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Abstract

In microarray experiments quality often varies, for example between samples
and between arrays. The need for quality control is therefore strong. A
statistical model and a corresponding analysis method is suggested for ex-
periments with pairing, including designs with individuals observed before
and after treatment and many experiments with two-colour spotted arrays.
The model is of mixed type with some parameters estimated by an empirical
Bayes method. Differences in quality are modelled by individual variances
and correlations between repetitions. The method is applied to three real and
several simulated datasets. Two of the real datasets are of Affymetrix type
with patients profiled before and after treatment, and the third dataset is of
two-colour spotted cDNA type. In all cases, the patients or arrays had differ-
ent estimated variances, leading to distinctly unequal weights in the analysis.
We suggest also plots which illustrate the variances and correlations that af-
fect the weights computed by our analysis method. For simulated data the
improvement relative to previously published methods without weighting is
shown to be substantial.
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1 Introduction

DNA microarrays are strikingly efficient tools for analysing gene expression
for large sets of genes simultaneously. They are often used to identify genes
that are differentially expressed between two conditions, e.g. before and after
some treatment. A drawback is that the technology involves several consec-
utive steps, each exhibiting large quality variation. Thus there is a strong
need for quality assessment and quality control to handle occurrences of poor
quality, as is clearly pointed out in Johnson and Lin (2003) and Shi et al.
(2004).

Despite the observed need for effective quality control, standard operat-
ing procedures for quality assurance of the entire chain of processing steps
have only recently been proposed (Ryan et al., 2004, for one-channel experi-
ments). However, even utilising an optimal quality control procedure aiming
at removing low quality arrays and/or individual gene measurements (e.g.
spots), there will always be a marginal region with some measurements be-
ing of decreased quality without being worthless, as noted in Ryan et al.
(2004). Consequently, it should be possible to make progress by integrating
quality control quantitatively into the analysis following the lab steps and
low-level analysis, taking quality variations into account.

When integrating the quality concept into the analysis, the quality of dif-
ferent parts of the dataset should ideally be estimated from data and used in
the subsequent selection of differentially expressed genes. Here we introduce a
method, called Weighted Analysis of paired Microarray Experiments (referred
to as WAME), for the analysis of paired microarray experiments, e.g. com-
parison of pairs of treatment conditions and most two-colour experiments.
WAME aims at estimating array-wide quality deviations and integrates the
quality estimates in the statistical analysis. Only the observed gene expres-
sion ratios are used in the quality assessment, making the method applicable
to most paired microarray experiments, independent of which DNA microar-
ray technology is used.

In short WAME identifies and downweights repetitions (biological or tech-
nical) of pairs (corresponding to individuals or to arrays) with decreased
quality for many genes. Repetitions with positively correlated variations, e.g.
caused by shared sources of variation, are similarly down-weighted. Thus,
estimates of differential expression with improved precision and tests with
increased power are provided.

As a useful complement to the WAME analyses we suggest pair-wise plots
of log-ratios of gene expression measurements. Such plots are supplied for
all three real datasets analysed, and they are particularly useful for under-



standing which patients or arrays that are up- or downweighted.

In the adopted model, log ratios of measured RNA-levels are assumed
normally distributed. The covariance structure is specified by parameters of
two types: (i) a global covariance matrix signifying different quality for dif-
ferent repetitions and (ii) gene specific multiplicative factors. The latter have
inverse gamma prior distribution with one gene-specific parameter, which is
estimated by an empirical Bayes method.

The paper is organised as follows. In the next section, a background and
a selection of previous work in the field are presented. This is followed by
a detailed description of our model. Methods for estimating the parameters
and a likelihood ratio test for identifying differentially expressed genes are
derived. In the following section simulations are used to compare WAME
to four currently used methods: (i) average fold change, (ii) ordinary t-test,
(iii) the penalized t-statistic of Efron et al. (2001), and (iv) the moderated
t-statistic of Smyth (2004). Next, WAME is applied to three real datasets,
the Cardiac dataset of Hall et al. (2004), the Polyp dataset of Benson et al.
(2004) and the Swirl dataset (Dudoit and Yang, 2003). The results obtained
are discussed in a subsequent section and some derivations and mathematical
details are given in an appendix.

2 Background

To put the quality control aspect of our model into context, the different
steps and sources of variation in typical paired microarray experiments are
outlined below. In addition, a selection of publications dealing with quality
control for microarray experiments are briefly reviewed.

2.1 Sources of variation in typical microarray experi-
ments

The first step, after decision on experimental design, of a microarray ex-
periment aiming at identifying differentially expressed genes would typically
be to determine how biological samples should be acquired. In experiments
dealing with homogeneous groups of single cell organisms, such as yeast, in
highly controlled environments, this task is typically less complex than when
dealing with heterogeneous groups of multicellular organisms, such as hu-
mans. Here selection of subjects and cells from the relevant organ, e.g. by
biopsy or laser dissection, are complicated tasks.



From the biological sample the following lab-steps are performed: RNA
extraction, reverse transcription (and in wvitro transcription), labelling, hy-
bridisation to arrays and scanning. The parts of the scanned images corre-
sponding to the different genes (i.e. spots or probe-pairs) are identified and
quantified. In addition, background correction may be performed. Subse-
quently, normalisation of the quantified measurements is performed to han-
dle global differences. In the case of Affymetrix type arrays, 11-20 pairs of
quantitative measurements are combined into one expression level estimate
for each gene. For an experiment of paired type, one log,-ratio of the expres-
sion level estimates is calculated for each pair and gene. These log,-ratios
are then used to examine which genes are differentially expressed.

In several of the steps mentioned above there are substantial quality vari-
ations. For example, the quantity and quality of the RNA in biopsies may
vary considerably. There are sometimes evidence of poor quality making it
possible to remove obviously worthless samples. Nevertheless, there will al-
ways be a marginal region with measurements of reduced quality without
being worthless. In addition, some variations are hard to detect before the
actual normalised log,-ratios are computed, e.g. the representativeness in tis-
sue distribution of human biopsies. An additional aspect of quality control is
systematic errors, where the variations of different repetitions are correlated.
This could be due to shared sources of variation, such as simultaneous pro-
cessing in lab steps or non-representative tissue composition in the biopsies.

Another potentially important factor is the quality of the arrays used for
the measurements. Flaws in the manufacturing process might make mea-
surements for individual genes inferior. This is more of a problem in the
case of spotted arrays, for which there are only one or a few spots per gene.
However, such bad spots can often be detected. The quality control in the
actual manufacturing of microarrays is certainly very important but will not
be further discussed here.

2.2 A brief review of some relevant publications

In Johnson and Lin (2003) and Shi et al. (2004) the general need for improved
quality assurance in the context of DNA microarray analysis is emphasised.
Tong et al. (2004) implement a public microarray data and analysis software
and note that ” Although the importance of quality control (QC) is generally
understood, there is little QC practise in the existing microarray databases”.
They include some available measures of quality for different steps in the
analysis in their database.



Dumur et al. (2004) survey quality control criteria for the wet lab steps
of Affymetrix arrays, going from RNA to cDNA. Additionally, three sources
of technical variation (hybridisation day, fluidic scan station, fresh or frozen
cDNA) are evaluated using an ANOVA model.

Ryan et al. (2004) present guidelines for quality assurance of Affymetrix
based microarray studies, utilising a variety of techniques for the different
steps, some of which are shown to agree. A sample quality control flow
diagram is suggested, including steps from extracted RNA to the quantified
arrays.

Chen (2004) aims at screening out ineligible arrays (Affymetrix type),
using a graphical approach, so called 2D image plots, to display grouped data.
Park et al. (2005) similarly aim at identifying outlying slides in two-channel
experiments by using scatterplots of transformed versions of the signals from
the two channels.

