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CONVERGENCE OF SCHRÖDINGER OPERATORS

JOHANNES F. BRASCHE and KATEŘINA OŽANOVÁ

Abstract: For a large class, containing the Kato class, of real-valued
Radon measures m on Rd the operators −∆ + ε2∆2 + m in L2(Rd, dx)
tend to the operator −∆ +m in the norm resolvent sense, as ε tends to
zero. If d ≤ 3 and a sequence (µn) of finite real-valued Radon measures
on Rd converges to the finite real-valued Radon measure m weakly and,
in addition, supn∈N µ

±
n (Rd) < ∞, then the operators −∆ + ε2∆2 + µn

converge to −∆ + ε2∆2 + m in the norm resolvent sense. Explicit up-
per bounds for the rates of convergences are derived. One can choose
point measures µn with mass at only finitely many points so that a com-
bination of both convergence results leads to an efficient method for the
numerical computation of the eigenvalues in the discrete spectrum and
corresponding eigenfunctions of Schrödinger operators.

This article has been submitted to Journal of Mathematical Physics.

I Introduction

Weak convergence of potentials implies norm-resolvent convergence of the correspond-
ing one-dimensional Schrödinger operators. This result from [5] may be interesting
for several reasons. For instance every finite real-valued Radon measure on R is the
weak limit of a sequence of point measures with mass at only finitely many points.
There exist efficient numerical methods for the computation of the eigenvalues and
corresponding eigenfunctions of one-dimensional Schrödinger operators with a poten-
tial supported by a finite set; actually the effort for the computation of an eigenvalue
and corresponding eigenfunction grows at most linearly with the number of points of
the support [8]. Since norm resolvent convergence implies convergence of the eigenval-
ues in the discrete spectra and corresponding eigenspaces, we get an efficient method
for the numerical calculation of the points in the discrete spectra and corresponding
eigenspaces of one-dimensional Schrödinger operators.

Let us also mention a completely different motivation. In quantum mechanics neutron
scattering is often described via so called zero-range Hamiltonians (the monograph
[1] is an excellent standard reference to this research area). In a wide variety of
models the positions of the neutrons are described via a family (Xj)

n
j=1 of independent
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random variables with joint distribution µ. Usually the number n of neutrons is large
and one is interested in the limit when n tends to infinity and the strengths of the
single size potentials tend to zero. In the one-dimensional case this motivates to
investigate the limits of operators of the form

Hω := − d2

dx2
+
a

n

n∑
j=1

δXj(ω), ω ∈ Ω,

a 6= 0 being a real constant and (Ω,F ,P) a probability space. By the theorem of
Glivenko-Cantelli, for P-almost all ω ∈ Ω the sequence ( a

n

∑n
j=1 δXj(ω))n∈N converges

to the measure aµ weakly. By the mentioned result from [5], this implies that

− d2

dx2
+ aµ = lim

n−→∞
(− d2

dx2
+
a

n

n∑
j=1

δXj(ω))

in the norm resolvent sense P-a.s.

It is the purpose of the present note to derive analogous results in the two- and
three-dimensional case. Here one is not only interested in the absolutely continuous
case dm = V dx for some function V where −∆ +m equals the regular Schrödinger
operator −∆ + V , but also in the case that m is absolutely continuous w.r.t. the
(d− 1)-dimensional volume measure of a manifold with codimension one [4], [7].

If d > 1, then it seems to be impossible to work directly with operators of the form
−∆ + µ, µ being a point measure. In fact, while the operators − d2

dx2 +
∑n

j=1 ajδxj

can be defined via Kato’s quadratic form method as the unique lower semibounded
self-adjoint operator associated to the energy form

D(E) := H1(R),

E(f, f) :=

∫
|f ′(x)|2dx+

n∑
j=1

aj|f̃(xj)|2, f ∈ D(E),

f̃ being the unique continuous representative of f ∈ H1(R), the quadratic form

D(E) := {f ∈ H1(Rd) : f has a continuous representative f̃},

E(f, f) :=

∫
|∇f(x)|2dx+

n∑
j=1

aj|f̃(xj)|2, f ∈ D(E),

is not lower semibounded and closable if d > 1 and at least one coefficient aj is
different from zero.

The starting point for the strategy to overcome the mentioned problem in higher
dimensions have been the following two simple observations:
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1. The lower semibounded self-adjoint operator ∆2 + µ can be defined via Kato’s
quadratic form method for every real-valued finite Radon measure µ on Rd (if d ∈
{1, 2, 3}).

2. −∆ + ε2∆2 −→ −∆ in the norm resolvent sense, as ε > 0 tends to zero.

For a large class of measures m, containing the Kato class, we shall prove that

−∆ + ε2∆2 +m −→ −∆ +m

in the norm resolvent sense, as ε > 0 tends to zero, cf. section III. In section II we
shall prove that the sequence (−∆ + ε2∆2 + µn)n∈N converges to −∆ + ε2∆2 + m
in the norm resolvent sense provided d ≤ 3, ε > 0, the finite real-valued Radon
measures µn on Rd converge to the finite real-valued Radon measure m weakly and
supn∈N µ

±
n (Rd) < ∞, µ = µ+ − µ− being the Hahn-Jordan decomposition of µ.

Actually we shall not only prove convergence but even give explicit error estimates.

As approximating measures µn we can, in particular, choose point measures with mass
at only finitely many points. In section IV we shall derive a result which makes it
possible to calculate the eigenvalues and corresponding eigenspaces of operators of the
form −∆+ε2∆2 +µ numerically provided µ is a point measure with mass at n points
and n <∞. The effort for these computations grows at most as O(n3). In particular,
we get an efficient method to calculate the eigenvalues in the discrete spectrum and
corresponding eigenspaces of Schrödinger operators −∆ + m numerically. Let us
emphasize that our method covers both the absolutely continuous case dm = V dx
where −∆ + m = −∆ + V is a regular Schrödinger operator and the singular case
when m is absolutely continuous w.r.t. the (d− 1)-dimensional volume measure of a
manifold with codimension one. Actually, we will treat a fairly large class of measures
m containing the set of all finite real-valued measures belonging to the Kato class.

