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REGULARIZATIONS OF PRODUCTS OF RESIDUE AND
PRINCIPAL VALUE CURRENTS

HAKAN SAMUELSSON

ABSTRACT. Let f1 and f; be two functions on some complex n-manifold
and let ¢ be a test form of bidegree (n,n — 2). Assume that (fi, f2)
defines a complete intersection. The integral of ¢/(f1f2) on {|fi|* =
€1, \fz|2 = €2} is the residue integral I}”l’h(el,@). It is in general dis-
continuous at the origin. Let x1 and x2 be smooth functions on [0, co]
such that x;(0) = 0 and x;(oc0) = 1. We prove that the regularized
residue integral defined as the integral of dx1 A Ox2 A @/(f1f2), where
xi = x;(Ifi|*/€;), is Holder continuous on the closed first quarter and
that the value at zero is the Coleff-Herrera residue current acting on
¢. In fact, we prove that if ¢ is a test form of bidegree (n,n — 1) then
the integral of x10x2 A ¢/(f1f2) is Holder continuous and tends to the
O-potential [(1/f1) AO(1/f2)] of the Coleff-Herrera current, acting on ¢.
More generally, let fi and f2 be sections of some vector bundles and as-
sume that f1 & f» defines a complete intersection. There are associated
principal value currents U/ and U? and residue currents R’ and RY.
The residue currents equal the Coleff-Herrera residue currents locally.
One can give meaning to formal expressions such as e.g. U/ A R in
such a way that formal Leibnitz rules hold. Our results generalize to
products of these currents as well.

1. INTRODUCTION

Consider a holomorphic function f defined on some complex n-manifold
X and let V; = f71(0). Schwartz found that there is a distribution, or
current, U on X such that fU = 1, |23]|. The existence of the principal value
current [1/f] defined by

Dpn(X) 2 ¢ = lim olf
e—0 IfI12>e

was proved by Herrera and Lieberman in [11] using Hironaka’s desingulariza-
tion theorem, [12] and gives a realization of such a current U. The 0-image of
the principal value current is the residue current associated to f. By Stokes’
theorem its action on a test form of bidegree (n,n — 1) is given by the limit
as € — 0 (along regular values for |f|?) of the residue integral

() o= elr

One main point discovered by Herrera and Lieberman is that if ¢ has bidegree
(n—1,n) then for each k, I;fk (€) = O(e%) for some positive d;,. Using this, one

can then smoothen the integration over |f|? = € and regularize the residue
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2 HAKAN SAMUELSSON

current by using smooth functions x defined on [0,00) such that x is 0 at
zero and tends to 1 at infinity. In fact, we can make a Leray decomposition
and write any (n,n)-test form ¢ as ¢ A 3f/f* for some k, where ¢ is a test
form of bidegree (n — 1,n) whose restriction to |f|> = t is unique, for each
t > 0. Then writing the integral of x(|f|?/€)¢/f as an integral over the
level surfaces |f|? = ¢ and using Herrera’s and Lieberman’s result one sees
that x(|f|?/€)/f is a regularization of the principal value current [1/f]. It
follows that the residue current can be obtained as the weak limit of the
smooth form dx(|f|?/€)/f. This is also a consequence of Corollary 5 below.
A natural choice for x is x(¢) = t/(t + 1) and we see that we get the well
known result that the residue current can be obtained as the weak limit of
O(f/(|f|* +¢€)). We also briefly mention the more general currents studied
by Barlet, [3]. If we instead integrate over the fiber f = s in (1) and let ¢
have bidegree (n —1,n — 1) then the integral has an asymptotic expansion in
s with current coefficients. The constant term is Lelong’s integration current
on V; and the residue current 9[1/f] can be obtained from the coefficient of
s™.

We turn to the main focus of this paper which is the codimension two case.
Let f and g be two holomorphic functions on X such that f and g define
a complete intersection, that is, the common zero set Vygq, has codimension
two. Consider the residue integral

@) I yfene) = foy 4

“g?=e2

The unrestricted limit of the residue integral as €1, e2 — 0 does not exist in
general. The first example of this phenomenon was discovered by Passare
and Tsikh in [19], and Bjork later found that this indeed is the typical case,
[6]. See also [21]. Via Hironaka’s theorem on resolutions of singularities one
may assume that the hypersurface f-g = 0 has normal crossings, which
means that there is a (finite) atlas of charts such that f(¢) = f(¢)¢® and
g(¢) = §(¢)¢? where a and 8 are multiindices (depending on the chart) and
f and ¢ are invertible holomorphic functions. It is actually the invertible
factors which cause problems. One can always dispose of one of the factors,
but in general not of both. However, if the matrix A, whose two rows are
the integer vectors a and [ respectively, has rank two there is a change
of variables z = 7(¢) such that z® = f(¢)¢* and 28 = §(¢)¢P, see e.g.
[16]. Hence, when « and /8 are not linearly dependent we can make both
the invertible factors disappear. Problems therefore arise in so called charts
of resonance where a and [ are linearly dependent. Coleff and Herrera
realized that if one demands that €; and e, tend to zero in such a way that
€1/ek — 0 for all k € Z,, along a so called admissible path, then one will
get no contributions from the charts of resonance because one cannot have
17(¢)¢®| << 1§(¢)¢P| if o and B are linearly dependent. They proved in
[8] that the limit, along an admissible path, of the residue integral exists
and defines the action of a (0, 2)-current, the Coleff-Herrera residue current
[0(1/f) AO(1/g)]. In [16] Passare smoothened the integration over the set
{If1? = e1} N{|g|? = €2} by introducing functions x as described above, and
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he studied possible weak limits of forms

oxi(lf?/e1) | Oxa(lgl/e2)
(3) A
f g
along parabolic paths (e1,e9) = (€°',€°2) where s = (s, $2) belongs to the
simplex $5(2) = {(z,y) € R%; 51 + 5o = 2}. He found that it is enough
to impose finitely many linear conditions (n;,s) # 0 to assure that (3) has
a weak limit along the corresponding parabolic path. The linear conditions
partition 32(2) into finitely many open segments and the weak limit of (3)
along a parabolic path corresponding to an s in such a segment only depends
on the segment. We say that (ej, e2) tends to zero inside a Passare sector.
Moreover, as we assume that f and g define a complete intersection, the
limit is even independent of the choice of segment. In this case it also
coincides with the Coleff-Herrera current. One can obtain a 0-potential
to the Coleff-Herrera current e.g. by changing the integration set in (2) to
{If1? > e1}N{|g|? = €2} and pass to the limit along an admissible path or by
removing the first  in (3) and pass to the limit inside a Passare sector. This
O-potential is denoted [(1/f)0(1/g)]. The main result in this paper implies
that if x; € C*°([0, o¢]) satisfy x;(0) = 0 and x;(c0) = 1 then, in the sense
of currents

(4) lim xi([f?/e1) x2(lgl*/e2) _ [151]7

€1,e0—0 f g f g
and the action of the smooth form on the left hand side on a test form
depends Holder continuously on (e,€2) € [0,00)2. For the particular case
when x;(t) = t/(t + 1) our result, apart from the Holder continuity, was
announced in [22]. Actually, it is possible to relax the smoothness assumption
on one of the x; in (4). As mentioned above, one can always dispose of one

of the invertible factors. Say that we always arrange so that f = 1. Then,
examining the proof, one finds that one may take x; to be the characteristic
function of [1, 00]. Hence,

Ix2(|g/*/e2)
= o—|.
./f2>51 fg f g] v

with Holder continuity. Note that if we let both y; and o be the charac-
teristic function of [1,00] then this result is no longer true in view of the
examples of Passare-Tsikh and Bjork.