Tomita et al. (2004) use correlation between arrays (Affymetrix type) to
evaluate the RNA integrity of the individual arrays, by forming an average
correlation index (ACI). The ACI is shown to correlate with several existing
quality factors, such as the 3’-5’ ratio of GAPDH.

Several papers have been written on the quality control of individual
measurements of genes (spots or probes). Wang et al. (2001, 2003) define a
spot-wise composite score from various quantitative measures of quality of
individual spots in spotted microarrays. They further perform evaluations
on several in-house datasets, showing that when bad spots are removed, the
variance of all gene-specific ratios in one chip is decreased. In Hautaniemi
et al. (2003) Bayesian networks are used to discriminate between good and
bad spots with training data provided by letting experienced microarray users
examine the arrays by hand.

In the papers discussed above the countermeasure against low-quality
spots or arrays is to treat them as outliers and to remove them. Again,
there will always be a marginal region with some measurements being of
decreased quality without being worthless. An interesting approach using
weighted analysis of the microarray gene expression data is due to Bakewell
and Wit (2005). The starting point is a variance component model for the
log expression mean for a spot 7 with variance o7 + o2 /m;, where o7 is the
variance between spots while o7 is the variance between pixels in spot ¢ with
the effective number m,; of pixels. For each gene the spots are weighted
inversely proportional to estimated variances, and different genes are essen-
tially treated independent of each other. Only quality deviations of the actual
hybridised spots are included in the model.

In Yang et al. (2002) the variance of different print tip groups or arrays



in cDNA experiments are estimated by a robust method. The need for scale
normalisation between slides is determined empirically, e.g. by displaying box
plots for the log ratios of the slides.

The model we propose (WAME) assesses the quality of different arrays
quantitatively by examining the computed log,-ratios. Thus, quality devi-
ations in all steps leading to the gene expression estimates are included, as
long as the quality deviations occur for a wide variety of measured genes.
Furthermore, shared systematic errors are taken care of via estimated covari-
ances between repetitions. The assessed qualities are incorporated into the
analysis based on the statistical model presented in the next sections.

In microarray experiments there are often relatively few replicates, result-
ing in highly variable gene-specific variance estimates. To use the information
in the large number of measured genes to handle this problem, an empirical
Bayes approach (Robbins, 1956; Maritz, 1970) can be taken, determining a
prior distribution from the data, thus moderating extreme estimates. This
approach has been used in Baldi and Long (2001), Lonnstedt and Speed
(2002) and Smyth (2004).

3 The model

The experimental layouts studied in the present paper are restricted to
comparisons of paired observations from two conditions . For each gene
g=1,..., Ng and each pair of measurements ¢ = 1, ..., Ny, let X ; with ex-
pected value ji4 be the normalised log,-ratio of the observed gene expressions
from the two conditions. Thus, p, measures the expected log, ratio of the
RNA concentrations of the two conditions.

In Section 2.1 it was noted that there may exist dependencies between
repetitions, e.g. due to systematic errors. Furthermore, different arrays may
have different precision in their measurements of the gene expressions. To
describe this, we use a covariance structure matrix > which models precision
as individual variances for the different repetitions and dependencies between
repetitions as covariances.

Due to both technical and biological reasons the observations for the
different genes have different variability, and a gene-specific multiplicative
factor ¢4 for the covariance matrix is introduced. The cg-variables for different
genes are assumed to be independent. Given ¢, the vector X, consisting
of all repetitions for gene ¢ is assumed to have a N;-dimensional normal
distribution with mean vector p,1 and covariance matrix ¢,X. The vectors
Xg for different genes are also assumed independent. This independence



assumption is optimistic but we believe that it is not critical in the sigma-
estimation step owing to the large number of genes.

In microarray experiments, the number of experimental units is typically
fairly small and estimates of ¢, utilising only information from the mea-
surements with gene g may be highly variable. Therefore prior information
is introduced as a prior distribution for ¢,, which serves to moderate the
estimates of ¢;,. The prior for ¢, is assumed to be an inverse gamma dis-
tribution with a parameter o determining the spread of the distribution, in
effect determining the information content in the prior. The inverse gamma
distribution is a conjugate prior distribution for the variance of a normal
distribution and has as such been used in Bayesian and empirical Bayesian
analysis of microarray data before (Baldi and Long, 2001; Lonnstedt and
Speed, 2002; Smyth, 2004).

The model can be summarised as follows: We observe X, = (X,1,..., Xyn,)
where g = 1,...,Ng. Let ¥ be a covariance matrix with N; rows and
columns, ¢, a set of gene-specific variance scaling factors and « a hyperpa-
rameter determining the spread of the prior distribution for ¢,. Then for
fixed py, ¥ and o,

cg~ T a,1) and

(1)
Xy ‘ cg ~ Ny, (MQL ng) )

and all variables corresponding to different genes are assumed independent.

4 Inference

4.1 Estimation of a scaled version of the matrix X

Estimating ¥ may appear easy but it turns out to be rather intricate and
there are several issues involved.

Firstly, there are trivial solutions that give infinite likelihood of the model.
Just put one gene-specific mean value ji4 equal to the observation of one of
the repetitions and the corresponding variance equal to zero. To avoid this
complication the assumption that the differential expression of most genes
is approximately zero is introduced temporarily. This assumption is not as
consequential as it might sound, since it is made by most of the procedures
that have become de facto standard in the (preceding) normalisation step,
one example being the loess normalisation method (Yang et al., 2002). Nev-
ertheless, it does limit the set of experimental setups that can be treated
and the proportion of genes that are regulated must not be too large. The



impact of this assumption is further investigated by the simulation study in
Section 5.2. For the rest of Section 4.1, p, is thus set equal to zero for all
g = 1, ey Ng.

Another issue is the scaling of 3. For each gene, the covariance matrix is
scaled with the random variable ¢, which has an inverse gamma distribution
with a parameter which is unknown in a first stage. To address this issue, the
estimation of X is performed in two steps. In the first step, a transformation
is applied to X, such that the transformed vector has a distribution that is
independent of ¢,. To simplify notation the index g will be dropped from X,
and ¢, in the rest of this section. Let U = (Uy, ..., Uy,) where

S ¢ ifi =1
T XX, if2<i< N

The distribution of the vector U has the density
Julex(u) = fx|ex(x(u))]J(u)]

where J is the corresponding Jacobian. Some algebra shows that the scaling
factor c cancels for Us, . .., Uy, and by integrating over U;, we get the density

o
fos,un, (U2, - uny) = / fuex(u) duy
)

=C |E|_l/2 ("2 ] _NI/Q,

(2)

where C' is a normalisation constant and v = (1, ug, ..., uy,). The distribu-
tion (2) is independent of ¢ and the marginal distribution of u; is a Cauchy
distribution translated with p;,0;,/011 and scaled with (/1 — p%7iai7,~/0171,
where p;; is the correlation between X; and X; and o;; is the variance of
X;. This shows that p;,; and 0;,/01; are identifiable. Analogously, from the
one dimensional Cauchy distributions of U, /U, = X;/ X}, j =2,..., N; and
k = 2,...,Ny it follows that all other correlations and variance ratios are
identifiable as well.

From (2) we see that the distribution of (Us, ..., Uy,) is unchanged if we
multiply ¥ with a constant. Let us therefore fix one element of ¥, e.g. we
set the first element in the first row equal to one. Let ¥X* denote the matrix
thus obtained. Then

=AY, (3)

and the constant \ will be estimated together with the hyperparameter « as
described below in Section 4.2. Thus estimation of the covariance matrix



will be carried out in two steps: first estimate X* with one element fixed and
then estimate .

Numerical maximum likelihood based on the distribution (2) is used to
produce a point estimate of X*. The computational complexity grows as N?
since the number of unknown parameters N;(N; + 1)/2. To get an efficient
implementation C/C++ is combined with R (R Development Core Team,
2004). The resulting computational time for three arrays is less than a second
and for 30 arrays it takes a few hours.

