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NOETHERIAN RESIDUE CURRENTS
MATS ANDERSSON & ELIZABETH WULCAN

ABSTRACT. Given an ideal sheaf (or a finitely generated subsheaf
of a free analytic sheaf) we construct a vectorvalued residue cur-
rent whose annihilator is precisely the given sheaf. Using ex-
plicit integral formulas in C™ we obtain a residue version of the
Ehrenpreis-Palamodov fundamental principle. Also other results,
previously known for a complete intersection, such as characteri-
zation of ideals of smooth functions extend to general ideals.

1. INTRODUCTION

Let f = fi,..., fm be a tuple of holomorphic functions in some do-
main X in C" and assume that their common zero set Z has codimen-
sion m, i.e., f define a complete intersection. The duality theorem,
due to Dickenstein-Sessa and Passare, [15] and [25], asserts that the
annihilator of the Coleff-Herrera current

-1 -1
1.1 =0—AN...NO—
(1.1) Ry 8f1/\ /\6?fm
is equal to the ideal sheaf generated by f, i.e., a holomorphic function
¢ is locally in the ideal (fi, ..., f;,) if and only of ¢R., = 0. This fact,
combined by integral formulas for division and interpolation from [10],
made it possible, [11], to obtain an explicit proof of the fundamental
principle in the case where the symbols of the differential operators
define a complete intersection in C".

Inspired by [26], the first author introduced in [1] a vector-valued
residue current R for an arbitrary tuple f, based on the Koszul complex,
with the property that the annihilator annR of R is contained in the
ideal sheaf; this, e.g., led to a simple proof of the Briangon-Skoda
theorem. Moreover, the construction is global, and if f is a section of
a Hermitian vector bundle E* over a complex manifold X, then R is
a global current on X taking values in AE. In case when f defines
a complete intersection, this current coincides with the Coleff-Herrera
current and thus annR = (f). However, the inclusion annR C (f)
may be strict; recently the second author has proved, [28], that in case
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2 MATS ANDERSSON & ELIZABETH WULCAN

of monomial ideals of dimension zero, the inequality is always strict
unless (f) is defined by a complete intersection.

Using the Eagon-Northcott complex the construction in [1] was ex-
tended, [4] and [5], to a generically surjective morphism f: E — @, as
well as to the corresponding determinant ideal, i.e., the ideal generated
by det f. Again, in the generic case, i.e., when codimZ = m —r + 1,
the annihilator of the resulting residue currents are equal to the module
sheaf Im f and ideal sheaf (det f), respectively, if Z is the set where f
is not surjective, and m,r are the ranks of F and (), respectively.

In this paper we consider general generically exact complexes

(1.2) 0— By 2 g e IS E o

of Hermitian holomorphic vector bundles over a complex manifold X.
We introduce currents R with support on the variety Z where (1.2) is
not exact, taking values in Hom (FEy, E,), and with the property that
if ¢ is a holomorphic section of E, such that f,¢ = 0 and morever
R'¢ = 0, then locally ¢ = f,19 for some holomorhic 1. To each
such complex there is a corresponding complex of sheaves of locally
free O-modules,

(1.3) 0— O(Ey) — - — O(E)) — O(Ey) — 0.

that is exact outside Z. Conversely, given such a complex of sheaves
of locally free O-modules that is exaxt outside some analytic set, there
is a generically exact complex of vector bundles which we can equip
with a Hermitian structure. It turns out that (1.3) is exact at O(E))
for all £ > 1, if and only if R* = 0 for all £ > 1. Moreover, we have
that if R“*! =0, then R‘¢ = 0 and fy¢ = 0 if and only if ¢ = f,. 1% is
solvable locally. In particular, if (1.3) is exact, then annR® = J, where
J is the sheaf Im f;. Since any finitely generated subsheaf J of O"
(locally) admits a resolution, this is Hilbert’s syzygy theorem, we thus
obtain a current R such that annR = J; we will call R a Noetherian
residue current for J.

In the case when J is a Cohen-Macaulay sheaf, by choosing a minimal
resolution, one gets a current R which is independent of the choice of
Hermitian metric, and in fact essentially independent of the choice of
minimal resolution as well; this generalizes the fact that in the complete
intersection case, the resulting current is just the Coleff-Herrera current
(times a non-vanishing holomorphic function).

Let F'(z) be an r x m-matrix of polynomials in C" of generic rank
r. The fundamental principle of Ehrenpreis and Palamodov, [17] and
[24], states that every homogeneous solution to the system of equations
F*(i0/0t)£(t) = 0 on a convex compact set in R™ is a superposition of
exponential solutions to this equation, with frequencies in the algebraic
set Z = {z; rank F'(z) < r}. After a primary decomposition J = NJj
of the module J = Im (O™ — ), a principal step is to prove the
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existence of Noetherian operators. This is a finite set of holomorphic
differential operators Lj; such that ¢ € J; if and only if £;,¢ = 0 on
Zy, for all j, where Z,, is the irreducible algebraic variety associated to
the primary module J;. The next principal step is to solve a certain
interpolation problem with precise bounds. For an accessible account
of these matters, see [22].

The Noetherian currents defines in this paper fit perfectly into the
framework of integral formulas developped in [6], and we obtain a cur-
rent version of the fundamental principle for a matrix of constant coeffi-
cient differential operators, generalizing [11]. Indeed, if {(¢) is a smooth
homogeneous solution of F*(i0/0t)¢ = 0 on K we have a representation

)= [ FOREAQe

for an appropriate (explicitly given matrix of functions) A. Conversely,
any ¢ given in this way is a homogenous solution; in fact,

F*(i0/0t)€(t) = / FHORM(QAQ)e 9 =0

n

since RF' = 0. The principal ingredients in this proof of the funda-
mental principle is the existence of a graded resolution in C**! of the
homogenized module induced by F', Hironaka’s theorem and toric reso-
lutions of singularities, which are needed to define the residue currents.

