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Error dete
tion with a 
lass of 
y
li
 
odes �Rossitza DodunekovayMathemati
al S
ien
esChalmers University of Te
hnologyand G�oteborg University412 96 G�oteborg, Sweden
Stefan DodunekovzInstitute of Mathemati
s andInformati
sBulgarian A
ademy of S
ien
es1113 So�a, BulgariaAbstra
t. We study a parametri
 
lass of q-ary two-weight 
y
li
 
odes andtheir dual 
odes, with regard to properness or goodness in dete
ting errors ona q-ary symmetri
 memoryless 
hannel. We prove that for some parameters the
odes and their duals are proper, while the remaining 
odes and their duals arenot good.1 Introdu
tionBaumert and M
Elie
e [1℄, and also Wolfmann [14℄, 
onsider a parametri
 
lass ofq-ary irredu
ible 
y
li
 
odes C(q; r; t; s) with positive integer parameters su
hthat q is a prime power, r � 1; t > 1; s > 1; and sj qr+1: The dimensionk and the length n of the 
ode C(q; r; t; s) arek = 2rt; n = q2rt � 1s ; (1.1)and its non-zero weights and the weight distribution are�1 = (q � 1) � q2rt�1 + (�1)t(s� 1)qrt�1s ; A�1 = n;�2 = (q � 1) � q2rt�1 � (�1)tqrt�1s ; A�2 = n(s� 1) (1.2)(semiprimitive 
ase). When q = 2; (1.1) and (1.2) des
ribe the parameters andthe weight distribution of the Delsarte and Goethals irredu
ible binary 
y
li

odes introdu
ed in [2℄.�Partially supported by the European Community under proje
t MTKD-CT-2004-003006.yPartially supported by the Swedish Resear
h Coun
il under grant 621-2003-5325.zPartially supported by the Bulgarian NSF under Contra
t MM1405/2004.1



The error-dete
tion performan
e of the binary 
odes and their duals has beenstudied in [10℄, where a 
omplete 
lassi�
ation has been given by showing thatC(2; r; t; s) and C?(2; r; t; s) are both either proper for error dete
tion or notgood. A similar study of C(q; r; t; s) with q > 2 
arried out in [6℄ revealed thatthe 
odes are not good for a large set of parameter values, and for the remainingvalues it was determined whether C(q; r; t; s) is proper or not.In this work we give a 
omplete 
lassi�
ation of the 
odes C(q; r; t; s) andC?(q; r; t; s) with q > 2 regarding properness and goodness in error dete
tion.It turns out, like in the binary 
ase, that C(q; r; t; s) and C?(q; r; t; s) are botheither proper for error dete
tion or not good. The results have been partiallypresented in [6℄ and [7℄.We re
all that when a q-ary linear [n; k; d ℄ 
ode C is used to dete
t errors ona symmetri
 memoryless 
hannel with symbol error probability "; the probabilityof undete
ted error is given byPue(C; ") = nXi=d Ai� "q � 1�i(1� ")n�i; " 2 h0; q � 1q i; (1.3)where fA0; A1; : : : ; Ang is the Hamming weight distribution of the 
ode. Interms of the dual weight distribution fB0; B1; : : : ; Bng;Pue(C; ") = q�(n�k) nXi=0 Bi� 1� "q � 1�i � (1� ")n; " 2 h0; q � 1q i: (1.4)C is proper for error dete
tion if Pue(C; ") is in
reasing in " 2 [0; (q� 1)=q℄ , andit is good if Pue(C; ") is bounded by its value at the biggest possible " (the worst
ase 
hannel 
ondition), i.e., ifPue(C; ") � Pue�C; q � 1q � = q�n(qk � 1); " 2 [0; (q � 1)=q℄; (1.5)see [12℄ and [13℄.Thus a proper error-dete
ting 
ode is also good, but a proper 
ode performs
ertainly better on better 
hannels, i.e., 
hannels with smaller symbol error prob-ability.Often the symbol error probability of the 
hannel is not known exa
tly andit would then be natural to prefer a proper error-dete
ting 
ode to a good one,or a good error-dete
ting 
ode to one that is not good.Examples of proper 
odes are the Perfe
t 
odes over �nite �elds, the Maxi-mum Distan
e Separable 
odes, some Reed-Muller 
odes, some Near MaximumDistan
e Separable 
odes, the Maximum Minimum Distan
e 
odes and their du-als, some Griesmer 
odes and their duals, as well as many 
y
li
 