4.2 Estimation of the hyperparameter a and the scale A

In this section, we develop methods for estimation of the hyperparameter « as
well as the scale parameter A in (3). From the model assumptions in Section
3 we recall that ¢, has an inverse gamma distribution with hyperparameter
a, e.g.

g | a~T" a,1).

The inference of a will be based on the statistic
Sg = (AXQ)T(AEAT>_1AX97

where A is an arbitrary N; — 1 x N; matrix with full rank and each row sum
equal to 0. It follows that the distribution of S, conditioned on ¢, is a scaled
chi-square distribution with N; — 1 degrees of freedom,

2
Sy leg~cq- XN;—1-

The unconditional distribution of S; can be calculated by use of the fact
that a gamma distribution divided by another gamma distribution has an
analytically known distribution, a beta prime distribution (Johnson et al.,
1995, page 248). Thus,

Sg|aN2xﬁl((N1_1)/27a)7

which has the density function

CIT(a+ (Nr—1)/2)  (s,/2)Nr- D721
fs,1alsg) = §F(Q)F((NI —1)/2) 1+ Sg/2]a+(NI*1)/2'

In the same fashion, denote the variance estimator based on ¥* in (3) by S,
that is,
Si = (AX, ' (AXFA")TAX, .



It follows that, S; = S;/\ so
Sola, A~ 2/\ % B (N;—1)/2,0) .

Assuming independence between the genes, o and A can now be estimated
by numerical maximum likelihood. The estimated value of the (unscaled)
covariance matrix 3 can then be calculated from Equation (3). Results from
simulations show that the estimation of o and \ is accurate enough for real-
istic values (results not shown). In the following sections, these parameters
are therefore assumed to be known.

4.3 The posterior distribution of ¢,

The posterior distribution of ¢, is not explicitly used in the calculations
above, but still of general interest. As previously mentioned, the distribution
of Sy conditioned on ¢, is a scaled chi-square distribution with N; —1 degrees
of freedom. Since chi-square distributions and inverse gamma distributions
are conjugates, the posterior distribution of ¢4 given S, is an inverse gamma
distribution as well. We find

cg~ T (a,1)

S
cg|Sg~F_1 (a+(N1—1)/2,1+?g) ,

and the prior can be interpreted as representing 2o pseudo observations,
which add a common variance estimate to all genes. A discussion regarding
the use of this model in microarray analysis can be found in (Lonnstedt and
Speed, 2002) and (Smyth, 2004) and a general discussion in (Robert, 2003,
Section 4.4).

4.4 Inference about

In this section we derive a statistical test for differential expression based on
the WAME model. The hypotheses for gene g can be formulated as

Hy : gene g is not regulated (p, = 0)
H, : gene g is regulated (u, # 0).

A test suitable for the hypothesis Hy is the likelihood ratio test (LRT) based
on the ratio of the maximum values of the likelihood function under the

10



different hypotheses. With our notation we reject H if

sup L (pg|%g)  sup L (g]%)
Ha g 70

SEP L (H9|X9) L (O|X9) @)

where k, 1 < k < o0, sets the level of the test. To calculate the likelihood
function, we need to integrate over cgy, e.g.,

L (:ug’X) = /fX | ,ug,cg,E(X)fcg \ oz(cg> dcg
_ —(a+Nyp/2
(N1/2 + 0) [ (g = 1) 57 (g = 1) | 17
I'(a) 2 '
It is now straight forward to calculate the denominator L(0|x,) in (4) and
some algebra shows that the numerator is maximised by i, = zy’, where

1Tyt
Tg = pryip e

= (2m)~Ni/2|p 712 a

is a weighted mean value of the observations. Analogously, we define the
random variable X* by replacing x, with X,. Then,

- c
X},”lcg ~N <l‘g7 1T2g,11>
and it can be shown that
S E )

T s (5)
is the weight vector that minimises the variance of w'X,. The weights in
equation (5) will depend on the covariance matrix as follows. A repeti-
tion with high variance will have a low weight while a repetition with low
variance will have a high weight. Moreover, a positive high correlation be-
tween repetitions will cause decreased weights. Note that if a repetition is
highly correlated with a repetition with lower variance, its weight can actu-
ally become negative. According to the theory, this is nothing strange but
practically this is of course not satisfying. Fortunately, such extreme cases
seem to be rare in the microarray context and if they appear, the source of
the correlation should be investigated and one could consider removing the
negatively weighted repetition.

Evaluation of the likelihood function at 0 and zy" and a few calculations
show that the inequality (4) is equivalent to

ﬂ > k!

Sq+2

11



where s, is the observed value of S, defined in Section 4.2 and k' is some
non-negative constant. Thus if we define the statistic 7}, as

w

T, = V/I'211 (N; — 1 + 2a) ——2—

and the null hypothesis is rejected if
Ty > K7,

where k" is another non-negative constant. The statistic T, will be referred
to as the weighted moderated t-statistic since it is a weighted generalisation of
the moderated t-statistic derived by Lonnstedt and Speed (2002) and refined
by Smyth (2004). Indeed, if all repetitions have equal estimated variances and
no estimated correlations, T, becomes equivalent to the result in Section 3
in Smyth (2004). To calculate the value of k£” that corresponds to a given
level of the test, the distribution of T, needs to be derived. Under the null
hypothesis, it turns out to be a t-distribution with 2a + N; — 1 degrees of
freedom,

Ty, ~ toatN;—1-

5 Results from simulations

5.1 Comparison to similar gene ranking methods

A simulation study was done to compare the performance of WAME to four
published methods. These methods were

e Average fold-change

e Ordinary t-statistic

e Efron’s penalized t-statistic

e Smyth’s moderated t-statistic

The average fold-change for a gene is simply the mean value over all the
observed log,-ratios and the ordinary t¢-statistic is the average fold-change
divided by the corresponding sample standard deviation. These two methods
have traditionally been popular gene ranking methods and it is therefore
interesting to see how they perform. Another method introduced in (Efron
et al., 2001) is the penalized t-statistic which is a modified version of the

12



ordinary t-statistic where a constant has been added to the sample standard
deviation. The motivation for this adjustment is the unreliability of the ¢-
statistic in situations when only a few repetitions are used. The constant
used here was chosen as the 90th percentile of the empirical distribution of
the sample standard deviations, according to Efron et al. (2001). Finally,
the moderated t-statistic is included. It was developed and implemented by
Smyth (2004) and it is available in the R package LIMMA (Smyth et al.,
2003). The moderated t-statistic can be seen as a refined version of the
B-statistic which was first presented in Lonnstedt and Speed (2002). In the
paired microarray context, WAME is a generalisation of LIMMA in the sense
that the two models are identical when all repetitions have the same variance
and no correlations exist.

All methods were applied to a series of simulated datasets with different
settings and the number of true positives as a function of false positives was
plotted, generating several so called receiver operating characteristic (ROC)
curves. The average over 100 datasets was used to produce a single curve
where each dataset was created as follows. The number of genes (Ng) was
fixed to 10000, the number of repetitions (Ny) to 4 and the hyperparameter
a to 2. These values were chosen since they are typical for real datasets.
The covariance matrix ¥ is fixed and for each gene g the following steps were
done.

1. ¢, was sampled from an inverse gamma distribution according to the
model specification.

2. A vector of Ny = 4 independent observations was drawn from a normal
distribution with man value zero and variance one. This vector was
then multiplied by the square-root matrix of .

3. If this particular gene was selected to be regulated, then the absolute
mean value for each of the N; elements was drawn from a uniform
distribution between 0 and 2.

5% of the genes were randomly selected and set to be upregulated. Analo-
gously, 5% were downregulated resulting in totally 10% regulated genes. It
should be noted that it is only the total number of regulated genes that had
an impact on the performance for the different methods, not the number of
upregulated genes compared to the number of downregulated genes.