We also obtain a residue characterization of the sheaf £J: If R is
a Noetherian residue current for J, then a smooth tuple of functions
belongs to £.J if and only of R(0%¢) = 0 for all multi-indices a, gener-
alizing the result in [2] for a complete intersection.

Acknowledgement: We express our gratitude to Ralf Froberg for
valuable discussions on commutative algebra.

2. SOME PRELIMINARIES

Assume that F and @ are holomorphic Hermitian vector bundles
over an n-dimensional complex manifold X, and let f: £ — @ be a
holomorphic vector bundle morphism. If we consider f as a section of
E*® Q ~ E*N\Q, then for any positive integer ¢, f? is a well-defined
section of ATE* @ A1Q) ~ ANTE*AANIQ, and it is easily seen that f? is
nonvanishing at a point z if and only if rank f(z) = dimIm f(z) > q.
In fact, if e; is a local frame for £, with dual frame e} for E*, and €
is a frame for @), then f = ij fix€Aex, and

! /
Fr=a) ") frreinex,

=g |K|=q

where f; i is £ the determinant of the g-minor of the matrix (f;x(2)),x
determined by the multiindices I and K. Hence f?(z) is nonvanishing
at z if and only if there is some invertible ¢ x g-minor of the matrix
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(fjx(2))jk, and this in turn holds if and only if the rank if the mapping
f(2) is at least g.

Assume now that rank f(z) = dimIm f(z) < ¢ for all z € X. If
F = fi/q! it follows that Z = {z; rank f(z) < ¢} is equal to the
analytic variety {F' = 0}. For any section ¢ of a Hermitian bundle
we let £* be its dual section, i.e., the section of the dual bundle with
minimal norm such that £*¢ = [£]2. Let S be the section of A7E® A1Q*
that is dual to F' and let f* be the section of £ ® Q* that is dual to f.
Notice that f induces a natural mapping

5f: AE-HE ® AZ—I—IQ* N AKE ® AZQ*
and let (d), = 67/¢!. Moreover, in X\ Z, let 0: Q — E be the minimal
inverse of f, i.e., such that fo = Ily, ; and ke po = 0.

Lemma 2.1. In X \ Z we have that

(2.1) S=(f)"q
and
2.2 o = (3)grS/|F2

Proof. Since the statements are pointwise we may assume that f: £ —
(@ is just a linear mapping between finite-dimensional Hermitian vector
spaces. Let €, be an ON-basis for ) such that Im f is spanned by
€1,...,€4. Then f =31 fr®e, with f € E*, and it is easy to see that

q
f*:Zfl:(gﬁzv
1

where €* is the dual basis. Now F' = f9/q! = fiA...Af, @ e1A ... Neg,
and since fyA ... Af; is the dual of fiA... Af, it follows that (f*)?/q! =
JIN - Nf7 @ A A€, is the dual of F, and thus (2.1) is shown. In
particular,

(2.3) [F12=6p -0, (iN- - [),

where dy, is interior multiplication with f;. To see (2.2), notice that

(67)q-15 = Z 1)Y8s, 0, 0py 0, (FIN . AFD) @ €

If we consider o« = (0f),—15 as an element in Hom (Q, F) ~ F ® Q*,
and compose with f we get, cf., (2.3),

fOé—Z% 05, (Fin )6 @ € = |F Tl g
Thus fo = Il . Moreover, if v € Ker f, then

<5f1 o '5fj716fj+1 T 6fq(fik/\ B Af;>7U>E =
(51}5]0; x '5f;715f;+1 i '(Sf;(fﬂ\ . /\fq) =
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since 0, f; = 0 for 1 < j < ¢. Thus Im o is orthogonal to Ker f. g
Clearly o is smooth outside Z. We also have

Proposition 2.2. If F = F°F’" in X, where F° is a holomorphic
function and F' is non-vanishing, then F°c is smooth across Z.

Proof. Since F = F°F’" we have that S = F0S’, where S’ is the dual
of F/, and |F|? = |F°|*|F'|?, where |F”|? is smooth and non-vanishing.
Thus by Lemma 2.1,

FP0 = F*(3f)q-15/|F|* = (37)q-18'/ |F"|?,

which is smooth across Z. O

3. RESIDUE CURRENTS OF GENERICALLY EXACT COMPLEXES
Let
(3.1) 0= By 2% g 2op N E o

a complex of Hermitian vector bundles over the n-dimensional complex
manifold X, and assume that it is pointwise exact outside an analytic
set Z of positive codimension. Then clearly for each k, the rank of f;,
rank fr = dim Im f, is constant over X \ Z, and equal to

pr =dim Ej_; — dim E_o + --- + (= 1) dim Ej.

Since z — rank fi(z) is lower semicontinuous it follows that rank fi(z) <
pr everywhere in X.

The bundle £ = @ FE), has a natural superbundle structure, i.e., Zg-
grading, £ = ET @ E~, E* and E~ being the subspaces of even and
odd elements, respectively, by letting ET = @®op Ey and E~ = @gpy1 Fy.
The space of E-valued currents

D(X,E) =D, (X) ®¢x) E(X, E)

has a natural structure as a left &(X)-module, and it gets a natural
grading by combining that gradings of De(X) and £(X, F). We make
D.(X, E) into a right & (X)-module, by letting £¢ = (—1)deecdee?pe
for sections € of £ (X, E) and smooth forms ¢. The superstructure on
E induces a superstructure EndF = End(E)"™ @ End(E)~, such that a
mapping is odd if, like f = fi+...+fy, maps E* — E~ and E~ — E™T.
In the same way we get a Zy-grading of D.(X, EndE). For instance, 0
extends to an odd mapping on D, (X, E), as well as on D, (X, EndFE); if
A'is a section of D,(X, EndE), then 04 = 0o A — (—1)¥84400. Here
0o A means A composed with 0 so that for a section & of E we have
(00 A)E = O(AE), whereas (0A)E = O(AE) — (—1)%84A(0€). Recall
that two mappings A and B supercommutes if the supercommutator
[A, B] = AB — (—1)dee4de BB A vanishes. Since f is holomorphic and
of odd degree, we have that dof = —fo00, i.e., d and f supercommutes.
Thus V = f — 0 is an odd mapping, and it extends to a mapping on
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an endomorphism A by the formula Vg,gA = Vo A — (=1)%440 V.
In fact, V is (minus) the (0,1)-part of the super connection D — f
introduced by Quillen, [27], where D is the Chern connection on E.

