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ASYMPTOTICS OF BERGMAN KERNELS

ROBERT BERMAN, BO BERNDTSSON, JOHANNES SJÖSTRAND

Abstract. We give an elementary proof of the existence of an as-
ymptotic expansion in powers of k of the Bergman kernel associated
to Lk, where L is a positive line bundle. We also give an algoritm
for computing the coe�cients in the expansion.

1. Introduction

Let L be a positive hermitian holomorphic line bundle over a complex
manifold X. Then i/2 times the curvature form ∂∂φ, of L de�nes a Käh-
ler metric on X, that induces a scalar product on the space of global
sections with values in L. The orthogonal projection P from L2(X,L)
onto H0(X,L), the subspace of holomorphic sections, is the Bergman
projection. Its kernel with respect to the scalar product is the Bergman
kernel K of H0(X,L); it is a section of L⊗L over X ×X. It can also be
characterized as a reproducing kernel for the Hilbert space H0(X,L), i.e

(1.1) α(x) = (α,Kx)
1for any element α of H0(X,L), where Kx = K(·, x) is identi�ed with
a holomorphic section of L ⊗ Lx, where Lx denotes the �ber of L over
x. The restriction of K to the diagonal is a section of L⊗ L and we let
B(x) = |K(x, x)| be its pointwise norm.
We will study asymptotic properties of the Bergman kernel for Lk. All

objects introduced above will be de�ned with respect to the line bundle
Lk.
Our main result is a simple proof of the existence of an asymptotic

expansion of the Bergman kernel in powers of k, and an algorithm for
computing the coe�cients in this expansion. The existence of an expan-
sion is well known, see [14] and [4]. In [14] and [4] it is proved using
an asymptotic formula, due to Boutet de Monvel and Sjöstrand, for the
boundary behaviour of the Bergman-Szegö kernel for a strictly pseudo-
convex domain, [3], extending an earlier result of C Fe�erman, [5], to
include also the o�-diagonal behaviour. The main point of the approach
in the present paper is that it is actually simpler to construct an asymp-
totic formula directly. Even though the inspiration for the construction
comes from the calculus of Fourier integral operators with complex phase,
the arguments in this paper are elementary. We also believe that our
construction gives an e�cient method to compute the coe�cients in the
expansion.

1We are abusing notation here: the scalar product (·, ·) on H0(X, L) determines a
pairing of Kx with any element of H0(X, L), yielding an element of Lx.
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The method of proof uses localization near an arbitrary point of X.
Local holomorphic sections to Lk in a small coordinate neighbourhood ,
U , are just holomorphic functions on U , and the local norm is a weighted
L2-norm over U with weight function e−kφ where φ is a strictly plurisub-
harmonic function. Using the ideas from [12] we then compute local
asymptotic Bergman kernels on U . These are holomorphic kernel func-
tions, and the scalar product with such a kernel function reproduces the
values of holomorphic functions on U up to an error that is small as k
tends to in�nity. Assuming the bundle is globally positive it is then quite
easy to see that the global Bergman kernel must be asymptotically equal
to the local kernels.
Many essential ideas of our approach were already contained in the

book [12] written by the third authour. Here we use them in order
to �nd a short derivation of the Bergman kernel asymptotics. For the
closely related problem of �nding the Bergman kernel for exponentially
weighted spaces of holomorphic functions, this was done by A. Melin and
the third author [11], but in the present paper we replace a square root
procedure used in that paper by a more direct procedure, which we think
is more convenient for the actual computations of the coe�cients in the
asymptotic expansions. There are also close relations to the subject of
weighted integral formulas in complex analysis [2]. We have tried to make
the presentation almost self-contained, hoping that it may serve as an ele-
mentary introduction to certain micro-local techniques with applications
to complex analysis and di�erential geometry.

2. The local asymptotic Bergman kernel

The local situation is as follows. Fix a point in X. We may choose
local holomorhic coordinates x centered at the point and a holomorphic
trivialization s of L such that

(2.1) |s|2 = e−φ(x),

where φ is a smooth real valued function. L is positive if and only if all
local functions φ arising this way are strictly plurisubharmonic. We will
call φ0(x) = |x|2 the model �ber metric, since it may be identi�ed with
the �ber metric of a line bundle of constant curvature on Cn. The Kähler
form, ω, of the metric on our base manifold X is given by i/2 times the
curvature form of L,

ω = i∂∂̄φ/2.