Four cases, all with different covariance matrices, were studied. In the
first case, all of the repetitions had variances equal to 1 and there were no
correlations, thus X was an identity matrix. The ROC curves produced by

13



the simulated data can be seen in the upper part of Figure 1. WAME and
LIMMA performs best, closely followed by the penalized t-statistic. Note
that WAME and LIMMA have almost identical performance in this case
and, as mention above, this was expected since the weighted moderated ¢-
statistic and the moderated t-statistic are almost equivalent for this setting.
Another interesting detail is the weak performance of the ¢-statistic due to
its instability issues when only few repetitions are used.

In the second case, different variances were introduced. ¥ was again a
diagonal matrix but with the values 0.5, 1, 1.5 and 2 on the diagonal, thus all
correlations were again zero. The ROC curves can be seen in the lower part
of Figure 1. As before, WAME and LIMMA are the methods that performs
best, but in this case, WAME performs better since it put less weight on the
repetitions with high variance.

To investigate the impact of correlations, the third case used

1.0 04 02 0.0
04 1.0 04 02
=1 02 04 10 04 |- (6)

0.0 02 04 1.0

This corresponds to a case when there are both high and low correlations
between the repetitions. The upper part of Figure 2 shows that WAME
performs slightly better than both LIMMA and the penalized t-statistic since
it estimates the correlations and takes them into account.

Finally, in the fourth case both different variances and correlations were
included. The variances and correlations were identical to the ones in the
second and third cases respectively, i.e. variances of 0.5, 1.0, 1.5, 2.0 and
correlations of 0, 0.2 and 0.4, the latter placed according to (6). The result
can be seen in the lower part of Figure 2. Here, the largest advantage of
using WAME can be seen. For a rejection threshold such that half of the
selected genes are true positives, using WAME results in almost a third less
false positives which can correspond to hundreds of genes.

All four simulations show that WAME and its weighted moderated t-
statistic perform at least as good as the moderated and penalized t-statistics.
In the case of both different variances and correlations between the repeti-
tions, WAME performs clearly better than all of the included methods. Both
the average fold-change and the ordinary t¢-statistic have poor performance
in the current setting with only four repetitions.

14
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Figure 1: ROC curves from simulated data. The pair at the top, from the
first case, show the performance of the evaluated methods on data with equal
variances of 1 for all replicates and no correlations. The pair at the bottom,
from the second case, analogously show the performance on data with differ-
ent variances of 0.5, 1, 1.5, 2 and no correlations. The parameters used for
these two simulations were as follows. Ng = 10000, N; = 4, o = 2 and 10%

of the genes were regulated. The figures to the right are magnifications of

the dashed boxes to the left.
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Figure 2: ROC curves from simulated data. The pair at the top, from
the third case, show the performance of the evaluated methods on data with
equal variances of 1 for all replicates and correlations of 0, 0.2 and 0.4, placed
according to (6). The pair at the bottom, from the fourth case, analogously
show the performance on data with different variances of 0.5, 1, 1.5, 2 and
correlations of 0, 0.2 and 0.4, placed according to (6). The parameters used
for these two simulations were as follows. Ng = 10000, N; = 4, a = 2 and
10% of the genes were regulated. The figures to the right are magnifications
of the dashed boxes to the left.
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5.2 Evaluation of the point estimation of X

The estimation of X is one of the crucial steps when applying WAME since
errors made will affect estimates of other entities such as o and the weighted
mean value Z;'. The resulting precision and accuracy when numerical max-
imum likelihood is applied to the distribution in equation (2) are therefore
interesting questions, both when the model assumptions hold and when they
are violated. In an attempt to partially answer these questions, > was es-
timated from different simulated datasets and the results were compared to
the true values. The datasets were created according to the description in
the previous section and the same parameters were used, i.e. Ng = 10000,
N; =4 and o = 2. Five different cases, listed in Table 1, were examined. As

Case Correlation Heavy tails Regulated genes Filter
I No No None No
11 Yes No None No
I11 Yes Yes None No
v Yes No Yes, 10% No
A% Yes No Yes, 10% Yes, 5% removed.

Table 1: Descriptions of the five different settings used in this simulation
study. When correlations are used, they follow the structure in equation (6).

in the previous section, 100 datasets were simulated for each setting and for
each such dataset the covariance matrix > and the hyperparameter o were
estimated according to Section 4. Table 2 summarises the result where the
true value of ¥, the mean value of the estimated ¥ as well as the standard
deviations are listed. It should be noted that in all cases, except for case III,
« is estimated with high accuracy and precision.

In the first two cases (I and II), the covariance matrix was estimated
without any bias and with low standard deviation showing that the methods
are accurate under the model assumptions. In case III the normal distri-
bution was substituted against a t-distribution with 5 degrees of freedom,
having substantially heavier tails. The estimated X seems to be slightly bi-
ased toward higher variances and o was estimated to 1.55 instead of 2. This
pattern was also seen when the degrees of freedom were increased to 10 and
15 (results not shown). In case IV 10% of the genes were set to be regulated
and since no differentially expressed genes are assumed, the regulation leads
to positive correlations and increased variance estimates. Having 10% of the
genes regulated is a rather high number, but not extreme. Therefore, a filter
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was applied to minimise the impact of regulated genes on the estimation of
the covariance matrix. For each gene g, the filter calculates the minimal ab-
solute value of the fold change, which will be denoted X ;. Removing the
top 5% of the genes with highest X, ., gave a much better estimate of X,
which is included as case V. Note that the genes were only removed from the
the estimate of ¥*, i.e. the arbitrarily scaled ¥, and not from the estimates
of @ and A. Also note that the number 5% depends on several parameters,
such as the total number of regulated genes and the covariance matrix itself.
The results of the filtering procedure on real data is presented in the next
section.

True X Mean estimated Sample
standard deviation

0.50 0.00 0.00 0.00 0.50 0.00 -0.00 -0.00 0.01 0.01 0.01 o0.01
I 0.00 1.00 0.00 0.00 0.00 1.01 -0.00 0.00 0.01 0.04 0.02 0.01
0.00 0.00 1.50 0.00 -0.00 -0.00 1.51 -0.00 0.02 0.02 0.05 0.02
0.00 0.00 0.00 2.00 -0.00 0.00 -0.00 2.02 0.01 0.01 0.01 0.07

0.50 0.28 0.17 0.00 0.50 0.28 0.17 0.00 0.02 0.01 0.01 0.01
11 0.40 1.00 0.49 0.28 0.40 1.00 0.50 0.29 0.01 0.04 0.02 0.03
0.20 0.40 1.50 0.69 0.20 0.40 1.51 0.70 0.01 0.01 0.06 0.04
0.00 0.20 0.40 2.00 0.00 0.20 0.40 2.00 0.01 0.01 0.01 0.11

0.50 0.28 0.17 0.00 0.51 0.29 0.18 -0.00 0.02 0.01 0.01 0.01
111 0.40 1.00 0.49 0.28 0.40 1.01 0.50 0.28 0.01 0.04 0.02 0.02
0.20 0.40 1.50 0.69 0.20 0.40 1.52 0.70 0.01 0.01 0.05 0.03
0.00 0.20 0.40 2.00 -0.00 0.20 0.40 2.03 0.01 0.01 0.01 0.07

0.50 0.28 0.17 0.00 0.61 0.39 0.28 0.11 0.02 0.02 0.02 0.01
v 0.40 1.00 0.49 0.28 0.48 1.11 0.60 0.39 0.01 0.04 0.03 0.01
0.20 0.40 1.50 0.69 0.28 0.45 1.61 0.80 0.01 0.01 0.06 0.04
0.00 0.20 0.40 2.00 0.10 0.25 0.43 2.11 0.01 0.01 0.01 0.08

0.50 0.28 0.17 0.00 0.46 0.21 0.11 -0.02 0.01 0.01 0.01 0.02
vV 0.40 1.00 0.49 0.28 0.33 0.90 0.38 0.22 0.01 0.02 0.02 0.02
0.20 0.40 1.50 0.69 0.14 0.84 1.39 0.59 0.01 0.02 0.06 0.03
0.00 0.20 0.40 2.00 -0.02 0.16 0.36 1.93 0.02 0.01 0.01 0.07

Table 2: Result from the estimations of ¥ from each of the five different
cases. Correlations are shown in italic and covariances in non-italic. The
parameter values used were Nz = 10000, N; = 4 and a = 2. The mean
values and sample standard deviations were calculated from the result of 100
simulated dataset. Refer to Table 1 for a description of the different cases.
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6 Results from real data

WAME was run on three real data sets: the ischemic part of the dataset of
Hall et al. (2004), the dataset of Benson et al. (2004) (henceforth referred to
as the Cardiac and Polyp datasets, respectively) and the Swirl dataset (de-
scribed in Section 3.3 of Dudoit and Yang, 2003). These datasets represent
microarray experiments with different characteristics; different laboratories,
both two-colour cDNA and one-channel oligonucleotide (Affymetrix) arrays,
different tissues and two different species (human and zebrafish). The Car-
diac and Swirl datasets are publicly available.