Notation and auxiliary results: Let µ be a real-valued Radon measure on Rd.
By the Hahn-Jordan theorem, there exist unique positive Radon measures µ± on Rd

such that

µ = µ+ − µ− and µ+(Rd \B) = 0 = µ−(B)

for some suitably chosen Borel set B. We put

‖ µ ‖:= µ+(Rd) + µ−(Rd) and |µ| := µ+ + µ−.

If µ is finite, then we define the Fourier transform µ̂ of µ as

µ̂(p) := (2π)−d/2

∫
eipxµ(dx), p ∈ Rd.

f̂ also denotes the Fourier transform of f ∈ L2(dx) := L2(Rd, dx), dx being the
Lebesgue measure.
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For s > 0 we denote the Sobolev space of order s by Hs(Rd), i.e.

Hs(Rd) := {f ∈ L2(dx) :

∫
(1 + p2)s|f̂(p)|2dp <∞},

‖ f ‖Hs := (

∫
(1 + p2)s|f̂(p)|2dp)1/2, f ∈ Hs(Rd).

Occasionally we shall use the abbreviations L2(µ) := L2(Rd, µ) and Hs := Hs(Rd).

‖ T ‖H1,H2 denotes the operator norm of T as an operator from H1 to H2 and
‖ T ‖H:=‖ T ‖H,H. ‖ f ‖H and (f, h)H denotes the norm of f and the scalar product
of f and h in the Hilbert H, respectively. If the reference to a measure is missing,
then we tacitly refer to the Lebesgue measure dx. For instance “integrable” means
“integrable w.r.t. dx” if not stated otherwise, ‖ T ‖ denotes the norm of T as an
operator in L2(dx) and (f, h) and ‖ f ‖ denote the scalar product of f and h and the
norm of f in the Hilbert space L2(dx), respectively. We denote by C∞

0 (Rd) the space
of smooth functions with compact support.

For arbitrary ε ≥ 0 (ε = 0 will be admitted only in section III) let Eε be the nonnega-
tive closed quadratic form in the Hilbert space L2(dx) associated to the nonnegative
self-adjoint operator −∆ + ε2∆2 in L2(dx). Obviously we have

D(Eε) = H2(Rd),

Eε(f, f) = ε2 (∆f,∆f) + (f,∆f) ≥ ε2 (∆f,∆f), f ∈ D(Eε), (1)

for every ε > 0.

We put

Eα(f, h) := E(f, h) + α(f, h), f, h ∈ D(E),

for every quadratic form E in L2(dx) and α > 0.

For every ε ≥ 0 and α > 0 there exists a function gε,α with Fourier transform

p 7→ 1

ε2p4 + p2 + α
, Rd −→ R,

which is continuous on Rd \ {0} (on Rd if d = 1 or if d ≤ 3 and ε > 0). gε,α(x)
is unique for every x ∈ Rd \ {0} (even every x ∈ Rd if d = 1 or if d ≤ 3 and
ε > 0). gε,α is radially symmetric and gε,α(x−y) is the integral kernel of the operator
Gε,α := (−∆ + ε2∆2 + α)−1 in L2(dx). g0,α is nonnegative.

II Weak and operator norm convergence

Throughout this section let d ≤ 3 and µ be a finite real-valued Radon measure on
Rd. Then, by Sobolev’s embedding theorem, for every s > 3/2, and, in particular,
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for s = 2, every f ∈ Hs(Rd) has a unique continuous representative f̃ and

‖ f̃ ‖∞:= sup{|f̃(x)| : x ∈ Rd} ≤ cs ‖ f ‖Hs , f ∈ Hs(Rd), (2)

for some finite constant cs. Note that cs ≤ 1 if s = 2.

Let a > 0 be arbitrary and for f ∈ H2(Rd) put

fa(x) := f(ax), x ∈ Rd.

Then fa also belongs to H2(Rd) and we get with the aid of (1) and the Sobolev
inequality (2) that

‖ f̃ ‖2
∞ = ‖ f̃a ‖2

∞ ≤
∫
ε2|∆fa(x)|2dx+

∫
|fa(x)|2dx

≤ a4−dε−2Eε(f, f) + a−d(f, f).

Since d ≤ 3 it follows that for every ε > 0 and every η > 0 there exists an α =
α(ε, η) <∞ such that

‖ f̃ ‖2
∞≤ η Eε(f, f) + α(f, f), f ∈ H2(Rd). (3)

By (3), for every ε > 0 and every η > 0 there exists an α = α(ε, η) <∞ such that

|
∫
|f̃ |2dµ| ≤ η ‖ µ ‖ Eε(f, f) + α ‖ µ ‖ (f, f), f ∈ H2(Rd). (4)

We put

D(Eµ
ε ) := H2(Rd),

Eµ
ε (f, f) := Eε(f, f) +

∫
|f̃ |2dµ, f ∈ D(Eµ

ε ).

By (4) and the KLMN-theorem, Eµ
ε is a lower semibounded closed quadratic form in

L2(dx). We denote the lower semibounded self-adjoint operator in L2(dx) associated
to Eµ

ε by −∆ + ε2∆2 + µ and put

Gµ
ε,α := (−∆ + ε2∆2 + µ+ α)−1

provided the operator −∆ + ε2∆2 + µ+ α is invertible.

