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REGULARIZATIONS OF PRODUCTS OF RESIDUE ANDPRINCIPAL VALUE CURRENTSHÅKAN SAMUELSSONAbstrat. Let f1 and f2 be two funtions on some omplex n-manifoldand let ' be a test form of bidegree (n; n � 2). Assume that (f1; f2)de�nes a omplete intersetion. The integral of '=(f1f2) on fjf1j2 =�1; jf2j2 = �2g is the residue integral I'f1;f2 (�1; �2). It is in general dis-ontinuous at the origin. Let �1 and �2 be smooth funtions on [0;1℄suh that �j(0) = 0 and �j(1) = 1. We prove that the regularizedresidue integral de�ned as the integral of ���1 ^ ���2 ^ '=(f1f2), where�j = �j(jfj j2=�j), is Hölder ontinuous on the losed �rst quarter andthat the value at zero is the Cole�-Herrera residue urrent ating on'. In fat, we prove that if ' is a test form of bidegree (n; n� 1) thenthe integral of �1 ���2 ^ '=(f1f2) is Hölder ontinuous and tends to the��-potential [(1=f1)^ ��(1=f2)℄ of the Cole�-Herrera urrent, ating on '.More generally, let f1 and f2 be setions of some vetor bundles and as-sume that f1 � f2 de�nes a omplete intersetion. There are assoiatedprinipal value urrents Uf and Ug and residue urrents Rf and Rg.The residue urrents equal the Cole�-Herrera residue urrents loally.One an give meaning to formal expressions suh as e.g. Uf ^ Rg insuh a way that formal Leibnitz rules hold. Our results generalize toproduts of these urrents as well.1. IntrodutionConsider a holomorphi funtion f de�ned on some omplex n-manifoldX and let Vf = f�1(0). Shwartz found that there is a distribution, orurrent, U on X suh that fU = 1, [23℄. The existene of the prinipal valueurrent [1=f ℄ de�ned byDn;n(X) 3 ' 7! lim�!0Zjf j2>� '=fwas proved by Herrera and Lieberman in [11℄ using Hironaka's desingulariza-tion theorem, [12℄ and gives a realization of suh a urrent U . The ��-image ofthe prinipal value urrent is the residue urrent assoiated to f . By Stokes'theorem its ation on a test form of bidegree (n; n� 1) is given by the limitas �! 0 (along regular values for jf j2) of the residue integral(1) I'f (�) = Zjf j2=� '=f:One main point disovered by Herrera and Lieberman is that if ' has bidegree(n�1; n) then for eah k, I'fk(�) = O(�Æk) for some positive Æk. Using this, onean then smoothen the integration over jf j2 = � and regularize the residueDate: 10th August 2005.



2 HÅKAN SAMUELSSONurrent by using smooth funtions � de�ned on [0;1) suh that � is 0 atzero and tends to 1 at in�nity. In fat, we an make a Leray deompositionand write any (n; n)-test form ' as � ^ �f=fk for some k, where � is a testform of bidegree (n � 1; n) whose restrition to jf j2 = t is unique, for eaht > 0. Then writing the integral of �(jf j2=�)'=f as an integral over thelevel surfaes jf j2 = t and using Herrera's and Lieberman's result one seesthat �(jf j2=�)=f is a regularization of the prinipal value urrent [1=f ℄. Itfollows that the residue urrent an be obtained as the weak limit of thesmooth form ���(jf j2=�)=f . This is also a onsequene of Corollary 5 below.A natural hoie for � is �(t) = t=(t + 1) and we see that we get the wellknown result that the residue urrent an be obtained as the weak limit of��( �f=(jf j2 + �)). We also brie�y mention the more general urrents studiedby Barlet, [3℄. If we instead integrate over the �ber f = s in (1) and let 'have bidegree (n�1; n�1) then the integral has an asymptoti expansion ins with urrent oe�ients. The onstant term is Lelong's integration urrenton Vf and the residue urrent ��[1=f ℄ an be obtained from the oe�ient ofsn.We turn to the main fous of this paper whih is the odimension two ase.Let f and g be two holomorphi funtions on X suh that f and g de�nea omplete intersetion, that is, the ommon zero set Vf�g has odimensiontwo. Consider the residue integral(2) I'f;g(�1; �2) = Zjf j2=�1jgj2=�2 'fg :The unrestrited limit of the residue integral as �1; �2 ! 0 does not exist ingeneral. The �rst example of this phenomenon was disovered by Passareand Tsikh in [19℄, and Björk later found that this indeed is the typial ase,[6℄. See also [21℄. Via Hironaka's theorem on resolutions of singularities onemay assume that the hypersurfae f � g = 0 has normal rossings, whihmeans that there is a (�nite) atlas of harts suh that f(�) = ~f(�)�� andg(�) = ~g(�)�� where � and � are multiindies (depending on the hart) and~f and ~g are invertible holomorphi funtions. It is atually the invertiblefators whih ause problems. One an always dispose of one of the fators,but in general not of both. However, if the matrix A, whose two rows arethe integer vetors � and � respetively, has rank two there is a hangeof variables z = �(�) suh that z� = ~f(�)�� and z� = ~g(�)��, see e.g.[16℄. Hene, when � and � are not linearly dependent we an make boththe invertible fators disappear. Problems therefore arise in so alled hartsof resonane where � and � are linearly dependent. Cole� and Herrerarealized that if one demands that �1 and �2 tend to zero in suh a way that�1=�k2 ! 0 for all k 2 Z+, along a so alled admissible path, then one willget no ontributions from the harts of resonane beause one annot havej ~f(�)��j << j~g(�)��j if � and � are linearly dependent. They proved in[8℄ that the limit, along an admissible path, of the residue integral existsand de�nes the ation of a (0; 2)-urrent, the Cole�-Herrera residue urrent[ ��(1=f) ^ ��(1=g)℄. In [16℄ Passare smoothened the integration over the setfjf j2 = �1g \ fjgj2 = �2g by introduing funtions � as desribed above, and



REGULARIZATIONS OF RESIDUE CURRENTS 3he studied possible weak limits of forms(3) ���1(jf j2=�1)f ^ ���2(jgj2=�2)galong paraboli paths (�1; �2) = (�s1 ; �s2) where s = (s1; s2) belongs to thesimplex �2(2) = f(x; y) 2 R2+ ; s1 + s2 = 2g. He found that it is enoughto impose �nitely many linear onditions (nj ; s) 6= 0 to assure that (3) hasa weak limit along the orresponding paraboli path. The linear onditionspartition �2(2) into �nitely many open segments and the weak limit of (3)along a paraboli path orresponding to an s in suh a segment only dependson the segment. We say that (�1; �2) tends to zero inside a Passare setor.Moreover, as we assume that f and g de�ne a omplete intersetion, thelimit is even independent of the hoie of segment. In this ase it alsooinides with the Cole�-Herrera urrent. One an obtain a ��-potentialto the Cole�-Herrera urrent e.g. by hanging the integration set in (2) tofjf j2 > �1g\fjgj2 = �2g and pass to the limit along an admissible path or byremoving the �rst �� in (3) and pass to the limit inside a Passare setor. This��-potential is denoted [(1=f) ��(1=g)℄. The main result in this paper impliesthat if �j 2 C1([0;1℄) satisfy �j(0) = 0 and �j(1) = 1 then, in the senseof urrents(4) lim�1;�2!0 �1(jf j2=�1)f ���2(jgj2=�2)g = � 1f �� 1g �;and the ation of the smooth form on the left hand side on a test formdepends Hölder ontinuously on (�1; �2) 2 [0;1)2. For the partiular asewhen �j(t) = t=(t + 1) our result, apart from the Hölder ontinuity, wasannouned in [22℄. Atually, it is possible to relax the smoothness assumptionon one of the �j in (4). As mentioned above, one an always dispose of oneof the invertible fators. Say that we always arrange so that ~f � 1. Then,examining the proof, one �nds that one may take �1 to be the harateristifuntion of [1;1℄. Hene,Zjf j2>�1 ���2(jgj2=�2)fg ^ '! � 1f �� 1g �:'with Hölder ontinuity. Note that if we let both �1 and �2 be the hara-teristi funtion of [1;1℄ then this result is no longer true in view of theexamples of Passare-Tsikh and Björk.Our result also generalize to produts of pairs of so alled Bohner-Martinellibloks. Consider a tuple f = (f1; : : : ; fm) of holomorphi funtions on X.The residue integral orresponding to f , I'f (�1; : : : ; �m), is de�ned anal-ogously to (2). If we take the mean value of the residue integral over� = (�1; : : : ; �m) in the simplex �m(Æ) = fs 2 Rm+ ; P sj = Æg we obtain(5) m Zjf j2=Æ Pmj=1(�1)j+1 �fjVi6=j �� �fijf j2m ^ ';where m is a onstant only depending on m. It turns out, see [20℄, thatthe limit as Æ tends to zero of (5) exists and de�nes the ation of a (0;m)-urrent, whih in the ase f de�nes a omplete intersetion, oinides with



