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REGULARIZATIONS OF PRODUCTS OF RESIDUE ANDPRINCIPAL VALUE CURRENTSHÅKAN SAMUELSSONAbstra
t. Let f1 and f2 be two fun
tions on some 
omplex n-manifoldand let ' be a test form of bidegree (n; n � 2). Assume that (f1; f2)de�nes a 
omplete interse
tion. The integral of '=(f1f2) on fjf1j2 =�1; jf2j2 = �2g is the residue integral I'f1;f2 (�1; �2). It is in general dis-
ontinuous at the origin. Let �1 and �2 be smooth fun
tions on [0;1℄su
h that �j(0) = 0 and �j(1) = 1. We prove that the regularizedresidue integral de�ned as the integral of ���1 ^ ���2 ^ '=(f1f2), where�j = �j(jfj j2=�j), is Hölder 
ontinuous on the 
losed �rst quarter andthat the value at zero is the Cole�-Herrera residue 
urrent a
ting on'. In fa
t, we prove that if ' is a test form of bidegree (n; n� 1) thenthe integral of �1 ���2 ^ '=(f1f2) is Hölder 
ontinuous and tends to the��-potential [(1=f1)^ ��(1=f2)℄ of the Cole�-Herrera 
urrent, a
ting on '.More generally, let f1 and f2 be se
tions of some ve
tor bundles and as-sume that f1 � f2 de�nes a 
omplete interse
tion. There are asso
iatedprin
ipal value 
urrents Uf and Ug and residue 
urrents Rf and Rg.The residue 
urrents equal the Cole�-Herrera residue 
urrents lo
ally.One 
an give meaning to formal expressions su
h as e.g. Uf ^ Rg insu
h a way that formal Leibnitz rules hold. Our results generalize toprodu
ts of these 
urrents as well.1. Introdu
tionConsider a holomorphi
 fun
tion f de�ned on some 
omplex n-manifoldX and let Vf = f�1(0). S
hwartz found that there is a distribution, or
urrent, U on X su
h that fU = 1, [23℄. The existen
e of the prin
ipal value
urrent [1=f ℄ de�ned byDn;n(X) 3 ' 7! lim�!0Zjf j2>� '=fwas proved by Herrera and Lieberman in [11℄ using Hironaka's desingulariza-tion theorem, [12℄ and gives a realization of su
h a 
urrent U . The ��-image ofthe prin
ipal value 
urrent is the residue 
urrent asso
iated to f . By Stokes'theorem its a
tion on a test form of bidegree (n; n� 1) is given by the limitas �! 0 (along regular values for jf j2) of the residue integral(1) I'f (�) = Zjf j2=� '=f:One main point dis
overed by Herrera and Lieberman is that if ' has bidegree(n�1; n) then for ea
h k, I'fk(�) = O(�Æk) for some positive Æk. Using this, one
an then smoothen the integration over jf j2 = � and regularize the residueDate: 10th August 2005.



2 HÅKAN SAMUELSSON
urrent by using smooth fun
tions � de�ned on [0;1) su
h that � is 0 atzero and tends to 1 at in�nity. In fa
t, we 
an make a Leray de
ompositionand write any (n; n)-test form ' as � ^ �f=fk for some k, where � is a testform of bidegree (n � 1; n) whose restri
tion to jf j2 = t is unique, for ea
ht > 0. Then writing the integral of �(jf j2=�)'=f as an integral over thelevel surfa
es jf j2 = t and using Herrera's and Lieberman's result one seesthat �(jf j2=�)=f is a regularization of the prin
ipal value 
urrent [1=f ℄. Itfollows that the residue 
urrent 
an be obtained as the weak limit of thesmooth form ���(jf j2=�)=f . This is also a 
onsequen
e of Corollary 5 below.A natural 
hoi
e for � is �(t) = t=(t + 1) and we see that we get the wellknown result that the residue 
urrent 
an be obtained as the weak limit of��( �f=(jf j2 + �)). We also brie�y mention the more general 
urrents studiedby Barlet, [3℄. If we instead integrate over the �ber f = s in (1) and let 'have bidegree (n�1; n�1) then the integral has an asymptoti
 expansion ins with 
urrent 
oe�
ients. The 
onstant term is Lelong's integration 
urrenton Vf and the residue 
urrent ��[1=f ℄ 
an be obtained from the 
oe�
ient ofsn.We turn to the main fo
us of this paper whi
h is the 
odimension two 
ase.Let f and g be two holomorphi
 fun
tions on X su
h that f and g de�nea 
omplete interse
tion, that is, the 
ommon zero set Vf�g has 
odimensiontwo. Consider the residue integral(2) I'f;g(�1; �2) = Zjf j2=�1jgj2=�2 'fg :The unrestri
ted limit of the residue integral as �1; �2 ! 0 does not exist ingeneral. The �rst example of this phenomenon was dis
overed by Passareand Tsikh in [19℄, and Björk later found that this indeed is the typi
al 
ase,[6℄. See also [21℄. Via Hironaka's theorem on resolutions of singularities onemay assume that the hypersurfa
e f � g = 0 has normal 
rossings, whi
hmeans that there is a (�nite) atlas of 
harts su
h that f(�) = ~f(�)�� andg(�) = ~g(�)�� where � and � are multiindi
es (depending on the 
hart) and~f and ~g are invertible holomorphi
 fun
tions. It is a
tually the invertiblefa
tors whi
h 
ause problems. One 
an always dispose of one of the fa
tors,but in general not of both. However, if the matrix A, whose two rows arethe integer ve
tors � and � respe
tively, has rank two there is a 
hangeof variables z = �(�) su
h that z� = ~f(�)�� and z� = ~g(�)��, see e.g.[16℄. Hen
e, when � and � are not linearly dependent we 
an make boththe invertible fa
tors disappear. Problems therefore arise in so 
alled 
hartsof resonan
e where � and � are linearly dependent. Cole� and Herrerarealized that if one demands that �1 and �2 tend to zero in su
h a way that�1=�k2 ! 0 for all k 2 Z+, along a so 
alled admissible path, then one willget no 
ontributions from the 
harts of resonan
e be
ause one 
annot havej ~f(�)��j << j~g(�)��j if � and � are linearly dependent. They proved in[8℄ that the limit, along an admissible path, of the residue integral existsand de�nes the a
tion of a (0; 2)-
urrent, the Cole�-Herrera residue 
urrent[ ��(1=f) ^ ��(1=g)℄. In [16℄ Passare smoothened the integration over the setfjf j2 = �1g \ fjgj2 = �2g by introdu
ing fun
tions � as des
ribed above, and



REGULARIZATIONS OF RESIDUE CURRENTS 3he studied possible weak limits of forms(3) ���1(jf j2=�1)f ^ ���2(jgj2=�2)galong paraboli
 paths (�1; �2) = (�s1 ; �s2) where s = (s1; s2) belongs to thesimplex �2(2) = f(x; y) 2 R2+ ; s1 + s2 = 2g. He found that it is enoughto impose �nitely many linear 
onditions (nj ; s) 6= 0 to assure that (3) hasa weak limit along the 
orresponding paraboli
 path. The linear 
onditionspartition �2(2) into �nitely many open segments and the weak limit of (3)along a paraboli
 path 
orresponding to an s in su
h a segment only dependson the segment. We say that (�1; �2) tends to zero inside a Passare se
tor.Moreover, as we assume that f and g de�ne a 
omplete interse
tion, thelimit is even independent of the 
hoi
e of segment. In this 
ase it also
oin
ides with the Cole�-Herrera 
urrent. One 
an obtain a ��-potentialto the Cole�-Herrera 
urrent e.g. by 
hanging the integration set in (2) tofjf j2 > �1g\fjgj2 = �2g and pass to the limit along an admissible path or byremoving the �rst �� in (3) and pass to the limit inside a Passare se
tor. This��-potential is denoted [(1=f) ��(1=g)℄. The main result in this paper impliesthat if �j 2 C1([0;1℄) satisfy �j(0) = 0 and �j(1) = 1 then, in the senseof 
urrents(4) lim�1;�2!0 �1(jf j2=�1)f ���2(jgj2=�2)g = � 1f �� 1g �;and the a
tion of the smooth form on the left hand side on a test formdepends Hölder 
ontinuously on (�1; �2) 2 [0;1)2. For the parti
ular 
asewhen �j(t) = t=(t + 1) our result, apart from the Hölder 
ontinuity, wasannoun
ed in [22℄. A
tually, it is possible to relax the smoothness assumptionon one of the �j in (4). As mentioned above, one 
an always dispose of oneof the invertible fa
tors. Say that we always arrange so that ~f � 1. Then,examining the proof, one �nds that one may take �1 to be the 
hara
teristi
fun
tion of [1;1℄. Hen
e,Zjf j2>�1 ���2(jgj2=�2)fg ^ '! � 1f �� 1g �:'with Hölder 
ontinuity. Note that if we let both �1 and �2 be the 
hara
-teristi
 fun
tion of [1;1℄ then this result is no longer true in view of theexamples of Passare-Tsikh and Björk.Our result also generalize to produ
ts of pairs of so 
alled Bo
hner-Martinelliblo
ks. Consider a tuple f = (f1; : : : ; fm) of holomorphi
 fun
tions on X.The residue integral 
orresponding to f , I'f (�1; : : : ; �m), is de�ned anal-ogously to (2). If we take the mean value of the residue integral over� = (�1; : : : ; �m) in the simplex �m(Æ) = fs 2 Rm+ ; P sj = Æg we obtain(5) 
m Zjf j2=Æ Pmj=1(�1)j+1 �fjVi6=j �� �fijf j2m ^ ';where 
m is a 
onstant only depending on m. It turns out, see [20℄, thatthe limit as Æ tends to zero of (5) exists and de�nes the a
tion of a (0;m)-
urrent, whi
h in the 
ase f de�nes a 
omplete interse
tion, 
oin
ides with



