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INTEGRAL REPRESENTATION WITH WEIGHTS II,
DIVISION AND INTERPOLATION

MATS ANDERSSON

Abstract. Let f be a r × m-matrix of holomorphic functions
that is generically surjective. We provide explicit integral repre-
sentation of holomorphic ψ such that φ = fψ, provided that φ is
holomorphic and annihilates a certain residue current with support
on the set where f is not surjective. We also consider formulas for
interpolation. As applications we obtain generalizations of various
results previously known for the case r = 1.

1. Introduction

This paper is a continuation of [1] where we introduced a new way to
generate weighted representation formulas for holomorphic functions,
generalizing [11]. In this paper we focus on division and interpolation
and we introduce new formulas for matrices of holomorphic functions.
As applications we obtain generalizations of various results previously
known for a row matrix.

Let f = (f1, . . . , fm) be a tuple of holomorphic functions defined
in, say, a neighborhood of the closure of the unit ball D in Cn with
common zero set Z, and assume that df1∧ . . .∧dfn 6= 0 on Z. In [12]
was constructed a representation formula

(1.1) φ(z) = f(z) ·
∫

ζ

T (ζ, z)φ(ζ) +

∫
ζ

S(ζ, z)φ(ζ), z ∈ D,

for holomorphic functions φ, where both T and S are holomorphic in
z, T (·, z) is integrable, and S(·, z) is a current of order zero (i.e., with
measure coefficients) with support on Z. If φ vanishes on Z, thus
(1.1) provides an explicit representation of φ as an element of the ideal
generated by f . Moreover, if φ is just defined on Z, then∫

ζ

S(ζ, z)φ(ζ)

is a holomorphic extension, i.e., a holomorphic function in D that in-
terpolates φ on Z. The formula (1.1) was extended to the case where f
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2 MATS ANDERSSON

defines a complete intersection, i.e., codimZ = m, in [28]. In this case,
as expected, S(·, z) is closely related to the Coleff-Herrera current

∂̄
1

f1

∧ . . .∧∂̄ 1

fm

;

however also the singularities of T (·, z) are rather complicated, and
contains terms that are concentrated on Z, see also Remark 1 below.
Formulas of this kind have been used for various purposes by several
authors; notably for instance the explicit proof of the duality theorem
for a complete intersection in [28], explicit versions of the fundamental
principle, [13], sharp approximation by polynomials [34], and estimates
of solutions to the Bezout equation, [8]; for further examples see [10]
and the references given there. More recent applications can be found
in [20] and [9]. One can also use such formulas to obtain sharp estimates
at the boundary, such as Hp-estimates, of explicit solutions to division
problems, [6].

In [27] and [1] independently, was constructed a similar formula
where T (·, z) has quite simple, principal value, singularites but instead
spread out over the larger set Y = {f1f2 · · · fm = 0}. In [2] we intro-
duced a new formula like (1.1) for an arbitrary f , where the singularity
of T (·, z) is a principal value at Z, and S(·, z) is a smooth form times
a Bochner-Martinelly type residue current Rf (ζ) with support on Z.

The purpose of this paper is to extend this kind of formulas to the
case when f is a generically surjective r × m matrix of holomorphic
functions. Given such a matrix it was defined in [4] an associated
(matrix-valued) current Rf with support on the analytic set

Z = {z; f(z) is not surjective},

with the property that if φ is an r-column of holomorphic functions
such that Rfφ = 0, then fψ = φ has holomorphic solutions ψ locally.
In the generic case, i.e., codimZ = m+ r − 1, the converse also holds.
When r = 1, and codimZ = m this is precisely the duality theorem for
a complete intersection ([19] and [28]). In particular we get an explicit
proof of the following statement from [4], generalizing the Briançon-
Skoda theorem, [15] (for an explicit proof in the case r = 1, see [10]
and [22]): Suppose that f is an r×m matrix of holomorphic functions
that is generically surjective, and that φ is an r-column of holomorphic
functions. If ‖φ‖2 ≤ C(det ff ∗)min(n,m−r+1), then Rφ = 0 and hence

φ = fψ locally. Here ‖φ‖ is the norm ‖φ‖2 = 〈f̃f ∗φ, φ〉, where f̃f ∗ is
the transpose of the co-matrix of ff ∗.

We also obtain the following result, which for the case r = 1 appeared
in [3]. Let ∂̄α = ∂α/∂z̄α for multiindices α.

Theorem 1.1. Suppose that f is an r×m-matrix of holomorphic func-
tions that is generically surjective. Let φ be an r-column of smooth
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functions such that

(1.2) Rf (∂̄αφ) = 0

for all α. Then φ = fψ has a smooth solution ψ. In case codimZ =
m− r + 1 the condition (1.2) is also necessary.

We also present variants of this result for lower regularity. The divi-
sion formulas admit sharp estimates at the boundary, and as an exam-
ple we indicate how one can obtain an explicit solution of the matrix
Hp-corona problem. Finally we present formulas for division problems
for ∂̄-closed forms.

2. Representation of holomorphic functions

For a fixed point z in the open setX in Cn, we let δζ−z denote interior
multiplication with the vector field

2πi
∑

(ζj − zj)
∂

∂ζj
,

and let ∇ζ−z = δζ−z − ∂̄. We begin with a slight generalization of the
main result in [1] (lower indices denote bidegree).

