 f(4) > 1.15.

Case q = 3, s > 3. In this case we compute the right hand side of (3.21) with
the constants ¢y = 3, ¢; = 6.75, ¢s = 13.5, ¢3 = 0.704, and obtain

1
¢"G(8,) > - - 0.7138" - 0.7072 - 0.4946 [ 2.5408" + 5 — 1]
S

1.8136° s 1
> 0.3497 + 2 -0.7138"’} — 0.3498 £, (s).
S S

Since the function f;(s) is increasing for s > 3 we have
¢"G(5,) > 0.3498 f,(4) > 1.014.

The results of the evaluation of the right hand side of (3.21) in the remaining
cases are presented in the table below, where in the last column we have used
the notation

T(6s) = (1 — 1/qk) q" G(ds).

Case Go € Co C3 q" G(d5) T(6s)
q>5 s=3. o 141.66 166.66 1 > 1.2 —
q=4,s=3. 4 2133 264 077 >11 -
q=5s=2 5 625 250 081 >1.009 >1.008
q=7,s=2 7 1715 1029 0861 >11 -
q>9,s=2. 9 364.5 2916 1 > 1.1 —

Proof of part (ii) of the Theorem for t even. We follow the ideas of the
previous proof. The two non-zero weights of the code C(q,r,t,s) are in this case

g—1 m?*+(s—1)m qg—1 m*>-m
T = : ; Ty = ' .
q s q s




Now the point under consideration is
qg—1 1

0g = —(1 — ith = .
0= (120 with 20 = 7y

A substitution in (3.8) gives

[¥]

(7 G@0) = [0 -2 (14 (0 - 1) )] -
y (1 + (¢ — 1),20) i

I—Z[]

— 20 W )
x [1—%(1—(%) )] . (3.22)

(1 + (g — l)zo) -

< < < —1 < M —1 = “2 et 3.23
s s, q<gq, c¢<m-1, c , 2
0> 0 1 2 3 ((52 -+ 1) ( )

we obtain lower bounds for the factors in the right hand side of (3.22).

[S]

m?2 m
q

|:(1—Zg)li*1(1—|—(q—1)20):| >(1—(Q—1)2z§) :

1 (m—1)2. ™" 1\d
- (1_ (712) om0 (1— —2)q , (3.24)
m—1) i
<1+(q—1)zo)w
1—20
(g=1)m
M 11\ e
— (1+ 4) > (1 + —) , (3.25)
(¢—1)m—gq Ca
B m—1 c1
1 —1 = 3.26
( +(q )ZO) m C]—}—l’ ( )

(g=1)m

17§ 1(1+1(q201)zo> q )
i @-nm\71°
L)

> (1f 1_C3>s°. (3.27)

(V2
1
—_
|
[V
—
\
—
\
%)
[N}
+ | =
—
~——
0
V)
+
—
v




From (3.22) and (3.24) (3.27) with sg, qo, ¢1, ¢, and ¢z as in (3.23) we obtain

3

(reen) > (1-2)"- (1+2)" 5 (-5 62

o Co cp+1 S

In the same manner we treat different cases of possible values of the parameters

of C(q,r,t,s) separately. In each case we determine constants sg, qo, ¢1, C2,
S

and cg, and insert them into (3.28) to evaluate a lower bound for (q" G(50)>

It turns out that either ¢" G(dy) > 1.013 or (1 - 1/(]’“)S (q" G(60)>s > 1, thus

C(q,r,t,s) and its dual are not good, by the Corollary.

We present the results of the evaluation in two tables below. In the cases
marked by * we have derived better lower bounds for the term in the left hand
side of (3.24) than the one obtained there, and in the evaluation of the right hand
side of (3.28) we have replaces the first power factor by these bounds. We show
the improved lower bounds immediately after the table with the cases to which
these bounds are related. In the case ¢ = 4, s =5, r = 1, t = 2, the lower
bound of ¢™ G(dy) has been computed from (3.22). In the last column of the
tables we have denoted

T1(dg) = (1 — l/qk)s (q”G((Sg))S.

To compute lower bounds for Ti(dy) in the cases where s is not fixed we have
used that s < ¢" 4+ 1 to obtain

(1-1/¢")" > (1 1/¢))*""

The first table presents all possible cases with ¢ > 3, s > 3.

Case So o C1 C2 C3 (qn G(50))S q" G(50) T1(50)
q>4,s>4. 4 5 24 19 0.358 > 1.01 — > 1.0003
q=4,s>7* 7 4 15 11 0.358 > 1.02 — > 1.0002
q=4, s=35,

r>3° o 4 4095 3071 0.3678 > 1.07 > 1.013 —
q=4, s=3,

r=1,t>4* 5 4 224 191 0.36 > 1.04 > 1.007 > 1.03
q=4, s=35,

r=1, t=2. > 1.1 > 1.019 —

11



The improved lower bounds used above are as follows.

q=4, s>7. From (1 —2)*1+3z)>1-62 we obtain

2

) m? 2y _ 2 \"
9 162
4
>(1-5—5) " > o081
q=4, s=5, r > 3. We have
1 Cfmiiz 1 Cf%
(1-5) 7> (1-5) T s 08T
q=4,s=5r=1,t>4
m,2 8
(1—%)6%"“”)22(1—%)6?‘M>0.77.
€1 €1

The computations in the remaining cases, ¢ > 3 and s =2 or 3and ¢ = 3, s > 4,
give the following.

Case So Qo €1 Ca €3 (4" G(%))" q"G(d) T()
q>7,s=2 2 7 48 41 0363  >1.05 > 1.02
q>7 s=3. 3 7 48 41 0.363 > 1.1 > 1.03
q=5 s=2* 2 5 24 19 0358  >1.02 >1.009 >1.01

q=5 s=3* 3 5 24 19 0358 >1.07 > 1.02

q =
rt > 4." 4 3 80 53 0.364 > 1.03 - > 1.02

Below we give the improved lower bounds used in the cases marked by *.

q=2>5, s=2.

(1 2)'(1+42]% > (1 102)%F = (1 ﬁ)

5\ (e141)2/5
> (1 _ —) > 0.873.
8¢

—no

12



q =5, s = 3. The improved lower bound is as above.

q =3, s > 4. We have rt > 4, since when rt < 4 we obtain the code C'(3,1,2,4)
from part (i). Thus

2

m? m? 3 K3
3 (qﬁl)'z
>(1-75) 7 >0
G
The proof of the Theorem is now complete. [ ]
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