The induced volume form on X is equal to ωn := ωn/n!. Now any
local holomorphic section u of Lk may be written as us⊗k where u is a
holomorphic function. The local expression of the norm of a section to
Lk over U is then given by

‖u‖2
kφ :=

∫
U

|u|2 e−kφωn

where u is a holomorphic function un U.
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We will start with the case when φ is analytic. In section 2.6 we will
deal with the general case when φ is only smooth. First, we will motivate
the construction of a local asymptotic Bergman kernel. In the model case
the Bergman function Bk is identically equal to (k/π)n. In fact, this is
also well-known to be true asymptotically for any globally positive L
when k tends to in�nity. In other words,

K(x, x) = (knπ−n + ...)ekψ(x,x).

Now, if we polarize this formula and add lower order terms we end up
with the following ansatz:

K(x, y) = knB(x, y, k−1)ekψ(x,y),

where

(2.2) B(x, y) ∼ b0(x) + b1(x)k
−1 + ...,

and where b0(x) = π−n. Writing the reproducing property 1.1 out in
terms of the ansatz 2.2 for K suggests that for all locally de�ned holo-
morphic functions u

(2.3) u(x) = ank
n

∫
ek(ψ(x,y)−ψ(y,y))B(x, y, k−1)u(y) detψyy dydy+

+O(e−δk).

After this formal motivation we now turn to the construction of local
asymptotic Bergman kernels. In the sequel we �x our coordinate neigh-
bourhood to be the unit ball of Cn. Let χ be a smooth function supported
in the unit ball and equal to one on the ball of radius 1/2. We will say
that Kk is a reproducing kernel mod O(e−δk) for Hkφ if for any �xed x in
some neighbourhood of the origin we have that for any local holomorphic
function uk,

(2.4) uk(x) = (χuk, Kk,x)kφ +O(ek(φ(x)/2−δ)) ‖u‖kφ ,
uniformly in some neighbourhood of the origin. Furthermore, if Kk,x is
holomorphic we say that Kk,x is a Bergman kernel mod O(e−δk).
Given a positive integer N, Bergman and reproducing kernels mod

O(k−N) are similarly de�ned.

2.1. Local reproducing kernels mod e−δk. Let φ be a strictly plurisub-
harmonic function in the unit ball.
Let u be a holomorphic function in the ball such that

‖u‖2 :=

∫
B

|u|2e−kφ <∞.

The class of all such function is denoted Hkφ(B). We shall �rst show
that (cf [12]) integrals of the form

(2.5) cn(k/2π)−n
∫

Λ

ekθ·(x−y)u(y)dθ ∧ dy,

de�ne reproducing kernels mod e−δk for suitably choosen contours

Λ = {(y, θ); θ = θ(x, y)}.
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Here we think of x as being �xed (close to the origin) and let y range
over the unit ball, so that Λ is a 2n-dimensional submanifold of By×Cn

θ ,

and cn = in(−1)n(n+1)/2 = i−n
2
is a constant of modulus 1 chosen so that

cndȳ ∧ dy is a positive form. Let us say that such a contour is good if
uniformly on Λ for x in some neighbourhood of the origin and |y| ≤ 1

2Re θ · (x− y) ≤ −δ|x− y|2 − φ(y) + φ(x).

Thus, e g θ = ȳ de�nes a good contour if φ(x) = |x|2.

Proposition 2.1. For any good contour,

u(x) = (k/2π)ncn

∫
Λ

ekθ·(x−y)u(y)χ(y)dθ ∧ dy +O(ek(φ(x)/2−δ))‖u‖kφ,

for x in some �xed neighbourhood of 0 if u is an element of Hkφ(B).

Proof. For λ a real variable between 0 and ∞, we let

Λλ = {(x, y, θ); θ + λ(x̄− ȳ) ∈ Λ},
and denote by η = ηk the di�erential form

η = cn(k/2π)nekθ·(x−y)u(y)χ(y)dθ ∧ dy.
Our presumptive reproducing formula is the integral, I0, of η over Λ0 and
it is easy to see that the limit of

Is :=

∫
Λs

η

as s goes to in�nity equals u(x). (This is because cn(s/2π)ne−s|x−y|
2
dȳ∧dy

tends to a Dirac measure at x as s tends to in�nity.) The di�erence
between I0 and Is is by Stokes formula

I0 − Is =

∫
B×[0,s]

dh∗(η)

where h is the homotopy map

h(y, λ) = (y, θ(x, y)− λ(x̄− ȳ)).