Proposition 2.1. Assume that z is a fixed point in X and g = g0,0 +
. . .+ gn,n is a current in X with compact support such that ∇ζ−zg = 0.
Moreover, assume that g is smooth in a neighborhood of z and g0,0(z) =
1. Then

(2.1) φ(z) =

∫
gφ =

∫
gn,nφ

for each holomorphic function φ in X.

For the reader’s convenience we supply the simple proof.

Proof. Let u = u1,0 + . . . + un,n−1 be a current that is smooth outside
the point z and such that ∇ζ−zu = 1 − [z], where [z] denotes the
(n, n)-current point evaluation at z. For instance one can take

u =
b

∇ζ−zb
= b+ b∧∂̄b+ . . .+ b∧(∂̄b)n−1,

where b = ∂|ζ − z|2/|ζ − z|22πi, see [1]. Then u∧g is a well-defined
current with compact support, and

∇ζ−z(u∧g) = g − [z]∧g = g − [z]

since g0,0(z) = 1. Therefore, ∂̄(u∧g)n,n−1φ = φ(z)[z] − gn,nφ, which
implies (2.1) by Stokes’ theorem. �

A form g = g0,0+g1,1+· · ·+gn,n which is smooth in a neighborhood of
our fixed point z, and such that g0,0(z) = 1, will be called a weight (with
respect to z). Notice that if g1 and g2 are weights with disjoint singular
supports, then again the product g = g1∧g2 is a weight. Moreover, if
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φ takes values in the vector bundle Q → X, and g takes values in
Hom (Q,Q), ∇ζ−z = 0 and g0,0(z) = IQ, IQ denoting the identity
morphism Q→ Q, then (2.1) still holds; this follows by the same proof
as for the scalar-valued case.

Example 1. Assume that D is a smoothly bounded domain in X that
admits a smooth family of holomorphic support functions, i.e., Γ(ζ, z) ∈
C∞(∂D×U), where U ⊃ D, depending holomorphically on z, such that
Γ(ζ, z) is non-vanishing for z ∈ D \ {ζ} and Γ(z, z) = 0 for z ∈ ∂D.
Then D is necessarily pseudoconvex and we may assume that Γ(ζ, z) =
δζ−zγ(ζ, z), where γ is a smooth (1, 0)-form that is holomorphic for
z ∈ D. If s = γ(ζ, z)/δζ−zγ(ζ, z), then for each z ∈ D,

g = χD− ∂̄χD∧
s

∇ζs
= 1− ∂̄χD∧[s+ s∧∂̄s+ s∧(∂̄s)2 + · · ·+ s∧(∂̄s)n−1]

is a weight (with respect to z) with support on D, smooth outside ∂D,
and depending holomorphically on z. Let g′ be any weight (with respect
to z) that is smooth in a neighborhood of ∂D. Since ∂̄χD = −[∂D]0,1

we get from (2.1) the formula

(2.2) φ(z) =

∫
D

g′φ+

∫
∂D

g′φ∧[s+s∧∂̄s+s∧(∂̄s)2 + · · ·+s∧(∂̄s)n−1].

The existence of such families of holomorphic support functions for
strictly pseudoconvex domains is due to Henkin and Ramirez, see, e.g.,
[24]. In [17] and [18] are constructed families of holomorphic sup-
port functions, admitting sharp estimates, for (linearly) convex do-
mains of finite type. If D is the unit ball in Cn we can take s(ζ, z) =
∂|ζ|2/2πi(1− ζ̄ · z); we then get (2.2) with

s∧(∂̄s)k−1 =
1

(2πi)k

∂|ζ|2∧(∂̄∂|ζ|2)k−1

(1− ζ̄ · z)k
.

�

For our purposes it is convenient to have a formula like this for a
weight g′ that is not necessarily smooth on ∂D.

Example 2. Assume that X is pseudoconvex and let K ⊂ X be a
holomorphically convex compact subset. Moreover let χ be a cutoff
function that is identically 1 in a neighborhood of K. It is easy to find
a (1, 0)-form s(ζ, z) on the support of ∂̄χ, depending holomorphically
on z in a neighborhood of K, such that δζ−zs = 1. Then for each
z ∈ K,

g = χ− ∂̄χ∧ s

∇ζ−zs
= χ− ∂̄χ∧[s+ s∧∂̄s+ s∧(∂̄s)2 + · · ·+ s∧(∂̄s)n−1]
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is a compactly supported weight that depends holomorphically on z.
If K is the closure of the unit ball D we can take

s(ζ, z) =
∂|ζ|2

2πi(|ζ|2 − ζ̄ · z)
.

If g′ is any weight in X (with respect to z ∈ K), then we get the
representation formula

(2.3) φ(z) =

∫
χg′φ−∫

∂̄χ∧[s+ s∧∂̄s+ s∧(∂̄s)2 + · · ·+ s∧(∂̄s)n−1]∧g′φ, z ∈ K.