Let ε, α > 0, then the function

p 7→ 1

ε2p4 + p2 + α
, Rd −→ R,

5



and all its partial derivatives (of arbitrary order) are integrable with respect to the
Lebesgue measure. Thus the inverse Fourier transform gε,α of this function is contin-
uous and

|x|jgε,α(x) −→ 0, as |x| −→ ∞, (5)

for every j ∈ N. By the dominated convergence theorem,

‖ gε,α ‖2
H2=

∫
(1 + p2)2

|ε2p4 + p2 + α|2
dp −→ 0, as |α| −→ ∞. (6)

By Sobolev’s inequality, this implies that

‖ gε,α ‖∞−→ 0, as |α| −→ ∞. (7)

Since the operator Gε,α = (−∆ + ε2∆2 +α)−1 in L2(dx) is the integral operator with
kernel gε,α(x− y), we have∫

gε,α(x− y)(−∆ + ε2∆2 + α)h(y)dy = h(x) dx-a.e., h ∈ D(−∆ + ε2∆2).

The equation above does not only hold almost everywhere w.r.t. the Lebesgue mea-
sure dx but even pointwise everywhere, i.e.∫

gε,α(x− y)(−∆ + ε2∆2 + α)h(y)dy = h̃(x), x ∈ Rd, h ∈ D(−∆ + ε2∆2). (8)

In fact, we have only to show that the the integral on the left hand side is a continuous
function of x ∈ Rd. We choose any sequence (fn)n∈N of continuous functions with
compact support converging to (−∆+ε2∆2 +α)h in L2(dx). By (6), gε,α ∈ H2(Rd) ⊂
L2(dx), therefore we can write∫

gε,α(x− y)(−∆ + ε2∆2 + α)h(y)dy = lim
n−→∞

∫
gε,α(x− y)fn(y)dy, x ∈ Rd.

Obviously the mapping x 7→
∫
gε,α(x−y)fn(y)dy, Rd −→ C, is the unique continuous

representative G̃ε,αfn of Gε,αfn for every n ∈ N. Since Gε,α is a bounded operator
from L2(dx) to H2(Rd) (even to H4(Rd)), the sequence (Gε,αfn)n∈N converges in
H2(Rd) to Gε,α(−∆ + ε2∆2 + α)h = h. By Sobolev’s inequality (2), this implies

that the sequence (G̃ε,αfn)n∈N of the unique continuous representatives converges to
a continuous function uniformly. By the last equality, x 7→

∫
gε,α(x−y)(−∆+ε2∆2 +

α)h(y)dy, Rd −→ C, is this continuous uniform limit and we have proved (8).

By Sobolev’s inequality and (5),

gε,α ∗ f̃µ(x) :=

∫
gε,α(x− y)f̃(y)µ(dy), x ∈ Rd,
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defines a bounded continuous function for every f ∈ H2(Rd). We put

Gµ
ε,αf(x) :=

∫
gε,α(x− y)f̃(y)µ(dy) dx-a.e., f ∈ H2(Rd).

Using Sobolev’s inequality, we arrive at

|̂̃fµ(p)|2 ≤ (2π)−d ‖ f̃ ‖2
∞‖ µ ‖2≤ (2π)−d ‖ f̃ ‖2

H2‖ µ ‖2, p ∈ Rd, f ∈ H2(Rd).

Then the convolution theorem and Sobolev’s inequality yield

‖ Gµ
ε,αf ‖2

H2 =

∫
|(1 + p2)2| |(gε,α ∗ f̃µ)̂(p)|2dp

= (2π)d

∫
(1 + p2)2

|ε2p4 + p2 + α|2
|̂̃fµ(p)|2dp

≤
∫

(1 + p2)2

|ε2p4 + p2 + α|2
‖ f̃ ‖2

∞‖ µ ‖2 dp

≤
∫

(1 + p2)2

|ε2p4 + p2 + α|2
dp ‖ f̃ ‖2

H2‖ µ ‖2<∞, f ∈ H2(Rd).

Therefore Gµ
ε,α is an everywhere defined bounded operator on H2(Rd) and we get an

upper bound for the norm ‖ Gµ
ε,α ‖H2,H2 of Gµ

ε,α as an operator on H2(Rd) and a
uniform upper bound for the norm of Gµ

ε,αf in terms of the supremum norm of the

continuous representative f̃ of f :

‖ Gµ
ε,α ‖H2,H2≤‖ µ ‖ (

∫
(1 + p2)2

|ε2p4 + p2 + α|2
dp)1/2, (9)

‖ Gµ
ε,αf ‖H2≤‖ µ ‖ (

∫
(1 + p2)2

|ε2p4 + p2 + α|2
dp)1/2 ‖ f̃ ‖∞, f ∈ H2(Rd). (10)

Moreover ∫
|Gµ

ε,αf(x)|2dx

=

∫
|
∫
gε,α(x− y)f̃(y)µ+(dy)−

∫
gε,α(x− y)f̃(y)µ−(dy)|2dx

≤ 2

∫
|
∫
gε,α(x− y)f̃(y)µ+(dy)|2dx+ 2

∫
|
∫
gε,α(x− y)f̃(y)µ−(dy)|2dx

≤ 2

∫ ∫
|gε,α(x− y)|2µ+(dy)

∫
|f̃(y)|2µ+(dy)dx

+ 2

∫ ∫
|gε,α(x− y)|2µ−(dy)

∫
|f̃(y)|2µ−(dy)dx

≤ 2

∫
|gε,α|2dx ‖ µ ‖

∫
|f̃(y)|2|µ|(dy), f ∈ H2(Rd). (11)
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In a similar way we get∫
|G̃µ

ε,αf(x)|2|µ|(dx) ≤ 2 ‖ gε,α ‖2
∞‖ µ ‖2

∫
|f̃(y)|2|µ|(dy). (12)

General results of [2] (cf. also section III below) provide, in particular, an explicit
formula for the resolvent of the operator −∆ + ε2∆2 + µ. In this resolvent formula
there occur operators acting in different Hilbert spaces. This is inconvenient when
we investigate the convergence of sequences of such operators and we shall derive
another resolvent formula. While this could be done with the aid of the mentioned
result from [2] it may be convenient for an uninitiated reader to start from the very
beginning: by the dominated convergence theorem,∫

1 + p4

|ε2p4 + p2 + α|2
dp −→ 0, as α −→∞.