Now,
dη = cn(k/2π)nekθ·(x−y)udχ ∧ dθ ∧ dy.

This equals 0 if |y| < 1/2, and since θ is good we have the estimate

|dh∗(η)| ≤ Cknek(−(δ/2+λ)|x−y|2−φ(y)/2+φ(x)/2)(1 + λ)n|u(y)|.
If |x| is, say smaller than 1/4, |x− y| ≥ 1/4 when dη is di�erent from 0,
so we get

|
∫
dh∗(η)| ≤ Cknek(φ(x)/2−δ)

∫
|y|>1/2

|u(y)|e−kφ(y)/2

∫ s

0

(1 + λ)ne−kλdλ

with a smaller δ. By the Cauchy inequality the �rst integral in the right
hand side is dominated by

‖u‖kφ.
Since the last integral is bounded by a constant independent of k we get
the desired estimate. �
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Thus we have a family of reproducing kernels mod e−δk. When φ = |y|2
and θ = ȳ the kernel in the representation is also holomorphic so we even
have an asymptotic Bergman kernel mod e−δk. To achieve the same
thing for general weights we need to introduce a bit more �exibility in
the construction by allowing a more general class of amplitudes in the
integral.
For this we consider di�erential forms

A = A(x, y, θ, k) =
∑

Aj(x, y, θ, k)d̂θj

of bidegree (n − 1, 0). By d̂θj we mean the wedge product of all the

di�erentials dθi except dθj, with a sign chosen so that dθj ∧ d̂θj = dθ. We
assume that A has an asymptotic expansion of order 0

A ∼ A0 + k−1A1 + ...

By this we mean that for any N ≥ 0

A−
N∑
0

Amk
−m = O(k−N−1)

uniformly as k goes to in�nity.
We assume also that the coe�cients are holomorphic (in the smooth

case almost holomorphic) for x, y and θ of norm smaller than 2. Let

adθ = e−kθ·(x−y)dθe
kθ·(x−y)A,

so that

(2.6) a = Dθ · A+ k(x− y) · A =: ∇A,

where Dθ = ∂/∂θ. We will say that a function a arising in this way is
a negligible amplitude. In the applications we will also need to consider
�nite order approximations to amplitude functions. Let

A(N) =
N∑
0

Am/k
m

and similarily

a(N) =
N∑
0

am/k
m.

Then

a(N) = ∇A(N+1) −Dθ · AN+1/k
N+1,

so a(N) is a negligible amplitude modulo an error term which isO(1/kN+1).

Proposition 2.2. For any good contour Λ and any negligible amplitude
a,

u(x) = cn(k/2π)n
∫

Λ

ekθ·(x−y)u(y)χ(y)(1+a)dθ∧dy+O(ek(φ(x)/2−δ))‖u‖kφ,
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for all x in a su�ciently small neighbourhood of the origin if u is an
element of Hkφ(B). Moreover

u(x) = cn(k/2π)n
∫

Λ

ekθ·(x−y)u(y)χ(y)(1+a(N))dθ∧dy+O(eφ(x)/2/kN+1−n)‖u‖kφ,

Proof. For the �rst statement we need to verify that the contribution
from a is exponentially small as k tends to in�nity. But∫

Λ

ekθ·(x−y)u(y)χ(y)adθ ∧ dy =

∫
Λ

u(y)χ(y)dθ(e
kθ·(x−y)A) ∧ dy =

=

∫
Λ

χd
(
u(y)ekθ·(x−y)A ∧ dy

)
= −

∫
Λ

dχ ∧ u(y)ekθ·(x−y)A ∧ dy.

Again, the last integrand vanishes for |y| < 1/2 and is, since Λ is good,
dominated by a constant times

|u(y)|ek(−δ|x−y|2−φ(y)/2+φ(x)/2)

The last integral is therefore smaller than

‖u‖O(ek(φ(x)/2−δ))

so the �rst formula is proved. The second formula follows since by the
remark immediately preceeding the proposition, a(N) is a good amplitude
modulo an error of order 1/kN+1. �

The condition that an amplitude function a can be written in the form
(2.6) can be given in an equivalent very useful way. For this we will use
the in�nite order di�erential operator

Sa =
∞∑
0

1

(k)m(m!)
(Dθ ·Dy)

m.