�

3. Division formulas in the case r = 1

To begin with, let f be a row matrix of holomorphic functions in
a pseudoconvex domain X ⊂ Cn. In [2] were introduced formulas
for division and interpolation, and more generally, homotopy formulas
for the Koszul complex induced by f . In this section we derive these
formulas in a new way that will model the construction when r > 1. It
is convenient to introduce a trivial rank m bundle E over X and think
of f as a section of the dual bundle E∗. If we let δf : Λk+1E → ΛkE
denote interior multiplication with f , we have the Koszul complex

(3.1) 0 → ΛmE
δf→ · · ·

δf→ Λ2E2

δf→ E
δf→ C → 0,

where C is the trivial line bundle. We consider currents with values in
ΛE as sections of the bundle Λ(E ⊕ T ∗(X)), so that, e.g., differentials
and sections of E anti-commute, and δf and ∂̄ anti-commute; for more
details, see [2]. Assume that we have (0, k − 1)-currents Uk, smooth
outside some analytic variety, and (0, k)-currents Rk with values in
ΛkE, Rk having support on Z = {f = 0}, such that

(3.2) (δf − ∂̄)U = 1−R,

where U = U1 + · · · + Um and R = R1 + · · · + Rm. Specific choices
will be discussed below. Assume that φ is a holomorphic section of
Λ`E such that δfφ = 0 and R∧φ = 0. Then it follows from (3.2) that
(δf − ∂̄)(R∧φ) = 0, and by solving a sequence of ∂̄-equations one finds
(locally) a holomorphic section ψ of Λ`+1E such that δfψ = φ, see [2].
We will now provide an explicit formula for such a solution ψ.

Let ej be a global frame for E with dual frame e∗j for E∗ so that
f =

∑m
1 fje

∗
j . One can find holomorphic (1, 0)-forms hj such that

δζ−zhj = fj(ζ) − fj(z), so called Hefer forms. Now h =
∑
hj∧e∗j

induces a mapping δh, taking a (p, q)-current-valued section of Λk+1E
to a (p+ 1, q)-current-valued section of ΛkE. Since h has total degree
2, δh commutes with δf and δζ−z. If (δh)k = δk

h/k! and δf(z) is interior



6 MATS ANDERSSON

multiplication with the section f(z) =
∑
fj(z)e

∗
j of E∗, then for a

(0, q)-current ξ with values in ΛkE we have

(3.3) δζ−z(δh)kξ = (δh)k−1(δf − δf(z))ξ

for all integers k, if (δh)k is interpreted as 1 for k = 0 and zero for
k < 0. Assume that φ is holomorphic and takes values in Λ`E. Using
(3.2) and (3.3), a straight forward computation shows that

g′ = δf(z)

∑
k

(δh)k−1(Uk∧φ) +
∑

k

(δh)k−1(Uk∧δfφ) +
∑

k

(δh)k(Rk ∧ φ)

is ∇ζ−z-closed for each fixed z. Moreover, by (3.2), δfU1φ = φ, so

g′0,0(z) = δf(z)(U1∧φ)|ζ=z = φ(z).

For each z outside Z and the set where U is not smooth, by (an imme-
diate consequence of) Proposition 2.1 we get the representation

(3.4) φ(z) = δf(z)Tφ(z) + T (δfφ)(z) + Sφ(z),

where

Tφ(z) =

∫ ∑
k

(δh)k−1(Uk∧φ)∧g,

and

(3.5) Sφ(z) =

∫ ∑
k

(δh)k(Rk∧φ)∧g,

if g is a smooth weight with compact support. Since each term in (3.4)
is holomorphic in z, the equality must hold everywhere.

Example 3. With the following choice of currents U and R, the repre-
sentation (3.4) is precisely the formula in Theorem 9.3 in [2] expressed
in a new way. Assume that E is equipped with a Hermitian metric
and let σ be the section of E over X \Z with pointwise minimal norm
such that fσ = 1. If E has the trivial metric with respect to the global
holomorphic frame ej, then σ =

∑
j f̄jej/|f |2. Let

uf =
σ

∇fσ
= σ + σ∧∂̄σ + σ∧(∂̄σ)2 + · · · .

Then the principal value current U f = limε→0 χ|f |>εu
f , exists and is a

current extension of uf across Z. Moreover Rf = limε→0 ∂̄χ|f |>ε∧uf ,
exists and (3.2) holds, see [2]. Alternatively, U f and Rf can be de-
fined as the value at λ = 0 of the analytic continuation of |f |2λuf and
∂̄|f |2λ∧uf , respectively. Moreover, these currents can be obtained as
limits of smooth forms. Notice that the section s = |f |2σ is smooth.
Now, see [32] and [33],

U f = lim
ε→0

∑
`

s∧(∂̄s)`−1

(|f |2 + ε)`
,
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and

Rf = lim
ε→0

ε

|f |2 + ε

∑
`

(∂̄s)`

(|f |2 + ε)`
.

For degree reasons Rf
k = 0 if k > min(m,n) and U f

k = 0 if k >

min(m,n + 1). It turns out also that Rf
k = 0 if k < p = codimZ, and

therefore Rf = Rf
p + · · · + Rf

min(m,n). Thus the sum in (3.5) only runs

from k = p to k = min(n,m − `). Therefore, if φ is a holomorphic
section of Λ`E such that δfφ = 0 and, in addition, Rf∧φ = 0, then

ψ(z) =

∫
ζ

min(n+1,m−`)∑
k=1

(δh)k−1(U
f
k∧φ)∧g

is a holomorphic solution to δfψ = φ. �

Example 4. Assume that f defines a complete intersection, and let

U1 =
e1
f1

, Uk+1 =
ek+1

fk+1

∧∂̄Uk, R = ∂̄
1

f1

∧ . . .∧∂̄ 1

fm

∧em∧ . . .∧e1,

where the currents are of Coleff-Herrera type. Then, using the calculus
from [29], cf., also Section 5 in [1], one can check that (3.2) holds.
Thus (3.4) gives a division formula in (3.4), which is singular over the
set {f1 · · · fm = 0}. This formula is similar to, but even simpler than,
the formula in Section 5 of [1]. �

Remark 1 (Berndtsson’s division formula). In our notation, Berndts-
son’s classical division formula, [12], can be described in the following
way. For ε > 0, let σε = s/(|f |2 + ε) (here s is as in Example 3) and
let h be a Hefer form as above. Then

g′ = 1−∇ηh · σε =
ε

|f |2 + ε
+ f(z) · σε + h · ∂̄σε

is a weight, so by Proposition 2.1 we have the representation

φ(z) =

∫ ( ε

|f |2 + ε
+ f(z) · σε + h · ∂̄σε

)min(n+1,m)

∧gφ.

if φ is a holomorphic function (i.e., ` = 0). Possibly besides the choice of
form g, this is precisely the formula introduced in [12]. One can prove
that it converges to a decomposition like (1.1), for a quite arbitrary
tuple f , when ε → 0; the non-complete intersection case is studied
in [10] and [9] (but using analytic continuation) and in [22]. Making
the most natural decomposition, letting all terms without a factor f(z)
together constitute Sφ, the resulting current in Tφ is not of simple
principal value type but will involve terms concentrated on Z. However,
in the case when f defines a complete intersection it seems that these
bad terms disappear. Moreover, in the the general case, and under the
hypothesis that |φ| ≤ C|f |min(m,n) that is considered in [10] and [22]
to get an explicit proof of the Briançon-Skoda theorem (in [22] even a
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more general form of this theorem is considered), these terms vanish.
Therefore it seems that with no essential loss, one could incorperate
these bad terms in Sφ from the beginning. �

4. Generalized Hefer forms in the unit ball

We shall now make an explicit computation of the formula (3.4) in
the case when f is the tuple

f(ζ) =
n∑
1

(ζj − wj)e
∗
j = (ζ − w) · e∗

in the unit ballD for a fixed w ∈ D; a similar computation works in any
domain that admits a smooth family of holomorphic support functions,
cf., Example 1 above. In order to get holomorphic dependence of w we
define u = σ + σ∧(∂̄σ) + σ∧(∂̄σ)2 + . . . with

σ =

∑
ζ̄jej

|ζ|2 − ζ̄ · w
=

ζ̄ · e
|ζ|2 − ζ̄ · w

outside the singularity w, and since u so defined is integrable we can
let U be the trivial extension across w. Since f(ζ)− f(z) = (ζ − z) · e∗
we can take

h =
1

2πi

n∑
1

dζj∧e∗j

as our Hefer form. Then, see, e.g., [1], Proposition 2.2 (just replace ej

by dζj), we have that (δf − ∂̄)U = 1−R, where

(4.1) (δh)kRk = 0, k < n, (δh)nRn = [w].

Since U and R have no singularities at the boundary we can use the
weight g in (2.2).

We first consider (3.4) when φ is a function. Since
∑n

1 (δh)k−1Uk has
no component of bidegree (n, n), formula (3.4) becomes

φ(z)− φ(w) = δf(z)

∫
∂D

n∑
k=1

(δh)k−1(σ∧(∂̄σ)k−1φ)∧s∧(∂̄s)n−k.

Noting that δhσ∧s = 0, more explicitly we have

φ(z)− φ(w) = δf(z)

∫
∂D

n∑
k=1

ζ̄ · e∧∂|ζ|2∧( i
2π
∂∂̄|ζ|2)n−1

(1− ζ̄ · w)k(1− ζ̄ · z)n−k+1
.

Since φ clearly depends holomorphically on w, this is an explicit Hefer
decomposition of the function φ in D. In fact this is precisely what we
get if we express φ(z) − φ(w) by means of the Szegő integral as, e.g.,
in [6]. The new interesting case here is when φ takes values in Λ`E,
` > 0. In view of (4.1), then R∧φ = 0, so we get instead

φ = δfTφ+ T (δfφ),
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where

Tφ(z) =

∫
∂D

n−∑̀
k=1

ζ̄ · e∧(δh)k−1

[
(dζ̄ · e)k∧φ

]
∧∂|ζ|2∧( i

2π
∂∂̄|ζ|2)n−k

(1− ζ̄ · w)k(1− ζ̄ · z)n−k+1
.

In particular, if δfφ = 0 we have that δfTφ = φ. It is clear from this
formula that Tφ depends holomorphically on w. Moreover, it is proved
in [6] that mappings like φ 7→ Tφ admit certain sharp estimates at the
boundary.

5. Division formulas in the case r > 1

In order to generalize the formulas in Section 3 to the case with
matrices f we first consider a quite abstract setting. Assume that we
have a finite complex of Hermitian holomorphic vector bundles over X

(5.1) 0 → EN
fN→ . . .

f3→ E2
f2→ E1

f1→ E0 → 0.

We will consider currents with values in E = ⊕Ek and in Hom (E0, E),
i.e., sections of the bundles D′

•(X,E) = D′
•(X) ⊗E(X) E(X,E) and

D′
•(X,EndE) = D′

•(X) ⊗E(X) E(X,Hom (E0, E)). Clearly, f =
∑
fk

and ∂̄ act on these spaces and we will arrange so that f∂̄ = −∂̄f . To
obtain this, it is natural to consider E as a superbundle, E = E+⊕E−,
with E+ = ⊕E2k and E− = ⊕E2k+1, so that sections of E+ have even
degree and sections of E− have odd degree. The space D′

•(X,E) has
a natural structure as a left E•(X)-module, and it gets a natural Z2-
grading by combining that gradings of D•(X) and E(X,E). We make
D′
•(X,E) into a right E•(X)-module by letting ξφ = (−1)deg ξdeg φφξ

for sections ξ of E(X,E) and smooth forms φ. The superstructure on
E induces a superstructure EndE = End(E)+ ⊕ End(E)− so that a
mapping is odd if, like f , it maps E+ → E− and E− → E+. In the
same way we get a Z2-grading of D′

•(X,EndE). For instance, ∂̄ extends
to an odd mapping on D′

•(X,E), as well as on D′
•(X,EndE). Since f

is holomorphic and of odd degree, we have that ∂̄ ◦ f = −f∂̄.