Our result also generalize to products of pairs of so called Bochner-Martinelli
blocks. Consider a tuple f = (f1,..., fm) of holomorphic functions on X.
The residue integral corresponding to f, I}p(el,...,em), is defined anal-

1:1
/\90—>[— -

ogously to (2). If we take the mean value of the residue integral over

€ = (€1,...,€y,) in the simplex 3,,(0) = {s € R"; > s; = §} we obtain
S (=1 Ny OFi Ao

f|2=5 | f[2m ’

where ¢, is a constant only depending on m. It turns out, see [20], that
the limit as § tends to zero of (5) exists and defines the action of a (0,m)-
current, which in the case f defines a complete intersection, coincides with

(5) Cm
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the Coleff-Herrera current and also with the currents studied in [5] and [18].
Based on the work in [20] Andersson introduces more general currents of
the Cauchy-Fantappié-Leray type in [2]. We will briefly discuss Andersson’s

construction in Section 3. In short, he defines a singular form u/ =} u}: b1

where the terms 11,}: i1 are similar to the form in (5), and he shows that it

is extendible to X as a current, U7, either as principal values or by analytic
continuation. The residue current, R/, is derived from the current U/ and
equals the Coleff-Herrera current locally if f defines a complete intersection.
If g is also a tuple of functions there is a natural way of defining the product of
the Cauchy-Fantappié-Leray type currents corresponding to f and g so that
formal Leibnitz rules hold, see [26]. If f & g defines a complete intersection
and x1,x2 € C*([0,0c]) vanish to high enough orders at zero and equals 1
at infinity then we prove that the smooth forms

X1(|f|2/€1)uf A Oxo(|g|*/e2) Au? and

Ox1(If17/e) Aud A dxa(lg)? fea) A u?

are Holder continuous as currents for (e, es) € [0,00)? and tend to US A R9
and Rf A RY respectively as €, €5 — 0; Theorem 21 and Corollary 23. If ¢
is a function such that f @ g defines a complete intersection, our techniques
can also be used to prove that dx1(|f|%/e1) A ulx2(|g|?/e2) — R when xo
equals the characteristic function of [1,00]. We use this to conclude that
R/ has the standard extension property in the complete intersection case,
Corollary 24. For more historical accounts we refer to the survey article |7]
by Bjork.

The disposition of the paper is as follows: In Section 2 we outline a proof of
(4) since the proofs of the more general statements about Bochner-Martinelli
or Cauchy-Fantappié-Leray blocks are only more difficult to prove in the
technical sense and to make it clear that it is not necessary to work through
the constructions of Bochner-Martinelli or Cauchy-Fantappié-Leray type cur-
rents in order to prove (4). In Section 3 we recall Andersson’s construction
and explain some useful notation. Section 4 contains some fairly well known
regularization results about Cauchy-Fantappié-Leray type currents. As An-
dersson’s formalism makes the arguments a little smoother we also supply
the proofs. Section 5 contains the technical core of this paper. We study reg-
ularizations of products of monomial currents which we then use in Section
6 to prove our main results; Theorem 21 and its corollaries 23, 25 and 26 and
Theorem 27. In Section 7 we see by explicit computations that Corollary
26 holds for the example by Passare and Tsikh. This section is essentially
self-contained.

2. SKETCH OF PROOF IN THE CASE OF TWO FUNCTIONS

Let f and g be two holomorphic functions on X defining a complete in-
tersection. We sketch how one can handle the difficulties arising in charts of
resonance when proving (4). We study the integral

261 ) 2 262
(6) /Xl(ff/ ) Ox (z|/ )/\go
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where ¢ is a test form of bidegree (n,n — 1). By Hironaka’s theorem we
may assume that f = §“f and g = ¢#§ are monomials times non-vanishing
functions. One of the non-zero factors can be incorporated in a variable and
so we assume that f = 1. We assume also that we are in a chart of resonance,
i.e. that @ and B are linearly dependent. After resolving singularities f and
g no longer define a complete intersection in general, but on the other hand
a degree argument shows that dfj/fj A ¢ becomes a test form for any (;
dividing both f and g. See the proof of Theorem 21 for more details. Since
«a and S are linearly dependent, d{“j/{j A @ is a test form for all j such that
a; # 0, or equivalently, 8; # 0. Now, (6) equals

al|2 € I ( 512 € B12 di‘ B
$p, [ RS GHTTI) CF
J ) ) -

where ¥ = |§|? is a strictly positive smooth function. It now follows from
Corollary 15 that each term in this sum tends to zero as e¢; and e tend to
zero. Hence the charts of resonance do not give any contributions.

3. PRELIMINARIES AND NOTATION

Assume that f is a section of the dual bundle E* of a holomorphic m-
bundle £ — X over a complex n-manifold X. We will only deal with local
problems and it is therefore no loss of generality in assuming that £ —
X is trivial. However, the formalism will run smoother with an invariant
notation. As mentioned above, we will recall Andersson’s construction in [2]
and produce currents U/ and Rf and we emphasize that in the case E — X
is the trivial line bundle then U/ and R/ are the currents [1/f] and 9[1/f]
times some basis elements. On the exterior algebra AFE of E, the section f
induces mappings d;: A1 E — AFE of interior multiplication and 6% = 0.
We introduce the spaces & 4(X, A¥E) of the smooth sections of the exterior
algebra of F @ Tj; X which are (0, g)-forms with values in AFE. We also
introduce the corresponding spaces of currents, 9{]7(1(}(, A*E). The mappings
87 extend to mappings é;: 7 (X, A" E) — 9 (X, AFE) with 5; = 0 and
these mappings anti-commute with the d-operator. Hence, Qévq(X, AFE) is
a double complex and the associated total complex is

N 0 o R ot o o) B

where L(X, E) = @, j—, Z,(X, A\*E) and V; = 6; — 0. We will refer
to the total complex as the Andersson complex. The exterior product, A,
induces mappings

A LT(X,E) x L5(X,E) = LT(X, E)
when possible, and V is an antiderivation, i.e. V(T Ao) = V7 Ao +
(=)'t AVsoif 7 € LT(X,FE) and 0 € L5(X,FE). If 7 € L7(X,E) we
write 7y g4, for the component of 7 belonging to %), (X,AFE). Note

that functions define elements of £°(X, E) of degree (0,0) and sections of F
define elements of £ (X, E) of degree (1,0). One can show, see [2], that
if X is Stein and the zero:th cohomology group of the Andersson complex
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vanishes then for any holomorphic function h there is a holomorphic section
¢ of E such that d;9p = h. This means that if f = (f1,..., f;) in some
local holomorphic frame for E* then the division problem ) f;1; = h has
a holomorphic solution. This cannot hold for all h if f has zeros and the
Andersson complex can therefore not be exact in this case. Still, we try to
look for an element u/ € £L71(X, E) such that Vu/ = 1. To this end we
assume that E is equipped with some Hermitian metric | - | and we let s;
be the section of E with pointwise minimal norm such that §ps; = |f|2.
Outside V; = f~1(0) we may put

-1

s sr A (Osy)
u = Z ! 215
Vfo (5f9f*89f |f|

Observe that Vs has even degree so the expression s¢/V sy has meaning
outside V; and it follows immediately that Vju = 1 there. The following
theorem is proved in [2].

k

Theorem 1. Assume that f is locally nontrivial. The forms |f|**uf and
O|fI** Aul are locally bounded if Re X is sufficiently large and they have
analytic continuations as currents to Re X > —e. Let Ul and RT denote the
values at X = 0. Then Ul is a current extension of u/, Rf has support on
Vi and

VU =1- R’
Moreover, RI = Rzp +-- qu where p = Codim(Vy) and ¢ = min(m,n).

Note that if V; = () then Vfo 1 on all of X, which implies that taking
the exterior product with Uf is a homotopy operator for the Andersson
complex. The current Rf is the Bochner-Martinelli, or more generally, the

Cauchy-Fantappié-Leray current associated to f, and if f = (f1,..., fm) in
some local holomorphic frame, eq,..., e, of E then
-1
(7) Rf—[a Ao ANO—] Net A+~ Nep
f1 fm

if f defines a complete intersection, see [2].

Now if f;, 5 = 1,2, are sections of the dual bundles E;‘ of holomorphic
Hermitian mj-bundles E; — X we can apply the above construction to the
section f = f; @ f2 of the bundle Ef @ E3 and obtain the currents Uf and
R/. We could also try to combine the individual currents U’ and R%i. It is
shown in |26] that the forms

|FU P Ao P a2, 1P AD oA Auf? and 8] f1 )22 Ault AD| fo| P A,

which are locally bounded if PRe A is large enough, have current extensions
to Me X > —e. The values at A = 0 are denoted UL A U2, UM A RT?| and
R A RT2 | respectively, and formal computation rules such as e.g. Vf(Uf1 A
R?) = (1 — RI") AR = R — RF' A RP2 hold. Tt is also shown in [26] that
if f defines a complete intersection then Rf = RN A RP2.