Hence according to (9), we can choose α > 0 such that ‖ Gµ
ε,α ‖H2,H2< 1. Then the

operator I + Gµ
ε,α is invertible and its inverse is everywhere defined on H2(Rd) and

bounded; here I denotes the identity on H2(Rd). By (4), we can choose α > 0 such
that, in addition,

Eµ
ε,α(f, f) := Eµ

ε (f, f) + α(f, f) ≥ (f, f), f ∈ D(Eµ
ε ). (13)

Let f ∈ L2(dx). Since Eε and Eµ
ε is associated to −∆ + ε2∆2 and −∆ + ε2∆2 + µ,

respectively, it follows from Kato’s representation theorem that

Eε,α(Gε,αf, h) = (f, h) = Eµ
ε,α(Gµ

ε,αf, h), h ∈ H2(Rd). (14)

Moreover we have

Eε,α(Gµ
ε,αψ, h) = (Gµ

ε,αψ, (−∆ + ε2∆2 + α)h)

=
∫ ∫

gε,α(x− y) ¯̃ψ(y)µ(dy)(−∆ + ε2∆2 + α)h(x)dx

=
∫ ∫

gε,α(x− y)(−∆ + ε2∆2 + α)h(x)dx ¯̃ψ(y)µ(dy)

=
∫
h̃ ¯̃ψµ(dy), ψ ∈ H2(Rd), h ∈ D(−∆ + ε2∆2). (15)

We could change the order of integration in the second step. In fact, as µ± are finite
Radon measures and gε,α is square integrable w.r.t. the Lebesgue measure dx, the
mappings x 7→

∫
|gε,α(x−y)|µ±(dy), Rd −→ R, are square integrable w.r.t. dx. Since

ψ̃ is bounded and (−∆ + ε2∆2 + α)h ∈ L2(dx) it follows that∫ ∫
|gε,α(x− y) ¯̃ψ(y)|µ±(dy)|(−∆ + ε2∆2 + α)h(x)|dx <∞

and, by Fubini’s theorem, we could change the order of integration in the second
step. In the last step we have used (8). Employing Sobolev’s inequality and the
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fact that D(−∆ + ε2∆2) is dense in (D(Eε), Eε,α), we can extend (15) to all functions
ψ, h ∈ D(Eε).

Put

φ := Gε,αf −Gµ
ε,α(I +Gµ

ε,α)−1Gε,αf.

Then φ ∈ H2(Rd) = D(Eµ
ε ) and (14) and extended (15) yield

Eµ
ε,α(φ, h)

= Eε,α(Gε,αf, h)− Eε,α(Gµ
ε,α(I +Gµ

ε,α)−1Gε,αf, h)

+

∫
[Gε,αf −Gµ

ε,α(I +Gµ
ε,α)−1Gε,αf

¯̃
]h̃dµ

= (f, h)−
∫

[(I +Gµ
ε,α)−1Gε,αf

¯̃
]h̃dµ

+

∫
[(I +Gµ

ε,α)(I +Gµ
ε,α)−1Gε,αf −Gµ

ε,α(I +Gµ
ε,α)−1Gε,αf

¯̃
]h̃dµ

= (f, h), h ∈ H2(Rd).

Due to (13), Eµ
ε,α is a scalar product on D(Eµ

ε,α) = H2(Rd). Thus (14) and the
calculation above imply that φ = Gµ

ε,αf and we have derived the following new
resolvent formula:

Gµ
ε,α = Gε,α −Gµ

ε,α(I +Gµ
ε,α)−1Gε,α (16)

for every α > 0 satisfying (13) and

‖ µ ‖2

∫
(1 + p2)2

|ε2p4 + p2 + α|2
dp < 1.

We are now well prepared for the proof of the main theorem of this section:

THEOREM 1 Let m and µn, n ∈ N, be finite real-valued Radon measures
on Rd. Suppose that the sequence (µn)n∈N converges to m weakly and supn∈N ‖ µn ‖<
∞. Let ε, α > 0 and d ∈ {1, 2, 3}. Then the operators −∆ + ε2∆2 + µn converge to
−∆ + ε2∆2 +m in the norm resolvent sense.

Proof: Let ε > 0 be arbitrary. We choose 0 < c < 1 and α > 0 such that

‖ µn ‖2

∫
(1 + p2)2

|ε2p4 + p2 + α|2
dp ≤ c2, n ∈ N, (17)

and

‖ m ‖2

∫
(1 + p2)2

|ε2p4 + p2 + α|2
dp ≤ c2. (18)
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By (4), we can choose α > 0 such that, in addition,

Eµn
ε,α(f, f) ≥ (f, f), f ∈ H2(Rd), n ∈ N. (19)

Since (µn)n∈N converges to m weakly, (19) also holds when we replace µn by m. By
(9), (17) and (18),

‖ Gµn
ε,α ‖H2,H2≤ c, n ∈ N, and ‖ Gm

ε,α ‖H2,H2≤ c, (20)

and, by (10) and (18),

‖ Gm
ε,αf ‖H2≤ c ‖ f̃ ‖∞, f ∈ H2(Rd).