odes. Moreexamples may be found in the survey [8℄. The 
on
ept of properness has been2



extended to non-linear blo
k 
odes, and examples of proper non-linear 
odes arethe Kerdo
k and the Preparata 
odes, as well as non-linear 
odes whi
h satisfyor a
hieve the Grey-Rankin bound, see [9℄.2 Main resultsOur study regarding goodness or properness of the non-binary 
odes C(q; r; t; s)and their duals will show the following.Theorem.(i) The 
odes C(3; r; t; 2 ); C(3; 1; 2; 4 ); and their duals are proper.(ii) The remaining 
odes C(q; r; t; s) with q � 3 and their duals are not good.In the binary 
ase, the 
odes and their duals are proper when t is even orwhen t is odd and s = 3; and not good in the remaining 
ases, as shown in [10℄.3 ProofsThroughout the proofs we will use the notation m = qrt:Proof of part (i) of the Theorem. Consider �rst the 
odes C(3; r; t; 2): From(1.1){(1.3) we obtainPue(C (3; r; t; 2 ); " ) = n h �"2��1 (1� ")n��1 + �"2��2 (1� ")n��2 i; 0 � " � 2=3;where n = (3rt � 1)=2 and �1 and �2 are�1 = m2 �m3 ; �2 = m2 +m3when t is odd, while for t even their values are inter
hanged. Hen
e without lossof generality we 
an assume that �1 and �2 are as above. With"1 = �1n < 23 ; "2 = �2n > 23 ;the properness of C(3; r; t; 2) follows from2�2 P 0ue(C (3; r; t; 2 ); " )n2 ("2 � ") " �2�1 (1� ")n��2�1 = 1� 2�2��1 g(") � 1� 2�2��1 g(2=3) = 2m + 1 ;where the fun
tion g(") = "� "1"2 � " � 1� "" � �2��13



is in
reasing for " 2 (0; 2=3℄ sin
eg0(") = n� 1"2 "2 � "1("2 � ")2 � 1� "" ��2��1�1 � 23 � "�� 2n+ 13(n� 1) � "�:To show the properness of C?( 3; r; t; 2 ) we use (1.4). Di�erentiating andusing the substitution Æ = 1� 1q (1� ") (3.2)we easily obtain P 0ue(C? (3; r; t; 2 ); " )n(1� ")n�1 = 1� 3n�kH(Æ) (3.3)with H(Æ) = �12�1 Æ�1�1(1� Æ)n��1 + �22�2 Æ�2�1(1� Æ)n��2 :The term xa(1� x)b with a > 0 and b > 0 in
reases for 0 � x � a=(a+ b) andde
reases for a=(a+ b) � x � 1; whi
h implies that Pue(C; ") in (1.3) in
reasesfor 0 � " � d=n: Applied in (3.3) this gives1� 3n�kH(Æ) � 0; 2=3 � Æ � Æ0 = (2n� 9)=(3n� 9) = 23 � m2 � 10m2 � 7 ; (3.4)sin
e the minimum 
ode distan
e of C? (3; r; t; 2 ) equals 3:It is 
lear from (3.3) and (3.4) that the result will follow if we show thatH 0(Æ) � 0 for 0 < Æ � Æ0: We do this below. DenotingÆ1 = (�1 � 1)=(n� 1) < 2=3; Æ2 = (�2 � 1)=(n� 1) > 2=3;we have for 0 < Æ � Æ0 2�2 H 0(Æ)�2 (n� 1)(Æ2 � Æ)Æ�2�2(1� Æ)n��2�1 = 1� h(Æ) � 1� h(Æ0); (3.5)sin
e the fun
tion h(Æ) = �1 2�2��1�2 Æ � Æ1Æ2 � Æ�1� ÆÆ ��2��1is in
reasing for 0 < Æ � Æ0: Indeed, we haveh0(Æ) = �1�2 2�2��1 Æ2 � Æ1(Æ2 � Æ)2 1Æ2 �1� ÆÆ ��2��1�1 h1(Æ);where h1(Æ) = (n� 2)Æ2 � (�1 + �2 � 3)Æ + (�1 � 1)(�2 � 1)n� 1 :4