In X \ Z we have the minimal inverses oy : Ey_1 — Ej of fi, and we
letc =014+ --+o0on: E— E. Then

(3.2) fo=1—o0of.
We claim that
(3.3) f(0o) = (0o)f and o(do) = (00)o.

In fact, by (3.2), f0o = —9(fo) = —0(I — of) = (Jo)f; the second
assertion is verified in a similar way, using that co = 0. It is also easily
checked that

(3.4) VEno = I — o,
In X \ Z we now define the EndE-valued form
(3.5) u=0(Vguo) ' =0l —0d0) "t =0+ 0(do)+ o(da)* +
Since V% ;= 0 and u is odd, (3.4) immediately implies
Proposition 3.1. IfV = f—0, then Vou = [—uoV, i.e., Vgnqu = I.

Notice that
u=>Y Y u

£>0 k>6+1
where

u§+k = Ug+k(50g+k_2) < (50@4_1) € 507]6_1(X \ Z, Hom (Eg, Eg+k)).

In view of (3.3) we also have

U§+k = (5Ué+k—1)(50£+k—2) T (50£+1)0€-

u' = ullp, = E U,

k>0+1

Let

In particular we have Vou® = Iz, and Vou! = Iy, —u®o V. Following
[26] and [1] we are now going to make a current extension of u across

Z.

Proposition 3.2. Let F' be any holomorphic function (or tuple of holo-
morphic functions) that vanishes on Z. Then \ — |F|**u, a priori
defined for Re X >> 0, has a continuation as a current-valued analytic
function to Re A > —e. Moreover,

U = |F[Pulaeo

is a current extension of u across Z that is independent of the choice

of F.
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Proof. The proof is very similar to the proof of Theorem 1.1 in [1]
so we only provide an outline. For each oy, following Section 2, we
have a section Fj of A**E; ® AP*E)_q, and its dual Sy such that
or = (01, ) pr—15k/ | Fi|>. After a sequence of suitable resolutions of sin-
gularities we may assume that, for all k, Fy, = F_F], where F} is a
monomial and F}, is nonvanishing, and that also F' is a monomial times
a nonvanishing factor. By Proposition 2.2 therefore o}, = ay,/F}, where
oy is smooth across Z. Since a1 = 0 outside the set {F}, , F" = 0}
thus o115 = 0 everywhere. Therefore, it is easy to see that

¢ (Oagr1)(Qappp—2) - (Dagi)ay
Upr = 0 ... [0 :
l+k—1 y4

Since the monomials F} only vanish on Z and F vanishes there, F
must contain each coordinate factor that occurs in any FY. Therefore
the proposed analytic continuation exists and the value at A\ = 0 is the
natural principal value current extension. Il

In the same way we can define the residue current
R = O|F|* Au|x—o
which has its support on Z. Our main result is
Theorem 3.3. Let (3.1) be a generically exact complex of Hermitian

holomorphic vector bundles and let U and R be the currents defines
above. Then

(3.6) VeEndU =1 — R, VenaR = 0.
Moreover, if codim Z = p, then Rf+k vanishes if k < p.
We can also write (3.6) as
VoU=I1-UoV —R, VoR=RoV.
Proof. In fact,
Vena (|[F[* 1) = |F|?Vgsau — O|F [ Au = |F|2 T — 0|F[** Au.

The first statement in (3.6) now follows by taking A = 0. The second
statement follows immediately since Vg 4 = 0. The vanishing of R},
for k < p follows from the basic principle that a residue current of bide-
gree (0, k) cannot have support on a variety with higher codimension
than k. For a precise argument see [26] or [1]. O

Corollary 3.4. Assume that ¢ is a holomorphic section of E, such
that fg¢ =0.

(i) If R'¢ = 0, then locally there is a holomorphic section ¢ of Ep4q
such that fo 19 = ¢.

(i1) If moreover R**Y = 0, then the existence of such a local solution v
implies that R'¢ = 0.
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Proof. By (3.6) we we have that V(U‘¢) = ¢ — U; ' (V¢) — R‘¢ and
by the assumptions of ¢ therefore V(U‘p) = 0. Thus we have a cur-
rent solution v to fri1vi1 = &,  frakr1Verkr1r = 5Ug+k. By solving a
sequence of O-equations, we end up with the desired holomorphic so-
lution, cf., [1]. For the second part, assume that fy, 19 = ¢. Then by
(3.6), R'6 = Ro = R(VY) = V(Ry) = V(R 1) = 0. O

4. DEFINITION OF NOETHERIAN RESIDUE CURRENTS

We will now discuss how one can find a current whose annihilator
coincides with a given ideal sheaf (or subsheaf of O"). Notice that the
complex (3.1) corresponds to a complex of locally free analytic sheaves

(4.1) 0— O(Ey) — - — O(E,) — O(Ey) — 0,

that is exact outside Z, and conversely, any such sequence of locally
free sheaves that is exact outside some analytic set Z gives rise to a
generically exact complex (3.1) of vector bundles. From Corollary 3.4
above we get one of the implications in the following basic result.