The Cardiac dataset is described to have been strictly quality controlled
by a combination of several available methods. The dataset is therefore
interesting to examine to see if WAME detects relevant differences in quality
even in an example of a quality controlled, publicly available dataset. The
Polyp dataset includes one biopsy that was previously thought to be an
outlier and therefore discarded, thus providing a case with one seemingly
lesser quality to be detected. In the Swirl dataset, two highly differentially
expressed genes exist. Therefore, it is of interest to check that those genes are
highly ranked by WAME. Furthermore, the Swirl dataset has been analysed
in e.g. (Smyth, 2004).

6.1 Cardiac dataset

In the public dataset from Hall et al. (2004), heart biopsies from 19 patients
with heart failure were harvested before and after mechanical support with
a ventricular assist device. The aim of the study was to "define critical
regulatory genes governing myocardial remodelling in response to significant
reductions in wall stress”, where a first step was to identify differentially
expressed genes between the two conditions.

Affymetrix one-channel oligonucleotide arrays of type HG-U133A were
used in the study, each containing 22283 probe-sets. The quality of the ar-
rays was controlled using quality measures recommended by Affymetrix as
well as by the program Gene Expressionist (GeneData, Basel, Switzerland).
The quality of the different lab steps leading to the actual hybridisations
were controlled using standard methods. The 19 patients were divided into
three groups: ischemic (5 patients), acute myocardial infarction (6 patients)
and non-ischemic (8 patients). The ischemic group was the smallest and
consequently the one where quality variations might make the biggest dif-
ference. It was therefore chosen for further examination using WAME, to
see if relevant quality variations could be detected despite the close quality
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monitoring.

The dataset was retrieved in raw .CEL-format from the public repository
Gene Expression Omnibus (Edgar et al., 2002). The .CEL-files were subse-
quently processed using RMA (Irizarry et al., 2003) on all the arrays of the 19
patients simultaneously. Patient-wise log,-ratios of the five ischemic patients
were then formed by taking pairwise differences of the log, measurements
before and after implant.

Applying WAME to the patient-wise log,-ratios provided interesting re-
sults. The estimated covariance matrix (see Table 3) suggests that two of the
five patients (I13 and I7) were substantially more variable than the others,
while the correlations between patients were rather limited. These numbers
seem credible when examining Figure 3, where for each pair of patients, the
respective log,-ratios of all genes were plotted against each other. The plots
clearly imply that the observations of the two patients in question (113 and
I7) are more variable than the others.

The corresponding weights, derived from the estimated covariance matrix
Y], are shown in Table 4. As was discussed in Sections 4.1 and 5.2, when
estimating > all genes are assumed to be non-differentially expressed. To
examine the impact of potentially regulated genes on the estimation of >,
the analysis was redone, removing genes with high lowest absolute log,-ratio
in the estimation of X, as described in Section 5.2. The individual elements
of the estimated covariance matrix and of o changed only slightly, even when
as much as 50% of the data was removed (data not shown). This is reflected
in the weights in Table 4.

Patient

Patient | 112 113 14 I7 18
112 0.046 0.003 0.001 0.012 0.002
113 0.033 0.196 -0.014 0.007 -0.001
14 0.023 -0.126 0.065 0.013 0.002
17 0.111 0.030 0.102 0.258 -0.017
I8 0.040 -0.011 0.038 -0.152 0.047

Table 3: Estimated covariance-correlation matrix, >3, for patients in the Car-
diac dataset. (Correlations in italic, covariances in non-italic.)

The hyperparameter « related to the spread of the gene-specific vari-
ance scaling factors, c¢,, was estimated to 1.92, giving a thick tail for the
prior distribution. Thus removing ¢, by transformation when estimating X
(Section 4.1) is justified.
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Figure 3: Pair-wise plots of the log,-ratios of the patients in the Cardiac
dataset. The plots to the lower-left show two-dimensional kernel density
estimates of the distribution of log,-ratios in each pair of patients. This pro-
vides information in the central areas where the corresponding scatterplots
are solid black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in
increasing level of density: white, grey, black and red.
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Patient
Removed genes | 112 113 14 I7 I8

none 0.297 0.091 0.232 0.053 0.326
5% 0.301 0.089 0.233 0.054 0.323
10% 0.303 0.087 0.235 0.053 0.321
50% 0.323 0.082 0.240 0.046 0.308

Table 4: Weights for patients in the Cardiac dataset. Different numbers of
potentially regulated genes were removed in the estimation of X, to check
their influence. Potential regulation was measured by minimal absolute log,-
ratio among the patients.

Inspecting the fitted distribution of S, given o = 1.92 against the em-
pirical distribution of S, reveals a good fit (see Figure 4), implying that the
family of inverse gamma prior distributions is rich enough for this dataset.

—— empirical
— fitted

0.20

Density

0.00

I I I
15 20 25

Figure 4: Empirical distribution of S; in the Cardiac dataset, together with
the density of S, given a = 1.92.

Examining the observed values of the statistic, T,, compared to the ex-
pected null distribution reveals a good overall concordance (see Figure 5).
Some genes have a larger ¢, than can be explained by the null distribution,
which points toward some of them being up-regulated by the treatment (see
the qg-plot in Figure 5).

6.2 Polyp dataset

In the dataset from Benson et al. (2004), biopsies from nasal polyps of five
patients were taken before and after treatment with local glucocorticoids.
The goal was to examine closer the mechanisms behind the effect of the
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Figure 5: To the left, a histogram of the observed T,-values together with the
density of the null distribution (in red), in the Cardiac dataset. To the right,
a quantile-quantile plot where the observed values of T, are paired with the
quantiles of T, under the null hypothesis. The central part of the empirical
distribution follows the identity line well, showing good concordance with
the null distribution. For high positive Ty -values, the observations clearly
deviate from the predicted ones, pointing at the existence of up-regulated
genes.

treatment and one step was to identify differentially expressed genes. Tech-
nical duplicates stemming from the same extracted RNA were run for each
biopsy on Affymetrix HG-U133A arrays, forming a dataset of 20 arrays and
22283 probe-sets.

Comparing each of the arrays in the dataset with all arrays from other
patients and/or conditions, by looking at pair-wise scatterplots, the arrays
from before treatment of patient 2 consistently showed larger variation than
any other. The biopsy in question was found to be considerably smaller than
the others, providing possible explanations by e.g. non-representativeness in
tissue distribution. The data from patient 2 was therefore excluded in Benson
et al. (2004).