This is basically the classical operator that appears in the theory of pseu-
dodi�erential operators when we want to replace an amplitude a(x, y, θ)
by an amplitude b(x, θ) independent of y, see [7]. We let S act on (n−1)-
forms A as above componentwise. We say that Sa = b for a and b ad-
mitting asymptotic expansions if all the coe�cients of the powers (1/k)m

in the expansion obtained by applying S to a formally equal the corre-
sponding coe�cients in the expansion of b. No convergence of any kind
is implied. That Sa equals b to order N means that the same thing holds
for m ≤ N . Note also that since formally

S = eDθ·Dy/k,

we have that

S−1 = e−Dθ·Dy/k =
∞∑
0

1

(−k)m(m!)
(Dθ ·Dy)

m.

Lemma 2.3. Let

a ∼
∑

(1/k)mam(x, y, θ)
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be given. Then there exists an A satisfying (2.6) asymptotically if and
only if

Sa|x=y = 0.

Moreover the last equation holds to order N if and only if a(N) can be
written

(2.7) a(N) = ∇A(N+1) +O(1/kN+1).

Proof. Note �rst that S commutes with Dθ and that

S ((x− y) · A) = (x− y) · SA− (1/k)Dθ · SA.
Since

∇A = Dθ · A+ k(x− y) · A.
It follows that

(2.8) S∇A = k(x− y) · SA,
so that if a admits a representation a = ∇A, then Sa must vanish for
x = y. Similarily, if

a(N) = ∇A(N+1) +O(1/kN+1).

it follows that Sa(N)|y=x = 0 to order N .
Conversely, assume Sa|y=x = 0 . Then Sa = (x− y) ·B for some form

B. But (2.8) implies that

∇S−1 = kS−1(x− y)·
so

a = S−1 ((x− y) ·B) = (1/k)∇S−1B

and (2.6) holds with A = 1/kS−1B. If the equation Sa|y=x = 0 only
holds to order N , then

Sa(N) = (x− y) ·B(N)

to order N . Hence

a(N) = S−1
(
(x− y) ·B(N)

)
= (1/k)∇S−1B(N) = (1/k)∇(S−1B)(N)

to order N , so (2.7) holds with A(N+1) = 1/k(S−1B)(N).
�

2.2. The phase. Let us now see how to choose the contour Λ to get the
phase function, in the ansatz 2.3. In this section we still assume that
the plurisubharmonic function φ is real analytic and let ψ(x, y) be the
unique holomorphic function of 2n variables such that

ψ(x, x̄) = φ(x).

By looking at the Taylor expansions of ψ and φ one can verify that

(2.9) 2Reψ(x, y)− φ(x)− φ(y) ≤ −δ|x− y|2

for x and y su�ciently small. Following an idea of Kuranishi, see [8], [6],
we now �nd a holomorphic function of 3n variables, θ(x, y, z) that solves
the division problem

(2.10) θ · (x− y) = ψ(x, z)− ψ(y, z),
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This can be done in many ways, but any choice of θ satis�es

θ(x, x, z) = ψx(x, z).

To �x ideas, we take

θ(x, y, z) =

∫ 1

0

∂ψ(tx+ (1− t)y, z)dt

with ∂ denoting the di�erential of ψ with respect to the �rst n variables.
Since θ(x, x, z) = ψx(x, z) it follows that

θz(0, 0, 0) = ψxz(0, 0) = φxx̄(0, 0)

is a nonsingular matrix. Therefore

(x, y, z) → (x, y, θ)

de�nes a biholomorphic change of coordinates near the origin. After
rescaling we may assume that ψ is de�ned and satis�es (2.8) and that
the above change of coordinates is well de�ned when |x|, |y| and |z| are
all smaller than 2. We now de�ne Λ by

Λ = {(y, θ); z = ȳ}.

Thus, on Λ, θ is a holomorphic function of x, y and ȳ and by (2.9) Λ is
a good contour in the sense of the previous section. By Proposition 2.2
we therefore get the following proposition, where we use the notation β
for the standard Kähler form in Cn,

β = i/2
∑

dyj ∧ dȳj.