Let us now assume that we have (0, k − 1)-currents Uk and (0, k)-
currents Rk with values in Hom (E0, Ek) such that

(5.2) f1U1 = IE0 , fk+1Uk+1 − ∂̄Uk = Rk.

Moreover, we assume that U =
∑
Uk is smooth outside some analytic

variety Z and that R =
∑
Rk has its support on Z. A possible choice

of such currents will be discussed in the next section. We will also use
the short-hand notation (f− ∂̄)U = IE0−R for (5.2). Notice that f− ∂̄
is (minus) the (0, 1)-part of the super connection D− f introduced by
Quillen, [31], where D is the Chern connection on E.

Proposition 5.1. Assume that φ is a holomorphic section of E0 such
that Rφ = 0. Then, locally, f1ψ = φ has holomorphic solutions ψ.
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Proof. In fact, by assumption (f − ∂̄)(Uφ) = φ, and hence by suc-
cessively solving the equations ∂̄wk = Ukφ + fk+1wk+1, we get the
holomorphic solution ψ = U1φ+ f2w2. �

Our aim now is to construct an explicit formula that provides the
desired solution ψ. If we restrict our attention to some open domain
X where we can choose global frames for all the bundles, then, for
each fixed z ∈ Ω, fk(z) : Ek → Ek−1 is a well-defined morphism, which
coincides with fk on the fiber over z. For fixed z ∈ X, as before, let
δζ−z and ∇ζ−z be as in Section 2.

Lemma 5.2. (i) Assume that X is pseudoconvex. For any holomor-
phic function φ we can find a holomorphic (1, 0)-form h, depending
holomorphically on z, such that δζ−zh = φ(ζ)− φ(z).

(ii) If ξ is a holomorphic (k, 0)-form, k ≥ 1, depending holomorphically
on the parameter z, such that δζ−zξ = 0, then we can find a holomorphic
(k+ 1, 0)-form ξ′ depending holomorphically on z such that δζ−zξ

′ = ξ.

These facts are well-known and follow from Cartan’s theorem. For
an explicit construction in the unit ball, see Section 4 above.

Proposition 5.3 (Existence of Hefer forms). There are (k−`, 0)-form-
valued holomorphic morphisms H`

k : Ek → E`, depending holomorphi-
cally on z, such that H`

k = 0 for k < `, H`
` = IE`

, and in general,

(5.3) δζ−zH
`
k = H`

k−1fk(ζ)− f`+1(z)H
`+1
k .

Proof. In fact, for k = `+1 the right hand side of (5.3) is just f`+1(ζ)−
f`+1(z) so the existence ofH`

`+1 is ensured by the first part of the lemma
applied to the entries in the matrix repesentation of f`+1. If k > `+ 1,
then the right hand side of (5.3) is δζ−z-closed, so in view of the second
part of the lemma, the proposition follows by induction over ` down-
wards, starting with ` = N − 1, and over k up-wards. �

Assuming U is smooth outside Z and R supported on Z, for fixed
z /∈ Z, we can define the current

g′ = f1(z)

µ∑
1

H1
kUk +

µ∑
1

H0
kRk,

and it is easily checked that

(5.4) ∇ζ−zg
′ = 0, g′0,0(z) = IE0 .

In fact, noticing that (5.3) holds for all k and `, we can write g′ =
f(z)H1U +H0R and use (5.3) to get

∇ζ−zg
′ = (δζ−z − ∂̄)g′ =

− f(z)
(
(H1δ− f(z)H2)U −H∂̄U

)
+ (H0f(ζ)− f(z)H1)R−H0∂̄R =

− f(z)H1IE0 = 0,
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where we have used that f ◦ f = 0 (this holds since (5.1) is a complex)
and that f = 0 on E0.

Proposition 5.4. Let φ be a holomorphic section of E0 in X, let g
be a scalar weight with compact support in X for each z in U ⊂⊂ X,
and assume that g depends holomorphically on z. Then we have the
holomorphic decomposition

(5.5) φ(z) = f1(z)

∫
ζ

H1Uφ∧g +

∫
ζ

H0Rφ∧g, z ∈ U .

Proof. In view of (5.4) the case when z /∈ Z follows from Proposi-
tion 2.1. Since each term in (5.5) is holomorphic for z in U , the equality
must hold also across Z. �

In particular we see directly that

(5.6) Tφ =

∫
H1Uφ∧g

is a holomorphic solution to f1ψ = φ in U if Rφ = 0. We have thus
obtained an explicit representation of the solution in Proposition 5.1.

One can also use (5.5) for interpolation.

Proposition 5.5. Assume that φ is a holomorphic section of E0 in a
neighborhood of Z in X. Then

Sφ =

∫
ζ

H0Rφ g

is a holomorphic section E0 in U such that φ−Sφ belongs to the image
of f1 locally at Z ∩ U .