4 HÅKAN SAMUELSSONthe Cole�-Herrera 
urrent and also with the 
urrents studied in [5℄ and [18℄.Based on the work in [20℄ Andersson introdu
es more general 
urrents ofthe Cau
hy-Fantappiè-Leray type in [2℄. We will brie�y dis
uss Andersson's
onstru
tion in Se
tion 3. In short, he de�nes a singular form uf =P ufk;k�1,where the terms ufk;k�1 are similar to the form in (5), and he shows that itis extendible to X as a 
urrent, Uf , either as prin
ipal values or by analyti

ontinuation. The residue 
urrent, Rf , is derived from the 
urrent Uf andequals the Cole�-Herrera 
urrent lo
ally if f de�nes a 
omplete interse
tion.If g is also a tuple of fun
tions there is a natural way of de�ning the produ
t ofthe Cau
hy-Fantappiè-Leray type 
urrents 
orresponding to f and g so thatformal Leibnitz rules hold, see [26℄. If f � g de�nes a 
omplete interse
tionand �1; �2 2 C1([0;1℄) vanish to high enough orders at zero and equals 1at in�nity then we prove that the smooth forms�1(jf j2=�1)uf ^ ���2(jgj2=�2) ^ ug and���1(jf j2=�1) ^ uf ^ ���2(jgj2=�2) ^ ugare Hölder 
ontinuous as 
urrents for (�1; �2) 2 [0;1)2 and tend to Uf ^Rgand Rf ^ Rg respe
tively as �1; �2 ! 0; Theorem 21 and Corollary 23. If gis a fun
tion su
h that f � g de�nes a 
omplete interse
tion, our te
hniques
an also be used to prove that ���1(jf j2=�1) ^ uf�2(jgj2=�2) ! Rf when �2equals the 
hara
teristi
 fun
tion of [1;1℄. We use this to 
on
lude thatRf has the standard extension property in the 
omplete interse
tion 
ase,Corollary 24. For more histori
al a

ounts we refer to the survey arti
le [7℄by Björk.The disposition of the paper is as follows: In Se
tion 2 we outline a proof of(4) sin
e the proofs of the more general statements about Bo
hner-Martinellior Cau
hy-Fantappiè-Leray blo
ks are only more di�
ult to prove in thete
hni
al sense and to make it 
lear that it is not ne
essary to work throughthe 
onstru
tions of Bo
hner-Martinelli or Cau
hy-Fantappiè-Leray type 
ur-rents in order to prove (4). In Se
tion 3 we re
all Andersson's 
onstru
tionand explain some useful notation. Se
tion 4 
ontains some fairly well knownregularization results about Cau
hy-Fantappiè-Leray type 
urrents. As An-dersson's formalism makes the arguments a little smoother we also supplythe proofs. Se
tion 5 
ontains the te
hni
al 
ore of this paper. We study reg-ularizations of produ
ts of monomial 
urrents whi
h we then use in Se
tion6 to prove our main results; Theorem 21 and its 
orollaries 23, 25 and 26 andTheorem 27. In Se
tion 7 we see by expli
it 
omputations that Corollary26 holds for the example by Passare and Tsikh. This se
tion is essentiallyself-
ontained.2. Sket
h of proof in the 
ase of two fun
tionsLet f and g be two holomorphi
 fun
tions on X de�ning a 
omplete in-terse
tion. We sket
h how one 
an handle the di�
ulties arising in 
harts ofresonan
e when proving (4). We study the integral(6) Z �1(jf j2=�1)f ���2(jgj2=�2)g ^ '



REGULARIZATIONS OF RESIDUE CURRENTS 5where ' is a test form of bidegree (n; n � 1). By Hironaka's theorem wemay assume that f = �� ~f and g = ��~g are monomials times non-vanishingfun
tions. One of the non-zero fa
tors 
an be in
orporated in a variable andso we assume that ~f � 1. We assume also that we are in a 
hart of resonan
e,i.e. that � and � are linearly dependent. After resolving singularities f andg no longer de�ne a 
omplete interse
tion in general, but on the other handa degree argument shows that d��j=��j ^ ' be
omes a test form for any �jdividing both f and g. See the proof of Theorem 21 for more details. Sin
e� and � are linearly dependent, d��j=��j ^ ' is a test form for all j su
h that�j 6= 0, or equivalently, �j 6= 0. Now, (6) equalsXj �j Z �1(j��j2=�1)�� �02(	j��j2=�2)�� j��j2�2 ^ d��j��j ^ '= ~fwhere 	 = j~gj2 is a stri
tly positive smooth fun
tion. It now follows fromCorollary 15 that ea
h term in this sum tends to zero as �1 and �2 tend tozero. Hen
e the 
harts of resonan
e do not give any 
ontributions.3. Preliminaries and notationAssume that f is a se
tion of the dual bundle E� of a holomorphi
 m-bundle E ! X over a 
omplex n-manifold X. We will only deal with lo
alproblems and it is therefore no loss of generality in assuming that E !X is trivial. However, the formalism will run smoother with an invariantnotation. As mentioned above, we will re
all Andersson's 
onstru
tion in [2℄and produ
e 
urrents Uf and Rf and we emphasize that in the 
ase E ! Xis the trivial line bundle then Uf and Rf are the 
urrents [1=f ℄ and ��[1=f ℄times some basis elements. On the exterior algebra �E of E, the se
tion findu
es mappings Æf : �k+1E ! �kE of interior multipli
ation and Æ2f = 0.We introdu
e the spa
es E0;q(X;�kE) of the smooth se
tions of the exterioralgebra of E � T �0;1X whi
h are (0; q)-forms with values in �kE. We alsointrodu
e the 
orresponding spa
es of 
urrents, D 00;q(X;�kE). The mappingsÆf extend to mappings Æf : D 00;q(X;�k+1E)! D 00;q(X;�kE) with Æ2f = 0 andthese mappings anti-
ommute with the ��-operator. Hen
e, D 00;q(X;�kE) isa double 
omplex and the asso
iated total 
omplex is� � � rf! Lr�1(X;E) rf! Lr(X;E) rf! � � �where Lr(X;E) = Lq�k=rD 00;q(X;�kE) and rf = Æf � ��. We will referto the total 
omplex as the Andersson 
omplex. The exterior produ
t, ^,indu
es mappings ^ : Lr(X;E) �Ls(X;E)! Lr+s(X;E)when possible, and rf is an antiderivation, i.e. rf (� ^ �) = rf� ^ � +(�1)r� ^ rf� if � 2 Lr(X;E) and � 2 Ls(X;E). If � 2 Lr(X;E) wewrite �k;k+r for the 
omponent of � belonging to D 00;k+r(X;�kE). Notethat fun
tions de�ne elements of L0(X;E) of degree (0; 0) and se
tions of Ede�ne elements of L�1(X;E) of degree (1; 0). One 
an show, see [2℄, thatif X is Stein and the zero:th 
ohomology group of the Andersson 
omplex



6 HÅKAN SAMUELSSONvanishes then for any holomorphi
 fun
tion h there is a holomorphi
 se
tion of E su
h that Æf = h. This means that if f = (f1; : : : ; fm) in somelo
al holomorphi
 frame for E� then the division problem P fj j = h hasa holomorphi
 solution. This 
annot hold for all h if f has zeros and theAndersson 
omplex 
an therefore not be exa
t in this 
ase. Still, we try tolook for an element uf 2 L�1(X;E) su
h that rfuf = 1. To this end weassume that E is equipped with some Hermitian metri
 j � j and we let sfbe the se
tion of E with pointwise minimal norm su
h that Æfsf = jf j2.Outside Vf = f�1(0) we may putuf = sfrfsf = sfÆfsf � ��sf =Xk sf ^ ( ��sf )k�1jf j2k :Observe that rfsf has even degree so the expression sf=rfsf has meaningoutside Vf and it follows immediately that rfu = 1 there. The followingtheorem is proved in [2℄.Theorem 1. Assume that f is lo
ally nontrivial. The forms jf j2�uf and��jf j2� ^ uf are lo
ally bounded if Re � is su�
iently large and they haveanalyti
 
ontinuations as 
urrents to Re � > ��. Let Uf and Rf denote thevalues at � = 0. Then Uf is a 
urrent extension of uf , Rf has support onVf and rfUf = 1�Rf :Moreover, Rf = Rfp;p + � � � +Rfq;q where p = Codim(Vf ) and q = min(m;n).Note that if Vf = ; then rfUf = 1 on all of X, whi
h implies that takingthe exterior produ
t with Uf is a homotopy operator for the Andersson
omplex. The 
urrent Rf is the Bo
hner-Martinelli, or more generally, theCau
hy-Fantappiè-Leray 
urrent asso
iated to f , and if f = (f1; : : : ; fm) insome lo
al holomorphi
 frame, e1; : : : ; em, of E then(7) Rf = ��� 1f1 ^ � � � ^ �� 1fm � ^ e1 ^ � � � ^ emif f de�nes a 
omplete interse
tion, see [2℄.Now if fj, j = 1; 2, are se
tions of the dual bundles E�j of holomorphi
Hermitian mj-bundles Ej ! X we 
an apply the above 
onstru
tion to these
tion f = f1 � f2 of the bundle E�1 � E�2 and obtain the 
urrents Uf andRf . We 
ould also try to 
ombine the individual 
urrents Ufj and Rfj . It isshown in [26℄ that the formsjf1j2�uf1^jf2j2�uf2 ; jf1j2�uf1^ ��jf2j2�^uf2 and ��jf1j2�^uf1^ ��jf2j2�^uf2;whi
h are lo
ally bounded if Re � is large enough, have 
urrent extensionsto Re � > ��. The values at � = 0 are denoted Uf1 ^ Uf2 , Uf1 ^ Rf2 , andRf1 ^Rf2 , respe
tively, and formal 
omputation rules su
h as e.g. rf (Uf1 ^Rf2) = (1�Rf1)^Rf2 = Rf2 �Rf1 ^Rf2 hold. It is also shown in [26℄ thatif f de�nes a 
omplete interse
tion then Rf = Rf1 ^Rf2 .We will use the names f and g, rather then f1 and f2, for the se
tions of thetwo bundles and the symbol r, without subs
ript, always denotes rf�g. Wewill use multiindi
es extensively in the sequel. Multiindi
es will be denoted