Theorem 4.1. Assume that (3.1) is generically exact, let R be the
associated residue current, and let (4.1) be the associated complex of
sheaves. Then R* = 0 for all £ > 1 if and only if (4.1) is evact at
O(Ey) for all £ > 1.

Thus, if J is the subsheaf Im (O(E;) — O(E)y) of O(Ey), then
(4.2) 0—-O(EN)—--—0OFE)—J—0
is a resolution of J if and only if R = 0 for all ¢ > 1.

Proof. Since one direction is already settled, let us assume that (4.1)
is exact, and let

Z; ={z; rank f; < p;}.
According to a theorem of Buchsbaum-Eisenbud, see [18] Theorem 20.9,
(4.3) codim Z; > p;.

The intuitive idea in the proof is based on the (somewhat vague) prin-
ciple that a residue current of degree (0,¢) cannot be supported on
a variety of codimension ¢ + 1. To begin with, R} = O|F|**Aoa|r—0
is a (0, 1)-current and has its support on Z» which has codimension 2
and hence it must vanish. Now, o3 is smooth outside Z3, and hence
R} = JosAR)Y = 0 outside Z3; thus R3 is supported on Z3 and again
by the same principle R} must vanish etc. To make this into a strict
argument we will need the following simple lemma.

Lemma 4.2. Suppose (s, T) is smooth and moreover that w(s,T) =
v(s,7)/§ is smooth where Ty -+ -1, # 0. Then v(s,7)/§ is smooth ev-
erywhere.
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Proof. Assume that (s, 7) = sw(s,7) where 7y --- 7, # 0. It follows
that (9%/9s*)y(0,7) = 0 when 7; - - - 7, # 0, and hence by continuity it
holds also when 7y --- 7, = 0. It now follows from a Taylor expansion

in s that v(s,7)/s is smooth. O
We have to show that for each k,
= 50% 50%_1 60&3 Qo =~
O|F|PA A=A A A A A =0
/ £ F) F) F) ¢ A=0

where é is the pullback of a test form £. To be precise, there are also
cutoff functions involved that we suppress for simplicity. Observe that
O|F|* is a sum of terms like a\|F|?**d5/5. We have to show that all
the corresponding integrals vanish. First suppose that s is a factor in
Fy. Since ¢ has degree n — k + 1 in dz it must vanish on Zj and hence
by standard argument, see, e.g., [26] or [1], (d5/3)A¢ is smooth (i.e.,
each term of £ contains either a factor 5 or ds. If s is not a factor in
EQ,....F},, but in F, then where F} --- F7, | # 0 we have that

ds Oay 5Ozg+1 ~
—NAN—=A... A VAN
SRR

is smooth, since outside where Fj, - - - Fyy 1 = 0, the form JoEA . .. 5@“/\5
must vanish on Z, for degree reasons. From the lemma it follows now
that

ds = :
T/\aak/\ ce /\(90(@4.1/\5
S

is smooth, and therefore the corresponding integral vanishes at A =
0. O

Definition 1. A current R satisfying one of the equivalent conditions

in Theorem 4.1 will be called a Noetherian residue current for the sheaf

Corollary 4.3. Assume that R is a Noetherian residue current for the
sheaf J. Then R has support on the support Z of O(Ey)/J, R = RY,
and annR = J.

For a Noetherian current, with no ambiguity, we will write Ry instead

of RY.

Proof. If (4.2) is exact, then (4.1) is exact outside the support Z of
O(Ey)/J, and therefore (3.1) is pointwise exact outside Z, and hence
the corresponding residue current R is supported on Z. From Theo-
rem 4.1 it follows that R = 0 for ¢ > 1, and from Corollary 3.4 it
follows that annR = J. O

The degree of explicitness is directly depending on the degree of
explicitness of a resolution of J; notice that there are no assumption
here of minimality of the resolution.
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5. EXAMPLES

Given a finitely generated subsheaf J of O™ in, e.g., a polydisk X
we can always find a resolution of J in any slightly smaller polydisk
X' CcC X, see, [21], and hence, if O™ /J has support on a variety of
positive codimension, we get a Noetherian residue current R in X’ for
J. We will now consider some more explicit examples.

Ezample 1 (The Koszul complex). Let E; be a Hermitian bundle over
X of rank m, let Ey ~ C be the trivial line bundle, and let f be a
nontrivial section of EY. If § is interior multiplication with f, we have
the Koszul complex

OHAmEliiAzEliEliEoﬁo

which is exact precisely where f is non-vanishing. Notice that in this
case the total bundle £ = @ FE}, is just AF;, and the superbundle struc-
ture is obtained from the grading in AE. Moreover, the desired & (X)-
module structure of D, (X, E) is obtained from the wedge product in
A(E @ T*(X)). The induced complex of sheaves is exact for ¢ > 1 if
and only if codim Z = m, see, e.g., [18]. In that case R just consists of
the single term R,,. If f = fie]+-- -+ fne}, in some local holomorphic
frame e} for E*, then R, is just the Coleff-Herrera current (1.1) times
e1/N ... Nep, where e; is the dual frame, see [1]. O

Ezample 2 (The Eagon-Northcott complex). Suppose that F and @) are
Hermitian bundles of ranks m and r, and ®: £ — (@ is a generically
surjective morphism. Let f; = det ®: A"E ® det @* — C. The Eagon-
Northcott complex is obtained by letting £y = C and E;, = A" 1E®
Sr+k=10* for k > 1, where fj, for k > 2 is the natural mappings induced
by ®. The corresponding complex of sheaves is exact for £ > 1 in the
generic case when codim Z = m —r+1, see, e.g., [18]. This also follows
from Theorem 4.1 since the corresponding residues R’ must vanish for
¢ > 1 for codimension reasons, see also [5] for details. Thus R = R? is
a Noetherian residue current for the ideal sheaf J = (det ®). This was
already proved in [5].