Simple algebrai
 
omputations show that h1(Æ) a
hieves its minimum at a pointlarger than 2/3 and also thath1(Æ0) = 2 + 36(m2 � 7)2 � 3m2 � 3 � 49 �1� 3m2 � 7�2 > 0 for m = 3rt � 32;implying h0(Æ) > 0 for 0 < Æ � Æ0: Evaluation of h(Æ0) in (3.5) with Æ0 as in(3.4) gives the fun
tionh(Æ0) = f(m) = �m� 1m+ 1�2 � m2 � 2m� 9m2 + 2m� 9 � � m2 � 1m2 � 10�2m=3;whi
h in
reases for m � 9; hen
e h(Æ0) = f(m) < limm!1 f(m) = 1 and
onsequently, H 0(Æ) � 0 for 0 < Æ � Æ0: The fa
t that f(m) in
reases 
an beestablished by 
onsidering� ln f(m)�0 = 4m2 � 1 + 4(m2 + 9)(m2 � 9)2 � 4m2+ 23 ln�1 + 9m2 � 10�� 12m2(m2 � 1)(m2 � 10)> 4m2 � 1 + 4(m2 + 9)(m2 � 10)2 + 23 ln�1 + 9m2 � 10�� 12m2(m2 � 1)(m2 � 10) :Sin
e the logarithmi
 fun
tion above is bounded below by the �rst two terms ofits Taylor series we obtain� ln f(m)�0 > 4m2 � 1 + 4" 1m2 � 10 + 19(m2 � 10)2#+ 6m2 � 10 � 27(m2 � 10)2 � 12" 1m2 � 10 + 1(m2 � 1)(m2 � 10)#> 4m2 � 1 � 2m2 � 10 � 12(m2 � 1)(m2 � 10) > 0:This 
ompletes the proof for the 
odes C?( 3; r; t; 2 ):We prove the properness of C( 3; 1; 2; 4) and C?( 3; 1; 2; 4) by using thesuÆ
ient 
onditions for properness derived in [4℄ and [5℄, see also [3℄. A

ordingto these 
onditions, if the extended binomial momentsA�̀ = X̀i=d `(`� 1) : : : (`� i+ 1)n(n� 1) : : : (n� i+ 1) Ai; ` = d; � � � ; n;of a q-ary linear [n; k; d ℄ 
ode with weight distribution fA1; A2; : : : ; An g anddual 
ode distan
e d? satisfyA�̀ � q A�̀�1 for ` = d+ 1; : : : n� d? + 1;5



then the 
ode is proper, and ifA�n�` � q A�n�`+1 � qk�`(q � 1) for ` = d? + 1; : : : n� d+ 1;then the dual 
ode is proper. It is straightforward to 
he
k that the extendedbinomial moments of C( 3; 1; 2; 4 ) satisfy both the above 
onditions.To prove part (ii) of the Theorem we treat separately the 
ases t odd and teven. The main idea of the proof is to show that at a 
ertain point, de�ned bythe 
ode parameters, the probability of undete
ted error of the 
ode ex
eeds theupper bound in (1.5). Basi
 for the proofs is the following Lemma, whi
h extendspart 1 of Theorem 3.4.2 in [12℄ to non-binary linear 
odes.Lemma. Let C be a q-ary linear [n; k; d ℄ 
ode. If for some Æ0 2 � 0; (q�1)=q �holds qn�kPue(C; Æ0 ) � 1; (3.6)then C? is not good.Proof. Applying the substitution (3.2) in (1.4) we obtain the inequalityPue(C?; ")q�k � q�n > 1 + 1(qn�k � 1) (1� Æ)nhqn�k Pue(C; Æ)� 1iwhi
h implies Pue(C?; "0) > q�k � q�n for "0 = 1� 1q (1� Æ0) ;i.e., C? is not good.Note that a 
ode for whi
h (3.6) holds is not good. Su
h 
odes are 
alled ugly[11℄. Thus the Lemma says that if a 
ode is ugly then its dual is not good.We will now modify the Lemma to be suitable for appli
ation to the 
odesC(q; r; t; s): From (1.1){(1.3) we getPue(C (q; r; t; s ); " ) = (qk � 1)G("); (3.7)whereG(") = 1s"� "q � 1 � �1 (1� ")n��1 + (s� 1)� "q � 1 � �2�1� ")n��2 #: (3.8)Corollary. Consider C(q; r; t; s) with q � 3 and the 
orresponding fun
tionG("); de�ned by (3.7){(3.8). If for some Æ0 2 � 0; (q � 1)=q � we have�1� 1=qk� qnG(Æ0) � 1 (3.9)or qnG(Æ0) � 1:013; (3.10)then C (q; r; t; s ) and C? (q; r; t; s ) are not good.6