We will use the names f and g, rather then f; and fs, for the sections of the
two bundles and the symbol V, without subscript, always denotes V yg,. We
will use multiindices extensively in the sequel. Multiindices will be denoted
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a and S or I and J and sometimes also r and p. The number of variables will
always be n but it will be convenient to define multiindices by expressions
like @ = () jex for K C {1,...,n}. By this we mean that a = (a1,...,a,)
where a;j = 0if j ¢ K and a; = «; if j € K. Hence, if 2 = (21,...,2,)
then 2% = H_jer( zyaj and similarly for 0%/0z. Multiindices are added and
multiplied by numbers as elements in Z" and a +1 = (ay £ 1,...,a, £ 1).
Also, |a| denotes the length of « as a vector in Euclidean space and #a is
the cardinality of the support of a.

Integration over domains in C" will always be with respect to the volume
form (i/2)"dz1 AdzZy N ... Ndzp NdZ, = (1/2)"dz A dZ if nothing else is said.
If A is a Reinhardt domain in C" and ¢ is a function which only depends
on the moduli of the variables and such that z%p(z) is integrable on A then

./A 2%(2) =0

if @ is a non-zero multiindex. This simple fact will play a fundamental role
to us in what follows and we will refer to it as anti-symmetry.

Unless otherwise stated, the symbol x with various subscripts will always
denote a smooth function on [0, co] which is zero to some order at 0 and such
that x(oco) = 1. By smooth at infinity we mean that ¢ — x(1/t) is smooth
at zero.

4. REGULARIZATIONS OF CAUCHY-FANTAPPIE-LERAY TYPE CURRENTS

Consider a function x as above and let x(s) = x(1/s). Then x is dif-
ferentiable at s = 0 and ¥'(s) = —x'(1/s)/s?. Letting t = 1/s we see that
X'(t) = O(1/#?) as t — oo. This simple observation will be frequently used in
the sequel. It follows that for any continuous function ¢ with compact sup-
port in [0, 00) we have |p(et)x(t)| < C(t + 1)~2 for a constant independent
of e. Hence by the dominated convergence theorem we see that

/UOC %X(t/e)w(t)dt — /Uoo L mpler)dr > p(0) /OO %x(f)df = »(0),

dT 0
and we have proved

Lemma 2. Let x € C'([0,00]) satisfy x(0) = 0 and x(co) = 1. Then
(d/dt) x(t/e) — 0o as measures on [0,00).

Proposition 3. Assume x € C*°([0, 00]) vanishes to order £ at 0 and satis-
fies x(00) = 1. Then

fien / X2ty Ao =Ul,
e—0+ ’ ’

for any test form .

Proof. On the set Q = {(z,t) € C* x (0,00);|f(2)]*> > t} we have, for all
fixed € > 0, that

d 1 d
‘uiéf]a)((t/e)/\@‘ < CW‘EX“/E)‘ <

t12 d 1
Cf—p‘mX(f/f)‘ < Cm
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since %X(t/e) = O(t*~1). Hence we have an integrable singularity on  and
by Fubini’s theorem we get

> d f ; 2 g
/ arX (f/F)/ Uggy Npdt = /“1,31 A 90/ (f/€)
0 2>t 0
® /@mu%M

But J(t) = f\f\2>t u{hl A  is a continuous function with compact support
n [0,00) with J(0) = Ullfg,p% see [20] or [2]. Hence by Lemma 2 the left
hand side of (8) tends to U[@A"P and the proof is complete. O

If we take x(f) equal to appropriate powers of /(¢ + 1) we obtain the
following natural ways to regularize the currents U/ and R7.

Corollary 4. For any test form ¢ we have

. Sf/\(@Sf) -1 f
9 1 —_— U’.
¥ pﬁfgum S
and

. (85f) f

| —— =R’ .p.
- e%/§um o =

Proof. Letting x,(t) = t¢/(t + 1)* we see that

; Sf/\(an)
Up g ]Xé(‘f‘ /€) = W

and so (9) follows from Proposition 3. To show that (10) holds we first note
that B
Z Sf A (83]’)37] . Sf
(fP+ef  Vysp+e

£>1
Hence
Sf/\ 8Sfp 1 Sf Vfo (8Sf)
\Y% =V = =1— 7P
f; (12 + €)t fo5f+e Viss+e Z (If12 + ettt

Since differentiation is a continuous operation on distributlons it follows from
(9) that

. (a@f)l . sfA (5811)37]
lim 1 - ——————= =V 1 A vl =1-RS
LD DL w9 iy s

in the sense of currents. The term with £ = 0 in the sum on the left is easily
seen to tend to zero in the sense of currents and hence (10) follows. O

Note that it is the difference
(11) 5(XW/£44) - 5f(Xe+1U£+1,g) = dxi N Uﬁig,] + (xe — Xe+1)5f“{+1,g

which converges to the term of RS of bidegree (¢,#). It is only for the term
of top degree, the last term in (11) is not present. This explains why the
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regularization result in [20], Theorem 2.1, coincides with our result for the
top degree term but not for the terms of lower degree.

We can also take one x which vanishes to high enough order at zero to
regularize all terms of U/ and R/.

Corollary 5. Assume that x € C*°([0, o0]), vanishes to order min(m,n)+1
at zero and satisfies x(o0o) = 1. Then for any test form ¢ we have

(12) tim [ X/’ np =0T
e—0t
(13) lim /ax(|f|2/e)/\uf/\<p:Rf.<p.
e—0t

Proof. The first statement follows immediately from Proposition 3. For the
second one we note that

Vyxu' = Vx Aul + xVu! = —0x Aul + xVul,

and since y vanishes to high enough order at zero all terms are smooth.
Outside {f = 0} we have Vu/ = 1 and hence xVu/ = yx everywhere.
Moreover, x(|f|?/e) tends to 1 in the sense of currents and hence

Ix ANul = xVul = Vyu' =1 -(1-R)=R/

in the sense of currents. O

5. REGULARIZATIONS OF PRODUCTS OF MONOMIAL CURRENTS

This section contains the technical result about the normal crossing case
needed to prove our main theorems in the next section. Of particular impor-
tance is Proposition 11. First we need a generalization of Taylor’s formula.
Lemma 6 enables us to approximate a smooth function defined on C" in
a neighborhood of the union of the coordinate hyperplanes instead of in a
neighborhood of their intersection as in the usual Taylor’s formula. The ap-
proximating functions are in our case not polynomials in general but have
enough similarities for our purposes. For tensor products of one-variable
functions this corresponds to multiplying the individual Taylor expansions.
Lemma 6 appears as Lemma 2.3 in [22]| but the formulation there is unfortu-
nately not completely correct. We also remark that Lemma 6 is very similar
to Lemma 2.4 in (8] and that very general Taylor expansions are considered
in Chapter 1 in [13]|. Define the linear operator Mjrj on C*(C") to be the
operator that maps ¢ to the Taylor polynomial of degree r; of the function
¢j = ©(C) (centered at (; = 0). We note that M;’ and M commute. To
see this we only need to observe that

) (a_go 2y

2O o= 2 J
0¢; 9¢; 9= S0 g0,

G=¢=0 a—fj

%
%

(

CFU)‘C]':U

where 8/8@- means that we do not specify whether we differentiate with
respect to ¢; or (.
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Lemma 6. Let K C {1,...,n} have cardinality k and let r = (rj)jek-
Define the linear operator M. on C*°(C") by
, o r ,
Mg =3 M7 =" MM+ 4 (=1)"T M M

JjeEK i,j €K
1<J

Then for any ¢ € C*(C") we have

(14) o =Mp)+ [ S i) ar

[[]J}n r! 8tr+1
where t¢ should be interpreted as (&1,...,&n), & =1;¢; if j € K and & = (;
if 7 ¢ K. In particular ¢ — M@ = O(ﬁ\{“’l\). Moreover, Mj.¢ can be
written as a finite sum of terms, @r;(C)C'CY, with the following properties:

(a) @r17(C) is independent of some variable and in particular of variable
G f L+ J; >0,

(b) Ij+ J; <rj for j € K,

(c) if L is the set of indices j € K such that (; — ¢r7(C) is non-constant
then SUIJ(C) = O(HjeL Ki‘r'ﬁl)-