WAME would preferably identify the patient 2 observation as having
larger variation and downweight it. The data was processed using RMA
(Irizarry et al., 2003) and the log,-ratio for each patient was formed by taking
differences between the averages over the technical duplicates, before and
after treatment, combining 4 arrays for each patient into one set of log,-
ratios. Making one scatter plot of the two sets of log,-ratios for each pair
of patients (Figure 6) clearly indicates that patient 2 is more variable than
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patients 1,3 and 5. Interestingly, the measurements from patients 1 and 2
seem to be highly correlated and patient 4 seems to have high variability.

Estimating the covariance matrix, 3, the correlation between patients 1
and 2 is estimated to 0.82 (see Table 5), which is high but not unbelievable
when studying Figure 6. The variance of patient 2 is furthermore estimated
to four times that of patient 1. Examining the resulting weights, patient 2
actually receives a weight of —2% (see Table 6). The negativeness is a result
of it’s variance being much higher than that of patient 1, together with them
being highly correlated. As negative weights seem questionable, a natural
solution is to remove patient 2, which was done in (Benson et al., 2004).
Beside the result of the very low weight for patient 2, the other patients
receive distinctly different weights, which is interesting.

Patient
Patient 1 2 3 4 5

1 0.300 0.493 0.000 -0.012 -0.067
0.822 1.200 0.004 0.041 -0.157
0.002 0.012 0.091 -0.071 -0.055
-0.038 0.067 -0.417 0.319 0.102
-0.291  -0.340 -0.4834 0.480 0.178

Ol = W N

Table 5: Estimated covariance-correlation matrix, X, for patients in the
Polyp dataset. (Correlations in italic, covariances in non-italic.)

Patient
Removed genes 1 2 3 4 5
none 0.179 -0.026 0.483 0.104 0.260
5% 0.181 -0.025 0.481 0.104 0.259
10% 0.180 -0.024 0.482 0.103 0.259
50% 0.157 -0.015 0.506 0.100 0.252

Table 6: Weights for the patients in the Polyp dataset. Different numbers of
potentially regulated genes were removed, to check their potential influence in
the estimation of .. Potential regulation was measured by minimal absolute
log,-ratio among the patients.

The hyperparameter «, related to the spread of the gene-specific variance
scaling factors, c¢,, was estimated to 1.97, giving infinite variance for the
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Figure 6: Pair-wise plots of the log,-ratios of the patients in the Polyp
dataset. The plots to the lower-left show two-dimensional kernel density
estimates of the distribution of log,-ratios in each pair of patients. This pro-
vides information in the central areas where the corresponding scatterplots
are solid black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in
increasing level of density: white, grey, black and red.
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distribution of ¢,. The fit of S, given av = 1.97 was very good (see Figure 10
in the Appendix).

As in the Cardiac dataset, the weights were steadily estimated when
potentially regulated genes were removed in the estimation of the covariance
matrix X (see Table 6). The estimated correlations between patients 3, 4
and 5 were reduced somewhat. Removing 5% of the genes reduced those
correlations by 0.03-0.04 and removing 10% reduced them by 0.06-0.07. The
high correlation between patient 1 and 2 was only slightly reduced (<0.03),
even when 50% of the genes were removed.

Examining the observed values of the statistic, T,, compared to the ex-
pected null distribution (see Figure 7) reveals a good overall concordance.
Some genes have a more extreme 7j than can be explained by the null distri-
bution, which points toward many of them being regulated by the treatment
(see the qg-plot in Figure 7).
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Figure 7: To the left, a histogram of the observed T,-values together with the
density of the null distribution (in red), in the Polyp dataset. To the right,
a quantile-quantile plot where the observed values of T, are paired with the
quantiles of T, under the null hypothesis. The central part of the empirical
distribution follows the identity line well, showing good concordance with
the null distribution. For extreme Tj-values, the observations clearly deviate
from the predicted ones, pointing at the existence of regulated genes.

6.3 Swirl dataset

In the Swirl experiment (described on page 80 in Dudoit and Yang, 2003),
one goal was to identify genes that are differentially expressed in zebrafish
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carrying a point mutated SRB2 gene, compared to ordinary, wild-type ze-
brafish. SRB2 and one of it’s known targets, DIx3 are expected to be highly
differentially expressed in this experiment, thus these genes should be highly
ranked using WAME. The Swirl dataset has been examined in Smyth (2004).

The dataset consists of four two-colour cDNA microarrays with 8448
spots, with publicly available data. We used standard pre-processing to
compensate for effects such as background and dye bias (background correc-
tion subtract and within-array normalisation print tip loess were used in the
LIMMA package (Smyth et al., 2003)). Between-array scale normalisation
(Yang et al., 2002) was not performed in contrast to the analysis in Smyth
(2004). When including between-array scale normalisation in combination
with LIMMA in the simulation study of Section 5.1 the performance was not
notably increased (results not shown).

Making one scatter plot of the log,-ratios for each pair of arrays (Figure 8)
indicates that array 2 is less variable than the others, while the genes with
lowest log,-ratio on array 1 seem to be outliers, since they are not extreme in
any other array. Examining the estimated covariance matrix (see Table 7),
array 2 indeed receives the highest variance. In addition, there are substantial
correlations between arrays 1-3, 2-4 and 3-4, which is also indicated by the
scatter-plots (Figure 8).

Array
Array 1 2 3 4

1 0.128  0.007  0.079 0.017
2 0.066 0.086 -0.002 0.038
3 0.489 -0.017 0.203 0.076
4 0.136  0.371  0.482 0.124

Table 7: Estimated covariance-correlation matrix, >, for the arrays in the
Swirl dataset. (Correlations in italic, covariances in non-italic.)

When re-performing the estimation of X , removing potentially regulated
genes (in analogy with the analyses of the Polyp and Cardiac datasets), the
correlations were decreased somewhat. Removing 5% of the genes decreased
the three high correlations by 0.02-0.06, while removing 10% decreased them
by 0.04-0.08. However, the corresponding weights only changed marginally
(see Table 8).

The hyperparameter o« was estimated to 1.89. Further analysis of the
dataset shows that the distribution of Sy fits the predicted distribution of S,
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Figure 8: Pair-wise plots of the log,-ratios of the arrays in the Swirl dataset.
The plots to the lower-left show two-dimensional kernel density estimates of
the distribution of log,-ratios in each pair of patients. This provides infor-
mation in the central areas where the corresponding scatterplots are solid
black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in increasing
level of density: white, grey, black and red.
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Array
Removed genes 1 2 3 4
none 0.289 0.474 0.072 0.165
5% 0.288 0.469 0.076 0.166
10% 0.290 0.462 0.075 0.173
50% 0.282 0.447 0.087 0.184

Table 8: Weights for the arrays in the Swirl dataset. Different numbers of
potentially regulated genes were removed, to check their potential influence in
the estimation of ¥. Potential regulation was measured by minimal absolute
log,-ratio among the arrays.

given av = 1.89 well (see Figure 11 in in the Appendix). The observed values
of the statistic, T}, seem to fit the null distribution well (see Figure 9).

Since the point mutated gene, SRB2 and one of it’s known targets, DIx3,
are expected to be highly differentially expressed, their actual ranking is of
interest. In Table 9 below, the top 20 genes as ranked by WAME are listed.
The values of some widely used statistics are included for comparison. The
rankings by WAME and the moderated t-statistic (Smyth et al., 2003) are
quite similar, while the rankings by the ordinary t¢-statistic and the average
log,-ratio (i.e. fold change) are rather different than the one by WAME,
which was expected. All four spots for the two validated genes are included
in WAME:s top 20 list (see Table 9).

7 Discussion

A drawback of the microarray technology is that it involves several consec-
utive steps, each exhibiting large quality variation. Thus there is a strong
need for quality assessment and quality control to handle occurrences of poor
quality. In this paper, we introduce a method called WAME for the anal-
ysis of paired microarray experiments, which aims at estimating array-wide
quality deviations and integrates these quality estimates into the statistical
analysis.