Proof. Recall that Sφ only depends onRφ and thus only depends on the
values of φ on Z up to the order of the current R. In virtue of Cartan’s
theorem there is some holomorphic section Φ in X that coincides with
φ up to the prescribed order on Z. From (5.5) it then follows that
Sφ = SΦ = Φ− f1TΦ from which the proposition follows. �

It is possible to give a direct argument of this proposition, with no
reference to Cartan’s theorem, cf., Remark 3 in [2]. In fact, suppose
that φ is holomorphic in the open set U ⊃ Z, and take a cutoff function
χ with support in U and equal to 1 in a small neighborhood of Z. For
a fixed z0 on Z we can find a (1, 0)-form s(ζ) such that δζ−z0s(ζ) 6= 0
for ζ on supp ∂̄χ. By continuity this will hold also for z in a small
neighborhood V of z0. Therefore, g′ = χ− ∂̄χ∧s/∇ζ−zs is a weight for
each z ∈ V and hence

(5.7) φ(z) = f1(z)

∫
H1Uφ∧g∧g′ +

∫
H0Rφ∧g∧g′, z ∈ V.

However, since g′ ≡ 1 in a neighborhood of Z, the last term coincides
with Sφ(z) for z ∈ V , and hence (5.7) shows that φ − Sφ is in the
image of f1 there.
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6. Generically surjective morphisms

Our main application in this paper of the abstract procedure de-
veloped in the preceding section is when E and Q are given (trivial)
Hermitian holomorphic vector bundles and f : E → Q is a pointwise
surjective, or possibly generically surjective, holomorphic morphism;
we look for an explicit formula for a holomorphic solution to fψ = φ,
where φ is a section of Q. Let us assume that E and Q are bundles over
a neighborhood of the closed unit ball and let Z be the analytic variety
where f is not surjective. Following [4] we take E0 = Q, E1 = E, and

Ek = Λk+r−1E ⊗ Sk−2Q∗ ⊗ detQ∗, k ≥ 2.

Let ej and εk be global holomorphic frames for E and Q respectively,
and let e∗j and ε∗k be their dual frames. Then f =

∑
fk ⊗ εk, where fk

are sections of E∗ and det f = f 1∧ . . .∧f r ⊗ εr∧ . . .∧ε1. We obtain a
complex (5.1) by taking f1 = f , f2 = det f and fk as interior multipli-
cation δf with f for k > 2, see [4] for details, which is known as the
Eagon-Northcott complex. In the case r = 1 this is just the Koszul
complex. If r is odd, the natural grading of Λ(T ∗0,1(X)⊕ E) gives rise

to the desired Z2-grading of ⊕Ej; if r is even, then ∂̄ and det f do
not anti-commute and therefore one has to compensate with a factor
(−1)r+1 at some places, see [4]; in what follows it is therefore tacitly
understood that r is odd, and we leave it to the interested reader to
find out where to put necessary minus signs in the case when r is even.

Outside Z let σk be the sections of E with minimal norms such that
f jσk = δjk. Then σ = σ1 ⊗ ε∗1 + . . . + σr ⊗ εr is the minimal section
of Hom (E0, E1) such that fσ = IE0 . Moreover, the section det f is
nonvanishing, and if σ = σ1∧ . . .∧σr ⊗ ε∗r∧ . . .∧ε∗1, for ξ with values in
E1, then σξ is the minimal inverse. Now we define

(6.1) u1 = σ, uk = (∂̄σ)⊗(k−2) ⊗σ ⊗ ∂̄σ, k ≥ 2,

where ⊗ shall be interpreted as ∧ on the factors in Λ(T ∗0,1(X)⊕E) and

⊗ on the Q∗- factors, and where the rightmost factor ∂̄σ is supposed
to act on E0. If we extend u across Z as U = | det f |2λu|λ=0, cf.,
Example 3 and see [4] for details, and let R = ∂̄| det f |2λ∧u|λ=0, then
we get currents satisfying (5.2). Moreover, U is smooth outside Z and
R has support on Z.

To construct the division formula we also need suitable Hefer forms,
whose existence are ensured by Proposition 5.3. However, we can be
somewhat more explicit. To begin with let h(ζ, z) be a (1, 0)-form
with values in Hom (E1, E0) such that δζ−zh = f(ζ) − f(z), and let
(δh)` = (δh)

`/`!. Notice that since δf is an odd mapping, δh is even.
For ` ≥ 2 we can now take H`

k = (δh)k−`. In fact,

δζ−z(δh)k−` = (δh)k−`−1(δf(ζ) − δf(z)) = (δh)k−`−1δf(ζ) − δf(z)(δh)k−`−1,

which shows that (5.3) is fulfilled for ` ≥ 2.
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Theorem 6.1. Let f : E → Q be a generically surjective morphism in
a neighborhood of the closure of the unit ball D, and let the currents
R,U and the Hefer forms H be defined as above. If g for instance is the
smooth weight from Example 2, then for any holomorphic section φ of
Q (r-tuple of holomorphic functions) we have the explicit holomorphic
decomposition

(6.2) φ(z) = f(z)

∫
H1Uφ∧g +

∫
H0Rφ∧g, z ∈ D.