By (19) and (20), the resolvent formula (16) is valid both for µ = m and for µ = µn,
n ∈ N. By (6), (7), (11) and (12), we can choose α > 0 so large that also∫

|Gm
ε,αh(x)|2dx ≤ c2

∫
|h̃|2d|m| and

∫
|G̃m

ε,αh(x)|2|m|(dx) ≤ c2
∫
|h̃|2d|m| (21)

for every h ∈ H2(Rd).

For notational brevity we put

g0 := g0,1, g := gε,α, G := Gε,α, Gµn := Gµn
ε,α and Gm := Gm

ε,α.

With this notation we have

(−∆ + ε2∆2 + µn + α)−1 − (−∆ + ε2∆2 +m+ α)−1

= Gm[I +Gm]−1G−Gµn [I +Gµn ]−1G

= (Gm −Gµn)[I +Gm]−1G+ (Gµn −Gm)[I +Gm]−1(Gµn −Gm)[I +Gµn ]−1G

+Gm[I +Gm]−1(Gµn −Gm)[I +Gµn ]−1G.

Since G is a bounded operator from L2(dx) to H2(Rd) we have only to show that

‖ Gm −Gµn ‖H2,L2(dx)−→ 0, as n −→∞, (22)

‖ Gm[I +Gm]−1(Gm −Gµn) ‖H2,L2(dx)−→ 0, as n −→∞. (23)

We introduce

νn := m− µn and νnx(dy) := g(x− y)νn(dy), x ∈ Rd, n ∈ N.

As d ≤ 3, the function

y 7→
∫
g0(y − a)f(a)da, Rd −→ C,
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is continuous and bounded for every f ∈ L2(dx) (this well known fact can be proved
in the same way as (8)).

Since the function g is bounded and g0 is nonnegative it follows that

|
∫
|g(x− y)|

∫
|g0(y − a)||(−∆ + 1)h(a)|daν±n (dy)| <∞, x ∈ Rd, h ∈ H2(Rd).

Hence by Fubini’s theorem, the function kνnx : Rd −→ R, defined by

kνnx(a) :=

{ ∫
g0(y − a)g(x− y)νn(dy), if defined,

0, otherwise,

is Borel measurable, the integral on the right hand side is defined and finite for almost
all a ∈ Rd (almost all w.r.t. the Lebesgue measure) and

|(Gνnh)̃(x)|2 = |
∫
g(x− y)h(y)νn(dy)|2

= |
∫
g(x− y)

∫
g0(y − a)(−∆ + 1)h(a)daνn(dy)|2

≤
∫
|kνnx(a)|2da ·

∫
|(−∆ + 1)h(a)|2da

≤ 2 ‖ h ‖2
H2

∫
|kνnx(a)|2da, x ∈ Rd, h ∈ H2(Rd), n ∈ N. (24)

Thus in order to prove (22) we have only to show that∫ ∫
|kνnx(a)|2dadx −→ 0, as n −→∞. (25)

We have ∫ ∫
|kνnx(a)|2dadx

=
∫ ∫

|k̂νnx(p)|2dpdx
= (2π)d

∫ ∫
|ĝ0(p)|2|ν̂nx(p)|2dpdx

=
∫ ∫

1
|1+p2|2

∫
eipyg(x− y)νn(dy)

∫
e−ipzg(x− z)νn(dz)dpdx. (26)

Since p 7→ 1
|1+p2|2 and g are integrable w.r.t. the Lebesgue measure, g is bounded and

the Radon measures νn are finite, we can change the order of integration.

As (2π)−d/2
∫
eipye−ipz 1

|1+p2|2dp is the inverse Fourier transform of the integrable func-

tion p 7→ 1
|1+p2|2 at the point z − y, the function

f(y, z) :=

∫
eipye−ipz 1

|1 + p2|2
dp, y, z ∈ Rd,
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is bounded and continuous. Let y ∈ Rd and K be any compact neighbourhood of y.
By (5), there exists a constant a <∞ such that

|g(x− y)g(x− z)| ≤ a ‖ g ‖∞ dist(x,K)−4, x ∈ Rd \K, z ∈ Rd, y ∈ K.

Moreover g is continuous. Thus the function

h(y, z) :=

∫
g(x− y)g(x− z)dx, y, z ∈ Rd,

is bounded and continuous. By Stone-Weierstrass theorem, the set of functions of the
form (x, y) 7→

∑N
j=1 fj(x)gj(y), N ∈ N, fj, gj are bounded and continuous, is dense

in the space of bounded continuous functions w.r.t. the supremum norm. Since the
measures νn tend to zero weakly and supn∈N ‖ νn ‖<∞ this implies that the product
measures νn ⊗ νn tend to zero weakly, too. Hence we get∫ ∫

1

|1 + p2|2

∫
eipyg(x− y)νn(dy)

∫
e−ipzg(x− z)νn(dz)dpdx

=

∫
f(y, z)h(y, z)νn ⊗ νn(dydz) −→ 0, as n −→∞.

By (26), it follows that we have proved (25) and therefore also (22).

It only remains to prove (23). For this purpose we first note that

cn :=

∫ ∫
|kνnx(a)|2da|m|(dx) −→ 0, as n −→∞.

This can be shown by mimicking the proof of (25). By (24), it follows that

5

∫
|(Gνnh)̃(x)|2|m|(dx) ≤ 2cn ‖ h ‖2

H2 , h ∈ H2(Rd).

Thus, in order to prove (23), we have only to show that that there exists a finite
constant C such that

‖ Gm(I +Gm)−1h ‖L2(dx)≤ C(

∫
|h̃|2d|m|)1/2, h ∈ H2(Rd). (27)

By (20), we have

Gm(I +Gm)−1 = −
∞∑

j=1

(−Gm)j. (28)

According to (21),

‖ (Gm)j+1h ‖L2(dx)≤ c(

∫
| ˜(Gm)jh|2d|m|)1/2 ≤ c · cj(

∫
|h̃|2d|m|)1/2,

12



for every j ∈ N and hence

‖
∞∑

j=1

(−Gm)jh ‖L2(dx)≤
∞∑

j=1

cj · (
∫
|h̃|2d|m|)1/2 =

c

1− c
· (

∫
|h̃|2d|m|)1/2.