REGULARIZATIONS OF RESIDUE CURRENTS 7� and � or I and J and sometimes also r and �. The number of variables willalways be n but it will be 
onvenient to de�ne multiindi
es by expressionslike � = (�j)j2K for K � f1; : : : ; ng. By this we mean that � = (a1; : : : ; an)where aj = 0 if j =2 K and aj = �j if j 2 K. Hen
e, if z = (z1; : : : ; zn)then z� = Qj2K z�jj and similarly for ��=�z�. Multiindi
es are added andmultiplied by numbers as elements in Zn and � � 1 = (�1 � 1; : : : ; �n � 1).Also, j�j denotes the length of � as a ve
tor in Eu
lidean spa
e and #� isthe 
ardinality of the support of �.Integration over domains in C n will always be with respe
t to the volumeform (i=2)ndz1 ^ d�z1 ^ : : :^ dzn ^ d�zn := (i=2)ndz ^ d�z if nothing else is said.If � is a Reinhardt domain in C n and ' is a fun
tion whi
h only dependson the moduli of the variables and su
h that z�'(z) is integrable on � thenZ� z�'(z) = 0if � is a non-zero multiindex. This simple fa
t will play a fundamental roleto us in what follows and we will refer to it as anti-symmetry.Unless otherwise stated, the symbol � with various subs
ripts will alwaysdenote a smooth fun
tion on [0;1℄ whi
h is zero to some order at 0 and su
hthat �(1) = 1. By smooth at in�nity we mean that t 7! �(1=t) is smoothat zero.4. Regularizations of Cau
hy-Fantappiè-Leray type 
urrentsConsider a fun
tion � as above and let ~�(s) = �(1=s). Then ~� is dif-ferentiable at s = 0 and ~�0(s) = ��0(1=s)=s2. Letting t = 1=s we see that�0(t) = O(1=t2) as t!1. This simple observation will be frequently used inthe sequel. It follows that for any 
ontinuous fun
tion ' with 
ompa
t sup-port in [0;1) we have j'(�t)�0(t)j � C(t+ 1)�2 for a 
onstant independentof �. Hen
e by the dominated 
onvergen
e theorem we see thatZ 10 ddt�(t=�)'(t)dt = Z 10 dd� �(�)'(��)d� ! '(0)Z 10 dd� �(�)d� = '(0);and we have provedLemma 2. Let � 2 C1([0;1℄) satisfy �(0) = 0 and �(1) = 1. Then(d=dt)�(t=�) ! Æ0 as measures on [0;1).Proposition 3. Assume � 2 C1([0;1℄) vanishes to order ` at 0 and satis-�es �(1) = 1. Thenlim�!0+ Z �(jf j2=�)uf̀;`�1 ^ ' = U f̀;`�1:'for any test form '.Proof. On the set 
 = f(z; t) 2 C n � (0;1); jf(z)j2 > tg we have, for all�xed � > 0, that��uf̀;`�1 ddt�(t=�) ^ '�� � C 1jf j2`�1 �� ddt�(t=�)�� �C t1=2t` �� ddt�(t=�)�� � C 1t1=2



8 HÅKAN SAMUELSSONsin
e ddt�(t=�) = O(t`�1). Hen
e we have an integrable singularity on 
 andby Fubini's theorem we getZ 10 ddt�(t=�)Zjf j2>t uf̀;`�1 ^ 'dt = Z uf̀;`�1 ^ 'Z jf j20 ddt�(t=�)dt =Z uf̀;`�1�(jf j2=�) ^ ':(8)But J(t) = Rjf j2>t uf̀;`�1 ^ ' is a 
ontinuous fun
tion with 
ompa
t supportin [0;1) with J(0) = U f̀;`�1:', see [20℄ or [2℄. Hen
e by Lemma 2 the lefthand side of (8) tends to U f̀;`�1:' and the proof is 
omplete. �If we take �(t) equal to appropriate powers of t=(t + 1) we obtain thefollowing natural ways to regularize the 
urrents Uf and Rf .Corollary 4. For any test form ' we have(9) lim�!0+ Z X̀�1 sf ^ ( ��sf )`�1(jf j2 + �)` ^ ' = Uf :'and(10) lim�!0+ Z X̀�1 � ( ��sf )`(jf j2 + �)`+1 ^ ' = Rf :':Proof. Letting �`(t) = t`=(t+ 1)` we see thatuf̀;`�1�`(jf j2=�) = sf ^ ( ��sf )`�1(jf j2 + �)`and so (9) follows from Proposition 3. To show that (10) holds we �rst notethat X̀�1 sf ^ ( ��sf )`�1(jf j2 + �)` = sfrfsf + � :Hen
erf X̀�1 sf ^ ( ��sf )`�1(jf j2 + �)` = rf sfrfsf + � = rfsfrfsf + � = 1� X̀�0 � (��sf )`(jf j2 + �)`+1 :Sin
e di�erentiation is a 
ontinuous operation on distributions it follows from(9) thatlim�!0+ 1� X̀�0 � (��sf )`(jf j2 + �)`+1 = rf lim�!0+X̀�1 sf ^ ( ��sf )`�1(jf j2 + �)` = rfUf = 1�Rfin the sense of 
urrents. The term with ` = 0 in the sum on the left is easilyseen to tend to zero in the sense of 
urrents and hen
e (10) follows. �Note that it is the di�eren
e(11) ��(�`uf̀;`�1)� Æf (�`+1uf̀+1;`) = ���` ^ uf̀;`�1 + (�` � �`+1)Æfuf̀+1;`whi
h 
onverges to the term of Rf of bidegree (`; `). It is only for the termof top degree, the last term in (11) is not present. This explains why the



REGULARIZATIONS OF RESIDUE CURRENTS 9regularization result in [20℄, Theorem 2:1, 
oin
ides with our result for thetop degree term but not for the terms of lower degree.We 
an also take one � whi
h vanishes to high enough order at zero toregularize all terms of Uf and Rf .Corollary 5. Assume that � 2 C1([0;1℄), vanishes to order min(m;n)+1at zero and satis�es �(1) = 1. Then for any test form ' we have(12) lim�!0+ Z �(jf j2=�)uf ^ ' = Uf :'(13) lim�!0+ Z ���(jf j2=�) ^ uf ^ ' = Rf :':Proof. The �rst statement follows immediately from Proposition 3. For these
ond one we note thatr�uf = r� ^ uf + �ruf = ���� ^ uf + �ruf ;and sin
e � vanishes to high enough order at zero all terms are smooth.Outside ff = 0g we have ruf = 1 and hen
e �ruf = � everywhere.Moreover, �(jf j2=�) tends to 1 in the sense of 
urrents and hen
e��� ^ uf = �ruf �r�uf ! 1� (1�Rf ) = Rfin the sense of 
urrents. �5. Regularizations of produ
ts of monomial 
urrentsThis se
tion 
ontains the te
hni
al result about the normal 
rossing 
aseneeded to prove our main theorems in the next se
tion. Of parti
ular impor-tan
e is Proposition 11. First we need a generalization of Taylor's formula.Lemma 6 enables us to approximate a smooth fun
tion de�ned on C n ina neighborhood of the union of the 
oordinate hyperplanes instead of in aneighborhood of their interse
tion as in the usual Taylor's formula. The ap-proximating fun
tions are in our 
ase not polynomials in general but haveenough similarities for our purposes. For tensor produ
ts of one-variablefun
tions this 
orresponds to multiplying the individual Taylor expansions.Lemma 6 appears as Lemma 2:3 in [22℄ but the formulation there is unfortu-nately not 
ompletely 
orre
t. We also remark that Lemma 6 is very similarto Lemma 2:4 in [8℄ and that very general Taylor expansions are 
onsideredin Chapter 1 in [13℄. De�ne the linear operator M rjj on C1(C n) to be theoperator that maps ' to the Taylor polynomial of degree rj of the fun
tion�j 7! '(�) (
entered at �j = 0). We note that M rjj and M rii 
ommute. Tosee this we only need to observe that�� ~�i � �'� ~�j ���j=0����i=0 = �2'� ~�i� ~�j ���i=�j=0 = �� ~�j ��'� ~�i ���i=0����j=0where �=� ~�j means that we do not spe
ify whether we di�erentiate withrespe
t to �j or ��j.