The quality deviations are modelled as different variances for different
repetitions (e.g. arrays) as well as correlations between them in a covariance
matrix o, thus catching both unequal precision and systematic errors. These
are contained in a covariance matrix . Genes have different variability
(both biological and technical), which is modelled by a gene-specific variance
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Name ID average ordinary moderated WAME
log,-ratio t-statistic  t-statistic

fb85d05 18-F10 -2.66 -18.41 -20.79  -15.15
fb58g10  11-L19 -1.60 -14.32 -14.15  -11.51
control DIx3 -2.19 -15.91 -17.57  -11.17
control DIx3 -2.19 -13.58 -16.08 -9.84
th24g06  3-D11 1.32 19.52 13.62 9.80
fb54e03  10-K5 -1.20 -25.74 -13.11 -9.66
fc22a09 27-E17 1.26 24.76 13.68 9.50
fb40h07  7-D14 1.35 14.15 12.69 9.12
fb&5a01  18-E1 -1.29 -17.35 -13.01 -8.81
fb87f03  18-0O6 -1.08 -27.90 -12.06 -8.80
tb37el1l  6-G21 1.23 14.37 11.94 .47
fb94h06  20-L12 1.28 15.41 12.54 8.46
fb87d12 18-N24 1.28 12.96 11.87 8.39
control BMP2 -2.24 -8.63 -11.78 -8.33
fc10h09 24-H18 1.20 15.05 11.92 8.23
fb85f09 18-G18 1.29 11.50 11.38 8.22
control BMP2 -2.33 -8.37 -11.58 -7.95
fb26b10 3-120 1.09 15.50 11.17 7.81
fb37b09  6-E18 1.31 11.57 11.55 7.78
fc22f05 27-G10 -1.19 -10.42 -10.44 -7.70

Table 9: The top 20 most probably regulated genes in the Swirl dataset
according to WAME.
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Figure 9: To the left, a histogram of the observed T,-values together with the
density of the null distribution (in red), in the Swirl dataset. To the right,
a quantile-quantile plot where the observed values of T, are paired with the
quantiles of T, under the null hypothesis. The central part of the empirical
distribution follows the identity line well, showing good concordance with
the null distribution. For extreme Tj-values, the observations clearly deviate
from the predicted ones, pointing at the existence of regulated genes.

scaling factor c¢,. Given this structure, the pair-wise measured log,-ratios
for each gene are assumed to be normally distributed. It should be straight-
forward to incorporate exclusion of outlying gene-specific observations (e.g.
spots) into the model. Including quantitative measures of quality of such
observations, e.g. by a hierarchical variance component model (cf. Bakewell
and Wit (2005)), would be interesting as future work.

Estimation of the covariance matrix is non-trivial due to the gene-specific
scaling factors and unknown differential expressions p,. Here, an assump-
tion is made that most genes are not differentially expressed (p, = 0) and
a transformation is performed to remove the gene-specific scaling factors.
Then, a scaled version of ¥ is estimated using numerical maximum likeli-
hood, based on the derived resulting distribution. The assumption of no
differential expression somewhat limits the experimental setups that can be
analysed. However, this is not as consequential as it might sound, since it is
made by most of the procedures that have become de facto standard in the
(preceding) normalisation step.

Since most microarray experiments contain only a few repetitions, the es-
timate of the gene-specific variance scaling factor ¢, is imprecise, which can
easily lead to false conclusions if not accounted for. Here, an empirical Bayes
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approach is taken where an inverse gamma prior distribution is assumed, in
effect moderating extreme estimates (Baldi and Long, 2001; Lonnstedt and
Speed, 2002; Smyth, 2004). The hyperparameter a determining the spread of
the prior distribution is estimated from the data, by numerical maximum like-
lihood together with the scale of the previously estimated arbitrarily scaled
3.

To identify differentially expressed genes a likelihood-ratio test is derived,
resulting in the weighted moderated t-statistic, which is a generalisation of the
moderated t-statistic in Smyth (2004). Here, the estimated covariance matrix
Y is used both to produce weights for the different repetitions and gene-
specific variance estimates. The weighted mean is the estimate of differential
expression with minimal variance.

As discussed above, array-wide quality deviations in all steps leading to
the observed log,-ratios are estimated and incorporated into the analysis.
The current paper is restricted to paired two-sample settings where most
genes are non-differentially expressed. A generalisation similar to (Smyth,
2004) should be possible to make, for experiments restricted to pairwise
measurements with most genes being non-differentially expressed. The scaled
estimate of the covariance matrix ¥ could be calculated according to the
procedure in the current paper (cf. Section 4.1). The unknown scale of the
covariance estimate, as well as the parameter o of the prior distribution
for the gene-specific variance scales, could be estimated utilising generalised
residual sums of squares for all genes, appropriately defined through the
norm determined by ¥ (cf. S, in Section 4.2). Tests for single or multiple
identifiable linear combinations of the featuring expected values could then
be derived similar to in the current paper, forming weighted moderated t-
statistics and modified F-statistics. Work on a generalisation, with simulated
and real data sets is in progress.

A simulation study was done to compare the performance of WAME
to four published methods. On data without correlations and with equal
variances between repetitions, WAME performs as well as the moderated
t-statistic which assumes this structure. When correlations and/or unequal
variances were included, WAME performs better than all the other methods.
In one case, using WAME results in almost a third less false positives which
can correspond to hundreds of genes. Evaluating the point estimation of the
covariance matrix X revealed good precision and accuracy when no regulated
genes were present. Including 10% regulated genes resulted in a bias, which
was partly handled by removing genes likely to be regulated. In both cases
estimation of the hyperparameter o was nearly unbiased and accurate. The
estimate of ¥ was essentially unbiased when heavy tails was introduced in
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contrast to the estimate of o which was estimated to 1.55 instead of 2.

Three real datasets were analysed: the ischemic part of the dataset of
Hall et al. (2004)(publicly available), the dataset of Benson et al. (2004) and
the Swirl dataset (described in chapter 3.3 of Dudoit and Yang, 2003)(pub-
licly available). In all cases, relevant correlations and differences in precision
between replicates were found, even in first dataset which had been quality
controlled by a combination of several available methods. The exact origin
of the correlations is an interesting, open question. In the second dataset
one previously identified outlier was practically removed by WAME. In the
Swirl dataset, expected differentially expressed genes are ranked among the
top 20. Relevant empirical distributions showed good fit to the theoretic
distributions, pointing toward the family of prior distributions for ¢, being
flexible enough and the normal assumption being satisfactory.

The model used in WAME is optimistic in many ways. For example, exact
normality is not to be expected and the independence between the genes is
hard to fully motivate. The noise structure might also be different for the
regulated genes, e.g. if there are several normalising procedures involved in
the pre-processing step. This would certainly affect the power and possibly
point towards the rationality of using a moderated impact of 3 on the weights
in the final analysis. Thus, even if simulations under the model assumptions
show very promising results, there are many experimental situations where
the model assumptions and thus the theoretical performance are not fully
justified. We intend to look further into different robustness questions for
model deviations in the future.

It is also important keep the main role of microarrays in mind, in which
tests of regulation of tens of thousands of genes is an exploratory tool for
deriving candidate ranking lists of potentially regulated genes, that in the
next steps will be biologically interpreted and validated by more precise tech-
niques. We claim that our approach competes well with other methods in
the production of such lists.

To summarise, WAME estimates and integrates array-wide quality devia-
tions into the analysis of paired microarray experiments. An empirical Bayes
approach is used to moderate the gene-specific variance scale estimates, re-
sulting in a weighted moderated t¢-statistic with a derived distribution. The
performance of WAME has been evaluated on both simulated and real mi-
croarray data, with interesting results.
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Additional Figures
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Figure 10: Empirical distribution of S; in the Polyp dataset, together with
the density of S, given a = 1.97.
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Figure 11: Empirical distribution of Sy in the Swirl dataset, together with
the density of S, given a = 1.89.