4 HÅKAN SAMUELSSONthe Cole�-Herrera urrent and also with the urrents studied in [5℄ and [18℄.Based on the work in [20℄ Andersson introdues more general urrents ofthe Cauhy-Fantappiè-Leray type in [2℄. We will brie�y disuss Andersson'sonstrution in Setion 3. In short, he de�nes a singular form uf =P ufk;k�1,where the terms ufk;k�1 are similar to the form in (5), and he shows that itis extendible to X as a urrent, Uf , either as prinipal values or by analytiontinuation. The residue urrent, Rf , is derived from the urrent Uf andequals the Cole�-Herrera urrent loally if f de�nes a omplete intersetion.If g is also a tuple of funtions there is a natural way of de�ning the produt ofthe Cauhy-Fantappiè-Leray type urrents orresponding to f and g so thatformal Leibnitz rules hold, see [26℄. If f � g de�nes a omplete intersetionand �1; �2 2 C1([0;1℄) vanish to high enough orders at zero and equals 1at in�nity then we prove that the smooth forms�1(jf j2=�1)uf ^ ���2(jgj2=�2) ^ ug and���1(jf j2=�1) ^ uf ^ ���2(jgj2=�2) ^ ugare Hölder ontinuous as urrents for (�1; �2) 2 [0;1)2 and tend to Uf ^Rgand Rf ^ Rg respetively as �1; �2 ! 0; Theorem 21 and Corollary 23. If gis a funtion suh that f � g de�nes a omplete intersetion, our tehniquesan also be used to prove that ���1(jf j2=�1) ^ uf�2(jgj2=�2) ! Rf when �2equals the harateristi funtion of [1;1℄. We use this to onlude thatRf has the standard extension property in the omplete intersetion ase,Corollary 24. For more historial aounts we refer to the survey artile [7℄by Björk.The disposition of the paper is as follows: In Setion 2 we outline a proof of(4) sine the proofs of the more general statements about Bohner-Martinellior Cauhy-Fantappiè-Leray bloks are only more di�ult to prove in thetehnial sense and to make it lear that it is not neessary to work throughthe onstrutions of Bohner-Martinelli or Cauhy-Fantappiè-Leray type ur-rents in order to prove (4). In Setion 3 we reall Andersson's onstrutionand explain some useful notation. Setion 4 ontains some fairly well knownregularization results about Cauhy-Fantappiè-Leray type urrents. As An-dersson's formalism makes the arguments a little smoother we also supplythe proofs. Setion 5 ontains the tehnial ore of this paper. We study reg-ularizations of produts of monomial urrents whih we then use in Setion6 to prove our main results; Theorem 21 and its orollaries 23, 25 and 26 andTheorem 27. In Setion 7 we see by expliit omputations that Corollary26 holds for the example by Passare and Tsikh. This setion is essentiallyself-ontained.2. Sketh of proof in the ase of two funtionsLet f and g be two holomorphi funtions on X de�ning a omplete in-tersetion. We sketh how one an handle the di�ulties arising in harts ofresonane when proving (4). We study the integral(6) Z �1(jf j2=�1)f ���2(jgj2=�2)g ^ '



REGULARIZATIONS OF RESIDUE CURRENTS 5where ' is a test form of bidegree (n; n � 1). By Hironaka's theorem wemay assume that f = �� ~f and g = ��~g are monomials times non-vanishingfuntions. One of the non-zero fators an be inorporated in a variable andso we assume that ~f � 1. We assume also that we are in a hart of resonane,i.e. that � and � are linearly dependent. After resolving singularities f andg no longer de�ne a omplete intersetion in general, but on the other handa degree argument shows that d��j=��j ^ ' beomes a test form for any �jdividing both f and g. See the proof of Theorem 21 for more details. Sine� and � are linearly dependent, d��j=��j ^ ' is a test form for all j suh that�j 6= 0, or equivalently, �j 6= 0. Now, (6) equalsXj �j Z �1(j��j2=�1)�� �02(	j��j2=�2)�� j��j2�2 ^ d��j��j ^ '= ~fwhere 	 = j~gj2 is a stritly positive smooth funtion. It now follows fromCorollary 15 that eah term in this sum tends to zero as �1 and �2 tend tozero. Hene the harts of resonane do not give any ontributions.3. Preliminaries and notationAssume that f is a setion of the dual bundle E� of a holomorphi m-bundle E ! X over a omplex n-manifold X. We will only deal with loalproblems and it is therefore no loss of generality in assuming that E !X is trivial. However, the formalism will run smoother with an invariantnotation. As mentioned above, we will reall Andersson's onstrution in [2℄and produe urrents Uf and Rf and we emphasize that in the ase E ! Xis the trivial line bundle then Uf and Rf are the urrents [1=f ℄ and ��[1=f ℄times some basis elements. On the exterior algebra �E of E, the setion findues mappings Æf : �k+1E ! �kE of interior multipliation and Æ2f = 0.We introdue the spaes E0;q(X;�kE) of the smooth setions of the exterioralgebra of E � T �0;1X whih are (0; q)-forms with values in �kE. We alsointrodue the orresponding spaes of urrents, D 00;q(X;�kE). The mappingsÆf extend to mappings Æf : D 00;q(X;�k+1E)! D 00;q(X;�kE) with Æ2f = 0 andthese mappings anti-ommute with the ��-operator. Hene, D 00;q(X;�kE) isa double omplex and the assoiated total omplex is� � � rf! Lr�1(X;E) rf! Lr(X;E) rf! � � �where Lr(X;E) = Lq�k=rD 00;q(X;�kE) and rf = Æf � ��. We will referto the total omplex as the Andersson omplex. The exterior produt, ^,indues mappings ^ : Lr(X;E) �Ls(X;E)! Lr+s(X;E)when possible, and rf is an antiderivation, i.e. rf (� ^ �) = rf� ^ � +(�1)r� ^ rf� if � 2 Lr(X;E) and � 2 Ls(X;E). If � 2 Lr(X;E) wewrite �k;k+r for the omponent of � belonging to D 00;k+r(X;�kE). Notethat funtions de�ne elements of L0(X;E) of degree (0; 0) and setions of Ede�ne elements of L�1(X;E) of degree (1; 0). One an show, see [2℄, thatif X is Stein and the zero:th ohomology group of the Andersson omplex



6 HÅKAN SAMUELSSONvanishes then for any holomorphi funtion h there is a holomorphi setion of E suh that Æf = h. This means that if f = (f1; : : : ; fm) in someloal holomorphi frame for E� then the division problem P fj j = h hasa holomorphi solution. This annot hold for all h if f has zeros and theAndersson omplex an therefore not be exat in this ase. Still, we try tolook for an element uf 2 L�1(X;E) suh that rfuf = 1. To this end weassume that E is equipped with some Hermitian metri j � j and we let sfbe the setion of E with pointwise minimal norm suh that Æfsf = jf j2.Outside Vf = f�1(0) we may putuf = sfrfsf = sfÆfsf � ��sf =Xk sf ^ ( ��sf )k�1jf j2k :Observe that rfsf has even degree so the expression sf=rfsf has meaningoutside Vf and it follows immediately that rfu = 1 there. The followingtheorem is proved in [2℄.Theorem 1. Assume that f is loally nontrivial. The forms jf j2�uf and��jf j2� ^ uf are loally bounded if Re � is su�iently large and they haveanalyti ontinuations as urrents to Re � > ��. Let Uf and Rf denote thevalues at � = 0. Then Uf is a urrent extension of uf , Rf has support onVf and rfUf = 1�Rf :Moreover, Rf = Rfp;p + � � � +Rfq;q where p = Codim(Vf ) and q = min(m;n).Note that if Vf = ; then rfUf = 1 on all of X, whih implies that takingthe exterior produt with Uf is a homotopy operator for the Anderssonomplex. The urrent Rf is the Bohner-Martinelli, or more generally, theCauhy-Fantappiè-Leray urrent assoiated to f , and if f = (f1; : : : ; fm) insome loal holomorphi frame, e1; : : : ; em, of E then(7) Rf = ��� 1f1 ^ � � � ^ �� 1fm � ^ e1 ^ � � � ^ emif f de�nes a omplete intersetion, see [2℄.Now if fj, j = 1; 2, are setions of the dual bundles E�j of holomorphiHermitian mj-bundles Ej ! X we an apply the above onstrution to thesetion f = f1 � f2 of the bundle E�1 � E�2 and obtain the urrents Uf andRf . We ould also try to ombine the individual urrents Ufj and Rfj . It isshown in [26℄ that the formsjf1j2�uf1^jf2j2�uf2 ; jf1j2�uf1^ ��jf2j2�^uf2 and ��jf1j2�^uf1^ ��jf2j2�^uf2;whih are loally bounded if Re � is large enough, have urrent extensionsto Re � > ��. The values at � = 0 are denoted Uf1 ^ Uf2 , Uf1 ^ Rf2 , andRf1 ^Rf2 , respetively, and formal omputation rules suh as e.g. rf (Uf1 ^Rf2) = (1�Rf1)^Rf2 = Rf2 �Rf1 ^Rf2 hold. It is also shown in [26℄ thatif f de�nes a omplete intersetion then Rf = Rf1 ^Rf2 .We will use the names f and g, rather then f1 and f2, for the setions of thetwo bundles and the symbol r, without subsript, always denotes rf�g. Wewill use multiindies extensively in the sequel. Multiindies will be denoted