Proof. We haveqn�kPue(C (q; r; t; s ); "; ) = �1� 1=qk� qnG(") � 1when (3.9) holds and�1� 1=qk� qnG(") � �1� 1=34� � 1:013 > 1; q � 3;when (3.10) does. The statement thus follows by the Lemma.We will also make use of the well known fa
t that the fun
tions (1+ 1x)x and(1� 1x)x are in
reasing for x > 1 and�1 + 1x�x ! e; �1� 1x�x ! e�1; when x!1; (3.11)as well as of the Bernoulli inequality(1 + x)� > 1 + �x for jxj < 1 and � � 1: (3.12)Proof of part (ii) of the Theorem for t odd. The two non-zero weightsof the 
ode C(q; r; t; s) are�1 = q � 1q � m2 � (s� 1)ms ; �2 = q � 1q � m2 +ms : (3.13)De�ne Æs 2 ( 0; (q � 1)=q) asÆs = q � 1q (1� zs); where zs = s(q � 1)m: (3.14)A substitution from (3.13) and (3.14) in (3.8) givesqnG(Æs) = 1sh(1� zs) q�1�1 + (q � 1) zs�i m2qs� (1� zs) (q�1)ms � 1q �1 + (q � 1) zs��( q�1q + 1m ) ms (3.15)� "�1 + (q � 1) zs1� zs � (q�1)mq + (s� 1)#:Assume that q0; 
1; 
2; and 
3; are 
onstants su
h thatq � q0; ms � 
1; (q � 1)ms � 
2; q � 1q + 1m � 
3: (3.16)
7



Using these 
onstants and the monotoni
ity of the 
onvergen
e in (3.11) we ob-tain lower bounds for the power fa
tors in (3.15). First we apply the Bernoulliinequality (3.12) to geth(1� zs) q�1�1 + (q � 1) zs�i m2qs > �1� (q � 1)2 z2s � m2qs= �1� s2m2� m2qs � �1� 1
21 � 
21q0 �s: (3.17)Next we have(1� zs) (q�1)ms � 1q = �1� s(q � 1)m� (q�1)ms � 1q � �1� 1
2� 
2q0 ; (3.18)(1 + (q � 1) zs )�( q�1q + 1m ) ms = �1 + sm��( q�1q + 1m ) ms > e�
3 : (3.19)Finally, from (1� zs )� (q�1)mq = �1� s(q � 1)m�� (q�1)mq > e sqand (1 + (q � 1) zs ) (q�1)mq = �1 + sm� (q�1)mq > �1 + 1
1� 
1 s e� sqwe obtain �1 + (q � 1) zs1� zs � (q�1)mq > �1 + 1
1�
1 s: (3.20)Applying in (3.15) the lower bounds obtained in (3.17){(3.20), with q0; 
1; 
2;and 
3 as in (3.16), we obtainqnG(Æs) > 1s�1� 1
21 � 
21q0 �s � �1� 1
2� 
2q0 � e�
3 � "�1 + 1
1�
1 s + s� 1#: (3.21)We now treat separately seven di�erent 
ases of possible values of the param-eters of C(q; r; t; s): In ea
h 
ase we 
hoose 
onstants q0; 
1; 
2; and 
3; andrepla
e them in (3.21) to 
ompute a lower bound for qnG(Æs): As we will see,either the obtained lower bound ex
eeds 1.013 or �1� 1=qk� qnG(Æ0) > 1; thenby the Corollary C(q; r; t; s) and its dual are not good.Case q > 3; s > 3: With q0 = 4; 
1 = 12:8; 
2 = 38:4; 
3 = 1; where 
1 is
omputed from ms � qrtqr + 1 � qtq + 1 � 435 = 12:8;8