Mathematical details

We observe X, = (Xg1,...,Xyn,) where g = 1,..., Ng. Let X be a covari-
ance structure matrix for the N repetitions, ¢, a set of gene-specific variance
scaling factors and a a hyperparameter determining the shape of the prior
distribution for ¢,. Then for fixed 4, ¥ and a,

cg ~ T (a,1), and
Xg | ¢g ~ Ny, (g1, ¢4%)

and all variables corresponding to different genes are assumed independent.

Estimation of a scaled version of the matrix X

Assume that piy = 0 for all g. Under this assumption, it is possible to derive
a scale independent estimate of the covariance matrix ¥ by a transformation
of the vector X,. This is done as follows (the index ¢ is dropped to increase
the readability) Let U = (Uy,...,Uy,) where

g X =1
T XXy if2<i< N

The inverse becomes

&:{m ifi=1

UU, if2<7< Ny
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and the Jacobian it

J(uy, ..., un,) = uff’_l,

so for U € RM the density becomes

fules(u) = fxjes (x(u)) | (u)]

_ (27T)7N1/2 C—NI/Q |2‘71/2 ’ul|NI—1€—év E*Iv'
where v = (1, ug, ..., uy,)". Integration over u; yields

fUQ,...,UNI |2(U27 <o UN | Z) = / fU|c,Z(1l | C, E) du,

=C |E|7l/2 [UTZ_lv} ~Ni/2 ,

(7)

where C' is a normalisation constant and v is defined as above. This density
is scale invariant with respect to the parameter ¥ in the sense that for any
scalar A,

Joa o, 15U, - un [AS) = fu, oy, 1 s(ug, . un [2).

Thus, it is also independent of ¢ and under the assumption of independent
genes, the log-likelihood function becomes

Ng

/ NG N, Ty —
(X)=0"— 710g(|2|) - éZlog (vp5 1vy)

g=1

where C’ is a constant that is independent of ¥. Numerical maximisation
yields a scaled version of 3, denoted X*. Here the first element in the first
row of X* is fixed to one.

Estimation of the hyperparameter o and the scale \

From the model assumptions, we know that
cg ~ T a,1).
Assume that ¥ is known and define
S, = (AX,)'(ADAT) 1 AX,,

where A is a contrast matrix, i.e. a matrix of dimension N; — 1 x Ny, with
full rank and with each row sum equal to 0. It follows that

2
Sg ~ cg X XN;—1-
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The unconditional distribution of S, can be derived by integrating over c,,
ie.,

ng | a(sg) = /OO ng | cg(s)fcg | a(cg) ng

_ 1 (s/2) Nr=1)/2-1 /oo (oD 27 = (6/241) g
[ () T((Nr = 1)/2)
B r(a F(N = 1)/2) (32N
T TNy — 1)/2) [T+ 52 F O
This is a beta prime distribution (also called a beta distribution of the second
kind) (Johnson et al., 1995) with parameters N; — 1 and a which is denoted

B'(N;—1,a). Since only a scaled version of 32, denoted ¥*, is assumed known
from the primary estimation step, the following entities are defined. Let

Yr=)X
S; = (AXg)T(AZ*AT)*IAXG = Sg/A,
where A in the unknown scale for >*. It follows that

Si~2/Ax F(N;—1,0).

The log likelihood function can be simplified to
U, Al{sg}) = C + Ng [(N1 — 1)/21log(A) +log I'(@ + (Ny — 1)/2) = log I'(a)]

—(a+ (N —1)/2) ilog(sg)\ﬁ +1).

Numerical maximum likelihood is used to estimate a and A, which together
with X* can be used to calculate an estimate for .

Inference about i,

The hypotheses that are interesting to test are if different genes are regulated
or not, that is for each g,

Hy : gene g is not regulated (p, = 0)
H, : gene g is regulated (u, # 0).

To test these hypotheses a maximum likelihood ratio (LRT) test is derived.
For each g, we reject Hy if

sup L (j9]%,)

g 7#0
——— 2>k,
L (0]xy)
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where 1 < k < oo. The likelihood L can be calculated by integration over
Cq, 1.€.

L) = [ Fx 530y o(cs) ey
—Ni/2—a

(Nr/2+ ) (Xg - Ngl)T - (Xg - Ngl) +1

') 2

= (2m) 5| 2L

To calculate the numerator in the likelihood ratio we need to maximise L
over [y, which is the same as minimising

(Xg = Hg1)" 27" (xg — 1)
A little algebra shows that this optimum corresponds to the argument
. 171
fig = mxg .
We will use 7y’ to denote this weighted average and it can be shown to be

the weighted mean with least variance. The maximum value of the likelihood
function becomes

_ _ 1 T(Ng/2 4+ a) [XIX 7%, — (z0)* 175711
L(z% — (9 Ni/2 ) 1/2 g g 1
(T |xg) = (2m)~ 17 |5 Ia) i +

Using this, the likelihood ratio test statistic can be rewritten as

r N «

L(plx,) K5 1x, 4 2 e
LOR,) | xrs-ix, — (zv) 17811 + 2
[ (zv) 17511 Nafre
= |1+ g 5
XX lxy — (2) 17511 4 2
NI/2+O¢

(zv)* 17211
| = (@) 1) = (kg — (3) 1) 2
PG D }N”““
(Awxy) Y71 (Awx,) +2

= |14

where A, Is the contrast matrix

1-— w1 — W2 —ws3 ... —WnN;
— w1 1— Wy —W3 ... —WnN;
Aw =
— W1 —W2 —ws3 ... 1-— WN;
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and w; is the 7:th element of the vector

17yt
1Ty
The next step is to show that
(AWXQ)T » (Awxg) = sg . (8)

To do that, we first note that for any pair of contrast matrices A; and A,
with N; columns and of rank N; — 1, with each row sum equal to zero,

(A1x,)" (A1XAY) ™ (A1x,) = (Aax,)" (A2 A45)~ (Aax,).
Here a generalised inverse is used, defined as BB~ B = B, which gives
B'=DB"
when B is invertible. Now,
s = (Axg)" (AZA") 7 (Ax,) = (Awxy) (AwEA) " (Auxy) |
so we can prove (8) by showing that
(Awxg)" BT (Awxy) = (Awxy)" (AwEAY)™ (AwXy).
Since Ay, is idempotent, this is the same as proving that
(AgXAy) = AN A,
Writing Ay, as

17!

Ag =1 —1—--—
17211

it follows that
ARZA, (ATWE_lAW) ARS A, :AWEATWZ_lAWZAfN

- ) o

= _1 -1 1}:;111} % {1 -1 1}:;111} D
. ) o

|11 1?22111] > [I -1 1?22111]

B _Z - %} o {E - 1T121T11]

_y o % _ AT
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Thus,
(AgXAL)” = AT ST A,

and (8) is proved.
Using this result, we can write the LRT as
i.w
A > ]{;/, (9)
54+ 2
where 0 < K < oo is a new constant. To derive the distribution of the

statistic that corresponds to (9) under the null hypothesis, we proceed as
follows. Let

w

T, = V/I'S"11 (N; — 1 + 2a) ——2—

Then since c

VW g

X ~N (0 57)
it can be shown that X;“ is independent to all elements of Ay, X, and thus
to S,. Furthermore,

_ X2/ cg/TTE-11
S /Syfe+ 2/cy/ VNI — 1+ 20

where the numerator is independent of S; and has the same normal distri-
bution conditionally on all ¢, (and thus also unconditionally), showing that
the denominator in this ratio expression is independent of the numerator. A
similar argument shows that S,/c, and 2/c, are independent, and since they
are chi-square distributed with N;—1 and 2« degrees of freedom respectively,
the sum is chi-square distributed with N;—1+2a degrees of freedom. Hence,
under the null hypothesis, T} is a t-distribution with Ny — 1 4 2a degrees of
freedom,

Tg | Z,Oé ~ tNI_1+2a .

We call T, the weighted moderated t-statistic.
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