REGULARIZATIONS OF RESIDUE CURRENTS 7� and � or I and J and sometimes also r and �. The number of variables willalways be n but it will be onvenient to de�ne multiindies by expressionslike � = (�j)j2K for K � f1; : : : ; ng. By this we mean that � = (a1; : : : ; an)where aj = 0 if j =2 K and aj = �j if j 2 K. Hene, if z = (z1; : : : ; zn)then z� = Qj2K z�jj and similarly for ��=�z�. Multiindies are added andmultiplied by numbers as elements in Zn and � � 1 = (�1 � 1; : : : ; �n � 1).Also, j�j denotes the length of � as a vetor in Eulidean spae and #� isthe ardinality of the support of �.Integration over domains in C n will always be with respet to the volumeform (i=2)ndz1 ^ d�z1 ^ : : :^ dzn ^ d�zn := (i=2)ndz ^ d�z if nothing else is said.If � is a Reinhardt domain in C n and ' is a funtion whih only dependson the moduli of the variables and suh that z�'(z) is integrable on � thenZ� z�'(z) = 0if � is a non-zero multiindex. This simple fat will play a fundamental roleto us in what follows and we will refer to it as anti-symmetry.Unless otherwise stated, the symbol � with various subsripts will alwaysdenote a smooth funtion on [0;1℄ whih is zero to some order at 0 and suhthat �(1) = 1. By smooth at in�nity we mean that t 7! �(1=t) is smoothat zero.4. Regularizations of Cauhy-Fantappiè-Leray type urrentsConsider a funtion � as above and let ~�(s) = �(1=s). Then ~� is dif-ferentiable at s = 0 and ~�0(s) = ��0(1=s)=s2. Letting t = 1=s we see that�0(t) = O(1=t2) as t!1. This simple observation will be frequently used inthe sequel. It follows that for any ontinuous funtion ' with ompat sup-port in [0;1) we have j'(�t)�0(t)j � C(t+ 1)�2 for a onstant independentof �. Hene by the dominated onvergene theorem we see thatZ 10 ddt�(t=�)'(t)dt = Z 10 dd� �(�)'(��)d� ! '(0)Z 10 dd� �(�)d� = '(0);and we have provedLemma 2. Let � 2 C1([0;1℄) satisfy �(0) = 0 and �(1) = 1. Then(d=dt)�(t=�) ! Æ0 as measures on [0;1).Proposition 3. Assume � 2 C1([0;1℄) vanishes to order ` at 0 and satis-�es �(1) = 1. Thenlim�!0+ Z �(jf j2=�)uf̀;`�1 ^ ' = U f̀;`�1:'for any test form '.Proof. On the set 
 = f(z; t) 2 C n � (0;1); jf(z)j2 > tg we have, for all�xed � > 0, that��uf̀;`�1 ddt�(t=�) ^ '�� � C 1jf j2`�1 �� ddt�(t=�)�� �C t1=2t` �� ddt�(t=�)�� � C 1t1=2



8 HÅKAN SAMUELSSONsine ddt�(t=�) = O(t`�1). Hene we have an integrable singularity on 
 andby Fubini's theorem we getZ 10 ddt�(t=�)Zjf j2>t uf̀;`�1 ^ 'dt = Z uf̀;`�1 ^ 'Z jf j20 ddt�(t=�)dt =Z uf̀;`�1�(jf j2=�) ^ ':(8)But J(t) = Rjf j2>t uf̀;`�1 ^ ' is a ontinuous funtion with ompat supportin [0;1) with J(0) = U f̀;`�1:', see [20℄ or [2℄. Hene by Lemma 2 the lefthand side of (8) tends to U f̀;`�1:' and the proof is omplete. �If we take �(t) equal to appropriate powers of t=(t + 1) we obtain thefollowing natural ways to regularize the urrents Uf and Rf .Corollary 4. For any test form ' we have(9) lim�!0+ Z X̀�1 sf ^ ( ��sf )`�1(jf j2 + �)` ^ ' = Uf :'and(10) lim�!0+ Z X̀�1 � ( ��sf )`(jf j2 + �)`+1 ^ ' = Rf :':Proof. Letting �`(t) = t`=(t+ 1)` we see thatuf̀;`�1�`(jf j2=�) = sf ^ ( ��sf )`�1(jf j2 + �)`and so (9) follows from Proposition 3. To show that (10) holds we �rst notethat X̀�1 sf ^ ( ��sf )`�1(jf j2 + �)` = sfrfsf + � :Henerf X̀�1 sf ^ ( ��sf )`�1(jf j2 + �)` = rf sfrfsf + � = rfsfrfsf + � = 1� X̀�0 � (��sf )`(jf j2 + �)`+1 :Sine di�erentiation is a ontinuous operation on distributions it follows from(9) thatlim�!0+ 1� X̀�0 � (��sf )`(jf j2 + �)`+1 = rf lim�!0+X̀�1 sf ^ ( ��sf )`�1(jf j2 + �)` = rfUf = 1�Rfin the sense of urrents. The term with ` = 0 in the sum on the left is easilyseen to tend to zero in the sense of urrents and hene (10) follows. �Note that it is the di�erene(11) ��(�`uf̀;`�1)� Æf (�`+1uf̀+1;`) = ���` ^ uf̀;`�1 + (�` � �`+1)Æfuf̀+1;`whih onverges to the term of Rf of bidegree (`; `). It is only for the termof top degree, the last term in (11) is not present. This explains why the



REGULARIZATIONS OF RESIDUE CURRENTS 9regularization result in [20℄, Theorem 2:1, oinides with our result for thetop degree term but not for the terms of lower degree.We an also take one � whih vanishes to high enough order at zero toregularize all terms of Uf and Rf .Corollary 5. Assume that � 2 C1([0;1℄), vanishes to order min(m;n)+1at zero and satis�es �(1) = 1. Then for any test form ' we have(12) lim�!0+ Z �(jf j2=�)uf ^ ' = Uf :'(13) lim�!0+ Z ���(jf j2=�) ^ uf ^ ' = Rf :':Proof. The �rst statement follows immediately from Proposition 3. For theseond one we note thatr�uf = r� ^ uf + �ruf = ���� ^ uf + �ruf ;and sine � vanishes to high enough order at zero all terms are smooth.Outside ff = 0g we have ruf = 1 and hene �ruf = � everywhere.Moreover, �(jf j2=�) tends to 1 in the sense of urrents and hene��� ^ uf = �ruf �r�uf ! 1� (1�Rf ) = Rfin the sense of urrents. �5. Regularizations of produts of monomial urrentsThis setion ontains the tehnial result about the normal rossing aseneeded to prove our main theorems in the next setion. Of partiular impor-tane is Proposition 11. First we need a generalization of Taylor's formula.Lemma 6 enables us to approximate a smooth funtion de�ned on C n ina neighborhood of the union of the oordinate hyperplanes instead of in aneighborhood of their intersetion as in the usual Taylor's formula. The ap-proximating funtions are in our ase not polynomials in general but haveenough similarities for our purposes. For tensor produts of one-variablefuntions this orresponds to multiplying the individual Taylor expansions.Lemma 6 appears as Lemma 2:3 in [22℄ but the formulation there is unfortu-nately not ompletely orret. We also remark that Lemma 6 is very similarto Lemma 2:4 in [8℄ and that very general Taylor expansions are onsideredin Chapter 1 in [13℄. De�ne the linear operator M rjj on C1(C n) to be theoperator that maps ' to the Taylor polynomial of degree rj of the funtion�j 7! '(�) (entered at �j = 0). We note that M rjj and M rii ommute. Tosee this we only need to observe that�� ~�i � �'� ~�j ���j=0����i=0 = �2'� ~�i� ~�j ���i=�j=0 = �� ~�j ��'� ~�i ���i=0����j=0where �=� ~�j means that we do not speify whether we di�erentiate withrespet to �j or ��j.