Now let instead F; = E and Ey = (). There is a closely related
complex, with

E,=N"1E® S 20" @ det Q*, k> 2,

where f5 is det @ and f}, is the natural mapping induced by ® for k£ > 3,
see [4]. Again, if codim Z = m —r + 1, the induced complex of sheaves
is exact for £ > 1 and hence R = R is a Noetherian residue current
for the sheaf J = Im ®. This was already proved in [4]. O

There are simple algorithms that produce resolutions of monomial
ideals, see, e.g., [19]. We conclude this section by computing a couple
of Noetherian residue currents in two variables. We begin with the
possibly simplest example of a non-complete intersection ideal.
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Example 3. Consider the ideal J = (27, z125), with zero variety {0}. Tt
is easy to see that

(5.1) 0002 g,
where
(5.2) fi= [ 22 212 ] and f, = [ %2 }

is a (minimal) resolution of J. We assume that the corresponding vector
bundles are equipped with the trivial Hermitian metrics. Observe that
7 is of dimension 1, so R consists of the two parts Ry = O|F|** Auy|r—o
and Ry = O0|F|** Auy|a—o, where uy = 0900, and u; = oy respectively.
Notice that oy = f{(fif{)™" and o2 = (f5f2)"'f5. To compute R we
consider the proper mapping II : U — U, where U is a neighborhood
of the origin and U is the blow up at the origin of . We cover U by
the two coordinate neighborhoods

Q1 = {t; (tita,t1) = z € U} and Qy = {s; (s1,818) = z € U}.

In ©; we get

(53) IThi=Bt[ts 1] so Moy= 5 { & ] |
tita(1+[t2?) [ 1

Moreover

1
(5.4) II"fy = { tf } which gives II*oy =

t1(1+ [t2]?) [

—ty .

It follows that
ug = dfz
tita(1 + [t2?)?
To compute Ry take a test form ¢ = p(2)dz1Adzo; in Qy, [1*dz1Adzy =
—t1dt1 A dty and thus

~[1 1 dt,
5.5 Ryp=— [ 0|5 |N|— | ——s50(tita, t1) dt; A dt
65) o= [o[g|n s ettt an na
where the brackets denote one-variable principal value currents. In
view of the one-variable formula

EH A5 omils = 0]

S S

([V] means the current of integration over V'), a Taylor expansion of ¢
and symmetri considerations reveals that (5.5) is equal to

, dty A dt .
271"&/ wg&l’o(o,(]) = (271'2)2@1,0(0,0),
t2
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where @1 o = 0p/0z;. One can check that there is no extra contribution
from the other coordinate chart, and hence

32:5{%} AaH.
21 22

Notice that Ry, taking values in Hom (C,C?), is a column matrix. A
similar computation yields that

171571
mn=[ V][]
1 Z2 21
We see that annRy = (2%, 23) and annR; = (21), and hence annR =
(22, 29) N (21) = J as expected. 0O

We now consider a nontrivial zero-dimensional example.

Ezample 4. Consider the ideal J = (27,2329, 23) in Oy with variety

Z = {0} C U, where U is a neighborhood of the origin in C?. Notice
that J is Cohen-Macaulay, since Z is zero-dimensional, and therefore
R is essentially canonical, see Section 7. We have a minimal resolution

(5.6) 0022 082 7o,
where
0 Z9
(5.7)  fi=[2 Hzm 2] and fr=| -z -2}
3

Since Z is of dimension 0, R = Ry = J|F|**Aus|x—0. To compute R

we consider the proper mapping Il : &4 — U, where U is a toric variety
that can be covered by the three coordinate neihghborhoods

Ql = {t, (t1t27t2) =z € Z/[} 5 Qg = {S, (8182,8183) =z € Z/{} and
Q3 = {r; (ri,riry) =2z € U}.

By considerations inspired by [28] it is enough to make the computation
in 5. We get

0 1
(5.8) I*fi=sisy[ s1 1 s3] and II"fo=s155 | sisy —s
—s2s5 0

It follows that

1 51
(5.9) Moy = ——— | 1|,
stssu(s) 5

where v(s) = (14 |s1]? 4+ |s3]?). A simple computation yields

1 8153 53 —(1 + |81|2)
5.10 I = = 2 % |
(5.10) 72 $s3u(s) | sts2(14[s3]%) —sis1850  —si5185 ’
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and thus
1 [ $155d5; — 352(1 — |51]?)d5,
sTsSu(s)? | sis2(1+ |s3]?)dsy — 3s7515355d5,
Let us compute the action of R on a test form ¢ = pdz;Adzy. In Qy,
[T*dz 1 Adzy = s155ds1 A dss, and so

1
(5.12) Ry.¢ = / [ } [ } [ 3520d52 } ©(5152,5153) dsy A dsy+
s8] [

2

117117 o
/a|is_g:| |:81:| |: dS :| <81527815§) dSl /\d82_

Let us start by considering the first term. Evaluating the s;-integral
the “upper” integral becomes
3[sa|*

. 1 .
(5.13) QWZ/W ©2, 3(0 O) dsy N\ dsy =12 a|:21:| |:Z_§:| RO

indeed, for symmetry reasons everything else vanishes as in Example 3.
Continuing with the second term, the “lower” integral is

(5.11) Uy =

1
5.14) 2mi | —m——= 0,0) d5; Ads; =24 0 A0
( ) 7”/ (1+|81| ) @40( ) S1 S1 |: 1:| |:22:| ¢
Thus annR = (23, z3) N (27, 22) = J as expected. O

6. DIVISION AND INTERPOLATION FORMULAS

The currents U and R constructed in Section 3 fits perfectly into
a general scheme for constructing division and interpolation formulas
in pseudoconvex domains in C", developed in [6]. For simplicity we
restrict here to the unit ball D = {z; |z| < 1}; for more general cases
see [6]. Let (3.1) be a complex of (trivial) bundles over a neighborhood
of the closed unit ball in C", and let J = Im f;.