Example 5. This division formula is non-trivial even when Z is empty
so that R = 0, and as an example let us compute it explicitly in the
ball in C2. Since Z is empty, U is smooth, and therefore we can use the
weight g from (2.2), and so the formula is φ(z) = f(z)Tφ(z), where

Tφ(z) =
1

(2πi)2

∫
|ζ|=1

H1
1U1φ∧

∂|ζ|2∧(∂̄∂|ζ|2)2

(1− ζ̄ · z)2
+

1

2πi

∫
|ζ|=1

H1
2U2φ∧

∂|ζ|2∧∂̄∂|ζ|2

1− ζ̄ · z
+

∫
|ζ|<1

H1
3U3φ.

If f = f 1⊗ε1 + . . .+f r⊗εr and σ = σ1⊗ε∗1 + . . .+σr⊗ε∗r as above, and
φ = φ1ε1 + . . . + φrεr, then (suppressing the basis elements ε1∧ . . .∧εr
and its dual ε∗1∧ . . .∧ε∗r) we have that

U1φ = σφ =
r∑
1

φkσk, U2φ = σ∧∂̄σφ = σ1∧ . . .∧σr∧
r∑
1

∂̄φkσk,

and

U3φ =
r∑

j=1

∂̄σj ⊗ εj∧σ1∧ . . .∧σr∧
r∑
1

∂̄φkσk.

Next we have to compute H1
k for k = 1, 2, 3. To begin with, H1

1 = IE0

whereas H1
2 has to be a holomorphic solution to

δζ−zH
1
2 = δf1(ζ) · · · δfr(ζ) − δf1(z) · · · δfr(z).

If r = 2 one can take, e.g., H1
2 = δf1δh2 − δh1δf2(z), where h = h1⊗ ε1 +

. . .+ hr ⊗ εr and hj are (1, 0)-forms such that δζ−zhj = f j(ζ)− f j(z).
Finally, H1

3 has to solve (recall that r is assumed to be odd; in case r
is even, the first term on the right should have a minus sign)

δζ−zH
1
3 = H1

2δf(ζ) − δf1(z) · · · δfr(z)δh,

i.e., H1
3 = (H1

3 )1 ⊗ δε1 + . . .+ (H1
3 )r ⊗ δεr , where

δζ−z(H
1
3 )k = H1

2δfk(ζ) − δf1(z) · · · δfr(z)δhk
.

�



14 MATS ANDERSSON

7. Various applications

In this section we illustrate the utility of our new formula by present-
ing some matrix variants of previously known results. In most cases,
the proofs are very similar the case r = 1, so we only indicate them.

7.1. A cohomological duality result. Let f : E → Q be generically
surjective, assume that codimZ = m− r + 1, and let U and R be the
currents from the preceding section. We then know from [4] that fψ =
φ has a holomorphic solution locally if and only if Rφ = Rm−r+1φ = 0.
Moreover, a solution ψ is given by (5.6).

For degree reasons, Rm−r+1 = ∂̄Um−r+1, and we have a mapping

Gφ : ξ 7→
∫
∂̄ξ∧um−r+1φ

for test forms ξ such that ∂̄ξ = 0 in a neighborhood of Z.

Proposition 7.1. If codimZ = m− r+ 1, then Gφ = 0 if and only if
fψ = φ locally has holomorphic solutions.

In the case r = 1 this duality result is proved in [19] and [28]. In
the case that m = n, then Gφ is the classical Grothendieck residue.
One can prove (see [5]) that G as well as R are independent of the
Hermitian metrics on E and Q, and essentially only depends on the
sheaf J = Im (O(E) → O(Q)).

Proof. By Stokes’ theorem it follows that Gφ = 0 if Rm−r+1φ = 0,
i.e., if fψ = φ is locally solvable. To prove the converse, we mimick
the argument given in [28] (the proof of Theorem 6.3.1). Clearly the
statement is local, so let us fix a point on Z that we may assume is the
origin. After a suitable linear change of coordinates we may assume
that if W = {|z′|, |z′′| < 1}, where z = (z′, z′′) ∈ Cn−(m−r+1) ×Cm−r+1,
then Z∩W is contained in {|z′′| < δ}. Take χ = χ′χ′′, where χ′ = χ′(z′)
has support in |z′| < δ and is identically 1 for small z′, and χ′′ is a cutoff
function that is 1 in a neighborhood W . Moreover, take

s =
∂|ζ ′|2

2πi(|ζ ′|2 − ζ̄ ′ · z′)
inW and extend it outside W so that δζ−zs 6= 0 for z close to the origin,
and depends holomorphically of z there. Let g = χ − ∂̄χ∧s/∇ζ−zs as
before. In W then g only depends on z′ so for degree reasons gµ,µ,
µ = n − (m − r + 1), is ∂̄-closed there. The obstruction for Tφ being
a solution to fψ = φ is the residue term, cf., (6.2)∫

H0Rm−r+1φ∧gµ,µ.

However, Rm−r+1 = ∂̄Um−r+1 so an integration by part gives∫
H0um−r+1φ∧∂̄gµ,µ,
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which by assumption vanishes for z close to 0. This proves the state-
ment. �

7.2. A division problem for smooth sections. Let f : E → Q be
a generically surjective morphism as before, and assume to begin with
that codimZ = m− r+1. Let φ be a smooth section of Q and assume
that there is a smooth section of E such that fψ = φ. Arguing as in the
proof of Theorem 1.2 in [4] it follows that Rφ = R(fψ) = (∂̄R′)ψ = 0.
Let ∂̄α = ∂α/∂z̄α. Then ∂̄αφ = f(∂̄αψ), and it therefore follows that

(7.1) R(∂̄αφ) = 0

for all α. For a general f , i.e., not necessarily such that codimZ =
m− r + 1, we have the converse statement.