10 HÅKAN SAMUELSSONLemma 6. Let K � f1; : : : ; ng have ardinality � and let r = (rj)j2K.De�ne the linear operator M rK on C1(C n) byM rK = Xj2KM rjj � Xi;j2Ki<j M rii M rjj + � � � + (�1)�+1M rj1j1 � � �M rj�j� :Then for any ' 2 C1(C n) we have(14) '(�) =M rK'(�) + Z[0;1℄� (1� t)rr! �r+1�tr+1'(t�) dtwhere t� should be interpreted as (�1; : : : ; �n), �j = tj�j if j 2 K and �j = �jif j =2 K. In partiular ' � M rK' = O(j�r+1j). Moreover, M rK' an bewritten as a �nite sum of terms, 'IJ(�)�I ��J , with the following properties:(a) 'IJ(�) is independent of some variable and in partiular of variable�j if Ij + Jj > 0,(b) Ij + Jj � rj for j 2 K,() if L is the set of indies j 2 K suh that �j 7! 'IJ(�) is non-onstantthen 'IJ (�) = O(Qj2L j�jjrj+1).Proof. It is enough to prove the lemma when K = f1; : : : ; ng. In ase n = 1,(14) is Taylor's formula. For n � 2, we write the integral in (14) as aniterated integral. Formula (14) then follows by indution. One an alsoshow (14) by repeated integrations by parts. The di�erene ' � M rK' isseen to be of the desired size after performing the di�erentiations of '(t�)with respet to t inside the integral. To see that M rK' an be written as asum of terms 'IJ(�)�I ��J with the properties (a), (b), and (), we let r ~K ,for any ~K � K, denote the multiindex (rj1 ; : : : ; rjj ~Kj), rij 2 ~K. A straightforward omputation now shows thatM rK' = Xj2KM rjj ('�M rKnfjgKnfjg ')+ Xi;j2Ki<j M rii M rjj ('�M rKnfi;jgKnfi;jg ')...+ M rj1j1 � � �M rj�j� ':From the �rst part of the proof (and the de�nition of M rjj ) it follows thatevery term on the right hand side is a �nite sum of terms with the statedproperties. �Lemma 7. Let � be a multiindex and let M = M rK be the operator de�nedin Lemma 6 with K the set of indies j suh that �j � 2 and rj = �j � 2,j 2 K. Then for any ' 2 D(C n) we haveZ� 1�� ('�M') = h 1�� i: ' (i=2)nd� ^ d��if � is a polydis ontaining the support of '.



REGULARIZATIONS OF RESIDUE CURRENTS 11Proof. Note that by Lemma 6 we have ' �M' = O(j���1j) and so (' �M')=�� is integrable on �. Hene if we let �Æ = � \j fj�j j > Æg we getZ� 1�� ('�M') = limÆ!0 Z�Æ 1�� ('�M')= limÆ!0 Z�Æ 1��'� limÆ!0 Z�Æ 1��M':The �rst limit on the right hand side is the tensor produt of the prini-pal value urrents [1=��jj ℄ (ating on ' (i=2)nd� ^ d��) and hene it equals[1=��℄:' (i=2)nd� ^ d��. It follows by anti-symmetry that atuallyZ�Æ 1��M' = 0for all Æ > 0. In fat, M' is a sum of terms 'IJ(�)�I ��J where Ij + Jj ��j � 2 for all j and the oe�ient 'IJ(�) is at least independent of somevariable. �Lemma 8. Let �1; �2 2 C1([0;1℄) and let � and 	 be smooth stritlypositive funtions on C n . Let also M rK be the operator de�ned in Lemma 6with K and r arbitrary. Then�1(t1�)�2(t2	) =M rK(�1(t1�)�2(t2	)) + j�r+1jB(t1; t2; �);where B is bounded on (0;1)2 �D if D b C n .Proof. If D b C n both � and 	 have stritly positive in�ma and �nitesuprema on D and so there is a neighborhood U of [0;1℄2 in bR � bR suhthat the funtion (t1; t2; �) 7! �1(t1�)�2(t2	) is smooth on U � D. FromLemma 6 it follows that�1(t1�)�2(t2	) =M rK(�1(t1�)�2(t2	)) + XI;J�KIj+Jj=rj+1GIJ(t1; t2; �)�I ��Jfor some funtions GIJ whih are smooth on U �D, and the lemma readilyfollows. �To prove Proposition 11 we will need the estimates of the following twoelementary lemmas.Lemma 9. Let � be the unit polydis in C n and put ��� = f� 2 �; j��j2 � �gand ��;��1;�2 = f� 2 �; j��j2 � �1; j��j2 � �2g. Then for all �; �j � 1 we haveZ�n��� 1j�1j � � � j�nj . �1=(2j�j)j log �jn�1and Z�n��;��1;�2 1j�1j � � � j�nj . j(�1; �2)j!; 2! < minfj�j�1; j�j�1g:



12 HÅKAN SAMUELSSONProof. On the set � n��;��1;�2 , either j��j2 < �1 or j��j2 < �2 and so it followsfrom the �rst inequality that the integral in the seond inequality is less thenor equal to (a onstant times)�1=(2j�j)1 j log �1jn�1 + �1=(2j�j)2 j log �2jn�1 . �1=(2j�j)��1 + �1=(2j�j)��2. j(�1; �2)j!� ;for any � > 0 and !� � minfj�j�1; j�j�1g=2 � �. Hene the seond in-equality follows from the the �rst one. To prove the �rst inequality we �rstintegrate with respet to the angular variables and then we make the hangeof variables xj = log j�jj to see that the integral in question equals(15) (4�)n ZQ� eP xjdx;where Q� = fx 2 (�1; 0℄n; 2P�jxj < log �g. Sine all xj � 0 on Q� wehave exp(P xj) � exp(�jxj) here, and hoosing R = j log �j=(2j�j) we seethat (15) is less then or equal to Rfjxj>Rg exp(�jxj)dx. In polar oordinatesthis is easily seen to be of order �1=(2j�j)j log �jn�1. �Lemma 10. Let � be the unit polydis in C n and put ��� = f� 2 �; j��j2 ��g and ��;��1;�2 = f� 2 �; j��j2 � �1; j�� j2 � �2g. Then, for �; �j � 1, we haveZ��� �j��j2 1j�1j � � � j�nj . �1=(2j�j)j log �jn�1;Z��;��1;�2 � �1j��j2 + �2j��j2 � 1j�1j � � � j�nj . j(�1; �2)j!and Z��;��1;�2 �1�2j��j2j��j2 1j�1j � � � j�nj . j(�1; �2)j!;where 2! < minfj�j�1; j�j�1g.Proof. The seond and third inequality follow from the �rst one sine it im-plies that the integral in the seond one is of the size ��+1=(2j�j)1 +��+1=(2j�j)2 .j(�1; �2)j�+! for any � > 0 and that the integral in the third is of the sizeminf�1=(2j�j)1 j log �1jn�1; �1=(2j�j)2 j log �2jn�1g. To prove the �rst inequality weproeed as in the previous lemma and we see that the integral in questionequals (4�)n�ZQ� eP xje2P�jxj dx = (4�)n�ZQ�\fjxj�Rg ePxje2P�jxj dx(16) + (4�)n�ZQ�\fjxj�Rg ePxje2P�jxj dx;where Q� = fx 2 (�1; 0℄n; 2P�jxj � log �g. We hoose 2R = j log �j=j�j,and then Q� \ fjxj � Rg = fx 2 (�1; 0℄n; jxj � Rg. If all xj � 0 wehave Pxj � �jxj and by the Cauhy-Shwarz inequality we also have�P�jxj � j�jjxj. Hene we may estimate the integrand in the seondto last integral in (16) by exp((2j�j�1)jxj). In the last integral we integrate



REGULARIZATIONS OF RESIDUE CURRENTS 13where �= exp(2P�jxj) � 1 and so we see that the right hand side of (16)is less then or equal to(4�)n�Zfjxj�Rg e(2j�j�1)jxjdx+ (4�)n Zfjxj�Rg e�jxjdx:By hanging to polar oordinates this is seen to be of the size �1=(2j�j)j log �jn�1.�The proof of the following proposition ontains the tehnial ore of thispaper.Proposition 11. Assume that �1; �2 2 C1([0;1℄) vanish to orders k � 0and ` � 0 at 0, respetively, and that �1(1) = 1. Then for any test form' 2 Dn;n(C n) we haveZ 1�k�+`��1(�j��j2=�1)�2(	j��j2=�2)'! (� 1�k�+`� �:'; �2(1) = 10; �2(1) = 0as �1; �2 ! 0+. Moreover, as a funtion of � = (�1; �2) 2 [0;1)2, the integralbelongs to all !-Hölder lasses with 2! < minfj�j�1; j�j�1g.Remark 12. The values of the integral at points (�1; 0) and (0; �2), �j 6= 0,are �2(1)�1(�j��j2=�1)�k� � 1�`� �:' and �2(�j��j2=�2)�`� � 1�k� �:'respetively.Remark 13. The modulus of ontinuity an be improved by sharpening theestimates in the Lemmas 9 and 10 but we will not bother about this. Thisis beause the multiindies � and � will be impliitly given by Hironaka'stheorem and so we an only be sure of the existene of some positive Hölderexponent when we prove our main theorems anyway.Proof. We prove Hölder ontinuity for a path (�1; �2) ! 0, �j 6= 0. For ageneral path (inside [0;1)2) to an arbitrary point in [0;1)2 one proeeds ina similar way. Let K be the set of indies j suh that k�j + `�j � 2 and letM = M rK be the operator de�ned in Lemma 6 with rj = k�j + `�j � 2 forj 2 K. Let also � be a polydis ontaining the support of '. In this proofwe will identify ' with its oe�ient funtion with respet to the volumeform in C n . We make a preliminary deomposition(17) Z 1�k�+`��1�2' = Z� 1�k�+`��1�2('�M') + Z� 1�k�+`��1�2M':Denote by �� the set f� 2 �; j��j2 � �1; j��j2 � �2g. Sine ' �M' =O(j�r+1j), aording to Lemma 6, and �1(1) = 1 we get��� Z� 1�k�+`��1�2('�M')� �2(1)Z� 1�k�+`� ('�M')���(18) . Z� 1j�1j � � � j�nj ���1�2 � �2(1)��. Z�� 1j�1j � � � j�nj ���1�2 � �2(1)��+ Z�n�� 1j�1j � � � j�nj :