Proposition 2.4. Suppose that u is in Hkφ. If a(x, y, θ, 1/k) is a negli-
gible amplitude, we have

(2.11) u(x) =

= (k/π)n
∫
χxe

k(ψ(x,y)−ψ(y,y))(det θȳ)u(y)(1 + a)βn+

+O(ek(φ(x)/2+δ)) ‖u‖kφ ,

with a = a(x, y, θ(x, y, ȳ). Moreover

u(x) =

= (k/π)n
∫
χxe

k(ψ(x,y)−ψ(y,y))(det θȳ)u(y)(1 + a(N))βn+

+O(ekφ(x)/2kn−N−1) ‖u‖kφ
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2.3. The amplitude. In order to get an asymptotic Bergman kernel
from (2.10) we need to choose the amplitude a so that

det θȳ(1 + a) = B(x, ȳ) detψyȳ,

with B analytic. Polarizing in the y-variable, i e replacing ȳ by z, this
means that

(1 + a(x, y, θ(x, y, z, 1/k)) = B(x, z, 1/k) detψyz(y, z)/ det θz(x, y, z),

where B is a analytic and independent of y. Consider this as an equation
between functions of the variables x, y and θ. Let

∆0(x, y, θ) = detψyz(y, z)/ det θz(x, y, z) = det ∂θψy.

Since ψy = θ when y = x we have that ∆0 = 1 for y = x. We need a to
be representable in the form (2.6) which by the previous lemma means
that Sa = 0 for y = x. Equivalently, S(1 + a) = 1 for y = x, so we must
solve

(2.12) S (B(x, z(x, y, θ), 1/k)∆0(x, y, θ)) = 1

for y = x. This equation should hold in the sense of formal power series
which means that the coe�cient of 1/k0 must equal 1, whereas the coef-
�cient of each power 1/km must vanish for m > 0. In the computations
x is held �xed and z = z(y, θ). The �rst equation is

(2.13) b0(x, z(x, y, θ))∆0(x, x, θ) = 1.

This means that b0(x, z(x, θ)) = 1, for all θ which implies that b0 is
identically equal to 1.
The second condition is

(2.14) (Dθ ·Dy) (b0∆0) + b1∆0 = 0

for y = x. Since we already know that b0 = 1 this means that

b1(z(x, θ)) = −(Dθ ·Dy) (∆0) |y=x,
which again determines b1 uniquely. Continuing in this way, using the
recursive formula

(2.15)
m∑
0

(Dθ ·Dy)
l

l!
(bm−l∆0) |x=y = 0

for m > 0 we can determine all the coe�cients bm, and hence a. Then
Sa|y=x = 0 so Sa(N)|y=x = 0 to order N , and the next proposition follows
from Propositions 2.4 and 2.3.

Proposition 2.5. Suppose that φ is analytic. Then there are analytic
functions bm(x, z) de�ned in a �xed neighbourhood of x so that for each
N

(2.16) (k/π)n(1 + b1(x, y)k
−1 + ...+ bN(x, y)k−N)ekψ(x,y),

is an asymptotic Bergman kernel mod O(k−(N+1)).
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2.4. Computing b1. Let us �rst recall how to express some Riemannian
curvature notions in Hermitian geometry. The Hermitian metric two-
form ω := Hijdy

i∧dyj determines a connection η on the complex tangent
bundle TX with connection matrix (with respect to a holomorphic frame)

(2.17) η = H−1∂H =:
∑

ηjdyj.

The curvature is the matrix valued two-form ∂η and the scalar curvature
s is ΛTr∂η where Λ is contraction with the metric form ω. Hence, in
coordinates centered at x where H(0) = I the scalar curvature s at 0 is
given by

(2.18) s(0) = −Tr(
∑ ∂

∂yj
ηj),

considering η as matrix. We now turn to the computation of the coe�-
cient b1 in the expansion 2.16. By the de�nition of θ we have that

(2.19) θi(x, y, z) = ψyi
(y, z) + 1/2

∑
k

(
∂

∂yk
ψyi

)(y, z)(xk − yk) + ...