Proof. Tt is enough to prove the lemma when K = {1,...,n}. Incase n = 1,
(14) is Taylor’s formula. For m > 2, we write the integral in (14) as an
iterated integral. Formula (14) then follows by induction. One can also
show (14) by repeated integrations by parts. The difference ¢ — M is
seen to be of the desired size after performing the differentiations of ¢(£(¢)
with respect to ¢ inside the integral. To see that M ¢ can be written as a
sum of terms ¢y ;(¢)¢’¢’ with the properties (a), (b), and (c), we let r,
for any K C K, denote the multiindex (Tjys--- ,rj‘m), Ti; € K. A straight
forward computation now shows that

i = TP M)
jeEK
ri g7 TR\{i,j}
+ ZMi Mj7(30_MK\{7,J} ¢)
i,jEK
1<)

From the first part of the proof (and the definition of M. ]) it follows that
every term on the right hand side is a finite sum of terms with the stated
properties. U

Lemma 7. Let o be a multiindex and let M = Mj, be the operator defined
in Lemma 6 with K the set of indices j such that o > 2 and rj = aj — 2,
j € K. Then for any ¢ € 2(C") we have

.AéﬂW‘M@—[éﬂwumw@A@

if A is a polydisc containing the support of ¢.
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Proof. Note that by Lemma 6 we have ¢ — Mo = O(|¢*!|) and so (¢ —
M) /C¢” is integrable on A. Hence if we let Ay = AN, {|¢;| > 0} we get

/1( Mg) = lim [ (- Myp)
.ACO‘(P (pi(g%ACa(p 4
1
~ ) Ry
55%ACQW 55% ACQW

The first limit on the right hand side is the tensor product of the princi-
pal value currents [I/Cya]] (acting on ¢ (i/2)"d{ A d¢) and hence it equals

[1/¢%. (i/2)™d¢ A dC. Tt follows by anti-symmetry that actually

1
—Mep =0
/@

for all § > 0. In fact, My is a sum of terms ¢;;(¢)¢ ¢ where I; + J; <
a; — 2 for all j and the coefficient ¢r;(¢) is at least independent of some
variable. 0

Lemma 8. Let x1,x2 € C([0,00]) and let ® and ¥ be smooth strictly
positive functions on C". Let also M} be the operator defined in Lemma 6
with K and r arbitrary. Then

X1(01®)x2(t2 W) = M (x1(11®)x2(£29)) + [¢" | B(t1, 82, €),
where B is bounded on (0,00)? x D if D € C".
Proof. If D € C" both ® and ¥ have strictly positive infima and finite
suprema on D and so there is a neighborhood U of [0,00]? in R x R such

that the function (1,%2,() — x1(t1®)x2(t2¥) is smooth on U x D. From
Lemma 6 it follows that

X1(01®)x2(t29) = Mic(x1 (@) x2(b20)) + Y Grylts, £2,0)¢'¢7

1,JCK
Ii+Jj=rj+1

for some functions Gy; which are smooth on U x D, and the lemma readily
follows. O

To prove Proposition 11 we will need the estimates of the following two
elementary lemmas.

Lemma 9. Let A be the unit polydisc in C* and put A® = {{ € A; (2> > €}
and Ai’;fiQ ={C € A;[CY? > €1.[CP|? > ea}. Then for all €,€; < 1 we have

/ ;5 1/@lal) 10g ¢!
Javag 161+ 1¢al

and

1
< (e, €)Y, 2w < min{|la|™", |87}
/M e Sliene) CRALRS
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Proof. On the set A'\ A?l’im either [¢?|2 < €1 or |¢P|?2 < €9 and so it follows
from the first inequality that the integral in the second inequality is less then
or equal to (a constant times)

CD10g e 71 4 e/ 1D | 10g ;! ¢!/l | 1/(216)—v

AN ZAN

(€1, €2) |,

for any v > 0 and w, < min{|a| !,|B|7!'}/2 — v. Hence the second in-
equality follows from the the first one. To prove the first inequality we first
integrate with respect to the angular variables and then we make the change
of variables x; = log |;| to see that the integral in question equals

(15) (4m)" e dz,

Qe
where Q¢ = {z € (—00,0]"; 2)_ ajz; < loge}. Since all z; < 0 on Q. we
have exp()_ z;) < exp(—|z|) here, and choosing R = |loge|/(2|a|) we see
that (15) is less then or equal to f{\z\>R} exp(—|z|)dz. In polar coordinates

this is easily seen to be of order e'/(le)]log |1 O

Lemma 10. Let A be the unit polydisc in C" and put A® = {¢ € A;|¢*> >
€} and Af{% ={C e N > €1.[CP? > ea). Then, fore, €j <1, we have

€ 1 /(2]al) 1
Se [ log €|~
/A” [SHERICTRER (€

€1 €9 1
S (e, e2)|”
./A?ffi,z (|CC“\2 \Cﬁl2) 1] -+ - |¢nl

and

€1€9 1
S [(e, €2)|”,
/A"B [C2CP12 |Cal - - - [Cnl

€1:€2

where 2w < min{|a|™, |87}

Proof. The second and third inequality follow from the first one since it im-
plies that the integral in the second one is of the size ETH/(Q‘QD —i—e;H/(QWD <
|(€1,€2)|" ™ for any 7 > 0 and that the integral in the third is of the size

m1n{€1/( M)| loger|" e, 1/(2I81) |log ea|"'}. To prove the first inequality we

proceed as in the prev10u< lemma and we see that the integral in question
equals

Sy Sz
16 4m)"e ;dx = (4m)"e eif_dx
2 2
QF e Za]:r] Qsﬂ{‘T‘SR} e Zajw]

b [
‘ Qeﬁ{\az\ZR} 6’22(1]‘.’13]‘ 3

where @ = {z € (—00,0]"; 2 ajz; > loge}. We choose 2R = |loge|/|c],
and then Q. N {|jz| < R} = {z € (—00,0]"; |z| < R}. If all z; < 0 we
have ) z; < —|z| and by the Cauchy-Schwarz inequality we also have
— > ajz; < |af|lz|. Hence we may estimate the integrand in the second
to last integral in (16) by exp((2|a| —1)|z|). In the last integral we integrate
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where €/ exp(2) ojz;) < 1 and so we see that the right hand side of (16)
is less then or equal to

(47)"e / e@lal=Vlal gy 4 (47)n / 17l dz.
J{|z|<R} J{|z|>R}

By changing to polar coordinates this is seen to be of the size e!/(2l2]) |log €| L.
O

The proof of the following proposition contains the technical core of this
paper.
Proposition 11. Assume that x1,x2 € C*([0,00]) vanish to orders k > 0
=1

and ¢ > 0 at 0, respectively, and that x;(oc) Then for any test form
© € Dnun(C") we have

1 [ Ta w] @, x2(00) =1
/ W)ﬁ(@ma|2/61)X2(‘I’|Cﬂ\2/€2)90 - {O,C " Ya(00) = 0
as €1, €3 — 0. Moreover, as a function of € = (e1,€3) € [0,00)?, the integral
belongs to all w-Hélder classes with 2w < min{|a|™', |87 '}.

Remark 12. The values of the integral at points (e1,0) and (0, €2), €; # 0,

are
D% /e (P2 /e
X?( )Xl( |Cc—k| / 1) [Cgﬁ] nd XQ( |§g /2) Ck ]

respectively.

Remark 13. The modulus of continuity can be improved by sharpening the
estimates in the Lemmas 9 and 10 but we will not bother about this. This
is because the multiindices « and S will be implicitly given by Hironaka's
theorem and so we can only be sure of the existence of some positive Holder
exponent when we prove our main theorems anyway.