Let d._, denote interior multiplication by the vector field

2mi Z — 2;)(0/0¢;)

and let Vo_, = d._, — 0. Moreover, let
e
2mi(|C)P — ¢ 2)

and let x be a cutoff function that is 1 in a neighborhood of D. For
each fixed z € D we define the form

= X — OXA[5 + 8A\0s + sA(05)? + - -+ sA(Ds)" ).

~ s
= x — OxA

9 =X ONNG

In the terminology of [6] it is a compactly supported weight that de-

pends holomorphically on z € D, i.e., V_.g = 0 and goo(2) = 1, where

lower indices denote bidegree.
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Let us fix global frames for the bundles E}y. The morphisms f; are
then just matrices of holomorphic functions, and one can find (see
6] for explicit choices) (k — ¢,0)-form-valued holomorphic morphisms
H!: Ey — E,, depending holomorphically on z, such that Hf = 0 for
k < {, H = Ig,, and in general,

(6.1) OcHy = Hi_1fi = fen () HY, k>4
here f stands for f((). Let
H'U =Y HM'Ui, H'R=)Y_ H{Rj;
k k

thus H"1U takes a section of E; depending on ¢ into a (current-valued)
section of Ey,, depending on both ¢ and z, and similarily, H*R takes
a section of Ey into section of E,. We let HU =), H'U and HR =
>, H'R. Then, precisely as in [6], a straight-forward computation,
using (6.1), yields that

¢ = f(z)HU + HUf + HR

is an E-valued weight, i.e., V_.¢' = 0 and 96,0 = Ig. Therefore, see
[6], we get the representation

o) = [ gong
or expressed in another way,

(6.2) ¢(2) = [(2)(T9)(2) + T(fo)(2) + 50(2),

where
To(z) = /C HU(C,2)0Ng,  So(z) = /C HR(C, 2)9(C)Ag.

In particular, we get an explicit (in terms of U and R) realization of a
solution ¢ = T'¢ of fip = ¢, if f¢ =0 and R¢ = 0, thus providing an
explicit proof of Corollary 3.4 (i).

If now R is a Noetherian residue current we see that S¢ = 0 as soon
as ¢ belongs to J or ¢ is a section of F, for ¢ > 1.

In the same way as in [2] one can extend these formulas slightly, and
get a characterization of the module £J of smooth tuples of functions
generated by J, i.e., the set of all ¢ = f11 for smooth . First notice
that if ¢ = f13, then Rp = R°¢ = R 1) — R'Oy = RV = VR =
0, so that R’ = 0. Since each partial derivative 9/0z; commutes with
V, we get that

(6.3) R(9°¢/97) = 0

for all multiindices . The converse is obtained by integral formulas
precisely as in [2], and hence we have
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Theorem 6.1. Assume that J C O™ is an analytic sheaf such that the
support of O™ /J has positive codimension, and let R be a Noetherian
residue current for J. Then an ro-tuple ¢ € (€)™ of smooth functions

is in EJ if and only if (6.3) holds for all .

One can also obtain analogous results with lower regularity, see [2]
and [6].

7. COHEN-MACAULAY IDEALS AND MODULES

Let J, be an ideal in the local ring O, at x € X. The length v,
of a minimal resolution of O,/J, is precisely n — depth (O, /J,). We
always have that depth (0, /J,) < n—codim J, and it may happen that
the inequality is strict; e.g., if J, has embedded primary components.
In particular, the minimal length can vary along Z. However, if J is
Cohen-Macauley, i.e., depth (O,/J,) = codim J, for each z, thus v is
equal to the codimension everywhere.

More generally, if J C O" is finitely generated and O"/.J is a sheaf of
Cohen-Macaulay modules, then, see [18], (locally) each primary factor
has the same codimension p, and any minimal resolution ends up at
position p. Special cases are the sheaves in Examples 1 and 2 above, i.e.,
(f) if f is a complete intersection, J = (det®) or J =Im P if ¢: £ —
@ and codim Z = m — r + 1. We have the following generalization of
the corresponding known result for a complete intersection.

Theorem 7.1. Suppose that J is a finitely generated subsheaf of a
locally free sheaf of O-modules O(Ey), and suppose that O(Ey)/J is
Cohen-Macaulay. If

0— 0, = —0FE)—J—0

15 a minimal resolution, then the corresponding Noetherian residue cur-
rent R = Rg is independent of the choice of Hermitian metric. More-
over, if we choose another minimal resolution

0—O0(E,)— - —0(E)—J—0
and R’ is the corresponding residue current, then there is a holomorphic

isomorphism g,: E, ~ E} such that R' = g,R.

Proof. Assume that uw and v are the forms in X \ Z constructed by
means of two different choices of metrics on £. Then Vgyqu = I and
VEnav = I in X \ Z, and hence if w = uv we have

VEnW = VEna(uv) = (Vepgu)v — uVgnqv = v — u,
where the minus sign occurs since u has odd order. Thus
Vend (|F|Pw) = [F[*0 — |[F|?u — 9|F|** Aw,
and evaluating at A = 0 we get
VW =V —U — M,
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where M is the residue current M = O|F|** Aw|y—o. However, since the
complex ends up at p, w has at most bidegree (0, p — 2) and hence the
current M has at most bidegree (0,p — 1). Therefore W must vanish
since it is supported on Z which has codimension p. Thus we have

0=Vi W=I-R —I+R"=R"—R"

For the second statement, first recall that for two minimal resolu-
tions there are isomorphisms g : Ey — FEj._such that the corresponding
diagram commutes, and such that gy is the identity on Ey. Given
any metric in E, we equip E’ with the induced metric [£] = |g71¢].
Then o’ = gog™! in X \ Z and therefore v’ = o' + o/(00’) + .-+ =
g(o+0(do)+---)g~' = gug™". Therefore, (u')} = g,ul, and from this
the statement follows. O

Notice that in X \ Z the form w, is a d-closed Hom (F,, E,)-valued
form and thus defines a Dolbeault cohomology class, and in view of
the proof of Theorem 7.1 this class is independent of the choice of
Hermitian metric. For a holomorphic section ¢ of Ej we therefore have
a well-defined map

Gos € [ uyonde

for test-forms ¢ of bidegree (n,n — p) that are d-closed in some neigh-
borhood of Z. Precisely as for a complete intersection, [15] and [25],
we have a cohomological version of the duality principle.