Di�erentiating with respect to z gives

θz = H + 1/2∂yH(x− y) + ....,

where H = H(y, z). Multiplying both sides by H−1 and inverting the
relation we get

(2.20) θ−1
z H = I − 1/2(H−1∂H)(x− y) + ....,

Taking the determinant of both sides in formula 2.20 gives

(2.21) ∆0 = 1-Trη/2(x− y) + ....,

Hence, equation (2.14) now gives, since − ∂
∂y

(x− y) = 1, that

b1(0, 0) = (
∂

∂θ
· (-Trη/2)x=y = − ∂

∂y
· Trη/2

showing that b1(x, x) = s
2
, according to 2.18.

2.5. Twisting with a vector bundle E. We here indicate how to ex-
tend the previous calculation to the case of sections with values in Lk⊗E,
where E is a holomorphic vector bundle with a hermitian metric G (see
also [9]). First observe that u(x) is now, locally, a holomorphic vector
and the Bergman kernel may be identi�ed with a matrix K(x, y) such
that

u(x) =

∫
K(x, y)G(y, y)u(y)ψyye

−kψ(y,y))dȳ ∧ dy

(compare 2.3). To determine K one now uses the ansatz

K(x, y) = cn(k/2π)nek(ψ(x,y)B(x, y, k−1)G(x, y)−1.

Then the condition on the amplitude function becomes

(2.22) (1 + a(x, y, θ(x, y, z), 1/k) det(
∂θ

∂z
(x, y, z)) =
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= B(x, z, 1/k)G(x, z)−1G(y, z) det(ψyz).

where a now is a matrix valued form , i.e. ∆0 in section 2.3 is replaced
by the matrix ∆G := ∆0G(x, z)−1G(y, z). Note that

G(x, z)−1G(y, z) = I−G−1(y, z)
∂

∂y
G(y, z)(x−y)+... =: I−ηE(y, z)(x−y)+...,

where ηE := G−1 ∂
∂y
G is the connection matrix of E. Hence, the equation

2.21 is replaced by

∆G = 1-(Trη/2⊗ I + ηE)(x− y) + ...

The same calculation as before then shows that the matrix b1(0, 0) is
given by

b1(0, 0) = − ∂

∂y
Trη/2⊗ I − ∂

∂y
· ηE =

s

2
⊗ I + ΛΘE,

where ΘE := ∂ηE is the curvature matrix of E and Λ denotes contraction
with the metric two-form ω.
Remark: Let Kk be the Bergman kernel of H0(X,Lk), de�ned with

respect a general volume form µn. Then the function G := µn/ωn de�nes
a hermitian metric on the trivial line bundle E and the asymptotics of
Kk can then be obtained as above.

2.6. Smooth metrics. Denote by ψ any almost holomorphic extension
of φ from ∆ = {y = x̄}, i.e. an extension such that the anti-holomorphic
derivatives vanish to in�nite order on ∆. We may also assume that
ψ(x, y) = ψ(y, x). That ψ is almost holomorphic means

(2.23)
∣∣(∂ψ)(x, y)

∣∣ ≤ O(|x− ȳ|N)

for any N (we will also write the RHS in above as O(|x− ȳ|∞)). Note
that by 2.23 the weighted norm of ∂(ekψ) may be estimated by k times

(2.24)∣∣∣|x− y|2N ek(ψ(x,y)−φ(x)/2−φ(y)/2)
∣∣∣ ≤ Ck−N(k |x− y|)2)Ne−kδ|x−y|

2

= O(k−N),

where we have also used (2.9). Let now

(2.25) θ =

∫ 1

0

ψx(tx+ (1− t)y, z)dt, θ∗ =

∫ 1

0

ψx(tx+ (1− t)y, z)dt.

so that

(2.26) (x− y)θ + (x− y)θ∗ = ψ(x, z)− ψ(y, z)

Then the smooth map corresponding to (x, y, z) 7→ (x, y, θ) is locally
smoothly invertible for the same reason as in the analytic case, since
θz = 0 when x = y = z. De�ne the algebra A of all functions almost
holomorphic when x = y = z as the set of smooth functions, f , of x y
and z, such that

Dα∂̄f = 0
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when x = y = z̄. We also de�ne the vanishing ideal I∞ as the set of
smooth functions f such that

Dαf = O(|x− y|∞),

when z = ȳ. Hence, if f belongs to A then (the coe�cients of) ∂̄f will
belong to I∞.
Note that ψ(x + t(x − y), z) is in A for each �xed t. Hence θ is in A

and θ∗ is in I∞, so that 2.26 gives

(2.27) (x− y)θ = ψ(x, y)− ψ(y, y) +O(|x− y|∞)

Proposition 2.6. Suppose that L is smooth. Then there exists an as-

ymptotic reproducing kernel K
(N)
k mod O(kn−N−1) for Hkφ , such that

(2.28) K
(N)
k (x, y) = ekψ(x,y)(b0 + b1k

−1 + ...+ bNk
−N)

where bi is a polynomial in the derivatives ∂αx∂
β

yψ(x, y) of the almost
holomorphic extension ψ of φ. In particular,

(2.29) e−k(φ(x)/2+φ(y)/2)(Dα
x,y(∂x, ∂y))K(x, y) = O(k−∞)

uniformly in x and y for any given α.