Proof. We prove Hélder continuity for a path (e1,e2) — 0, ¢; # 0. For a
general path (inside [0, 00)?) to an arbitrary point in [0, 00)? one proceeds in
a similar way. Let K be the set of indices j such that ka; +£8; > 2 and let
M = My, be the operator defined in Lemma 6 with r; = ka; + £8; — 2 for
j € K. Let also A be a polydisc containing the support of ¢. In this proof
we will identify ¢ with its coefficient function with respect to the volume
form in C". We make a preliminary decomposition

1 1 1
(17) /wacw—/AWX1X2(SD—M<P)+/AWX1X2M<P-

Denote by A, the set {¢ € A;|¢?*]2 > €,|¢P|? > e} Since p — My =
O(|¢"*1), according to Lemma 6, and x1(o0) = 1 we get

1 1
(18) ‘/AWMXQ@P—M(P)—XQ(OO)/Aw(W—M@

1
<
~ /Aca TG e x|
1

1
<
< [ e e ”/A\A AR
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It follows from Lemma 9 that the last integral is of order |e|“ as €;,e9 — 0.
On the other hand, for ¢ € A, both |[¢?|?/e; > 1 and [¢#|?/ez > 1 and by
Taylor expanding at infinity we see that

x1(@[¢P/er) = xa(o0) + KQP Bi(e1/I¢*,0),
x2(V|C7Pfea) = xa(00) + \CﬁIQ Bs(e2/ 167, €)

where By and Bs are bounded. Using that yxi(oc) = 1 we thus get that
Ix1x2 — X2(c0)| is of the size €1/|¢¥? + €2/|¢P|?. Hence, by Lemma 10 the
second to last integral in (18) is also of order |e|* as €1,e5 — 0. In view
of Lemma 7, we have thus showed that the first integral on the right hand
side of (17) tends to [1/¢F@+5].p if yo(c0) = 1 and to zero if x3(c0) = 0
and moreover, belongs to the stated Holder classes. We will be done if
we can show that the last integral in (17) is of order |e|. We know that
Myp = Z,J QI_ICIEJ where each @y is independent of at least one variable
and I; + J; < koj +¢B; — 2 for j € K. Hence, if ® and ¥ are constants (or
only depend on the modulus of the (;) then the last integral in (17) is zero
for all €1, €2 > 0 by anti-symmetry. For the general case, consider one term

1 177
(19) /A WMXWUC ¢

and let L be the set of indices j € K such that ¢; — ¢7;({) is constant. Let
also .# = MY be the operator defined in Lemma 6 with p; = ka;+£8;— 1, —
Jj—2for j € L. We introduce the independent (real) variables, or “smoothing
parameters”, t; = [(%|?/e; and ty = |(P#|?/ea. Below, .4 (x1x2) denotes the
function we obtain by letting .# operate on ¢ — x1(£1P(¢))x2(t2¥(¢)) and
then substituting |¢*|?/e; and [¢P|? /ey for t; and ty respectively. We rewrite
the integral (19) as

177 I¢d
/A %(XWQ—%(XWQ)) + /A\A %(X]XQ_///(X]XQ))

I~J
(20) + [ S ataxe)

Now, .#(x1x2) is a sum of terms which, at least for some j € L, are
monomials in ¢; and (; times coefficient functions depending on |¢;| and
the other variables. The degrees of these monomials do not exceed p; =
ko +£8; —I; — Jj — 2 and since ¢ — ¢r7(¢) is constant for j € L we see, by
counting exponents, that the last integral in (20) vanishes by anti-symmetry
for all €1,e2 > 0. By Lemma 8 we have

(21) X1(t1®) x2(t2¥) — A (x1(11®)x2(t20)) = [CPT | B(ty, 12, (),

where B is bounded on (0, 00)? x A. We note also that by Lemma 6, ¢;;(¢) =
O(Hje,l\,( |Cj|ri+1). From (21) we thus see that the modulus of the second

integral in (20) can be estimated by

1
C/A\A [
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which is of order |¢/* by Lemma 9. It remains to consider the first integral
n (20). On the set A, we have that ®|¢®|?/e; and ¥|¢P|? /ey are larger then
some positive constant and so by multiplying the Taylor expansions of the
functions ¢t — x1(£1®) and to — x2(t2 W) at infinity we get

X1(@C PP /e xa (W7 e2)

b 623
X2(00) + |<5‘2X2(\C */e2.¢)

+ XQ(OO)‘ a|2>21(|C ?/e1,¢)
6]62‘

‘Ca| ‘Cﬁ|2X1(|<a| /617 ) 2(|Cﬂ‘2/€2a<)

where y; are smooth on [1, 00]x A. Now since [¢*|?/e; = t1 and |¢P|%/es = to
are independent variables we conclude that

_|_

xix2 — A (x1x2) = |;T2‘2(>22*//>~(2) ‘2X2( o) (x1 — A X1)

|¢e
€E1€E - ~ ~
+ m(mm M (X1X2))

for ¢ € A¢. By Lemmas 6 and 10 we see that the first integral in (20) also is
of order [e|“ as €1,e2 — 01 and the proof is complete. O

Remark 14. Let us assume that the function ® is identically 1 in the previ-
ous proposition. Then, instead of adding and subtracting .# (x1x2) in (20),
it is enough to add and subtract x1.4 (x2). This suggests that one can relax
the smoothness assumption on xj. It is actually possible to take x; to be
the characteristic function of [1, 00]. If we define the value of the integral in
Proposition 11 at a point (e1,0) to be

(22) [ gmmalice et - ),

where A and M are as in the proof above, then the conclusions of Proposition
11 hold for this choice of x;. Only minor changes in the proof are needed to
see this. One can also check that (22) is a way of computing

1167 e0) [ s -+

The product xi1(|¢¥?/e1)[1/¢F*+P] is well defined because the wave front
sets of the two currents behave in the right way, at least for almost all €y,
see |7].

We make another useful observation. Since the function x(s) = x(1/s)
is smooth at zero and x'(s) := —S]—.Zx’(l/s), it follows that s — x'(1/s)/s
is smooth at zero and vanishes for s = 0. Hence, t — x'(¢)t is smooth on
[0, 0c], vanishes to the same order at zero as x, and maps oo to 0. From
Proposition 11 we thus see that we have

Corollary 15. Assume that x1,x2 € C*([0,00]) vanish to orders k and ¢
at zero respectively, and satisfy xj(oc) = 1. For any smooth and strictly
positive functions ® and ¥ on C" and any test form ¢ € Py, ,(C") we have
\C |

@) [ @ el ) e o

€1 ,EQ—)U+
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and moreover, as a function of € = (€1, €2) € [0,00)%, the integral belongs to
all w-Hélder classes with 2w < min{|a| ™t |81}

6. REGULARIZATIONS OF PRODUCTS OF CAUCHY-FANTAPPIE-LERAY
TYPE CURRENTS

We are now in a position to prove our main results. We start with a
regularization of the product U/ A U9. Recall that if f is function then
U’ =[1/f] times some basis element.

Theorem 16. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic m;-bundles E; — X, 5 = 1,2, respectively. Let x1,Xx2 €
C*([0,00]) be any functions vanishing to orders mi and mg at zero respec-
tively, and satisfying xj(oc) = 1. Then, for any test form ¢ we have

/ (P eyl A xa(lgPJea)ud Ap — U AT,

as e1,ea — 07, Moreover, as a function of € = (€1, €3) € [0,00)% the integral
on the left hand side belongs to some Hélder class independently of .

Proof. Recall that UF AUY.¢ is defined as the value at zero of the meromor-
phic function

A / 12! A g ud A g

Assuming only that y; and x9 vanish to orders k£ < my and ¢ < mg at zero
respectively we will show that

(24) /Xlulj;k] /\Xgug’li] Ap— / \f\Q’\u};kq A \g|2)‘u2747] A

and that the left hand side belongs to some Hélder class. This will clearly
imply the theorem. We may assume that ¢ has arbitrarily small support
after a partition of unity. If ¢ has support outside f~1(0) U g '(0) it is
easy to check that (24) holds and hence we can restrict to the case that
¢ has support in a small neighborhood U of a point p € f£-1(0) U g (0).
We may also assume that U is contained in a coordinate neighborhood and
that all bundles are trivial over U. We let (f1,..., fm,) and (g1, -, Gm,)
denote the components of f and g respectively, with respect to some holo-
morphic frames. It follows from Hironaka’s theorem, possibly after another
localization, that there is an n-dimensional complex manifold U and a proper
holomorphic map II: U — U such that IT is biholomorphic outside the nullset
I*{f1- fmy - 91 gm, } and that this hypersurface has normal crossings in
U. Hence we can cover U by local charts, each centered at the origin, such
that II* f; and II*g; are monomials times non-vanishing functions. The sup-
port of II*¢ is compact because II is proper and hence, we can cover the
support of II*¢ by finitely many of these charts. We let p; be a partition
of unity on supp(IT*¢) subordinate to this cover. Now, following [20] and
[4], given monomials p ..., u,, one can construct an n-dimensional toric
manifold X and a proper holomorphic map I: X — C} which is monoidal
when expressed in local coordinates in each chart. Moreover, II is biholo-
morphic outside TT*{t; ---#, = 0} and in each chart one of the monomials

A=0
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fI*,ul, o ,f[*u,, divides all the others. By repeating this process, if neces-
sary, and localizing with partitions of unity at each step, we may actually
assume that f; = ,uf’jfj and g; = pg,;9; where fj and g; are non-vanishing
and py; and pg ; are monomials with the property that py,, divides all py ;
and pg ., divides all pg4 ; for some indices v and v3. Denote py,, by (% and
Ligws by CP. Tt follows that |f[? = |¢*[*® and |g|* = |(°|*¥ where ® and ¥
are strictly positive functions. Moreover, sy = (%5 and

T 0 CCL7) S ST 0 C.7) S
kk—1 ‘f‘?k - Cka ok - Cka k,k—1

where 17,£ w1 18 a smooth form and similarly for “‘2371' In order to prove
(24) it thus suffices to prove

/X1(¢C“I2/61) xR ), .