Theorem 7.2. Suppose that J is a finitely generated subsheaf of a
locally free sheaf of O-modules O(Ey), and suppose that O(Ey)/J is
Cohen-Macaulay. Then a section of O(FEy) is in J if and only if Gp =
0.

The “only if” direction follows from Stokes’ theorem. The converse
can be proved, using the decomposition formula (6.2), and mimicking
the proof of the corresponding statement for a complete intersection in
[25], see also Proposition 7.1 in [6].

Fxample 5. Let J be an ideal in Oy of dimension zero. Then it is

Tn

Cohen-Macaulay and for each germ ¢ in Oy, G¢ is a functional on Oy,
where r,, = dim F,,. Moreover, G¢ = 0 if and only if ¢ € J. If J is
generated by n functions, then a minimal resolution is given by the
Koszul complex, so r, = 1, and the resulting mapping G is precisely
the classical Grothendieck residue. U

8. NOETHERIAN RESIDUE CURRENTS OF HOMOGENEOUS IDEALS
Let S be the graded ring of polynomials in C"*!, and let
(8.1) 0O—-My—--— M — My—0
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be a graded complex of free S-modules, i.e.,
(8.2) My = S(=d}) @ - @ S(—d~),

and the mappings are given by matrices of elements in S, see [19] for
a background. We can associate to (8.1) a complex of vector bundles
over P

(8.3) 0—Exy 2% . Bop, 2op IYE o,

in the following way. Let O(¢) be the holomorphic line bundle over P"
whose sections are naturally identified with /-homogeneous functions
in C***. Moreover, let E! be disjoint trivial line bundles over P* and
let

Ey=(EBf@O(=d)) & & (B} @0(—d})).
The mappings in (8.1) induce vector bundle morphisms fi: Ey — Ej_.
If we equip Ej, with the natural Hermitian metric

£ =D&/

we can then define the associated currents U and R as before, following
the general scheme, provided that (8.3) is generically exact.

Let ef be a global frame element for the bundle E]’“ . In the affine
part Uy = {[z] € P"; 2y # 0} we then have a local holomorphic frame

ek = Z_dka K ) =1
i =% ¢, J=L..., Tk
for the bundle E). In these local frames

T Tk

Ry => ) (Rp)i @ef @ (eh)",

i=1 j=1
where (RY);; are (scalar-valued) currents in Uy ~ C". For later refer-
ence we notice that these currents have natural extensions as currents
on P".

Recall that, see, e.g., [14], H*4(P", O(v)) = 0 for all v if 0 < ¢ < n,

whereas HO"(P",O(v)) =0 if v > —n.

We have the following analogue of Theorem 4.1.

Theorem 8.1. Let (8.1) be a graded complex of free S-modules, N <
n+1, and let (8.3) be the corresponding complex of vector bundles over
P" equipped with the natural Hermitian metric. Then R vanish for all
¢ > 1 if and only if (8.1) is exact at My for £ > 1.

Whatever set of generators M; — My for J = Im (M; — M,) we
start with, we can always extend to a resolution of J such that N <
n+ 1.
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We notice that a graded resolution of S™/.J gives rise to a Noetherian
residue current R for the corresponding analytic sheaf (generated by)
J.

Proof. First assume that (8.1) is exact for ¢ > 1. According to the
Baumgarten-Eisenbud theorem in the homogeneous case, see [19], the
set in C"™ (or equivalently in P") where the rank of f; is strictly
less than p; has at least codimension k. Precisely as in the proof of
Theorem 4.1 it follows that R = 0 for ¢ > 1.

Conversely, assume that R = 0 for all / > 1. Let ¢ be an element
in My, ¢ > 1, of pure degree that is mapped onto zero in M, ;. It
corresponds to a global section of E,@O(r) for a certain r, and f,¢ = 0.
Since R’ = 0 we therefore have that V(U’¢) = ¢. The first 0-equation
to be solved is then dw = Uﬁ,gb and since N < n+1 and ¢ > 1 the
right hand side is a (0, ¢)-current with ¢ < n — 1. Thus there is no
cohomologous obstruction, and so we obtain a holomorphic section ¥
of Ey11®0(r) such that fy) = ¢, and thus 1) corresponds to the desired
element in M. O

In view of the preceding proof we see that if ¢ is a section of Ey@O(r)
such that R°¢ = 0, then we can find a holomorphic solution to fi¢ = ¢
if either the complex terminates at (at most) level n, or if the occurring
O-equation of top degree is solvable, which it indeed is if r — d}”l > —n
for all 7.

Given a S-module J C 5™, there always exists a resolution (8.1), and
the length of a minimal resolution is equal to n + 1 — depth (S™/J),
so we can avoid the d-equation of top degree if (and only if) S™/J
contains a (non-trivial) nonzerodivisor. We sum up this as

Theorem 8.2. Let J C 5™ be an S-module and let R be the residue
current associated with a minimal resolution.