we obtain from (3.21)qnG(Æs) > 1s �0:77s �0:77 �0:36[ 2:6s+s�1 ℄ > 0:27 h2ss + s� 1s �0:77 si = 0:27 f(s):It is easy to see that f 0(s) > 0 for positive s and then, sin
e s > 3; we haveqnG(Æs) � 0:27 f(4) > 1:15:Case q = 3; s > 3: In this 
ase we 
ompute the right hand side of (3.21) withthe 
onstants q0 = 3; 
1 = 6:75; 
2 = 13:5; 
3 = 0:704; and obtainqnG(Æs) > 1s � 0:7138s � 0:7072 � 0:4946 � 2:5408s + s� 1 �> 0:3497 h1:8136ss + s� 1s � 0:7138 si = 0:3498 f1(s):Sin
e the fun
tion f1(s) is in
reasing for s > 3 we haveqnG(Æs) � 0:3498 f1(4) > 1:014:The results of the evaluation of the right hand side of (3.21) in the remaining
ases are presented in the table below, where in the last 
olumn we have usedthe notation T (Æs) = �1� 1=qk� qnG(Æs):Case q0 
1 
2 
3 qnG(Æs) T (Æs)q � 5; s = 3: 5 141:66 166:66 1 > 1:2 �q = 4; s = 3: 4 21:33 2:64 0:77 > 1:1 �q = 5; s = 2: 5 62:5 250 0:81 > 1:009 > 1:008q = 7; s = 2: 7 171:5 1029 0:861 > 1:1 �q � 9; s = 2: 9 364:5 2916 1 > 1:1 �
Proof of part (ii) of the Theorem for t even. We follow the ideas of theprevious proof. The two non-zero weights of the 
ode C(q; r; t; s) are in this 
ase�1 = q � 1q � m2 + (s� 1)ms ; �2 = q � 1q � m2 �ms :9



Now the point under 
onsideration isÆ0 = q � 1q (1� z0) with z0 = 1(q � 1)(m� 1) :A substitution in (3.8) gives�qnG(Æ0)�s = h(1� z0) q�1�1 + (q � 1) z0�i m2q� �1 + (q � 1) z01� z0 � (q�1)mq �1 + (q � 1) z0��1� " 1� 1s  1� � 1� z01 + (q � 1) z0� (q�1)mq !#s: (3.22)Withs0 � s; q0 � q; 
1 � m�1; 
2 � (q � 1)mq �1; 
3 = � 
2
2 + 1�
2+1 (3.23)we obtain lower bounds for the fa
tors in the right hand side of (3.22).h(1� z0) q�1�1 + (q � 1) z0�i m2q > �1� (q � 1)2 z20 � m2q= �1� 1(m� 1)2�(m�1)2 � m2q(m�1)2 � �1� 1
21 �q30 ; (3.24)�1 + (q � 1) z01� z0 � (q�1)mq= �1 + q(q � 1)m� q� (q�1)mq > �1 + 1
2�
2; (3.25)(1 + (q � 1) z0 )�1 = m� 1m � 
1
1 + 1 ; (3.26)" 1� 1s  1� � 1� z01 + (q � 1) z0� (q�1)mq !#s=" 1� 1s  1� �1� q(q � 1)m� (q�1)mq !#s�" 1� 1s  1� �1� 1
2 + 1�
2+1!#s � � 1� 1� 
3s0 �s0 : (3.27)10