10 HÅKAN SAMUELSSONLemma 6. Let K � f1; : : : ; ng have 
ardinality � and let r = (rj)j2K.De�ne the linear operator M rK on C1(C n) byM rK = Xj2KM rjj � Xi;j2Ki<j M rii M rjj + � � � + (�1)�+1M rj1j1 � � �M rj�j� :Then for any ' 2 C1(C n) we have(14) '(�) =M rK'(�) + Z[0;1℄� (1� t)rr! �r+1�tr+1'(t�) dtwhere t� should be interpreted as (�1; : : : ; �n), �j = tj�j if j 2 K and �j = �jif j =2 K. In parti
ular ' � M rK' = O(j�r+1j). Moreover, M rK' 
an bewritten as a �nite sum of terms, 'IJ(�)�I ��J , with the following properties:(a) 'IJ(�) is independent of some variable and in parti
ular of variable�j if Ij + Jj > 0,(b) Ij + Jj � rj for j 2 K,(
) if L is the set of indi
es j 2 K su
h that �j 7! 'IJ(�) is non-
onstantthen 'IJ (�) = O(Qj2L j�jjrj+1).Proof. It is enough to prove the lemma when K = f1; : : : ; ng. In 
ase n = 1,(14) is Taylor's formula. For n � 2, we write the integral in (14) as aniterated integral. Formula (14) then follows by indu
tion. One 
an alsoshow (14) by repeated integrations by parts. The di�eren
e ' � M rK' isseen to be of the desired size after performing the di�erentiations of '(t�)with respe
t to t inside the integral. To see that M rK' 
an be written as asum of terms 'IJ(�)�I ��J with the properties (a), (b), and (
), we let r ~K ,for any ~K � K, denote the multiindex (rj1 ; : : : ; rjj ~Kj), rij 2 ~K. A straightforward 
omputation now shows thatM rK' = Xj2KM rjj ('�M rKnfjgKnfjg ')+ Xi;j2Ki<j M rii M rjj ('�M rKnfi;jgKnfi;jg ')...+ M rj1j1 � � �M rj�j� ':From the �rst part of the proof (and the de�nition of M rjj ) it follows thatevery term on the right hand side is a �nite sum of terms with the statedproperties. �Lemma 7. Let � be a multiindex and let M = M rK be the operator de�nedin Lemma 6 with K the set of indi
es j su
h that �j � 2 and rj = �j � 2,j 2 K. Then for any ' 2 D(C n) we haveZ� 1�� ('�M') = h 1�� i: ' (i=2)nd� ^ d��if � is a polydis
 
ontaining the support of '.



REGULARIZATIONS OF RESIDUE CURRENTS 11Proof. Note that by Lemma 6 we have ' �M' = O(j���1j) and so (' �M')=�� is integrable on �. Hen
e if we let �Æ = � \j fj�j j > Æg we getZ� 1�� ('�M') = limÆ!0 Z�Æ 1�� ('�M')= limÆ!0 Z�Æ 1��'� limÆ!0 Z�Æ 1��M':The �rst limit on the right hand side is the tensor produ
t of the prin
i-pal value 
urrents [1=��jj ℄ (a
ting on ' (i=2)nd� ^ d��) and hen
e it equals[1=��℄:' (i=2)nd� ^ d��. It follows by anti-symmetry that a
tuallyZ�Æ 1��M' = 0for all Æ > 0. In fa
t, M' is a sum of terms 'IJ(�)�I ��J where Ij + Jj ��j � 2 for all j and the 
oe�
ient 'IJ(�) is at least independent of somevariable. �Lemma 8. Let �1; �2 2 C1([0;1℄) and let � and 	 be smooth stri
tlypositive fun
tions on C n . Let also M rK be the operator de�ned in Lemma 6with K and r arbitrary. Then�1(t1�)�2(t2	) =M rK(�1(t1�)�2(t2	)) + j�r+1jB(t1; t2; �);where B is bounded on (0;1)2 �D if D b C n .Proof. If D b C n both � and 	 have stri
tly positive in�ma and �nitesuprema on D and so there is a neighborhood U of [0;1℄2 in bR � bR su
hthat the fun
tion (t1; t2; �) 7! �1(t1�)�2(t2	) is smooth on U � D. FromLemma 6 it follows that�1(t1�)�2(t2	) =M rK(�1(t1�)�2(t2	)) + XI;J�KIj+Jj=rj+1GIJ(t1; t2; �)�I ��Jfor some fun
tions GIJ whi
h are smooth on U �D, and the lemma readilyfollows. �To prove Proposition 11 we will need the estimates of the following twoelementary lemmas.Lemma 9. Let � be the unit polydis
 in C n and put ��� = f� 2 �; j��j2 � �gand ��;��1;�2 = f� 2 �; j��j2 � �1; j��j2 � �2g. Then for all �; �j � 1 we haveZ�n��� 1j�1j � � � j�nj . �1=(2j�j)j log �jn�1and Z�n��;��1;�2 1j�1j � � � j�nj . j(�1; �2)j!; 2! < minfj�j�1; j�j�1g:



12 HÅKAN SAMUELSSONProof. On the set � n��;��1;�2 , either j��j2 < �1 or j��j2 < �2 and so it followsfrom the �rst inequality that the integral in the se
ond inequality is less thenor equal to (a 
onstant times)�1=(2j�j)1 j log �1jn�1 + �1=(2j�j)2 j log �2jn�1 . �1=(2j�j)��1 + �1=(2j�j)��2. j(�1; �2)j!� ;for any � > 0 and !� � minfj�j�1; j�j�1g=2 � �. Hen
e the se
ond in-equality follows from the the �rst one. To prove the �rst inequality we �rstintegrate with respe
t to the angular variables and then we make the 
hangeof variables xj = log j�jj to see that the integral in question equals(15) (4�)n ZQ� eP xjdx;where Q� = fx 2 (�1; 0℄n; 2P�jxj < log �g. Sin
e all xj � 0 on Q� wehave exp(P xj) � exp(�jxj) here, and 
hoosing R = j log �j=(2j�j) we seethat (15) is less then or equal to Rfjxj>Rg exp(�jxj)dx. In polar 
oordinatesthis is easily seen to be of order �1=(2j�j)j log �jn�1. �Lemma 10. Let � be the unit polydis
 in C n and put ��� = f� 2 �; j��j2 ��g and ��;��1;�2 = f� 2 �; j��j2 � �1; j�� j2 � �2g. Then, for �; �j � 1, we haveZ��� �j��j2 1j�1j � � � j�nj . �1=(2j�j)j log �jn�1;Z��;��1;�2 � �1j��j2 + �2j��j2 � 1j�1j � � � j�nj . j(�1; �2)j!and Z��;��1;�2 �1�2j��j2j��j2 1j�1j � � � j�nj . j(�1; �2)j!;where 2! < minfj�j�1; j�j�1g.Proof. The se
ond and third inequality follow from the �rst one sin
e it im-plies that the integral in the se
ond one is of the size ��+1=(2j�j)1 +��+1=(2j�j)2 .j(�1; �2)j�+! for any � > 0 and that the integral in the third is of the sizeminf�1=(2j�j)1 j log �1jn�1; �1=(2j�j)2 j log �2jn�1g. To prove the �rst inequality wepro
eed as in the previous lemma and we see that the integral in questionequals (4�)n�ZQ� eP xje2P�jxj dx = (4�)n�ZQ�\fjxj�Rg ePxje2P�jxj dx(16) + (4�)n�ZQ�\fjxj�Rg ePxje2P�jxj dx;where Q� = fx 2 (�1; 0℄n; 2P�jxj � log �g. We 
hoose 2R = j log �j=j�j,and then Q� \ fjxj � Rg = fx 2 (�1; 0℄n; jxj � Rg. If all xj � 0 wehave Pxj � �jxj and by the Cau
hy-S
hwarz inequality we also have�P�jxj � j�jjxj. Hen
e we may estimate the integrand in the se
ondto last integral in (16) by exp((2j�j�1)jxj). In the last integral we integrate



REGULARIZATIONS OF RESIDUE CURRENTS 13where �= exp(2P�jxj) � 1 and so we see that the right hand side of (16)is less then or equal to(4�)n�Zfjxj�Rg e(2j�j�1)jxjdx+ (4�)n Zfjxj�Rg e�jxjdx:By 
hanging to polar 
oordinates this is seen to be of the size �1=(2j�j)j log �jn�1.�The proof of the following proposition 
ontains the te
hni
al 
ore of thispaper.Proposition 11. Assume that �1; �2 2 C1([0;1℄) vanish to orders k � 0and ` � 0 at 0, respe
tively, and that �1(1) = 1. Then for any test form' 2 Dn;n(C n) we haveZ 1�k�+`��1(�j��j2=�1)�2(	j��j2=�2)'! (� 1�k�+`� �:'; �2(1) = 10; �2(1) = 0as �1; �2 ! 0+. Moreover, as a fun
tion of � = (�1; �2) 2 [0;1)2, the integralbelongs to all !-Hölder 
lasses with 2! < minfj�j�1; j�j�1g.Remark 12. The values of the integral at points (�1; 0) and (0; �2), �j 6= 0,are �2(1)�1(�j��j2=�1)�k� � 1�`� �:' and �2(�j��j2=�2)�`� � 1�k� �:'respe
tively.Remark 13. The modulus of 
ontinuity 
an be improved by sharpening theestimates in the Lemmas 9 and 10 but we will not bother about this. Thisis be
ause the multiindi
es � and � will be impli
itly given by Hironaka'stheorem and so we 
an only be sure of the existen
e of some positive Hölderexponent when we prove our main theorems anyway.Proof. We prove Hölder 
ontinuity for a path (�1; �2) ! 0, �j 6= 0. For ageneral path (inside [0;1)2) to an arbitrary point in [0;1)2 one pro
eeds ina similar way. Let K be the set of indi
es j su
h that k�j + `�j � 2 and letM = M rK be the operator de�ned in Lemma 6 with rj = k�j + `�j � 2 forj 2 K. Let also � be a polydis
 
ontaining the support of '. In this proofwe will identify ' with its 
oe�
ient fun
tion with respe
t to the volumeform in C n . We make a preliminary de
omposition(17) Z 1�k�+`��1�2' = Z� 1�k�+`��1�2('�M') + Z� 1�k�+`��1�2M':Denote by �� the set f� 2 �; j��j2 � �1; j��j2 � �2g. Sin
e ' �M' =O(j�r+1j), a

ording to Lemma 6, and �1(1) = 1 we get��� Z� 1�k�+`��1�2('�M')� �2(1)Z� 1�k�+`� ('�M')���(18) . Z� 1j�1j � � � j�nj ���1�2 � �2(1)��. Z�� 1j�1j � � � j�nj ���1�2 � �2(1)��+ Z�n�� 1j�1j � � � j�nj :