By (28), this implies (27) and the proof of the theorem is complete. 2

REMARK 2 We have shown that

‖ (−∆ + ε∆2 + µn + α)−1 − (−∆ + ε∆2 +m+ α)−1 ‖2

≤ c1
∫ ∫

|
∫
g0,1(y − a)gε,α(x− y)(m− µn)(dy)|2da dx

+c2
∫ ∫

|
∫
g0,1(y − a)gε,α(x− y)(m− µn)(dy)|2da |m|(dx)

for some finite constants cj = cj(ε, α), j = 1, 2, which can be computed with the aid
of the proof of the theorem. Thus the proof provides explicit upper bounds for the
error one makes when one replaces the operator −∆ + ε∆2 +m by −∆ + ε∆2 + µn.

III Dependence on the coupling constant

In this section we are going to prove that

−∆ + ε2∆2 +m −→ −∆ +m, as ε ↓ 0, (29)

in the norm resolvent sense. Here m denotes a real-valued Radon measure on Rd and
we assume, in addition, that for every η > 0 there exists a βη <∞ such that∫

|f |2d|m| ≤ η(

∫
|∇f |2dx+ βη

∫
|f |2dx), f ∈ C∞

0 (Rd). (30)

Note that we neither require that m is finite nor that d ≤ 3. On the other hand, the
condition (30) implies that m(B) = 0 for every Borel set B with classical capacity
zero and, for instance, it is excluded that m is a point measure if d > 1.

The inequality (30) holds, in particular, provided m belongs to the Kato class, i.e.

sup
n∈Z

|m|([n, n+ 1]) < ∞, d = 1,

lim
ε→0

sup
x∈R2

∫
B(x,ε)

| log(|x− y|)| |m|(dy) = 0, d = 2,

lim
ε→0

sup
x∈R3

∫
B(x,ε)

1

|x− y|
|m|(dy) = 0, d = 3,

13



with B(x, ε) denoting the ball of radius ε centered at x (cf. [9], Theorem 3.1). We
refer to [6], ch. 1.2, for additional examples of measures satisfying (30).

In general, the elements f in the form domain of −∆ do not possess a continuous
representative f̃ . Therefore we shall give a definition of Em

ε different from the one
in the previous section 2 but equivalent to the definition in section II in the special
cases treated there.

Since the space C∞
0 (Rd) of smooth functions with compact support is dense in the

Sobolev spaceH1(Rd), there exists a unique bounded linear mapping Jm : H1(Rd) −→
L2(|m|) satisfying

Jmf = f, f ∈ C∞
0 (Rd),

(strictly speaking Jm maps the dx-equivalence class of the continuous function f̃ ∈
C∞

0 (Rd) to the |m|-equivalence class of f̃).

We put

D(Em
ε ) := D(Eε),

Em
ε (f, f) := Eε(f, f) + (AmJmf, Jmf)L2(|m|), f ∈ D(Em

ε ),

where D(Eε) = H1(Rd) for ε = 0, D(Eε) = H2(Rd) otherwise and

Amh(x) :=

{
h(x), x ∈ B,
−h(x), x ∈ Rd \B, h ∈ L2(|m|),

with B being any Borel set such that m+(Rd \B) = 0 = m−(B).

By (30) and the KLMN-theorem, the quadratic form Em
ε in L2(dx) is lower semi-

bounded and closed and

Em
ε,β1

(f, f) ≥ 0, f ∈ D(Em
ε ).

We denote by −∆+ε2∆2 +m the lower semibounded self-adjoint operator associated
to Em

ε and put

Gε,α := (−∆ + ε2∆2 + α)−1 and Gm
ε,α := (−∆ + ε2∆2 +m+ α)−1

provided the inverse operators exist.

One key for the proof of the convergence result (29) is the observation that

1

ε2p4 + p2 + α
=

c(ε)

p2 + α(ε)
− c(ε)

p2 + β(ε)
, as ε ↓ 0,

with

c(ε) :=
1√

1− 4ε2α
−→ 1, as ε ↓ 0, (31)
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and −α(ε) and −β(ε) being the roots of the polynomial ε2x2 + x+ α, i.e.

α(ε) :=
1−

√
1− 4ε2α

2ε2
=

2α

1 +
√

1− 4ε2α
−→ α, as ε ↓ 0, (32)

β(ε) :=
1 +

√
1− 4ε2α

2ε2
−→∞, as ε ↓ 0. (33)

Using the parameters introduced above, we have

gε,α(x) = c(ε)g0,α(ε)(x)− c(ε)g0,β(ε)(x), x ∈ Rd \ {0},

and hence

Gε,α = c(ε)G0,α(ε) − c(ε)G0,β(ε). (34)

The other key for the proof of the convergence result (29) is a Krein-like resolvent
formula from [2], cf. (37) below. First we need some preparation.