Theorem 7.2. Suppose that φ smooth and assume that (7.1) holds for
all α. Then fψ = φ has a smooth solution.

This was first proved for r = 1 in [3]. We do not know any argument
based on the Koszul complex and successively solving of ∂̄-equations as
in the proof of Proposition 5.1 above. However, in [14] is recently given
a quite simple proof based on a deep criterion for closedness of ideals
of smooth functions in terms of formal power series due to Malgrange,
[26].

If we replace C∞ with real-analytic functions Cω, then the corre-
sponding statement follows directly from the holomorphic case, by em-
bedding X in the anti-diagonal {(z, z̄) ∈ C2n; z ∈ X}.

Corollary 7.3. Suppose that φ smooth and ‖∂̄αφ‖ . det(ff ∗)min(n,m−r+1)

for all α. Then fψ = φ has a smooth solution.

Remark 2. The corollary can be seen as an extension of the Briançon-
Skoda theorem and follows by a standard estimate from the theorem.

In the real-analytic case it is easy to see that the size condition in
the corollary is fulfilled if r = 1 and φ belongs to the integral closure
of the ideal J = E(f), i.e., if there are functions ak ∈ Jk such that
φN + a1φ

N−1 + · · ·+ aN = 0. We do not know if the same is true in the
smooth case. �

We also have an analogous result for lower regularity.

Theorem 7.4. Assume that M is the order of the current R. There
is a number cn, only depending on n, such that if φ ∈ Ccn+2M+k and
(7.1) holds for all |α| ≤ cn +M + k, then there is a section ψ of E of
class Ck such that fψ = φ.

Once we have the appropriate division formula these theorems follows
in the same way as for the case r = 1 in [3], and we therefore omit the
proofs.
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7.3. Matrix Hp-corona theorems. Suppose that F (z) is a pointwise
surjective r×m-matrix of bounded holomorphic functions in a strictly
pseudoconex domain D and assume furthermore that | det f(z)| ≥ δ >
0. Then for each r-tuple φ in Hp(D), p <∞, one can find an m-tuple ψ
in Hp such that Fψ = φ. This was proved in [25] (and with a sharper
estimate in [4], see [4] also for a further discussion), by reducing it
to the case r = 1 via the Fuhrmann trick, [21], and the case r = 1
is known since long ago, see [7] and the references given there. An
explicit solution formula in case r = 1 is given in [6], and copying the
arguments there, and using the special choice of Hefer forms defined in
Section 4, (most likely)

Tφ =

∫
D

H1Uφ∧g

is such a solution in Hp in the unit ball provided that

g =
(1− ζ̄ · z

1− |ζ|2
− ω

)−α

,

and α is large enough.

7.4. Division formulas for ∂̄-closed forms. In [4] we proved Briançon-
Skoda type results also for ∂̄-closed smooth (p, q)-forms, and even in
this case we can provide explicit representations of the solutions. Again
let f : E → Q be a generically surjective holomorphic morphism. We
want explicit expression for a ∂̄-closed solution to fψ = φ provided
that Rφ = 0. Following [1] we now consider forms in Xζ × Xz with
values in the exterior algebra spanned by T ∗0,1(X ×X) and the (1, 0)-
forms dη1, . . . , dηn, where ηk = ζk − zk. Then interior multiplication δη
with η =

∑n
1 ηj(∂/∂ηj) has a meaning and we can build up formulas

pretty much as when z is just considered as a parameter. If we let
v = b/∇ηb, where b = (2πi)−1

∑
∂|η|2/|η|2, and ∇η = δη − ∂̄, then

∇ηv = 1 − [∆], where [∆] is the (n, n)-current of integration over the
diagonal in X × X. Let g′ = f(z)H1U + H0R as before and let g
be the form from Example 2 but with all dζk replaced by dηk. Then
∇η(g

′∧g) = 0 as before and therefore at least formally we have

∇η(v∧g′∧g) = g′∧g − [∆]IQ,

and for degree reasons thus

∂̄(v∧g′∧g)n,n−1 = [∆]− (g′∧g)n,n.

Therefore,

φ(z) = ±
∫

ζ

v∧g∧g′∧∂̄φ± ∂̄z

∫
ζ

v∧g∧g′∧φ+

∫
g∧g′∧φ, z ∈ U .
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Assuming that ∂̄φ = 0, we get

(7.2) φ(z) = ±f(z)∂̄z

∫
ζ

H1U(ζ)∧v∧g∧φ+ f(z)

∫
ζ

g∧H1U∧φ+

± ∂̄z

∫
ζ

v∧g∧H0R∧φ+

∫
ζ

g∧H0R∧φ.

Since the integrals with v are essentially convolutions of currents and
the locally integrable functions ζ 7→ ζj/|ζ|2k, k ≤ n, they have meaning.
One can prove (7.2) strictly by a suitable approximation argument that
we omit.

If φ is holomorphic, then we get back formula (6.2). Notice that g and
g′ are holomorphic in z and therefore cannot contain any component
of positive degree in dz̄. Therefore we have

Proposition 7.5. If φ is a ∂̄-closed (p, q)-form with values in Q, q > 0,
such that Rφ = 0, then a ∂̄-closed solution to fψ = φ is provided by
the formula

ψ(z) = ∂̄z

∫
ζ

H1U∧v∧g∧φ.

Notice that in general ψ is not, and cannot be, smooth.
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