14 HÅKAN SAMUELSSONIt follows from Lemma 9 that the last integral is of order j�j! as �1; �2 ! 0+.On the other hand, for � 2 �� both j��j2=�1 � 1 and j��j2=�2 � 1 and byTaylor expanding at in�nity we see that�1(�j��j2=�1) = �1(1) + �1j��j2B1(�1=j��j2; �);�2(	j��j2=�2) = �2(1) + �2j��j2B2(�2=j�� j2; �)where B1 and B2 are bounded. Using that �1(1) = 1 we thus get thatj�1�2 � �2(1)j is of the size �1=j��j2 + �2=j��j2. Hen
e, by Lemma 10 these
ond to last integral in (18) is also of order j�j! as �1; �2 ! 0+. In viewof Lemma 7, we have thus showed that the �rst integral on the right handside of (17) tends to [1=�k�+`� ℄:' if �2(1) = 1 and to zero if �2(1) = 0and moreover, belongs to the stated Hölder 
lasses. We will be done ifwe 
an show that the last integral in (17) is of order j�j!. We know thatM' =PIJ 'IJ�I ��J where ea
h 'IJ is independent of at least one variableand Ij + Jj � k�j + `�j � 2 for j 2 K. Hen
e, if � and 	 are 
onstants (oronly depend on the modulus of the �j) then the last integral in (17) is zerofor all �1; �2 > 0 by anti-symmetry. For the general 
ase, 
onsider one term(19) Z� 1�k�+`��1�2'IJ�I ��Jand let L be the set of indi
es j 2 K su
h that �j 7! 'IJ(�) is 
onstant. LetalsoM =M�L be the operator de�ned in Lemma 6 with �j = k�j+`�j�Ij�Jj�2 for j 2 L. We introdu
e the independent (real) variables, or �smoothingparameters�, t1 = j��j2=�1 and t2 = j��j2=�2. Below, M (�1�2) denotes thefun
tion we obtain by letting M operate on � 7! �1(t1�(�))�2(t2	(�)) andthen substituting j��j2=�1 and j��j2=�2 for t1 and t2 respe
tively. We rewritethe integral (19) asZ�� 'IJ�I ��J�k�+`� (�1�2 �M (�1�2)) + Z�n�� 'IJ�I ��J�k�+`� (�1�2 �M (�1�2))+ Z� 'IJ�I ��J�k�+`� M (�1�2):(20)Now, M (�1�2) is a sum of terms whi
h, at least for some j 2 L, aremonomials in �j and ��j times 
oe�
ient fun
tions depending on j�jj andthe other variables. The degrees of these monomials do not ex
eed �j =k�j+ `�j�Ij�Jj�2 and sin
e �j 7! 'IJ(�) is 
onstant for j 2 L we see, by
ounting exponents, that the last integral in (20) vanishes by anti-symmetryfor all �1; �2 > 0. By Lemma 8 we have(21) �1(t1�)�2(t2	)�M (�1(t1�)�2(t2	)) = j��+1jB(t1; t2; �);where B is bounded on (0;1)2��. We note also that by Lemma 6, 'IJ (�) =O(Qj2LnK j�j jrj+1). From (21) we thus see that the modulus of the se
ondintegral in (20) 
an be estimated byC Z�n�� 1j�1j � � � j�nj ;



REGULARIZATIONS OF RESIDUE CURRENTS 15whi
h is of order j�j! by Lemma 9. It remains to 
onsider the �rst integralin (20). On the set �� we have that �j��j2=�1 and 	j��j2=�2 are larger thensome positive 
onstant and so by multiplying the Taylor expansions of thefun
tions t1 7! �1(t1�) and t2 7! �2(t2	) at in�nity we get�1(�j��j2=�1)�2(	j��j2=�2) = �2(1) + �2j��j2 ~�2(j��j2=�2; �)+ �2(1) �1j��j2 ~�1(j��j2=�1; �)+ �1�2j��j2j��j2 ~�1(j��j2=�1; �)~�2(j��j2=�2; �)where ~�j are smooth on [1;1℄��. Now sin
e j��j2=�1 = t1 and j��j2=�2 = t2are independent variables we 
on
lude that�1�2 �M (�1�2) = �2j��j2 (~�2 �M ~�2) + �1j��j2�2(1)(~�1 �M ~�1)+ �1�2j��j2j��j2 (~�1 ~�2 �M (~�1 ~�2))for � 2 ��. By Lemmas 6 and 10 we see that the �rst integral in (20) also isof order j�j! as �1; �2 ! 0+ and the proof is 
omplete. �Remark 14. Let us assume that the fun
tion � is identi
ally 1 in the previ-ous proposition. Then, instead of adding and subtra
ting M (�1�2) in (20),it is enough to add and subtra
t �1M (�2). This suggests that one 
an relaxthe smoothness assumption on �1. It is a
tually possible to take �1 to bethe 
hara
teristi
 fun
tion of [1;1℄. If we de�ne the value of the integral inProposition 11 at a point (�1; 0) to be(22) Z� 1�k�+`��1(j��j2=�1)(' �M');where � andM are as in the proof above, then the 
on
lusions of Proposition11 hold for this 
hoi
e of �1. Only minor 
hanges in the proof are needed tosee this. One 
an also 
he
k that (22) is a way of 
omputing�1(j��j2=�1)� 1�k�+`� �:':The produ
t �1(j��j2=�1)[1=�k�+`� ℄ is well de�ned be
ause the wave frontsets of the two 
urrents behave in the right way, at least for almost all �1,see [7℄.We make another useful observation. Sin
e the fun
tion ~�(s) = �(1=s)is smooth at zero and ~�0(s) := � 1s2�0(1=s), it follows that s 7! �0(1=s)=sis smooth at zero and vanishes for s = 0. Hen
e, t 7! �0(t)t is smooth on[0;1℄, vanishes to the same order at zero as �, and maps 1 to 0. FromProposition 11 we thus see that we haveCorollary 15. Assume that �1; �2 2 C1([0;1℄) vanish to orders k and `at zero respe
tively, and satisfy �j(1) = 1. For any smooth and stri
tlypositive fun
tions � and 	 on C n and any test form ' 2 Dn;n(C n) we have(23) lim�1;�2!0+ Z 1�k�+`��1(�j��j2=�1)�02(	j��j2=�2) j��j2�2 ' = 0;



16 HÅKAN SAMUELSSONand moreover, as a fun
tion of � = (�1; �2) 2 [0;1)2, the integral belongs toall !-Hölder 
lasses with 2! < minfj�j�1; j�j�1g.6. Regularizations of produ
ts of Cau
hy-Fantappiè-Leraytype 
urrentsWe are now in a position to prove our main results. We start with aregularization of the produ
t Uf ^ Ug. Re
all that if f is fun
tion thenUf = [1=f ℄ times some basis element.Theorem 16. Let f and g be holomorphi
 se
tions (lo
ally non-trivial) ofthe holomorphi
 mj-bundles E�j ! X, j = 1; 2, respe
tively. Let �1; �2 2C1([0;1℄) be any fun
tions vanishing to orders m1 and m2 at zero respe
-tively, and satisfying �j(1) = 1. Then, for any test form ' we haveZ �1(jf j2=�1)uf ^ �2(jgj2=�2)ug ^ '! Uf ^ Ug:';as �1; �2 ! 0+. Moreover, as a fun
tion of � = (�1; �2) 2 [0;1)2 the integralon the left hand side belongs to some Hölder 
lass independently of '.Proof. Re
all that Uf ^Ug:' is de�ned as the value at zero of the meromor-phi
 fun
tion � 7! Z jf j2�uf ^ jgj2�ug ^ ':Assuming only that �1 and �2 vanish to orders k � m1 and ` � m2 at zerorespe
tively we will show that(24) Z �1ufk;k�1 ^ �2ug̀;`�1 ^ '! Z jf j2�ufk;k�1 ^ jgj2�ug̀;`�1 ^ '����=0and that the left hand side belongs to some Hölder 
lass. This will 
learlyimply the theorem. We may assume that ' has arbitrarily small supportafter a partition of unity. If ' has support outside f�1(0) [ g�1(0) it iseasy to 
he
k that (24) holds and hen
e we 
an restri
t to the 
ase that' has support in a small neighborhood U of a point p 2 f�1(0) [ g�1(0).We may also assume that U is 
ontained in a 
oordinate neighborhood andthat all bundles are trivial over U . We let (f1; : : : ; fm1) and (g1; : : : ; gm2)denote the 
omponents of f and g respe
tively, with respe
t to some holo-morphi
 frames. It follows from Hironaka's theorem, possibly after anotherlo
alization, that there is an n-dimensional 
omplex manifold ~U and a properholomorphi
 map �: ~U ! U su
h that � is biholomorphi
 outside the nullset��ff1 � � � fm1 � g1 � � � gm2g and that this hypersurfa
e has normal 
rossings in~U . Hen
e we 
an 
over ~U by lo
al 
harts, ea
h 
entered at the origin, su
hthat ��fj and ��gj are monomials times non-vanishing fun
tions. The sup-port of ��' is 
ompa
t be
ause � is proper and hen
e, we 
an 
over thesupport of ��' by �nitely many of these 
harts. We let �k be a partitionof unity on supp(��') subordinate to this 
over. Now, following [20℄ and[4℄, given monomials �1 : : : ; �� , one 
an 
onstru
t an n-dimensional tori
manifold X and a proper holomorphi
 map ~�: X ! C nt whi
h is monoidalwhen expressed in lo
al 
oordinates in ea
h 
hart. Moreover, ~� is biholo-morphi
 outside ~��ft1 � � � tn = 0g and in ea
h 
hart one of the monomials