14 HÅKAN SAMUELSSONIt follows from Lemma 9 that the last integral is of order j�j! as �1; �2 ! 0+.On the other hand, for � 2 �� both j��j2=�1 � 1 and j��j2=�2 � 1 and byTaylor expanding at in�nity we see that�1(�j��j2=�1) = �1(1) + �1j��j2B1(�1=j��j2; �);�2(	j��j2=�2) = �2(1) + �2j��j2B2(�2=j�� j2; �)where B1 and B2 are bounded. Using that �1(1) = 1 we thus get thatj�1�2 � �2(1)j is of the size �1=j��j2 + �2=j��j2. Hene, by Lemma 10 theseond to last integral in (18) is also of order j�j! as �1; �2 ! 0+. In viewof Lemma 7, we have thus showed that the �rst integral on the right handside of (17) tends to [1=�k�+`� ℄:' if �2(1) = 1 and to zero if �2(1) = 0and moreover, belongs to the stated Hölder lasses. We will be done ifwe an show that the last integral in (17) is of order j�j!. We know thatM' =PIJ 'IJ�I ��J where eah 'IJ is independent of at least one variableand Ij + Jj � k�j + `�j � 2 for j 2 K. Hene, if � and 	 are onstants (oronly depend on the modulus of the �j) then the last integral in (17) is zerofor all �1; �2 > 0 by anti-symmetry. For the general ase, onsider one term(19) Z� 1�k�+`��1�2'IJ�I ��Jand let L be the set of indies j 2 K suh that �j 7! 'IJ(�) is onstant. LetalsoM =M�L be the operator de�ned in Lemma 6 with �j = k�j+`�j�Ij�Jj�2 for j 2 L. We introdue the independent (real) variables, or �smoothingparameters�, t1 = j��j2=�1 and t2 = j��j2=�2. Below, M (�1�2) denotes thefuntion we obtain by letting M operate on � 7! �1(t1�(�))�2(t2	(�)) andthen substituting j��j2=�1 and j��j2=�2 for t1 and t2 respetively. We rewritethe integral (19) asZ�� 'IJ�I ��J�k�+`� (�1�2 �M (�1�2)) + Z�n�� 'IJ�I ��J�k�+`� (�1�2 �M (�1�2))+ Z� 'IJ�I ��J�k�+`� M (�1�2):(20)Now, M (�1�2) is a sum of terms whih, at least for some j 2 L, aremonomials in �j and ��j times oe�ient funtions depending on j�jj andthe other variables. The degrees of these monomials do not exeed �j =k�j+ `�j�Ij�Jj�2 and sine �j 7! 'IJ(�) is onstant for j 2 L we see, byounting exponents, that the last integral in (20) vanishes by anti-symmetryfor all �1; �2 > 0. By Lemma 8 we have(21) �1(t1�)�2(t2	)�M (�1(t1�)�2(t2	)) = j��+1jB(t1; t2; �);where B is bounded on (0;1)2��. We note also that by Lemma 6, 'IJ (�) =O(Qj2LnK j�j jrj+1). From (21) we thus see that the modulus of the seondintegral in (20) an be estimated byC Z�n�� 1j�1j � � � j�nj ;



REGULARIZATIONS OF RESIDUE CURRENTS 15whih is of order j�j! by Lemma 9. It remains to onsider the �rst integralin (20). On the set �� we have that �j��j2=�1 and 	j��j2=�2 are larger thensome positive onstant and so by multiplying the Taylor expansions of thefuntions t1 7! �1(t1�) and t2 7! �2(t2	) at in�nity we get�1(�j��j2=�1)�2(	j��j2=�2) = �2(1) + �2j��j2 ~�2(j��j2=�2; �)+ �2(1) �1j��j2 ~�1(j��j2=�1; �)+ �1�2j��j2j��j2 ~�1(j��j2=�1; �)~�2(j��j2=�2; �)where ~�j are smooth on [1;1℄��. Now sine j��j2=�1 = t1 and j��j2=�2 = t2are independent variables we onlude that�1�2 �M (�1�2) = �2j��j2 (~�2 �M ~�2) + �1j��j2�2(1)(~�1 �M ~�1)+ �1�2j��j2j��j2 (~�1 ~�2 �M (~�1 ~�2))for � 2 ��. By Lemmas 6 and 10 we see that the �rst integral in (20) also isof order j�j! as �1; �2 ! 0+ and the proof is omplete. �Remark 14. Let us assume that the funtion � is identially 1 in the previ-ous proposition. Then, instead of adding and subtrating M (�1�2) in (20),it is enough to add and subtrat �1M (�2). This suggests that one an relaxthe smoothness assumption on �1. It is atually possible to take �1 to bethe harateristi funtion of [1;1℄. If we de�ne the value of the integral inProposition 11 at a point (�1; 0) to be(22) Z� 1�k�+`��1(j��j2=�1)(' �M');where � andM are as in the proof above, then the onlusions of Proposition11 hold for this hoie of �1. Only minor hanges in the proof are needed tosee this. One an also hek that (22) is a way of omputing�1(j��j2=�1)� 1�k�+`� �:':The produt �1(j��j2=�1)[1=�k�+`� ℄ is well de�ned beause the wave frontsets of the two urrents behave in the right way, at least for almost all �1,see [7℄.We make another useful observation. Sine the funtion ~�(s) = �(1=s)is smooth at zero and ~�0(s) := � 1s2�0(1=s), it follows that s 7! �0(1=s)=sis smooth at zero and vanishes for s = 0. Hene, t 7! �0(t)t is smooth on[0;1℄, vanishes to the same order at zero as �, and maps 1 to 0. FromProposition 11 we thus see that we haveCorollary 15. Assume that �1; �2 2 C1([0;1℄) vanish to orders k and `at zero respetively, and satisfy �j(1) = 1. For any smooth and stritlypositive funtions � and 	 on C n and any test form ' 2 Dn;n(C n) we have(23) lim�1;�2!0+ Z 1�k�+`��1(�j��j2=�1)�02(	j��j2=�2) j��j2�2 ' = 0;



16 HÅKAN SAMUELSSONand moreover, as a funtion of � = (�1; �2) 2 [0;1)2, the integral belongs toall !-Hölder lasses with 2! < minfj�j�1; j�j�1g.6. Regularizations of produts of Cauhy-Fantappiè-Leraytype urrentsWe are now in a position to prove our main results. We start with aregularization of the produt Uf ^ Ug. Reall that if f is funtion thenUf = [1=f ℄ times some basis element.Theorem 16. Let f and g be holomorphi setions (loally non-trivial) ofthe holomorphi mj-bundles E�j ! X, j = 1; 2, respetively. Let �1; �2 2C1([0;1℄) be any funtions vanishing to orders m1 and m2 at zero respe-tively, and satisfying �j(1) = 1. Then, for any test form ' we haveZ �1(jf j2=�1)uf ^ �2(jgj2=�2)ug ^ '! Uf ^ Ug:';as �1; �2 ! 0+. Moreover, as a funtion of � = (�1; �2) 2 [0;1)2 the integralon the left hand side belongs to some Hölder lass independently of '.Proof. Reall that Uf ^Ug:' is de�ned as the value at zero of the meromor-phi funtion � 7! Z jf j2�uf ^ jgj2�ug ^ ':Assuming only that �1 and �2 vanish to orders k � m1 and ` � m2 at zerorespetively we will show that(24) Z �1ufk;k�1 ^ �2ug̀;`�1 ^ '! Z jf j2�ufk;k�1 ^ jgj2�ug̀;`�1 ^ '����=0and that the left hand side belongs to some Hölder lass. This will learlyimply the theorem. We may assume that ' has arbitrarily small supportafter a partition of unity. If ' has support outside f�1(0) [ g�1(0) it iseasy to hek that (24) holds and hene we an restrit to the ase that' has support in a small neighborhood U of a point p 2 f�1(0) [ g�1(0).We may also assume that U is ontained in a oordinate neighborhood andthat all bundles are trivial over U . We let (f1; : : : ; fm1) and (g1; : : : ; gm2)denote the omponents of f and g respetively, with respet to some holo-morphi frames. It follows from Hironaka's theorem, possibly after anotherloalization, that there is an n-dimensional omplex manifold ~U and a properholomorphi map �: ~U ! U suh that � is biholomorphi outside the nullset��ff1 � � � fm1 � g1 � � � gm2g and that this hypersurfae has normal rossings in~U . Hene we an over ~U by loal harts, eah entered at the origin, suhthat ��fj and ��gj are monomials times non-vanishing funtions. The sup-port of ��' is ompat beause � is proper and hene, we an over thesupport of ��' by �nitely many of these harts. We let �k be a partitionof unity on supp(��') subordinate to this over. Now, following [20℄ and[4℄, given monomials �1 : : : ; �� , one an onstrut an n-dimensional torimanifold X and a proper holomorphi map ~�: X ! C nt whih is monoidalwhen expressed in loal oordinates in eah hart. Moreover, ~� is biholo-morphi outside ~��ft1 � � � tn = 0g and in eah hart one of the monomials