Let α > 0 and ε ≥ 0. We introduce the operator Jm,ε,α from the Hilbert space
(D(Eε), Eε,α) to L2(|m|) as follows:

D(Jm,ε,α) := D(Eε),

Jm,ε,αf := Jmf, f ∈ D(Jm,ε,α). (35)

By (30), the operator norm of Jm,ε,α is less than or equal to η provided α ≥ βη. Thus
we can choose α0 > 0 and c < 1 such that

‖ Jm,ε,α ‖(D(Eε),Eε,α),L2(|m|)≤
√
c, ε ≥ 0, α ≥ α0. (36)

By (35) and (36), the hypothesis of Theorem 3 in [2] is satisfied (with H = L2(dx),
Haux = L2(|m|), E = Eε, J = Jm, Uα = J∗m,ε,α, A = Am, H = −∆ + ε2∆2 and
HA = −∆ + ε2∆2 + m) and this theorem implies that −α belongs to the resolvent
set of −∆ + ε2∆2 +m and

Gm
ε,α = Gε,α − (Jm,ε,α)∗Am(1 + JmJ

∗
m,ε,αAm)−1JmGε,α, ε ≥ 0, α ≥ α0. (37)

In fact, we can write

J∗m,ε,α′ = (JmGε,α′)∗, ε ≥ 0, α′ > 0, (38)

since we have

(J∗m,ε,α′f, h) = Eε,α′(J∗m,ε,α′f,Gε,α′h) = (f, Jm,ε,α′Gε,α′h)L2(|m|) = ((JmGε,α′)∗f, h)
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for every h ∈ L2(dx), ε ≥ 0 and α′ > 0.

We choose any α > α0, then from (35) and (36) we get

‖ (1 + JmJ
∗
m,ε,αAm)−1 ‖L2(|m|)≤

1

1− c
, ε ≥ 0.

By the second resolvent identity

(1 + A)−1 − (1 +B)−1 = (1 + A)−1(B − A)(1 +B)−1,

it implies that

‖ (1 + JmJ
∗
m,ε,αAm)−1 − (1 + JmJ

∗
m,0,αAm)−1 ‖L2(|m|)−→ 0, as ε ↓ 0,

provided

‖ JmJ
∗
m,ε,α − JmJ

∗
m,0,α ‖L2(|m|)−→ 0, as ε ↓ 0. (39)

Employing the resolvent formula (37), this implies that the convergence result (29)
is true, provided (39) holds and, in addition,

‖ Gε,α −G0,α ‖L2(dx)−→ 0, as ε ↓ 0, (40)

‖ JmGε,α − JmG0,α ‖L2(dx),L2(|m|)−→ 0, as ε ↓ 0. (41)

We have

‖ G0,α′ ‖2
L2(dx),H1≤ k(α′), α′ > 0, (42)

for some continuous function k vanishing at infinity (actually, k(x) = 1/x2 for x ≤ 2
and k(x) = 1/(4(x− 1)) for x > 2). By the hypothesis (30), it follows that

‖ JmG0,α′ ‖2
L2(dx),L2(|m|)≤ max(1, β1)k(α

′), α′ > 0. (43)

By the first resolvent formula,

G0,α(ε) −G0,α = (α− α(ε))G0,αG0,α(ε). (44)

Since α(ε) −→ α, β(ε) −→ ∞, and c(ε) −→ 1 as ε ↓ 0, (cf. (31), (32), (33),
respectively), the formulae (34), (42) and (44) imply (40). Moreover (34), (43) and
(44) imply (41).

From (34) and (38) follows that

JmJ
∗
m,ε,α = c(ε)Jm(JmG0,α(ε))

∗ − c(ε)Jm(JmG0,β(ε))
∗,
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note that c(ε) is real for sufficiently small ε. Using this expression and (44), (38), we
get

‖ JmJ
∗
m,ε,α − JmJ

∗
m,0,α ‖L2(|m|)

≤ ‖ (c(ε)− 1)Jm(JmG0,α(ε))
∗ ‖L2(|m|) + ‖ Jm(JmG0,α(ε))

∗ − Jm(JmG0,α)∗ ‖L2(|m|)

+ ‖ c(ε)Jm(JmG0,β(ε))
∗ ‖L2(|m|)

= ‖ (c(ε)− 1)Jm,0,α(ε)J
∗
m,0,α(ε) ‖L2(|m|) + ‖ (α− α(ε))JmG0,α(JmG0,α(ε))

∗ ‖L2(|m|)

+ ‖ c(ε)Jm,0,β(ε)J
∗
m,0,β(ε) ‖L2(|m|), ε > 0. (45)

By (30), the mapping α 7→‖ Jm,0,αJ
∗
m,0,α ‖L2(|m|) is locally bounded on (0,∞) and

tends to zero as α tends to infinity. Since α(ε) −→ α, c(ε) −→ 1, and β(ε) −→∞ as
ε ↓ 0, this implies, in conjunction with (43) and (45), that

‖ JmJ
∗
m,ε,α − JmJ

∗
m,0,α ‖L2(|m|)−→ 0, ε ↓ 0.

This completes the proof of the following theorem.

THEOREM 3 Let m be a real-valued Radon measure on Rd satisfying (30).
Then the operators −∆ + ε2∆2 +m converge to −∆ +m in the norm resolvent sense
as ε ↓ 0.

REMARK 4 By the proof of the theorem, ‖ Gm
ε,α−Gm

0,α ‖ is upper bounded
by an expression of the form c · (ε2 + η(m, ε)) where the finite constant c can be
extracted from the proof and η(m, ε) has to be chosen (and can be chosen) such that
(30) holds with η and β replaced by η(m, ε) and β(ε) (cf. (33)), respectively.

IV Eigenvalues and eigenspaces of the approxi-

mating operators

Throughout this section let d ≤ 3. First let µ be any finite real-valued Radon measure
on Rd. By Sobolev’s inequality and [3], Lemma 19, the mapping f 7→ f̃ from H2(Rd)
to L2(|µ|) is compact. As above let

Aµh(x) :=

{
h(x), x ∈ B,
−h(x), x ∈ Rd \B, h ∈ L2(|µ|),

where B is any Borel set such that µ+(Rd \B) = 0 = µ−(B). Then we can write

Gµ
ε,αf =

∫
gε,α(· − y)Aµf̃(y)|µ|(dy) dx- a.e., f ∈ H2(Rd).
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By the compactness of the mapping f 7→ f̃ and (11), Gµ
ε,α is compact if regarded as

an operator from H2(Rd) to L2(dx). According to the resolvent formula (16), this
implies that the resolvent difference Gµ

ε,α −Gε,α is compact and hence

σess(−∆ + ε2∆2 + µ) = σess(−∆ + ε2∆2) = [0,∞).