Proof. We go through the steps in the proof of the analytic case and
indicate the necessary modi�cations.
First we determine the coe�cients bm(x, z) in the same way as in the

analytic case, i e by �xing x and solving

S(B(z)∆0)|y=x = 1

Here S has the same meaning as before and in particular contains only
derivatives with respect to θ and no derivatives with respect to θ̄. The
di�erence is that ∆0 is no longer analytic so B will not be holomorphic,
but it will still belong to A since ∆0 does.
We next need to consider lemma 2.3 with a ∈ A. Then we get that

a ∈ A, (Sa)y=x = O(k−N−1) ⇔ ∃A ∈ A : a = ∇A+O(k−N−1)mod I∞

Indeed, this follows from the argument in the analytic case and the fact
that if c ∈ A, then

cy=x = 0 ⇔ ∃d ∈ A : c = (x− y)dmod I∞

as can be seen by de�ning d by

d =

∫ 1

0

cy(x, ty + (1− t)x, z)dt.

Here ∇ also has the same meaning as before and contains only a de-
rivative with respect to θ and no derivative with respect to θ̄. Then
Proposition 2.2 holds as before except that there will be one extra con-
tribution in the application of Stokes theorem coming from ∂̄θA. Since
∂̄θA vanishes to in�nite order when x = y, it gives a contribution to the
integral which is O(1/kN) for any N by (2.24).
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We therefore get from Proposition 2.2 a reproducing kernel of the form
claimed in (2.28) except that the phase function equals

kθ · (x− y) = k(ψ(x, ȳ)− φ(y)) + kρ

with ρ in A. To see that this error is negligible we note that by (2.24)

∂t(e
k(ψ(x,ȳ)−φ(x)/2−φ(y)/2)+tkρ) = O(k−∞).

Integrating this between 0 and 1 we see that the two phase functions are
indeed equivalent modulo an error of O(k−∞). �

3. The global Bergman kernel

In this section we will show that, if the curvature of L is positive every-
where on X, then the global Bergman kernel Kk of H

0(X,Lk) is asymp-

totically equal to the local Bergman kernel K
(N)
k of Hkφ (constructed in

section 2).
Recall (section 1) that the Bergman kernel K associated to L is a

section of L ⊗ L over X × X. By restriction Kx is identi�ed with a
holomorphic section of Lx ⊗ L, where Lx is the �ber of L over x. Given
any two vector spaces E and F, the scalar product on L extends uniquely
to a pairing

(3.1) (·, ·) : L⊗ E × L⊗ F → E ⊗ F,

linear over E and anti-linear over F. In terms of this pairing Ky has the
global reproducing property

(3.2) α(y) = (α,Ky)

for any element α of H0(X,L). By taking α = Kx (so that E = Lx and
F = Ly in 3.1) one gets

(3.3) K(y, x) := Kx(y) = (Kx, Ky).

This also implies that K(x, y) = K(y, x) and that

(3.4) K(x, x) = (Kx, Kx) = ‖Kx‖2 .

K(x, x) is a section to L̄ ⊗ L. Its norm as a section to this bundle is
the Bergman function, which in a local frame with respect to which the
metric on L is given by e−φ equals

B(x) = K(x, x)e−φ(x).

Notice also that by the Cauchy inequality we have an extremal charac-
terization of the Bergman function:

B(x) = sup |s(x)|2

where the supremum is taken over all holomorphic sections to L of norm
not greater than 1.
We now denote by Kk the Bergman kernel associated to Lk, and write

Bk for the associated Bergman function. It follows from the extremal



14 ROBERT BERMAN, BO BERNDTSSON, JOHANNES SJÖSTRAND

characterization of the Bergman function and the submeanvalue inequal-
ity for a holomorphic section s over a small ball with radius roughly
1/k1/2 that

Bk ≤ Ckn,

uniformly on X (see e g [1]).