REGULARIZATIONS OF RESIDUE CURRENTS 17~���1; : : : ; ~���� divides all the others. By repeating this proess, if nees-sary, and loalizing with partitions of unity at eah step, we may atuallyassume that fj = �f;j ~fj and gj = �g;j~gj where ~fj and ~gj are non-vanishingand �f;j and �g;j are monomials with the property that �f;�1 divides all �f;jand �g;�2 divides all �g;j for some indies �1 and �2. Denote �f;�1 by �� and�g;�2 by ��. It follows that jf j2 = j��j2� and jgj2 = j��j2	 where � and 	are stritly positive funtions. Moreover, sf = ���~sf andufk;k�1 = sf ^ ( ��sf )k�1jf j2k = 1�k� ~sf ^ ( ��~sf )k�1�k = 1�k� ~ufk;k�1where ~ufk;k�1 is a smooth form and similarly for ug̀;`�1. In order to prove(24) it thus su�es to proveZ �1(�j��j2=�1)�k� ~ufk;k�1 ^ �2(	j��j2=�2)�`� ~ug̀;`�1 ^ ~'(25) ! Z j��j2��k� ��~ufk;k�1 ^ j��j2��`� 	�~ug̀;`�1 ^ ~'����=0where ~' = �kj��j � � � �k1��1' and that the integral on the left hand sidebelongs to some Hölder lass. But by Proposition 11 it does belong to someHölder lass and tends to [1=�k�+`� ℄:~ufk;k�1 ^ ~ug̀;`�1 ^ ~'. One an verify thatthis indeed is equal to the right hand side of (25) by integrations by partsas in e.g. [2℄. �Remark 17. This theorem an atually be generalized to any number offators Uf . One �rst heks that the analogue of Proposition 11 holds forany number of funtions �j and then redues to this ase just as in the proofabove. In partiular, if fj, j = 1; : : : ; p, are holomorphi funtions and �jvanish at 0, we haveZ �1(jf1j2=�1)f1 � � � �p(jfpj2=�p)fp '! � 1f1 � � � 1fp �:'unrestritedly as all �j ! 0+. However, we fous on the two fator ase sinewe do not know how to handle more than two residue fators.To prove our regularization results for the urrents Uf^Rg and Rf^Rg wehave to struture the information obtained from an appliation of Hironaka'stheorem more arefully and then use Proposition 11 and Corollary 15 in theright way. The tehnial part of this is ontained in the following proposition.Proposition 18. Assume that �1; �2 2 C1([0;1℄) vanish to orders k and` at zero, respetively, and satisfy �j(1) = 1. Let �0, �00, �0 and �00 bemultiindies suh that �0, �00 and �0 have pairwise disjoint supports, and�00j = 0 if and only if �00j = 0. Assume also that ' 2 Dn;n�1(C n) has theproperty that d��j=��j ^' 2 Dn;n(C n) for all j suh that �00j 6= 0. Then for anysmooth and stritly positive funtions � and 	 on C n we havelim�1;�2!0+ Z 1�k1�2̀�1(�j�1j2=�1)���2(	j�2j2=�2) ^ ' = h 1�k1�`�00 i
 ��h 1�`�0 i:';



18 HÅKAN SAMUELSSONwhere �1 = ��0+�00 and �2 = ��0+�00. Moreover, as a funtion of � = (�1; �2) 2[0;1)2, the integral belongs to all !-Hölder lasses with 2! < minfj�0 +�00j�1; j�0 + �00j�1g.Remark 19. Note that the hypotheses on the multiindies imply that afator �j divides both the monomials �1 and �2 if and only if �00j 6= 0 (orequivalently �00j 6= 0). In partiular, the tensor produt of the urrents is wellde�ned.Remark 20. We may let k or ` or both of them be equal to zero and theonlusions of the proposition still hold. In ase ` = 0 one should interpret��[1=�`�0 ℄ as zero.Proof. Let K, L and K be the set of indies j suh that �0j 6= 0, �00j 6= 0 and�0j = 0 respetively. Clearly L � K. We write �� = ��K + ��K and integrateby parts with respet to ��K to see thatZ 1�k1�2̀�1( ��K + ��K)�2 ^ ' =(26) � Z 1�k1�2̀�01 j�1j2�1 �2 ��K� ^ '� Z 1�k1�2̀�1�2 ��K'+ Z 1�k1�2̀�1�02 j�2j2�2 (	Xj2L �00j d��j��j + ��K	) ^ ':Note that ��K does not fall on j�1j2 beause of the hypotheses on the mul-tiindies. By assumption, d��j=��j ^ ' 2 Dn;n(C n) for j 2 L and so the �rstand the last integral on the right hand side of (26) tend to zero and hasthe right modulus of ontinuity by Corollary 15. The seond to last integralin (26) tends to �[1=(�k1�2̀)℄:��K' = [1=(�k1�`�00)℄ 
 ��[1=�`�0 ℄:' and has theright modulus of ontinuity by Proposition 11. �Theorem 21. Let f and g be holomorphi setions (loally non-trivial) ofthe holomorphi mj-bundles E�j ! X, j = 1; 2, respetively. Assume thatthe setion f � g of E�1 � E�2 ! X de�nes a omplete intersetion. Let�1; �2 2 C1([0;1℄) be any funtions vanishing to orders m1 and m2 at zerorespetively, and satisfying �j(1) = 1. Then, for any test form ' we have(27) Z �1(jf j2=�1)uf ^ ���2(jgj2=�2) ^ ug ^ '! Uf ^Rg:'as �1; �2 ! 0+. Moreover, as a funtion of � = (�1; �2) 2 [0;1)2 the integralon the left hand side belongs to some Hölder lass independently of '.Proof. We will assume that �1 and �2 only vanish to orders k � m1 and` � m2 respetively and show that(28) Z �1ufk;k�1^ ���2^ug̀;`�1^'! Z jf j2�ufk;k�1^ ��jgj2�^ug̀;`�1^'����=0:By arguing as in the proof of Theorem 16 we may assume that jf j2 = j��j2�and jgj2 = j��j2	 where � and	 are stritly positive funtions and moreover,



REGULARIZATIONS OF RESIDUE CURRENTS 19that ufk;k�1 = ~ufk;k�1=�k� for a smooth form ~ufk;k�1 and similarly for ug̀;`�1.What we have to prove is thusZ �1(�j��j2=�1)�k� ~ufk;k�1 ^ ���2(	j��j2=�2)�`� ~ug̀;`�1 ^ ~'(29) ! Z j��j2��k� ��~ufk;k�1 ^ ��(j�� j2�	�)�`� ~ug̀;`�1 ^ ~'����=0where ~' = �kj��j � � � �k1��1'. After the resolutions of singularities we anin general no longer say that the pull-bak of f � g de�nes a omplete in-tersetion. On the other hand we laim that if �j divides both �� and ��then d��j=��j ^ ~' is smooth. In fat, let z be loal oordinates on our originalmanifold. In order that the integrals in (28) should be non-zero, ' has tohave degree n� k � `+ 1 in d�z and so we an assume that' = X#J=n�k�`+1'J ^ d�zJ :Sine the variety Vf�g = f�1(0) \ g�1(0) has dimension n � m1 � m2 <n�k�`+1 we see that d�zJ vanishes on Vf�g. The pull-bak of d�zJ throughall the resolutions �j an be written PI CI(�)d��I and it must vanish on thepull-bak of Vf�g. In partiular it has to vanish on f�j = 0g if �j divides both�� and ��. If d��j does not our in d��I it must be that the oe�ient funtionCI(�) vanishes on f�j = 0g. But these funtions are anti-holomorphi and so��j must divide CI(�). The laim is established. We now write �� = ��0+�00and �� = ��0+�00 where �0, �00 and �0 have pairwise disjoint supports and�00 = 0 if and only if �00 = 0. Thus, �j divides both �� and �� if and only if�00j 6= 0, or equivalently, �00j 6= 0. Aording to Proposition 18 the left handside of (29) belongs to some Hölder lass and tends to�h 1�k�+`�00 i
 ��h 1�`�0 i:~ufk;k�1 ^ ~ug̀;`�1 ^ ~':One an ompute the right hand side of (29) by integrations by parts as ine.g. [2℄ to see that it equals the same thing. �Remark 22. The form ���2(jgj2=�2)^ ug is atually smooth even if �2 onlyvanishes to order m2 at 0. The only possible problem is with the top degreeterm ���2(jgj2=�2) ^ ugm2;m2�1. But we haveC1(X) 3 ��(�2(jgj2=�2)ugm2 ;m2�1) = ���2(jgj2=�2) ^ ugm2;m2�1+ �2(jgj2=�2) ��ugm2;m2�1;and sine ugm2;m2�1 is ��-losed (outside Vg) it follows that ���2(jgj2=�2) ^ugm2;m2�1 is smooth as well.Corollary 23. With the same hypotheses as in Theorem 21 we haveZ ���1(jf j2=�1) ^ uf ^ ���2(jgj2=�2) ^ ug ^ '! Rf ^Rg:';(30) Z ���1(jf j2=�1) ^ uf�2(jgj2=�2) ^ '! Rf :';