Let m be a finite real-valued Radon measure satisfying (30) (e.g., let m be from
the Kato class). By the preceding considerations, we can approximate the negative
eigenvalues and corresponding eigenspaces of the operator −∆ +m in L2(Rd, dx) by
the corresponding eigenvalues and eigenfunctions of operators of the form−∆+ε2∆2+
µ, where ε > 0 and µ is a point measure with mass at only finitely many points. In this
section we shall show how to compute the eigenvalues and corresponding eigenspaces
of these approximating operators.

We fix ε > 0. In the remaining part of this paper let µ =
∑N

j=1 cjδxj
, where N ∈ N,

x1, . . . , xN are N distinct points in Rd and c1, . . . , cN are real numbers different from
zero.

Every f ∈ D(Eε) = H2(Rd) has a unique continuous representative f̃ and we define
the mapping Jµ : D(Eε) −→ L2(|µ|) by

Jµf := f̃ |µ|-a.e., f ∈ H2(Rd).

By (8),
∫
gε,α(· − y)f(y)dy is the unique continuous representative of Gε,αf . Hence

JµGε,α is the integral operator from L2(dx) to L2(|µ|) with kernel gε,α(x− y). Thus
(JµGε,α)∗ is the integral operator from L2(|µ|) to L2(dx) with the same kernel and
we get

(JµGε,α)∗Aµh =
N∑

k=1

ckgε,α(· − xk)h(xk)

and therefore

Jµ(JµGε,α)∗Aµh(xj) =
N∑

k=1

ckgε,α(xj − xk)h(xk), 1 ≤ j ≤ N, (46)

for every h ∈ L2(|µ|).

By (4), the operator norm of Jµ, regarded as an operator from (D(Eε), Eε,α) to L2(|µ|),
tends to zero, as α tends to infinity. Moreover it can be shown as in the proof of (38)
that the adjoint of Jµ, with Jµ regarded as an operator from (D(Eε), Eε,α) to L2(|µ|),
maps every h ∈ L2(|µ|) to (JµGε,α)∗h. Thus the hypothesis of Theorem 3 in [2] is
satisfied (withH = L2(dx), Haux = L2(|µ|), E = Eε, J = Jµ, A = Aµ, H = −∆+ε2∆2

and HA = −∆ + ε2∆2 + µ (we recall that ε > 0)) and, by this theorem, −α belongs
to the resolvent set of −∆ + ε2∆2 + µ and

Gµ
ε,α = Gε,α − (JµGε,α)∗Aµ(1 + Jµ(JµGε,α)∗Aµ)−1JµGε,α, (47)

18



provided α > 0 and 1 + Jµ(JµGε,α)∗Aµ is a bijective mapping on L2(|µ|).

Since L2(|µ|) is finite dimensional a linear operator in this space is bijective if it is
injective. By (46), the operator 1 + Jµ(JµGε,α)∗Aµ in L2(|µ|) is injective if, and only
if

det(δjk + ckgε,α(xj − xk))1≤j,k≤N 6= 0,

with δj,k being the Kronecker delta.

As the mapping α −→ gε,α(x) is real analytic on (0,∞) for every x ∈ Rd, the function

α 7→ det(δjk + ckgε,α(xj − xk))1≤j,k≤N

is also real analytic on (0,∞). By (7), it is different from zero for all sufficiently large
α. Thus the set of zeros on (0,∞) of this function is discrete.

Since JµGε,α is surjective and (JµGε,α)∗Aµ injective, the resolvent formula (47) implies
that

‖ Gµ
ε,α ‖−→ ∞, as α −→ α0,

for every α0 > 0 satisfying det(δjk +ckgε,α(xj−xk))1≤j,k≤N = 0. Thus we have proved
that the real number −α is an eigenvalue of −∆ + ε2∆2 + µ if and only if

det(δjk + ckgε,α(xj − xk))1≤j,k≤N = 0.

Since det(δjk + ckgε,α(xj − xk))1≤j,k≤N = ΠN
k=1ck · det(δjk/ck + gε,α(xj − xk))1≤j,k≤N ,

this implies the assertion a) in the following theorem.

THEOREM 5 Let d ≤ 3 and ε > 0. Let µ =
∑N

j=1 cjδxj
, where N ∈ N,

x1, . . . , xN are N distinct points in Rd and c1, . . . , cN are real numbers different from
zero. Then the following holds:

a) The real number −α < 0 is an eigenvalue of −∆ + ε2∆2 + µ if and only if

det(
δjk
ck

+ gε,α(xj − xk))1≤j,k≤N = 0.

b) For every eigenvalue −α < 0 the corresponding eigenvalues have the following form

N∑
k=1

ckhkgε,α(· − xk), (hk)
T
1≤k≤N ∈ ker(δjk + ckgε,α(xj − xk))1≤j,k≤N

Proof: It only remains to prove the assertion b). By the preceding considerations
and Lemma 1 in [2],

h 7→ (JµGε,α)∗Aµh

is a linear bijective mapping from ker(1+Jµ(JµGε,α)∗Aµ) onto ker(−∆+ε2∆2+µ+α)
and b) follows from the preceding considerations. 2
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REMARK 6 Since the Hilbert space L2(|µ|) is N -dimensional with N <
∞ and by the resolvent formula (47), the difference Gµ

ε,α−Gε,α is a finite rank operator
with rank less than or equal toN . Thus the number, counting multiplicity, of negative
eigenvalues of −∆ + ε2∆2 + µ is less than or equal to N .
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