REGULARIZATIONS OF RESIDUE CURRENTS 17~���1; : : : ; ~���� divides all the others. By repeating this pro
ess, if ne
es-sary, and lo
alizing with partitions of unity at ea
h step, we may a
tuallyassume that fj = �f;j ~fj and gj = �g;j~gj where ~fj and ~gj are non-vanishingand �f;j and �g;j are monomials with the property that �f;�1 divides all �f;jand �g;�2 divides all �g;j for some indi
es �1 and �2. Denote �f;�1 by �� and�g;�2 by ��. It follows that jf j2 = j��j2� and jgj2 = j��j2	 where � and 	are stri
tly positive fun
tions. Moreover, sf = ���~sf andufk;k�1 = sf ^ ( ��sf )k�1jf j2k = 1�k� ~sf ^ ( ��~sf )k�1�k = 1�k� ~ufk;k�1where ~ufk;k�1 is a smooth form and similarly for ug̀;`�1. In order to prove(24) it thus su�
es to proveZ �1(�j��j2=�1)�k� ~ufk;k�1 ^ �2(	j��j2=�2)�`� ~ug̀;`�1 ^ ~'(25) ! Z j��j2��k� ��~ufk;k�1 ^ j��j2��`� 	�~ug̀;`�1 ^ ~'����=0where ~' = �kj��j � � � �k1��1' and that the integral on the left hand sidebelongs to some Hölder 
lass. But by Proposition 11 it does belong to someHölder 
lass and tends to [1=�k�+`� ℄:~ufk;k�1 ^ ~ug̀;`�1 ^ ~'. One 
an verify thatthis indeed is equal to the right hand side of (25) by integrations by partsas in e.g. [2℄. �Remark 17. This theorem 
an a
tually be generalized to any number offa
tors Uf . One �rst 
he
ks that the analogue of Proposition 11 holds forany number of fun
tions �j and then redu
es to this 
ase just as in the proofabove. In parti
ular, if fj, j = 1; : : : ; p, are holomorphi
 fun
tions and �jvanish at 0, we haveZ �1(jf1j2=�1)f1 � � � �p(jfpj2=�p)fp '! � 1f1 � � � 1fp �:'unrestri
tedly as all �j ! 0+. However, we fo
us on the two fa
tor 
ase sin
ewe do not know how to handle more than two residue fa
tors.To prove our regularization results for the 
urrents Uf^Rg and Rf^Rg wehave to stru
ture the information obtained from an appli
ation of Hironaka'stheorem more 
arefully and then use Proposition 11 and Corollary 15 in theright way. The te
hni
al part of this is 
ontained in the following proposition.Proposition 18. Assume that �1; �2 2 C1([0;1℄) vanish to orders k and` at zero, respe
tively, and satisfy �j(1) = 1. Let �0, �00, �0 and �00 bemultiindi
es su
h that �0, �00 and �0 have pairwise disjoint supports, and�00j = 0 if and only if �00j = 0. Assume also that ' 2 Dn;n�1(C n) has theproperty that d��j=��j ^' 2 Dn;n(C n) for all j su
h that �00j 6= 0. Then for anysmooth and stri
tly positive fun
tions � and 	 on C n we havelim�1;�2!0+ Z 1�k1�2̀�1(�j�1j2=�1)���2(	j�2j2=�2) ^ ' = h 1�k1�`�00 i
 ��h 1�`�0 i:';



18 HÅKAN SAMUELSSONwhere �1 = ��0+�00 and �2 = ��0+�00. Moreover, as a fun
tion of � = (�1; �2) 2[0;1)2, the integral belongs to all !-Hölder 
lasses with 2! < minfj�0 +�00j�1; j�0 + �00j�1g.Remark 19. Note that the hypotheses on the multiindi
es imply that afa
tor �j divides both the monomials �1 and �2 if and only if �00j 6= 0 (orequivalently �00j 6= 0). In parti
ular, the tensor produ
t of the 
urrents is wellde�ned.Remark 20. We may let k or ` or both of them be equal to zero and the
on
lusions of the proposition still hold. In 
ase ` = 0 one should interpret��[1=�`�0 ℄ as zero.Proof. Let K, L and K
 be the set of indi
es j su
h that �0j 6= 0, �00j 6= 0 and�0j = 0 respe
tively. Clearly L � K
. We write �� = ��K + ��K
 and integrateby parts with respe
t to ��K to see thatZ 1�k1�2̀�1( ��K + ��K
)�2 ^ ' =(26) � Z 1�k1�2̀�01 j�1j2�1 �2 ��K� ^ '� Z 1�k1�2̀�1�2 ��K'+ Z 1�k1�2̀�1�02 j�2j2�2 (	Xj2L �00j d��j��j + ��K
	) ^ ':Note that ��K does not fall on j�1j2 be
ause of the hypotheses on the mul-tiindi
es. By assumption, d��j=��j ^ ' 2 Dn;n(C n) for j 2 L and so the �rstand the last integral on the right hand side of (26) tend to zero and hasthe right modulus of 
ontinuity by Corollary 15. The se
ond to last integralin (26) tends to �[1=(�k1�2̀)℄:��K' = [1=(�k1�`�00)℄ 
 ��[1=�`�0 ℄:' and has theright modulus of 
ontinuity by Proposition 11. �Theorem 21. Let f and g be holomorphi
 se
tions (lo
ally non-trivial) ofthe holomorphi
 mj-bundles E�j ! X, j = 1; 2, respe
tively. Assume thatthe se
tion f � g of E�1 � E�2 ! X de�nes a 
omplete interse
tion. Let�1; �2 2 C1([0;1℄) be any fun
tions vanishing to orders m1 and m2 at zerorespe
tively, and satisfying �j(1) = 1. Then, for any test form ' we have(27) Z �1(jf j2=�1)uf ^ ���2(jgj2=�2) ^ ug ^ '! Uf ^Rg:'as �1; �2 ! 0+. Moreover, as a fun
tion of � = (�1; �2) 2 [0;1)2 the integralon the left hand side belongs to some Hölder 
lass independently of '.Proof. We will assume that �1 and �2 only vanish to orders k � m1 and` � m2 respe
tively and show that(28) Z �1ufk;k�1^ ���2^ug̀;`�1^'! Z jf j2�ufk;k�1^ ��jgj2�^ug̀;`�1^'����=0:By arguing as in the proof of Theorem 16 we may assume that jf j2 = j��j2�and jgj2 = j��j2	 where � and	 are stri
tly positive fun
tions and moreover,



REGULARIZATIONS OF RESIDUE CURRENTS 19that ufk;k�1 = ~ufk;k�1=�k� for a smooth form ~ufk;k�1 and similarly for ug̀;`�1.What we have to prove is thusZ �1(�j��j2=�1)�k� ~ufk;k�1 ^ ���2(	j��j2=�2)�`� ~ug̀;`�1 ^ ~'(29) ! Z j��j2��k� ��~ufk;k�1 ^ ��(j�� j2�	�)�`� ~ug̀;`�1 ^ ~'����=0where ~' = �kj��j � � � �k1��1'. After the resolutions of singularities we 
anin general no longer say that the pull-ba
k of f � g de�nes a 
omplete in-terse
tion. On the other hand we 
laim that if �j divides both �� and ��then d��j=��j ^ ~' is smooth. In fa
t, let z be lo
al 
oordinates on our originalmanifold. In order that the integrals in (28) should be non-zero, ' has tohave degree n� k � `+ 1 in d�z and so we 
an assume that' = X#J=n�k�`+1'J ^ d�zJ :Sin
e the variety Vf�g = f�1(0) \ g�1(0) has dimension n � m1 � m2 <n�k�`+1 we see that d�zJ vanishes on Vf�g. The pull-ba
k of d�zJ throughall the resolutions �j 
an be written PI CI(�)d��I and it must vanish on thepull-ba
k of Vf�g. In parti
ular it has to vanish on f�j = 0g if �j divides both�� and ��. If d��j does not o

ur in d��I it must be that the 
oe�
ient fun
tionCI(�) vanishes on f�j = 0g. But these fun
tions are anti-holomorphi
 and so��j must divide CI(�). The 
laim is established. We now write �� = ��0+�00and �� = ��0+�00 where �0, �00 and �0 have pairwise disjoint supports and�00 = 0 if and only if �00 = 0. Thus, �j divides both �� and �� if and only if�00j 6= 0, or equivalently, �00j 6= 0. A

ording to Proposition 18 the left handside of (29) belongs to some Hölder 
lass and tends to�h 1�k�+`�00 i
 ��h 1�`�0 i:~ufk;k�1 ^ ~ug̀;`�1 ^ ~':One 
an 
ompute the right hand side of (29) by integrations by parts as ine.g. [2℄ to see that it equals the same thing. �Remark 22. The form ���2(jgj2=�2)^ ug is a
tually smooth even if �2 onlyvanishes to order m2 at 0. The only possible problem is with the top degreeterm ���2(jgj2=�2) ^ ugm2;m2�1. But we haveC1(X) 3 ��(�2(jgj2=�2)ugm2 ;m2�1) = ���2(jgj2=�2) ^ ugm2;m2�1+ �2(jgj2=�2) ��ugm2;m2�1;and sin
e ugm2;m2�1 is ��-
losed (outside Vg) it follows that ���2(jgj2=�2) ^ugm2;m2�1 is smooth as well.Corollary 23. With the same hypotheses as in Theorem 21 we haveZ ���1(jf j2=�1) ^ uf ^ ���2(jgj2=�2) ^ ug ^ '! Rf ^Rg:';(30) Z ���1(jf j2=�1) ^ uf�2(jgj2=�2) ^ '! Rf :';