20 HÅKAN SAMUELSSONand(31) Z �1(jf j2=�1) ^ uf ^ ���2(jgj2=�2) ^ '! 0as �1; �2 ! 0+, and as funtions of � = (�1; �2) 2 [0;1)2 the integrals on theleft hand sides belong to some Hölder lasses independently of '.Proof. We have the following equality of smooth forms:r( ���1 ^ uf ^ �2ug) = ����1 ^ �2ug � ���1 ^ uf ^ ���2 ^ ug(32) + ���1 ^ uf�2:The omputation rules established in [26℄, and Theorem 21 now imply that,for any test form ' (of omplementary total degree), we haveRf :'�Rf ^Rg:' = r(Rf ^ Ug):' = �Rf ^ Ug:r'= lim�Z ���1 ^ uf ^ �2ug ^r'= limZ r(���1 ^ uf ^ �2ug) ^ ':The integral on the seond row is Hölder ontinuous by Theorem 21 and so,also the integral on the third row is. By hoosing ' of appropriate bidegreesthe orollary now follows from (32). �The statements (30) and (31) atually hold with no assumptions on thebehavior of �2 at zero. This an be seen by using that we know this when�2 � 1 by Corollary 5, and when �2 vanishes to high enough order by theprevious orollary.Assume that f de�nes a omplete intersetion and pik a holomorphifuntion g suh that f � g also de�nes a omplete intersetion and suh thatg is zero on the singular part of Vf . After resolving singularities in the proofof Theorem 21 we an �nd oordinates suh that g is a monomial times anon-vanishing holomorphi funtion ~g. But ~g an be inorporated in someoordinate and we an therefore assume that ~g � 1. Repeating the proof ofTheorem 21 and using Remark 14 one shows that (30) holds for �2 equalto the harateristi funtion of [1;1℄. Then, if we �rst let �1 tend to zero,keeping �2 �xed, and after that let �2 tend to zero we get thatlim�2!0+ �2(jgj2=�2)Rf = Rf :We remark that the produt �2(jgj2=�2)Rf is well de�ned sine the wave frontsets of �2(jgj2=�2) and Rf behave properly, see e.g. [7℄. Sine �2(jgj2=�2)equals the harateristi funtion of fjgj2 > �2g we haveCorollary 24. If f de�nes a omplete intersetion then the Cauhy-Fantappiè-Leray urrent Rf has the standard extension property.This is a well known result and follows from the fat that Rf equals theCole�-Herrera urrent in the sense of (7). It is even true that ��g(�)Rf !Rf , � ! 0+ where � is a positive smooth funtion and ��g(�) is the har-ateristi funtion of fj�gj > �g. In fat, via Hironaka and tori resolutionsone redues to the ase of one funtion and then one an proeed as in [7℄.



REGULARIZATIONS OF RESIDUE CURRENTS 21We know from [26℄ that if f�g de�nes a omplete intersetion then Rf^Rgonsists of one term of top degree. Hene, it is only the top degree term of���1^uf ^ ���2^ug whih gives a ontribution in the limit. With the naturalhoies �1(t) = tm1=(t + 1)m1 and �2(t) = tm2=(t + 1)m2 , Corollary 23 andRemark 22 thus giveCorollary 25. Let f and g be holomorphi setions (loally non-trivial) ofthe holomorphi mj-bundles E�j ! X, j = 1; 2, respetively. Assume thatthe setion f � g of E�1 �E�2 ! X de�nes a omplete intersetion. Then, forany test form ' we haveZ �� sf ^ ( ��sf )m1�1(jf j2 + �1)m1 ^ �� sg ^ ( ��sg)m2�1(jgj2 + �2)m2 ^ '! Rf ^Rg:'as �1; �2 ! 0+, and the integral to the left belongs to some Hölder lassindependently of '.For setions f and g of the trivial line bundle we get the result announedin [22℄.Corollary 26. Let f and g be holomorphi funtions de�ning a ompleteintersetion. Then for any test form ' we haveZ �� �fjf j2 + �1 ^ �� �gjgj2 + �2 ^ '! h�� 1f ^ �� 1g i:'as �1; �2 ! 0+, and the integral to the left belongs to some Hölder lassindependently of '.Proof. We onsider f and g as setions of (di�erent opies of) the trivial linebundle X�C ! X with the standard metri. Then, suppressing the naturalglobal frame elements, we have sf = �f and sg = �g. By Corollary 25 we aredone sine Rf ^Rg is the Cole�-Herrera urrent. �So far, in this setion, we have used one funtion � to regularize all termsof uf . One ould try to take di�erent �:s for di�erent terms. We reall thenatural hoies tk=(t+1)k from Corollary 4 and we let uf� = sf=(rsf + �) =P sf ^ ( ��sf )k�1=(jf j2 + �)k. The next theorem says that, in the ompleteintersetion ase, the produt of two suh regularized urrents goes unre-stritedly to the produt, in the sense of [26℄, of the urrents.Theorem 27. Let f and g be holomorphi setions (loally non-trivial) ofthe holomorphi mj-bundles E�j ! X, j = 1; 2, respetively. Assume thatthe setion f � g of E�1 �E�2 ! X de�nes a omplete intersetion. Then, forany test form ' we haveZ uf�1 ^rug�2 ^ ' = (Uf � Uf ^Rg):'as �1; �2 ! 0+, and the integral to the left belongs to some Hölder lassindependently of '.Proof. We �rst note thatrug�2 = 1� �2 X̀�1 (��sg)`�1(jgj2 + �2)` ;



22 HÅKAN SAMUELSSONsee the proof of Corollary 4. As Uf ^ Rf is de�ned as the value at zero ofthe analyti ontinuation (in the sense of urrents) of jf j2�uf ^ ��jgj2� ^ ug,what we have to prove isZ sf ^ ( ��sf )k�1(jf j2 + �1)k ^ �2 ( ��sg)`�1(jgj2 + �2)` ^ '!(33) Z jf j2�ufk;k�1 ^ ��jgj2� ^ ug̀�1;`�2 ^ '����=0and that the integral on the left belongs to some Hölder lass. We �rstonsider the ase ` = 1. The right hand side of (33) should then be in-terpreted as zero. We write the integrand on the left hand side of (33) as�1(jf j2=�1)�2(jgj2=�2)ufk;k�1^' where �1(t) = tk=(t+1)k and �2(t) = 1=(t+1). As in the proof of Theorem 16 we may assume that ufk;k�1 = ~ufk;k�1=�k�,where ~ufk;k�1 is a smooth form, that jf j2 = j��j� and that jgj2 = j��j2	,where � and 	 are stritly positive smooth funtions. Sine �2(1) = 0 theleft hand side of (33) tends to zero and belongs to some Hölder lass byProposition 11. For ` � 2 we proeed as in the proof of Theorem 21 and wesee that we may assume that f = (f1; : : : ; fm) and g = (g1; : : : ; gm2) withfj = ��jf 0j and gj = ��jg0j where all f 0j and g0j are non-vanishing and more-over, that for some indies �1 and �2 it holds that �� := ���1 divides all ��jand �� := ���2 divides all ��j . From the same proof we also see that we mayassume that d��j=��j ^' is smooth (and ompatly supported) for all �j whihdivide both �� and ��, sine f � g de�nes a omplete intersetion. We usethe notation from the proof of Theorem 21, e.g. jf j2 = j��j2� = j��0+�00 j2�,ufk;k�1 = ~ufk;k�1=�k(�0+�00) and jgj2 = j��j2	 = j��0+�00 j2	 et. We also in-trodue the notation �j(t) for the funtion tj=(t+1)j , and so, in partiular,we an write 1=(t+ �)j = �j(t=�)=tj . For ` � 2, one an verify that�2 (��sg)`�1(jgj2 + �2)` = 1�(`�1)� ���`�1(j��j2	=�2) ^ ~ug̀�1;`�2(34) + 1�(`�1)� �0̀ �1(j��j2	=�2) j�� j2�2 	`� 1 ��~ug̀�1;`�2:Using this identity we see that the integral on the left hand side of (33) splitsinto two integrals. The integral orresponding to the last term in (34) tendsto zero as �1; �2 ! 0 and belongs to some Hölder lass aording to Corollary15. By Proposition 18, the integral orresponding to the �rst term on theright hand side of (34) also belongs to some Hölder lass and tends to(35) �h 1�k�+(`�1)�00 i
 ��h 1�(`�1)�0 i:~ufk;k�1 ^ ~ug̀�1;`�2 ^ 'as �1; �2 ! 0. This is seen to be equal to the right hand side of (33) by usingthe methods in [26℄. �



REGULARIZATIONS OF RESIDUE CURRENTS 237. The Passare-Tsikh exampleLet f = z41 , g = z21 + z22 + z31 and ' = ��z2gdz1 ^ dz2 where � has ompatsupport and is identially 1 in a neighborhood of the origin. Sine the om-mon zero set of f and g is just the origin they de�ne a omplete intersetion.In [19℄ Passare and Tsikh show that the residue integral(�1; �2) 7! I'f;g(�1; �2) = Zjf j2=�1jgj2=�2 'fgis disontinuous at the origin. More preisely, they show that for any �xedpositive number  6= 1 one has lim�!0 I'f;g(�4; �2) = 0 but lim�!0 I'f;g(�4; �2) 6=0. On the other hand, by Fubini's theorem we haveZ[0;1)2 �2�2I'f;g(t1; t2)dt1dt2(t1 + �1)2(t2 + �2)2 = Z �1djf j2(jf j2 + �1)2 ^ �2djgj2(jgj2 + �2)2 ^ 'fg =Z �� �fjf j2 + �1 ^ �� �gjgj2 + �2 ^ ':(36)Hene, this average of the residue integral is ontinuous at the origin byCorollary 26. In this setion we will examine the last integral in (36) as�1; �2 ! 0 expliitly. We will see that it is ontinuous at the origin withHölder exponent at least 1=8 and that it tends to zero. Morally, the valueof I'f;g(�1; �2) at 0 should be the Cole�-Herrera urrent assoiated to f andg multiplied by �z2g ating on �dz1 ^ dz2. But both g and �z2 annihilate theCole�-Herrera urrent sine g belongs to the ideal generated by f and g,and z2 belongs to the radial of this ideal. We will thus verify Corollary 26expliitly in this speial ase.Our �rst objetive is to resolve singularities to obtain normal rossings.This is aomplished by a blow-up of the origin. The map � : B0C 2 ! C 2looks like �(u; v) = (u; uv) and �(u0; v0) = (u0v0; u0) in the two standardoordinate systems on B0C 2 . The exeptional divisor, E, orresponds to thesets fu = 0g and fu0 = 0g and � is a biholomorphism B0C 2 nE ! C 2 n f0g.In the (u; v)-oordinates we have ��f = u4 and ��g = u2(1 + v2 + u). Thefuntion 1 + v2 + u has non-zero di�erential and its zero lous intersets Enormally in the two points v = i and v = �i. Moreover, in the (u0; v0)-oordinates we have ��f = u04v04 and ��g = u02(v02 + 1 + u0v03). The zerolous of v02+1+u0v03 intersets E normally in the points v0 = �i and v0 = i,whih we already knew, and it does not interset v0 = 0. Also, the di�erentialof v02 + 1 + u0v03 is non-zero on the zero lous of v02 + 1 + u0v03. Hene,f��f ���g = 0g has normal rossings. We assume that ' has support so loseto the origin that supp(��')\f1+v2+u = 0g has two (ompat) omponents,K1 and K2, and that these omponents together with the ompats K3 =supp(��') \ fv = 0g and K4 = supp(��') \ fv =0 0g are pairwise disjoint.We an then hoose a partition of unity f�jg41 suh that P �j � 1 on thesupport of ��' and for eah j = 1; 2; 3; 4, the support of �j intersets onlyone of the ompats K1, K2, K3 and K4. We hoose the numbering suh



24 HÅKAN SAMUELSSONthat the support of �j intersets Kj . The last integral in (36) now equals(37) 4X1 Z �� �� �fj��f j2 + �1 ^ �� ���gj��gj2 + �2 ^ �j��' := I1 + I2 + I3 + I4:In fat, it is only in I3 we have resonane and we start by onsidering theeasier integrals I1, I2 and I4. The integrals I1 and I2 are similar and we onlyonsider I1. The support of �1 is ontained in a neighborhood of p1 = (0; i)in the (u; v)-oordinates and �1��' = �1����u�v��gudu ^ dv. Integrating byparts we thus see thatI1 = �Z �� �� �fj��f j2 + �1 j��gj2j��gj2 + �2 ^ u��(�u�v�1���du ^ dv):Sine ��f = u4 depends on u only, the term of ��(�u�v�1���) involving d�udoes not give any ontribution to I1. Hene we an replae ��(�u�v�1���) by�u'1 where '1 is smooth and supported where �1 is. We put �1 = u and�2 = 1+ v2+ u, whih de�nes a hange of variables on the support of �1. Inthese oordinates ��f = �41 and ��g = �21�2 and so we getI1 = �Z 1�31 ���(j�41 j2=�1)�(j�21�2j2=�2) ^ ��1'1where �(t) = t=(t + 1). We also write ���(j�41 j2=�1) = 4~�(j�41 j2=�1)d��1=��1,where ~�(t) = t=(t+ 1)2. To proeed we replae (the oe�ient funtion of)d��1=��1 ^ ��1'1 by its Taylor expansion of order one, onsidered as a funtionof �1 only, plus a remainder term j�1j2B(�), with B bounded. The termsorresponding to the Taylor expansion do not give any ontribution to I1sine we have anti-symmetry with respet to �1 for these terms. Hene, weobtain(38) jI1j . Z� �� j�1j2B(�)�31 ~�(j�41 j2=�1)�(j�21 �2j2=�2)��;where � is a polydis ontaining the support of '1. We estimate jB(�)jand �(j�21�2j2=�2) by onstants, and on the sets �� = f� 2 �; j�41 j2 � �1gand � n �� we use that ~�(j�41 j2=�1) . �1=j�41 j2 and ~�(j�41 j2=�1) . j�41 j2=�1respetively, to see that the right hand side of (38) is of the size j�j1=8.To deal with I4 we proeed as follows. The support of �4 is ontained in aneighborhood of p4 = (0; 0) in the (u0; v0)-oordinates and ��f = u04v04 and��g = u02(1 + v02 + u0v03) := u02~g. On the support of �4 we have ~g 6= 0. Themultiindies (4; 4) and (2; 0) are linearly independent and so we an makethe fator ~g disappear. Expliitly, hoose a square root ~g1=2 of ~g and put�1 = u0~g1=2 and �2 = v0~g�1=2. In these oordinates ��f = �41�42 and ��g = �21 .One also heks that �4��' = j�1j2��g'4 where '4 is a test form of bidegree(2; 0). After an integration by parts we see that(39) I4 = Z �� �fj��f j2 + �1 �� j��gj2j��gj2 + �2 ^ ��(j�1j2'4):



REGULARIZATIONS OF RESIDUE CURRENTS 25Sine ��g = �21 only depends on �1 we may replae ��(j�1j2'4) by j�1j2 ��'4 in(39). Computing ��(j��gj2=(j��gj2 + �2)) we �nd thatI4 = 2Z 1�31�42 �(j�41�42 j2=�1)~�(j�21 j2=�2)d��1 ^ ��'4:With abuse of notation we write the test form d��1 ^ ��'4 as '4d� ^ d��. LetM =M1;21;2 be the operator de�ned in Lemma 6. Expliitly, we haveM'4 = M11'4 +M22'4 �M11M22'4= M11 ('4 �M22'4) +M22 ('4 �M11'4) +M11M22'4:All of the following properties will not be important for this omputationbut to illustrate Lemma 6 we note that the seond expression of M' revealsthat M'4 an be written as a sum of terms �IJ(�)�I ��J with I1+J1 � 1 andI2 + J2 � 2 and moreover, that �IJ is independent of at least one variableand is of the size O(j�1j2) if it depends on �1 and of the size O(j�2j3) if itdepends on �2. By Lemma 6 we also have '4 = M'4 + j�1j2j�2j3B(�) forsome bounded funtion B and soI4 = Z� 1�31�42 �~�M'4 + Z� 1�31�42 �~�j�1j2j�2j3B(�) =: I4:1 + I4:2;where � is a polydis ontaining the support of '4. By anti-symmetryI4:1 = 0. To estimate I4:2 we use that j�Bj is bounded by a onstant andthat ~�(	j�21 j2=�2) . �2=j�21 j2 and ~�(	j�21 j2=�2) . j�21 j2=�2 on the sets �� =f� 2 �; j�21 j2 � �2g and � n�� respetively. Hene,(40) jI4:2j . Z�� �2j�21 j2j�1jj�2j + Z�n�� j�21 j2�2j�1jj�2j ;whih is seen to be of the size j�j1=4.It remains to take are of I3. We are now working lose to u = v = 0and ��f = u4 and g = u2(1 + v2 + u) := u2~g. The multiindies are linearlydependent and we annot dispose of the non-zero fator ~g. We rename ourvariables (u; v) = (�1; �2) and proeed in preisely the same way as we didwhen we were onsidering I1. We getI3 = �4Z 1�31 ~�(j�41 j2=�1)�(�j�21 j2=�2)'3d� ^ d��;where � = j~gj2 is a stritly positive smooth funtion and '3 is smooth withompat support. As before, we replae '3 by M1�1'3 + j�1j2B(�). Theintegral orresponding to j�1j2B(�) satis�es the same estimate as the one in(38) and hene is of the size j�1j1=8. We annot use anti-symmetry diretlyto onlude the the integrals orresponding to the other terms in the Taylorexpansion tend to zero sine the fator ~g is present. We illustrate why this istrue anyway by onsidering the integral orresponding to the term '3(0; �2).Let � be a polydis ontaining the support of '3 and onsider(41) Z� 1�31 ~�(j�41 j2=�1)�(�j�21 j2=�2)'3(0; �2):
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