Cha Up k-1 I Upg 1 NP

CPA o [CP12A A .
%/Cka kk 1 A Cﬁ‘I’“M 1A
where ¢ = pg,II7 - pg, IJp and that the integral on the left hand side
belongs to some Holder class. But by Proposition 11 it does belong to some
Holder class and tends to [1/{’““”6].&'};#] A 712717] A ¢. One can verify that
this indeed is equal to the right hand side of (25) by integrations by parts
as in e.g. [2]. O

(25)

A=0

Remark 17. This theorem can actually be generalized to any number of
factors U7. One first checks that the analogue of Proposition 11 holds for
any number of functions x; and then reduces to this case just as in the proof
above. In particular, if f;, 5 = 1,...,p, are holomorphic functions and yx;
vanish at 0, we have

X](‘fl\Q/Gl) ___Xp(|fp|2/€p) ii
/ f] fp v [fl fp].(p

unrestrictedly as all e; — 0. However, we focus on the two factor case since
we do not know how to handle more than two residue factors.

To prove our regularization results for the currents U/ ARY and R/ ARY we
have to structure the information obtained from an application of Hironaka’s
theorem more carefully and then use Proposition 11 and Corollary 15 in the
right way. The technical part of this is contained in the following proposition.

Proposition 18. Assume that x1,x2 € C*®([0,00]) vanish to orders k and
¢ at zero, respectively, and satisfy xj(oc) = 1. Let &', ", ' and " be
multiindices such that o, " and B’ have pairwise disjoint supports, and
o = 0 if and only if B = 0. Assume also that ¢ € Py ,—1(C") has the
property that dC;/Ci Ao € Dypn(C) for all j such that o # 0. Then for any
smooth and strictly positive functions ® and ¥ on C" we have

: 1 2 5 2 _ 1
lim [ =1 (@ [7/€1) Ox2 (V]| /e2) A o = [W] ®8[CW] %,

61,62~>0+ . /.141/12
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where py = Ca/+a” and g = Cﬂlﬂg”. Moreover, as a function of e = (€1, €3) €
[0,00)2, the integral belongs to all w-Hélder classes with 2w < min{|a’ +

o[+
Remark 19. Note that the hypotheses on the multiindices imply that a

factor (; divides both the monomials y1; and po if and only if oz"f # 0 (or

equivalently 5}’ # 0). In particular, the tensor product of the currents is well
defined.

Remark 20. We may let k£ or £ or both of them be equal to zero and the
conclusions of the proposition still hold. In case £ = 0 one should interpret
A[1/¢*] as zero.

Proof. Let K, L and K* be the set of indices j such that 8 # 0, 8] # 0 and
,6; = 0 respectively. Clearly L C K¢. We write 0 = Jx + Ok and integrate
by parts with respect to dx to see that

1
(26) / 4 x1(0k + Ore)x2 Ay =
)
\N] 1 A
X20k® N — | ——x1X20K ¢
J o HTH
7 C7 O
k EX]X + Oke )
HT g jer J

Note that dx does not fall on |u;|? because of the hypotheses on the mul-
tiindices. By assumption, d(;/(; A ¢ € Zpn(C") for j € L and so the first
and the last integral on the right hand side of (26) tend to zero and has
the right modulus of continuity by Corollary 15. The second to last integral
in (26) tends to —[1/(u5ub)].0x¢ = [1/(uF¢B")] @ 8[1/¢*5'].o and has the
right modulus of continuity by Proposition 11. O

Theorem 21. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic m;-bundles E; — X, 7 = 1,2, respectively. Assume that
the section f @ g of EY @ E5 — X defines a complete intersection. Let
X1, x2 € C([0,00]) be any functions vanishing to orders my and mq at zero
respectively, and satisfying x;j(oo) = 1. Then, for any test form ¢ we have

(27) /X1(|f|2/q)uf A 3X2(|g\2/62) ANuI Np— Ul A RI.p

as €1,€e3 — 07, Moreover, as a function of € = (e1,€2) € [0,00)? the integral
on the left hand side belongs to some Holder class independently of ¢.

Proof. We will assume that x; and x2 only vanish to orders £ < m; and
¢ < meo respectively and show that

(28) / 1“£k ]/\8)(2/\11M 1/\(,0—)/]"2’\ukk ]/\8|q\2’\/\u” ]/\90)\:0.

By arguing as in the proof of Theorem 16 we may assume that |f|? = [¢*[?®
and |g|? = |¢?|?¥ where ® and W are strictly positive functions and moreover,
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that u£7k71 Up g, 1/C”m for a smooth form u£ 1 and similarly for uM I

What we have to prove is thus

GRS Ao (U|CP12 /e
(29) /Xl( CCkOJ / l)ui,kq/\ xal !gﬂ /2)“13 1N

ICC‘\QA o(I¢7 1Y) .
— A - Uu; A
/ AN T e N
where ¢ = pgII7 -+ pg, . After the resolutions of singularities we can

in general no longer say that the pull-back of f @ ¢ defines a complete in-
tersection. On the other hand we claim that if (; divides both ¢(* and <
then dfj/fj A @ is smooth. In fact, let z be local coordinates on our original
manifold. In order that the integrals in (28) should be non-zero, ¢ has to
have degree n — k — £+ 1 in dz and so we can assume that

Y= Z ps Ndzy.

#I=n—k—l+1

Since the variety Vig, = f~'(0) N g~ '(0) has dimension n — my — my <
n—k —£+1 we see that dz; vanishes on Vjg,. The pull-back of dz; through
all the resolutions I1; can be written Y_; C;(¢)d(; and it must vanish on the
pull-back of Vg,. In particular it has to vanish on {¢; = 0} if {; divides both
¢*and ¢P. 1f dfj does not occur in d¢; it must be that the coefficient function
Cr(¢) vanishes on {¢; = 0}. But these functions are anti-holomorphic and so
¢j must divide C;(¢). The claim is established. We now write (* = co' e’
and (8 = (P'+F" where o, o and B’ have pairwise disjoint supports and
o =0 if and only if 8” = 0. Thus, ¢; divides both ¢® and ¢” if and only if
a;’ # 0, or equivalently, 5}’ # 0. According to Proposition 18 the left hand
side of (29) belongs to some Hélder class and tends to

1 _f - -
- [Ckm—w”] ®0 [C/g'} Ay g Ny N

One can compute the right hand side of (29) by integrations by parts as in
e.g. [2] to see that it equals the same thing. O

Remark 22. The form dx2(|g|?/e2) Aud is actually smooth even if yo only
vanishes to order my a‘r 0. The only possible problem is with the top degree
term Ox2(|g|?/e2) A u? But we have

ma,ma—1°
C%(X) 3 0(x2(l91*/ €2ty my—1) = Ox2(l91*/€2) Atify my s
+ x2(l91/€2)0ufy, 1y 1
and since uf, . is d-closed (outside V) it follows that dxa(|g|?/e2) A
ufnz g1 18 smooth as well.