From (3.22) and (3.24){(3.27) with s0; q0; 
1; 
2; and 
3 as in (3.23) we obtain�qnG(Æ0)�s > �1� 1
21 �q30 � �1 + 1
2�
2 � 
1
1 + 1 � � 1� 1� 
3s0 �s0: (3.28)In the same manner we treat di�erent 
ases of possible values of the parametersof C(q; r; t; s) separately. In ea
h 
ase we determine 
onstants s0; q0; 
1; 
2;and 
3; and insert them into (3.28) to evaluate a lower bound for �qnG(Æ0)�s:It turns out that either qnG(Æ0) > 1:013 or �1� 1=qk�s �qnG(Æ0)�s > 1; thusC(q; r; t; s) and its dual are not good, by the Corollary.We present the results of the evaluation in two tables below. In the 
asesmarked by * we have derived better lower bounds for the term in the left handside of (3.24) than the one obtained there, and in the evaluation of the right handside of (3.28) we have repla
es the �rst power fa
tor by these bounds. We showthe improved lower bounds immediately after the table with the 
ases to whi
hthese bounds are related. In the 
ase q = 4; s = 5; r = 1; t = 2; the lowerbound of qnG(Æ0) has been 
omputed from (3.22). In the last 
olumn of thetables we have denoted T1(Æ0) = �1� 1=qk�s �qnG(Æ0)�s:To 
ompute lower bounds for T1(Æ0) in the 
ases where s is not �xed we haveused that s � qr + 1 to obtain�1� 1=qk�s � �1� 1=q40�q0+1:The �rst table presents all possible 
ases with q > 3; s > 3:Case s0 q0 
1 
2 
3 �qnG(Æ0)�s qnG(Æ0) T1(Æ0)q > 4; s � 4: 4 5 24 19 0:358 > 1:01 � > 1:0003q = 4; s � 7:� 7 4 15 11 0:358 > 1:02 � > 1:0002q = 4; s = 5;r � 3:� 5 4 4095 3071 0:3678 > 1:07 > 1:013 �q = 4; s = 5;r = 1; t � 4:� 5 4 224 191 0:36 > 1:04 > 1:007 > 1:03q = 4; s = 5;r = 1; t = 2: > 1:1 > 1:019 �11



The improved lower bounds used above are as follows.q = 4; s � 7: From (1� z0)3(1 + 3z0) > 1� 6z20 we obtain[(1� z0)3(1 + 3z0℄m24 > (1� 6z20)m24 = �1� 23(m� 1)2�m24> �1� 23 � 152� 1624 > 0:827:q = 4; s = 5; r � 3: We have�1� 1
21�
21� m2q(m�1)2 � �1� 1
21 � 
21 � 4124(46�1)2 > 0:7787:q = 4; s = 5; r = 1; t � 4:�1� 1
21�
21� m2q(m�1)2 � �1� 1
21 � 
21 � 484(44�1)2 > 0:77:The 
omputations in the remaining 
ases, q > 3 and s = 2 or 3 and q = 3; s � 4;give the following.Case s0 q0 
1 
2 
3 �qnG(Æ0)�s qnG(Æ0) T (Æ0)q � 7; s = 2: 2 7 48 41 0:363 > 1:05 > 1:02 �q � 7; s = 3: 3 7 48 41 0:363 > 1:1 > 1:03 �q = 5; s = 2:� 2 5 24 19 0:358 > 1:02 > 1:009 > 1:01q = 5; s = 3:� 3 5 24 19 0:358 > 1:07 > 1:02 �q = 3; s � 4;rt � 4:� 4 3 80 53 0:364 > 1:03 � > 1:02Below we give the improved lower bounds used in the 
ases marked by *.q = 5; s = 2:[(1� z0)4(1 + 4z0℄m25 > (1� 10z20)m25 = �1� 58(m� 1)2�m25> �1� 58 
21�(
1+1)2=5 > 0:873:12



q = 5; s = 3: The improved lower bound is as above.q = 3; s � 4:We have rt � 4; sin
e when rt < 4 we obtain the 
ode C(3; 1; 2; 4)from part (i). Thus[(1� z0)2(1 + 2z0℄m23 > (1� 3z20)m23 = �1� 34(m� 1)2�m23> �1� 34 
21� (
1+1)23 > 0:773:The proof of the Theorem is now 
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