20 HÅKAN SAMUELSSONand(31) Z �1(jf j2=�1) ^ uf ^ ���2(jgj2=�2) ^ '! 0as �1; �2 ! 0+, and as fun
tions of � = (�1; �2) 2 [0;1)2 the integrals on theleft hand sides belong to some Hölder 
lasses independently of '.Proof. We have the following equality of smooth forms:r( ���1 ^ uf ^ �2ug) = ����1 ^ �2ug � ���1 ^ uf ^ ���2 ^ ug(32) + ���1 ^ uf�2:The 
omputation rules established in [26℄, and Theorem 21 now imply that,for any test form ' (of 
omplementary total degree), we haveRf :'�Rf ^Rg:' = r(Rf ^ Ug):' = �Rf ^ Ug:r'= lim�Z ���1 ^ uf ^ �2ug ^r'= limZ r(���1 ^ uf ^ �2ug) ^ ':The integral on the se
ond row is Hölder 
ontinuous by Theorem 21 and so,also the integral on the third row is. By 
hoosing ' of appropriate bidegreesthe 
orollary now follows from (32). �The statements (30) and (31) a
tually hold with no assumptions on thebehavior of �2 at zero. This 
an be seen by using that we know this when�2 � 1 by Corollary 5, and when �2 vanishes to high enough order by theprevious 
orollary.Assume that f de�nes a 
omplete interse
tion and pi
k a holomorphi
fun
tion g su
h that f � g also de�nes a 
omplete interse
tion and su
h thatg is zero on the singular part of Vf . After resolving singularities in the proofof Theorem 21 we 
an �nd 
oordinates su
h that g is a monomial times anon-vanishing holomorphi
 fun
tion ~g. But ~g 
an be in
orporated in some
oordinate and we 
an therefore assume that ~g � 1. Repeating the proof ofTheorem 21 and using Remark 14 one shows that (30) holds for �2 equalto the 
hara
teristi
 fun
tion of [1;1℄. Then, if we �rst let �1 tend to zero,keeping �2 �xed, and after that let �2 tend to zero we get thatlim�2!0+ �2(jgj2=�2)Rf = Rf :We remark that the produ
t �2(jgj2=�2)Rf is well de�ned sin
e the wave frontsets of �2(jgj2=�2) and Rf behave properly, see e.g. [7℄. Sin
e �2(jgj2=�2)equals the 
hara
teristi
 fun
tion of fjgj2 > �2g we haveCorollary 24. If f de�nes a 
omplete interse
tion then the Cau
hy-Fantappiè-Leray 
urrent Rf has the standard extension property.This is a well known result and follows from the fa
t that Rf equals theCole�-Herrera 
urrent in the sense of (7). It is even true that ��g(�)Rf !Rf , � ! 0+ where � is a positive smooth fun
tion and ��g(�) is the 
har-a
teristi
 fun
tion of fj�gj > �g. In fa
t, via Hironaka and tori
 resolutionsone redu
es to the 
ase of one fun
tion and then one 
an pro
eed as in [7℄.



REGULARIZATIONS OF RESIDUE CURRENTS 21We know from [26℄ that if f�g de�nes a 
omplete interse
tion then Rf^Rg
onsists of one term of top degree. Hen
e, it is only the top degree term of���1^uf ^ ���2^ug whi
h gives a 
ontribution in the limit. With the natural
hoi
es �1(t) = tm1=(t + 1)m1 and �2(t) = tm2=(t + 1)m2 , Corollary 23 andRemark 22 thus giveCorollary 25. Let f and g be holomorphi
 se
tions (lo
ally non-trivial) ofthe holomorphi
 mj-bundles E�j ! X, j = 1; 2, respe
tively. Assume thatthe se
tion f � g of E�1 �E�2 ! X de�nes a 
omplete interse
tion. Then, forany test form ' we haveZ �� sf ^ ( ��sf )m1�1(jf j2 + �1)m1 ^ �� sg ^ ( ��sg)m2�1(jgj2 + �2)m2 ^ '! Rf ^Rg:'as �1; �2 ! 0+, and the integral to the left belongs to some Hölder 
lassindependently of '.For se
tions f and g of the trivial line bundle we get the result announ
edin [22℄.Corollary 26. Let f and g be holomorphi
 fun
tions de�ning a 
ompleteinterse
tion. Then for any test form ' we haveZ �� �fjf j2 + �1 ^ �� �gjgj2 + �2 ^ '! h�� 1f ^ �� 1g i:'as �1; �2 ! 0+, and the integral to the left belongs to some Hölder 
lassindependently of '.Proof. We 
onsider f and g as se
tions of (di�erent 
opies of) the trivial linebundle X�C ! X with the standard metri
. Then, suppressing the naturalglobal frame elements, we have sf = �f and sg = �g. By Corollary 25 we aredone sin
e Rf ^Rg is the Cole�-Herrera 
urrent. �So far, in this se
tion, we have used one fun
tion � to regularize all termsof uf . One 
ould try to take di�erent �:s for di�erent terms. We re
all thenatural 
hoi
es tk=(t+1)k from Corollary 4 and we let uf� = sf=(rsf + �) =P sf ^ ( ��sf )k�1=(jf j2 + �)k. The next theorem says that, in the 
ompleteinterse
tion 
ase, the produ
t of two su
h regularized 
urrents goes unre-stri
tedly to the produ
t, in the sense of [26℄, of the 
urrents.Theorem 27. Let f and g be holomorphi
 se
tions (lo
ally non-trivial) ofthe holomorphi
 mj-bundles E�j ! X, j = 1; 2, respe
tively. Assume thatthe se
tion f � g of E�1 �E�2 ! X de�nes a 
omplete interse
tion. Then, forany test form ' we haveZ uf�1 ^rug�2 ^ ' = (Uf � Uf ^Rg):'as �1; �2 ! 0+, and the integral to the left belongs to some Hölder 
lassindependently of '.Proof. We �rst note thatrug�2 = 1� �2 X̀�1 (��sg)`�1(jgj2 + �2)` ;



22 HÅKAN SAMUELSSONsee the proof of Corollary 4. As Uf ^ Rf is de�ned as the value at zero ofthe analyti
 
ontinuation (in the sense of 
urrents) of jf j2�uf ^ ��jgj2� ^ ug,what we have to prove isZ sf ^ ( ��sf )k�1(jf j2 + �1)k ^ �2 ( ��sg)`�1(jgj2 + �2)` ^ '!(33) Z jf j2�ufk;k�1 ^ ��jgj2� ^ ug̀�1;`�2 ^ '����=0and that the integral on the left belongs to some Hölder 
lass. We �rst
onsider the 
ase ` = 1. The right hand side of (33) should then be in-terpreted as zero. We write the integrand on the left hand side of (33) as�1(jf j2=�1)�2(jgj2=�2)ufk;k�1^' where �1(t) = tk=(t+1)k and �2(t) = 1=(t+1). As in the proof of Theorem 16 we may assume that ufk;k�1 = ~ufk;k�1=�k�,where ~ufk;k�1 is a smooth form, that jf j2 = j��j� and that jgj2 = j��j2	,where � and 	 are stri
tly positive smooth fun
tions. Sin
e �2(1) = 0 theleft hand side of (33) tends to zero and belongs to some Hölder 
lass byProposition 11. For ` � 2 we pro
eed as in the proof of Theorem 21 and wesee that we may assume that f = (f1; : : : ; fm) and g = (g1; : : : ; gm2) withfj = ��jf 0j and gj = ��jg0j where all f 0j and g0j are non-vanishing and more-over, that for some indi
es �1 and �2 it holds that �� := ���1 divides all ��jand �� := ���2 divides all ��j . From the same proof we also see that we mayassume that d��j=��j ^' is smooth (and 
ompa
tly supported) for all �j whi
hdivide both �� and ��, sin
e f � g de�nes a 
omplete interse
tion. We usethe notation from the proof of Theorem 21, e.g. jf j2 = j��j2� = j��0+�00 j2�,ufk;k�1 = ~ufk;k�1=�k(�0+�00) and jgj2 = j��j2	 = j��0+�00 j2	 et
. We also in-trodu
e the notation �j(t) for the fun
tion tj=(t+1)j , and so, in parti
ular,we 
an write 1=(t+ �)j = �j(t=�)=tj . For ` � 2, one 
an verify that�2 (��sg)`�1(jgj2 + �2)` = 1�(`�1)� ���`�1(j��j2	=�2) ^ ~ug̀�1;`�2(34) + 1�(`�1)� �0̀ �1(j��j2	=�2) j�� j2�2 	`� 1 ��~ug̀�1;`�2:Using this identity we see that the integral on the left hand side of (33) splitsinto two integrals. The integral 
orresponding to the last term in (34) tendsto zero as �1; �2 ! 0 and belongs to some Hölder 
lass a

ording to Corollary15. By Proposition 18, the integral 
orresponding to the �rst term on theright hand side of (34) also belongs to some Hölder 
lass and tends to(35) �h 1�k�+(`�1)�00 i
 ��h 1�(`�1)�0 i:~ufk;k�1 ^ ~ug̀�1;`�2 ^ 'as �1; �2 ! 0. This is seen to be equal to the right hand side of (33) by usingthe methods in [26℄. �



REGULARIZATIONS OF RESIDUE CURRENTS 237. The Passare-Tsikh exampleLet f = z41 , g = z21 + z22 + z31 and ' = ��z2gdz1 ^ dz2 where � has 
ompa
tsupport and is identi
ally 1 in a neighborhood of the origin. Sin
e the 
om-mon zero set of f and g is just the origin they de�ne a 
omplete interse
tion.In [19℄ Passare and Tsikh show that the residue integral(�1; �2) 7! I'f;g(�1; �2) = Zjf j2=�1jgj2=�2 'fgis dis
ontinuous at the origin. More pre
isely, they show that for any �xedpositive number 
 6= 1 one has lim�!0 I'f;g(�4; 
�2) = 0 but lim�!0 I'f;g(�4; �2) 6=0. On the other hand, by Fubini's theorem we haveZ[0;1)2 �2�2I'f;g(t1; t2)dt1dt2(t1 + �1)2(t2 + �2)2 = Z �1djf j2(jf j2 + �1)2 ^ �2djgj2(jgj2 + �2)2 ^ 'fg =Z �� �fjf j2 + �1 ^ �� �gjgj2 + �2 ^ ':(36)Hen
e, this average of the residue integral is 
ontinuous at the origin byCorollary 26. In this se
tion we will examine the last integral in (36) as�1; �2 ! 0 expli
itly. We will see that it is 
ontinuous at the origin withHölder exponent at least 1=8 and that it tends to zero. Morally, the valueof I'f;g(�1; �2) at 0 should be the Cole�-Herrera 
urrent asso
iated to f andg multiplied by �z2g a
ting on �dz1 ^ dz2. But both g and �z2 annihilate theCole�-Herrera 
urrent sin
e g belongs to the ideal generated by f and g,and z2 belongs to the radi
al of this ideal. We will thus verify Corollary 26expli
itly in this spe
ial 
ase.Our �rst obje
tive is to resolve singularities to obtain normal 
rossings.This is a

omplished by a blow-up of the origin. The map � : B0C 2 ! C 2looks like �(u; v) = (u; uv) and �(u0; v0) = (u0v0; u0) in the two standard
oordinate systems on B0C 2 . The ex
eptional divisor, E, 
orresponds to thesets fu = 0g and fu0 = 0g and � is a biholomorphism B0C 2 nE ! C 2 n f0g.In the (u; v)-
oordinates we have ��f = u4 and ��g = u2(1 + v2 + u). Thefun
tion 1 + v2 + u has non-zero di�erential and its zero lo
us interse
ts Enormally in the two points v = i and v = �i. Moreover, in the (u0; v0)-
oordinates we have ��f = u04v04 and ��g = u02(v02 + 1 + u0v03). The zerolo
us of v02+1+u0v03 interse
ts E normally in the points v0 = �i and v0 = i,whi
h we already knew, and it does not interse
t v0 = 0. Also, the di�erentialof v02 + 1 + u0v03 is non-zero on the zero lo
us of v02 + 1 + u0v03. Hen
e,f��f ���g = 0g has normal 
rossings. We assume that ' has support so 
loseto the origin that supp(��')\f1+v2+u = 0g has two (
ompa
t) 
omponents,K1 and K2, and that these 
omponents together with the 
ompa
ts K3 =supp(��') \ fv = 0g and K4 = supp(��') \ fv =0 0g are pairwise disjoint.We 
an then 
hoose a partition of unity f�jg41 su
h that P �j � 1 on thesupport of ��' and for ea
h j = 1; 2; 3; 4, the support of �j interse
ts onlyone of the 
ompa
ts K1, K2, K3 and K4. We 
hoose the numbering su
h



24 HÅKAN SAMUELSSONthat the support of �j interse
ts Kj . The last integral in (36) now equals(37) 4X1 Z �� �� �fj��f j2 + �1 ^ �� ���gj��gj2 + �2 ^ �j��' := I1 + I2 + I3 + I4:In fa
t, it is only in I3 we have resonan
e and we start by 
onsidering theeasier integrals I1, I2 and I4. The integrals I1 and I2 are similar and we only
onsider I1. The support of �1 is 
ontained in a neighborhood of p1 = (0; i)in the (u; v)-
oordinates and �1��' = �1����u�v��gudu ^ dv. Integrating byparts we thus see thatI1 = �Z �� �� �fj��f j2 + �1 j��gj2j��gj2 + �2 ^ u��(�u�v�1���du ^ dv):Sin
e ��f = u4 depends on u only, the term of ��(�u�v�1���) involving d�udoes not give any 
ontribution to I1. Hen
e we 
an repla
e ��(�u�v�1���) by�u'1 where '1 is smooth and supported where �1 is. We put �1 = u and�2 = 1+ v2+ u, whi
h de�nes a 
hange of variables on the support of �1. Inthese 
oordinates ��f = �41 and ��g = �21�2 and so we getI1 = �Z 1�31 ���(j�41 j2=�1)�(j�21�2j2=�2) ^ ��1'1where �(t) = t=(t + 1). We also write ���(j�41 j2=�1) = 4~�(j�41 j2=�1)d��1=��1,where ~�(t) = t=(t+ 1)2. To pro
eed we repla
e (the 
oe�
ient fun
tion of)d��1=��1 ^ ��1'1 by its Taylor expansion of order one, 
onsidered as a fun
tionof �1 only, plus a remainder term j�1j2B(�), with B bounded. The terms
orresponding to the Taylor expansion do not give any 
ontribution to I1sin
e we have anti-symmetry with respe
t to �1 for these terms. Hen
e, weobtain(38) jI1j . Z� �� j�1j2B(�)�31 ~�(j�41 j2=�1)�(j�21 �2j2=�2)��;where � is a polydis
 
ontaining the support of '1. We estimate jB(�)jand �(j�21�2j2=�2) by 
onstants, and on the sets �� = f� 2 �; j�41 j2 � �1gand � n �� we use that ~�(j�41 j2=�1) . �1=j�41 j2 and ~�(j�41 j2=�1) . j�41 j2=�1respe
tively, to see that the right hand side of (38) is of the size j�j1=8.To deal with I4 we pro
eed as follows. The support of �4 is 
ontained in aneighborhood of p4 = (0; 0) in the (u0; v0)-
oordinates and ��f = u04v04 and��g = u02(1 + v02 + u0v03) := u02~g. On the support of �4 we have ~g 6= 0. Themultiindi
es (4; 4) and (2; 0) are linearly independent and so we 
an makethe fa
tor ~g disappear. Expli
itly, 
hoose a square root ~g1=2 of ~g and put�1 = u0~g1=2 and �2 = v0~g�1=2. In these 
oordinates ��f = �41�42 and ��g = �21 .One also 
he
ks that �4��' = j�1j2��g'4 where '4 is a test form of bidegree(2; 0). After an integration by parts we see that(39) I4 = Z �� �fj��f j2 + �1 �� j��gj2j��gj2 + �2 ^ ��(j�1j2'4):
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e ��g = �21 only depends on �1 we may repla
e ��(j�1j2'4) by j�1j2 ��'4 in(39). Computing ��(j��gj2=(j��gj2 + �2)) we �nd thatI4 = 2Z 1�31�42 �(j�41�42 j2=�1)~�(j�21 j2=�2)d��1 ^ ��'4:With abuse of notation we write the test form d��1 ^ ��'4 as '4d� ^ d��. LetM =M1;21;2 be the operator de�ned in Lemma 6. Expli
itly, we haveM'4 = M11'4 +M22'4 �M11M22'4= M11 ('4 �M22'4) +M22 ('4 �M11'4) +M11M22'4:All of the following properties will not be important for this 
omputationbut to illustrate Lemma 6 we note that the se
ond expression of M' revealsthat M'4 
an be written as a sum of terms �IJ(�)�I ��J with I1+J1 � 1 andI2 + J2 � 2 and moreover, that �IJ is independent of at least one variableand is of the size O(j�1j2) if it depends on �1 and of the size O(j�2j3) if itdepends on �2. By Lemma 6 we also have '4 = M'4 + j�1j2j�2j3B(�) forsome bounded fun
tion B and soI4 = Z� 1�31�42 �~�M'4 + Z� 1�31�42 �~�j�1j2j�2j3B(�) =: I4:1 + I4:2;where � is a polydis
 
ontaining the support of '4. By anti-symmetryI4:1 = 0. To estimate I4:2 we use that j�Bj is bounded by a 
onstant andthat ~�(	j�21 j2=�2) . �2=j�21 j2 and ~�(	j�21 j2=�2) . j�21 j2=�2 on the sets �� =f� 2 �; j�21 j2 � �2g and � n�� respe
tively. Hen
e,(40) jI4:2j . Z�� �2j�21 j2j�1jj�2j + Z�n�� j�21 j2�2j�1jj�2j ;whi
h is seen to be of the size j�j1=4.It remains to take 
are of I3. We are now working 
lose to u = v = 0and ��f = u4 and g = u2(1 + v2 + u) := u2~g. The multiindi
es are linearlydependent and we 
annot dispose of the non-zero fa
tor ~g. We rename ourvariables (u; v) = (�1; �2) and pro
eed in pre
isely the same way as we didwhen we were 
onsidering I1. We getI3 = �4Z 1�31 ~�(j�41 j2=�1)�(�j�21 j2=�2)'3d� ^ d��;where � = j~gj2 is a stri
tly positive smooth fun
tion and '3 is smooth with
ompa
t support. As before, we repla
e '3 by M1�1'3 + j�1j2B(�). Theintegral 
orresponding to j�1j2B(�) satis�es the same estimate as the one in(38) and hen
e is of the size j�1j1=8. We 
annot use anti-symmetry dire
tlyto 
on
lude the the integrals 
orresponding to the other terms in the Taylorexpansion tend to zero sin
e the fa
tor ~g is present. We illustrate why this istrue anyway by 
onsidering the integral 
orresponding to the term '3(0; �2).Let � be a polydis
 
ontaining the support of '3 and 
onsider(41) Z� 1�31 ~�(j�41 j2=�1)�(�j�21 j2=�2)'3(0; �2):



26 HÅKAN SAMUELSSONWe introdu
e the smoothing parameter t = j�21 j2=�2 as an independent vari-able and write�(�t) = �(�t)�M1�1�(�t) +M1�1�(�t) := j�1j2B(t; �) +M1�1�(�t):Here B is bounded on [0;1℄ � �. Substituting into (41) we obtain oneintegral 
orresponding to j�1j2B(j�21 j2=�2; �), whi
h satis�es an estimate like(38), while the integral 
orresponding to M1�1�(�j�21 j2=�2) is zero sin
e wehave anti-symmetry with respe
t to �1. Hen
e jI3j . j�j1=8.Referen
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