Corollary 23. With the same hypotheses as in Theorem 21 we have
[ o111 10y A Ol fex) nut A > RS A RO,

(30) / Ox1(1f2/e1) Al xa((gl?fe2) Ao — BRI,
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and
(31) /&ﬂfgkﬂAﬁAamuﬁkﬂAwﬁ0

as €1,€e3 — 07, and as functions of € = (e1,€2) € [0,00)? the integrals on the
left hand sides belong to some Hdolder classes independently of .

Proof. We have the following equality of smooth forms:
(32)  V(dx1 Aul Axoud) = —dx1 Axou? —dx1 Aul Adxa Au?
+ Ox1 A ufxg.

The computation rules established in [26], and Theorem 21 now imply that,
for any test form ¢ (of complementary total degree), we have

Rlo—RIANRI.9 = V(RIANUY.o=—-R AUV

= lim— / Ox1 Al A xaud AV

= lim /V(8X1 Aul A xoud) A .

The integral on the second row is Holder continuous by Theorem 21 and so,
also the integral on the third row is. By choosing ¢ of appropriate bidegrees
the corollary now follows from (32). O

The statements (30) and (31) actually hold with no assumptions on the
behavior of x2 at zero. This can be seen by using that we know this when
x2 = 1 by Corollary 5, and when x5 vanishes to high enough order by the
previous corollary.

Assume that f defines a complete intersection and pick a holomorphic
function g such that f @ g also defines a complete intersection and such that
g is zero on the singular part of V. After resolving singularities in the proof
of Theorem 21 we can find coordinates such that g is a monomial times a
non-vanishing holomorphic function g. But g can be incorporated in some
coordinate and we can therefore assume that § = 1. Repeating the proof of
Theorem 21 and using Remark 14 one shows that (30) holds for x2 equal
to the characteristic function of [1,00]. Then, if we first let €; tend to zero,
keeping €5 fixed, and after that let es tend to zero we get that

lim x2(|g)*/e2) RN = R,
624)0+

We remark that the product x2(|g|?/e2) R/ is well defined since the wave front
sets of x2(|g|?/e2) and R/ behave properly, see e.g. [7]. Since x2(|g|?/e2)
equals the characteristic function of {|g|? > €2} we have

Corollary 24. If f defines a complete intersection then the Cauchy-Fantappié-
Leray current RT has the standard extension property.

This is a well known result and follows from the fact that R/ equals the
Coleff-Herrera current in the sense of (7). It is even true that x,,(e)R/ —
R/, e — 0T where p is a positive smooth function and x,,(€) is the char-
acteristic function of {|pg| > €}. In fact, via Hironaka and toric resolutions
one reduces to the case of one function and then one can proceed as in [7].
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We know from [26] that if f®g defines a complete intersection then R/ AR9
consists of one term of top degree. Hence, it is only the top degree term of
dx1 Auf AOxa Aufd which gives a contribution in the limit. With the natural
choices x1(t) = t™ /(t + 1) and xo(t) = t"*/(t + 1)™2, Corollary 23 and
Remark 22 thus give

Corollary 25. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic mj-bundles E — X, j = 1,2, respectively. Assume that
the section f® g of E] ® E5 — X (](’ﬁ’ﬂ?? a (*omplefp intersection. Then, for
any test form ¢ we have

/Bsf A(Dsp)™—1 s A (Dsg)™m2 !
(f1? 4 e)m (lg/? + €2)™=

as €1,e2 — 07, and the integral to the left belongs to some Hélder class
independently of .

Ao — RTARI.

For sections f and g of the trivial line bundle we get the result announced
in |22].

Corollary 26. Let f and g be holomorphic functions defining a complete
intersection. Then for any test form ¢ we have

- f = g =1 1
0 AO Ao — |0=NO—].
/ Prea “lgPre”” | f _(J 4

as €1,ea — 07, and the integral to the left belongs to some Hélder class
independently of .

Proof. We consider f and g as sections of (different copies of) the trivial line
bundle X x C — X with the standard metric. Then, suppressing the natural
global frame elements, we have s; = f and 54 = g. By Corollary 25 we are
done since R/ A RY is the Coleff-Herrera current. O

So far, in this section, we have used one function x to regularize all terms
of uf. One could try to take different y:s for different terms. We recall the
natural choices t*/(t + 1)* from Corollary 4 and we let ul = sp/(Vsy+e) =
Sosp A (0sp) 1 /(IfI? + €)F. The next theorem says that, in the complete
intersection case, the product of two such regularized currents goes unre-
strictedly to the product, in the sense of [26], of the currents.

Theorem 27. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic m;-bundles E;‘ — X, 7 = 1,2, respectively. Assume that
the section f @ g of EY ® E5 — X defines a complete intersection. Then, for
any test form @ we have

/ug‘l AVul Np= U ~U ANRY).p
as €1,ea — 07, and the integral to the left belongs to some Hélder class
independently of .
Proof. We first note that

88 -1
Vg, _1_622 2q
>1 (lg|? + €2)*
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see the proof of Corollary 4. As Uf A R/ is defined as the value at zero of
the analytic continuation (in the sense of currents) of |f|**u/ A 9]g|** A w9,
what we have to prove is

(33)

N —

/Sf A (53f)k*1 Aes (5:9'0)#1
(L2 +en)k (l91? + e2)*

2\ 312\
/|f| “']):,kq AO|gl™* A Uzq,gfg N \—0

and that the integral on the left belongs to some Holder class. We first
consider the case £ = 1. The right hand side of (33) should then be in-
terpreted as zero. We write the integrand on the left hand side of (33) as

X1(\f\2/61)X2(|g\2/€2)“£,k,1 Ay where x1(t) = t*/(t+1)" and x2(t) = 1/(t+
1). As in the proof of Theorem 16 we may assume that u£ ko1 al kq/gkaa

where ﬂi,kq is a smooth form, that |f|?> = [¢¥/® and that |g|?> = [¢?|?W
where ® and U are strictly positive smooth functions. Since y3(oc) = 0 the
left hand side of (33) tends to zero and belongs to some Holder class by
Proposition 11. For £ > 2 we proceed as in the proof of Theorem 21 and we
see that we may assume that f = (f1,..., fm) and g = (g1,...,gm,) with
fi= C(’”f’ and g; = CB g where all f and g] are non- vanlshlng and more-

over, that for some indices vy and vy it holds that ¢ := ¢ divides all C(’
and ¢# := ¢#” divides all ¢#. From the same proof we also see that we may
assume that d(;/(; A is smooth (and compactly supported) for all ¢; which
divide both ¢® and ¢#, since f @ g defines a complete intersection. We use
the notation from the proof of Theorem 21, e.g. |f|? = [¢¢[2® = [¢¥ T 2D,
ui,k—] = uiykq/gk o'+a") and |g|? = \C5|2\If = [¢BHB" 2T ete. We also in-
troduce the notation x;(t) for the function #//(¢ 4+ 1)7, and so, in particular,
we can write 1/(t + €)? = x;(t/€)/t). For £ > 2, one can verify that

(9s4)! I B2 ~g
(34) ezm = mamq(m | ‘1’/62)/\“1571,472

1
C(f 1)8

Using this identity we see that the integral on the left hand side of (33) splits
into two integrals. The integral corresponding to the last term in (34) tends
to zero as €1, e — 0 and belongs to some Holder class according to Corollary
15. By Proposition 18, the integral corresponding to the first term on the
right hand side of (34) also belongs to some Hdélder class and tends to

IC'I2 v

(PP )

+ . 1871271,172'

1 - 1 . -
(35) — [m} X 8 [W} '“‘£,k71 A\ 71127]7172 A 2

as €1, €2 — 0. This is seen to be equal to the right hand side of (33) by using
the methods in [26]. O
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7. THE PASSARE-TSIKH EXAMPLE

Let f =21, g =22 + 22 + 2} and ¢ = pzagdz1 A dzy where p has compact
support and is identically 1 in a neighborhood of the origin. Since the com-
mon zero set of f and g is just the origin they define a complete intersection.
In [19] Passare and Tsikh show that the residue integral

¥

(e1e2) = Tfy(ersea) = [0, &
" lglP=e2

is discontinuous at the origin. More precisely, they show that for any fixed
positive number ¢ # 1 one has lim,_,g I}pq(e“, ce?) = 0 but lim,_, Ifq(e‘l, €2) #

0. On the other hand, by Fubini’s theorem we have

/eQeQIﬁg(tl,tQ)dtldh :/ erd| f|? A e2d|g|? AP

(f1 + €1)? (2 + €2)? (2 +en)? " (g2 +e)? " fg

[0,00)2

i 5 g
36 0 A0 A
(36) / If]? + e lg|? + €2 4

Hence, this average of the residue integral is continuous at the origin by
Corollary 26. In this section we will examine the last integral in (36) as
€1,€9 — 0 explicitly. We will see that it is continuous at the origin with
Holder exponent at least 1/8 and that it tends to zero. Morally, the value
of Iﬁg(E],GQ) at 0 should be the Coleff-Herrera current associated to f and
g multiplied by z2g acting on pdz; A dzs. But both g and z; annihilate the
Coleff-Herrera current since g belongs to the ideal generated by f and g,
and zo belongs to the radical of this ideal. We will thus verify Corollary 26
explicitly in this special case.