Let now K
(N)
x (y) be the local Bergman kernel of propositions 2.5-2.6,

where the coe�cients bm are given by (2.15),

(3.5) K
(N)
x (y) = (k/π)n(1 + b1(x, y)k

−1 + ...+ bN(x, y)k−N)ekψ(x,y).

By construction, the coe�cients bm(x, z) are holomorphic if the metric
on L - locally represented by φ - is real analytic. In case φ is only smooth
the bms are almost holomorphic, meaning that

∂̄xzbm

vanishes to in�nite order when z = x̄.
Replacing Ky in the relation 3.3 with the local Bergman kernel K

(N)
k

will now show that Kk = K
(N)
k up to a small error term.

Theorem 3.1. Assume that the smooth line bundle L is globally positive.

Let K
(N)
k be de�ned by (3.5), where the coe�cients bm are determined by

the recursion (2.15).
If the distance d(x, y) is su�ciently small, then

(3.6) Kk(x, y) = K
(N)
k (x, y) +O(kn−N−1)ek(φ(x)/2+φ(y)/2),

Moreover,

Dα(Kk(x, y)−K
(N)
k (x, y)) = O(km+n−N−1)ek(φ(x)/2+φ(y)/2)

if Dα is any di�erential operator with respect to x and y of order at most
m.

Proof. Let us �rst show that

(3.7) Kk(y, x) = (χKk,x, K
(N)
k,y ) +O(kn−N−1)ek(φ(x)/2+φ(y)/2)

where χ is a cut-o� function equal to 1 in a neighbourhood of x which
is large enough to contain y. Fixing x and applying Proposition 2.5 to
uk = Kk,x gives 3.7 with the error term

eφ(y)/2O(k−N−1) ‖Kx‖ .
Now, by 3.4 and the estimate for Bk

‖Kk,x‖2 = Bk(x)e
kφ(x) ≤ Cknekφ(x),

This proves 3.7 with uniform convergence.
Next we estimate the di�erence

uk,y(x) := K
(N)
k,y (x)− (χK(N)

y , Kk,x).

Since the scalar product in this expression is the Bergman projection,

Pk(χK
(N)
k,y )(x),
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uk,y is the L
2-minimal solution to the ∂̄-equation

∂̄uk,y = ∂̄(χK
(N)
k,y ).

The right hand side equals

(∂̄χ)K
(N)
k,y + χ∂̄K

(N)
k,y .

Since χ equals 1 near y it follows from (2.9) and the explicit form of K
(N)
k,y

that the �rst term is dominated by

e−δkek(φ(·)/2+φ(y)/2).

The second term vanishes identically in the analytic case. In the smooth

case ∂̄K
(N)
k can by (2.24) be estimated by

(3.8) O(1/k∞)ek(φ(·)/2+φ(y)/2).

Altogether ∂̄uk,y is therefore bounded by (3.7), so by the Hörmander
L2-estimate we get that

‖uk,y‖2 ≤ O(1/k∞)ekφ(y)/2.

But, since the estimate on ∂̄uk,y is even uniform, we get by an argument
involving the Cauchy integral formula in a ball around x of radius roughly
1/k1/2 that uk,y satis�es a pointwise estimate

|uk,y(x)|2 ≤ O(1/k∞)ek(φ(y)/2+φ(x)/2).

Combining this estimate for uk,y(x) with (3.6) we �nally get

(3.9) |K(N)
k,y (x)−Kk(y, x)|e−kφ(x)/2−kφ(y)/2 ≤ O(1/kN+1).

Since Kk is hermitian ( i e Kk(x, y) = Kk(y, x)) this proves the proposi-
tion except for the statement on convergence of derivatives.
In the analytic case the convergence of derivatives is, by the Cauchy

estimates, an automatic consequence of the uniform convergence, since
the kernels are holomorphic in x and ȳ. In the smooth case, we have that

∂̄K
(N)
k (x, z̄) = O(1/k∞)ek(φ(·)/2+φ(y)/2).

This implies that the Cauchy estimates still hold for the di�erence be-

tween Kk and K
(N)
k , up to an error which is O(1/k∞), and so we get the

convergence of derivatives even in the smooth case.
�
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