Our first objective is to resolve singularities to obtain normal crossings.
This is accomplished by a blow-up of the origin. The map n: ByC? — C?
looks like 7(u,v) = (u,uv) and w(u',v') = (v'v',u') in the two standard
coordinate systems on ByC?. The exceptional divisor, F, corresponds to the
sets {u = 0} and {u' = 0} and 7 is a biholomorphism ByC? \ E — C? \ {0}.
In the (u,v)-coordinates we have 7*f = u* and 7*g = u?(1 + v? + u). The
function 1 4 »? + u has non-zero differential and its zero locus intersects E

normally in the two points v = i and v = —i. Moreover, in the (u',v')-
coordinates we have 7* f = v/*0'* and 7*¢g = u?(v2 + 1 + uw'v'3). The zero
locus of v"? +1+u/v" intersects E normally in the points v’ = —i and v’ = i,

which we already knew, and it does not intersect v = 0. Also, the differential
of v + 1 + u'v" is non-zero on the zero locus of v"? + 1 + u'v". Hence,
{m*f-7*g = 0} has normal crossings. We assume that ¢ has support so close
to the origin that supp(m*)N{1+v2+u = 0} has two (compact) components,
K7 and Ky, and that these components together with the compacts K3 =
supp(7*p) N {v = 0} and K4 = supp(n*p) N {v =' 0} are pairwise disjoint.
We can then choose a partition of unity {p;}] such that >~ p; = 1 on the
support of m*¢ and for each j = 1,2,3,4, the support of p; intersects only
one of the compacts Ky, Ko, K3 and K4. We choose the numbering such
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that the support of p; intersects K;. The last integral in (36) now equals

_ 7'(*6 "
37 A O A2 =1+ 1o+ 13+ 1,.
(87) Z/ pe f|2+f1 TPt g T ht bt L+l

In fact, it is only in I3 we have resonance and we start by considering the
easier integrals Iy, Is and I;. The integrals I; and I, are similar and we only
consider I1. The support of p; is contained in a neighborhood of p; = (0, 1)
in the (u,v)-coordinates and p17*¢ = p17*puvn*gudu A dv. Integrating by
parts we thus see that

s mf |7 g|? -
L= /aw*fQ R A ud(uvpym* pdu A dv).

Since 7*f = u* depends on wu only, the term of d(avp;n*p) involving du
does not give any contribution to I;. Hence we can replace d(aop;m*p) by
uw1 where 1 is smooth and supported where p; is. We put {4 = u and
(3 = 1 +v? 4 u, which defines a change of variables on the support of p;. In
these coordinates 7* f = ({ and 7*g = (2(y and so we get

- [ GG fex(GEal o) Ao
J 5

where x(t) = ¢/(t -+ 1). We also write Ox((C{[2/er) = 4%((¢} /e1)d1 /&1
where x(t) = ¢/(t + 1)%. To proceed we replace (the coefficient function of)
dCi/C1 A Gy by its Taylor expansion of order one, considered as a function
of ¢; only, plus a remainder term |(;|2B(¢), with B bounded. The terms
corresponding to the Taylor expansion do not give any contribution to I
since we have anti-symmetry with respect to {; for these terms. Hence, we
obtain

(38) ns . \‘Cl /)X (1l )|,

where A is a polydisc containing the support of ¢1. We estimate |B(()]
and x(|¢2¢2|?/e2) by constants, and on the sets A, = {¢ € A; |¢F2 > e}
and A\ A, we use that (I P/er) S er/|GHP and 2P /er) S [CA/e
respectively, to see that the right hand side of (38) is of the size |¢|'/%.

To deal with Iy we proceed as follows. The support of pys is contained in a
neighborhood of py = (0,0) in ‘rhe (u',v')-coordinates and 7* f = v/*v" and
n*g = u(1 4+ v +u'v'3) := uG. On the support of p; we have § # 0. The
multiindices (4,4) and (2,0) are linearly independent and so we can make
the factor g diqappear Explicitly, choose a square root §'/2 of § and put
(1 =4'§"? and ¢, = v'§7 /2. In these coordinates 7* f = (i¢d and g = (2.
One also checks that pym*¢ = |¢1|2n* g4 where @y is a test form of bidegree
(2,0). After an integration by parts we see that

[ g|?

» ) ) AO(Ci1204).
(39) /W*f|2+€1 g2 + e (1¢1]%pa)
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Since m*g = (2 only depends on (; we may replace d(|¢1|2p4) by [¢1]20¢4 in

(39). Computing 9(|7*g|?/(|7*g|? + €2)) we find that
+=2 [ xR G )il 1 D
16

With abuse of notation we write the test form d; A Opy as @sd¢ AdC. Let
M = M11”22 be the operator defined in Lemma 6. Explicitly, we have

Mo, = Mo+ M3, — M{ Mg,
= M (g4 — MJps) + M3 (ps — M p4) + M| M3py.

All of the following properties will not be important for this computation
but to illustrate Lemma 6 we note that the second expression of My reveals
that M4 can be written as a sum of terms ¢;;(¢)¢'¢? with I} +.J; < 1 and
Iy + Jo < 2 and moreover, that ¢r; is independent of at least one variable
and is of the size O(|¢1]?) if it depends on ¢; and of the size O(|¢y|?) if it
depends on (5. By Lemma 6 we also have o4 = Mo, + |(1]?[¢2[3B(() for
some bounded function B and so

1
Iy = / 57 XX 904+/ ——xX|CG P GPB(C) = Iy + Lua,
A GG &

where A is a polydisc containing the support of ¢4. By anti-symmetry
I,1 = 0. To estimate I, we use that |xB]| is bounded by a constant and
that X(WIC?2/e2) S e/|C2I? and X(WIC] 2 /es) S G212 ez on the sets A, =
{¢ € A;|C22 > €9} and A\ A, respectively. Hence,

212
40 Iy, 5/ e +/ L’
(40) [14.2] A ICRIGTG] T Jaa, elGllG]

1/4

which is seen to be of the size |€]

It remains to take care of I3. We are now working close to u = v = 0
and 7*f = u* and ¢ = v?(1 + 02 + u) := u?§. The multiindices are linearly
dependent and we cannot dispose of the non-zero factor g. We rename our
variables (u,v) = ((1,(2) and proceed in precisely the same way as we did
when we were considering I;. We get

-4 / R )X @G fex)pad A G

where ® = |§|? is a strictly positive smooth function and (3 is smooth with
compact support. As before, we replace g3 by Mcll<p3 +1¢112B(¢). The
integral corresponding to |¢1|2B(() satisfies the same estimate as the one in
(38) and hence is of the size |e;|'/8. We cannot use anti-symmetry directly
to conclude the the integrals corresponding to the other terms in the Taylor
expansion tend to zero since the factor g is present. We illustrate why this is
true anyway by considering the integral corresponding to the term ¢3(0, (2).
Let A be a polydisc containing the support of p3 and consider

(41) / GG XU )30, o).
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We introduce the smoothing parameter ¢t = |22 /e as an independent vari-
able and write

X(®1) = x(®t) — M} x(Dt) + M{ x(®t) := Q1> B(#,¢) + M{, x(®1).

Here B is bounded on [0,00] X A. Substituting into (41) we obtain one
integral corresponding to |¢1|2B(|¢?|? /e, (), which satisfies an estimate like
(38), while the integral corresponding to Mcllx(<1>|§12\2/62) is zero since we

Y

have anti-symmetry with respect to ¢;. Hence || < |¢]'/5.
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