(i) Suppose that S™ /J contains a nonzerodivisor. Then a section ¢ of
Eo ® O(r) lies in the image of fi1 if and only if Ry = 0.

(i1) Assume that r > max; (7“;”1) —n. Then a section ¢ of Ey @ L" lies
in the image of f1 if and only if Ry = 0.

Some remarks. If J is defined by a complete intersection then clearly
the case (i) holds. Also if Z is discrete and all the zeros are of first
order, then depth S/J = 1, see [19], so that case (i) holds.

In case (ii) an estimate of max;(r}*!

7)) — n follows from the degree of
regularity of J, see, e.g., [19].

We conclude this section by relating to modules of polynomials in C".

Let 2/ = (Z],..., 2]) be the standard coordinates in C" that we identify

with Uy = {[z] € P"; 2y # 0}. Let F be a Hom (C™,C")-valued
polynomial in C", whose columns Fj,..., F,, have at most degrees
di,...,d. . After the homogenizations fy(z) = z5*F(#'/z), we get an
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r1 X ro-matrix f whose columns are d}-homogeneous forms in C"!;
thus a graded mapping

fir S(=dy) @ - @ S(~d,,) — S™.

Extending to a graded resolution we thus obtain a Noetherian residue
current on P" for the sheaf generated by fi, and taking a local trivi-
alization in C™ ~ Uy, we get a Noetherian residue current R for F' in
Cn.

Proposition 8.3. Given an rqo-tuple of polynomials ® in C™, there are
polynomials U such that ® = FWV in C" if and only if R® = 0.

Proof. Take a homogenization ¢(z) = z{®(z'/2). The condition R® =
0 in C™ means that R¢ = 0 outside the hyperplane at infinity, so for a
large enough r, R¢ = 0 on P". Now (for a large enough r) part (ii) of
Theorem 8.2 applies and provides a solution 1. After dehomogenization
we get the desired solution W. Il

Clearly the final degree of ¥ in the preceding proof depends on the
choice of r. We conclude with an example where we have optimal
control of the degree of the solution; it is a generalization of Max
Noether’s classical theorem.

Proposition 8.4. Let Fy,..., Fyx be polynomials in C" such that the
homogenized forms fi,..., fn define a Cohen-Macaulay ideal J in S
and assume that no irreducible component of Z is contained in the
hyperplane at infinity. If ® belongs to the ideal (F') in C", then there are
polynomials ¥; with deg (F;V;) < deg® such that FyV+- - -+ FyVy =
.

To see this one just has to imitate the proof of Theorem 1.2 in [3].
As in [4] one can just as well assume that .J is a submodule of S™ for
some 719 > 1.

9. THE FUNDAMENTAL PRINCIPLE

Let F' be a Hom (C™, C™)-valued polynomial of generic rank ry and
let K be the closure of an open convex bounded set in R". We want to
find a description of all homogeneous solutions & = (&1, ...,&,,) in £(K)
to F*(D)¢ = 0, where F* is the transposed matrix and D = i0/0t.

We let R be the Noetherian residue current in C™ obtained from F
by the procedure in the preceding section. Notice that this current has
a current extension to P".

Let p be the support function for K but smoothen out in a neigh-

borhood of the origin in R”. If v is a distribution of order at most M
with support in K, v € £"M(K), then

(9.1) [9(2)] < O(1+[z)Mertm?),
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and conversely if v satisfies such an estimate it is at least in £'(K). Let
p(¢) = p(Im (). Recall that V._, = d._, — 0. Notice that

Ve.0p/2m = i(C — z,0'(C)) + 90p(C),

so by the convexity and homogeneity of p we have that
(9.2) |eVe==0p/2m| < CePl2),

It is easy to see that we can choose Hefer forms, as in Section 6, that
are polynomials in both ¢ and z. In view of (9.2), therefore H'U and
H°R will be currents in C" such that wAH'U and » AH°R have current
extensions to P if 1 is smooth in C™ and vanishes to high enough order
at the hyperplane at infinity (depending on the order of the current R
at infinity as well as the degrees of the Hefer forms). Now

¢l >M’
1+ ¢

is a weight in C" (i.e., V_,g = 0 and goo(z) = 1) which vanishes
to high order at the hyperplane at infinity if M’ is large. Given M
we can therefore choose M’ so that we get, for v € &M (K, Ey), the
decomposition

g= eV<fz8P/27r/\(1 + VC*Z

v(z) = F(2)(T0)(2) + So(2);
and Sp(z) vanishes if v = F(—D)u for u € £"M(int (K), E). Since T
and Sv satisfies (9.1) for some power, we get mappings
T: MK E) — &K, E), S:&MK, E) — & (K, Ey),
such that
v=F(-D)Tv+ Sy,
and Sv = 0 if v = F(—D)u for some pu € €M (int (K), Ey).
Theorem 9.1. If £ € &E(K,E}), then 8*¢ € CM(K,E}) satisfies
F*(D)S*¢ = 0. If in addition F*(D) =0, then S*¢ = €.
Thus §* is a projection onto the space of homogeneous solutions.

Proof. For a p with values in E7, and support in int (K'), we have that
w.F*(D)S§*¢ = F(—D)u.S8*¢ = S(F(—D)u).€ = 0, and hence first part
OK. On the other hand, if F*(D)& = 0, then 7 of order M and with
values in Fy we have

7.8 =81 =(1— F(-D)1).{ =1.£ —T.F*(D){ = 7.,
which shows the second assertion. O

We can write (recall that (R = R))

Sv(¢) = /CQ(C’Z)R(Q,;(QGMCz,p’(o)
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where af(+, z) is a polynomial i z, and precisely as in [11] we then get
the formula

S*(t) = /C R (O)a*(C, D)p(p)e 4,

where a*((, 2)¢(p'(¢)) is the result when replacing each occurrence of z
in a*(¢, z) by D, letting it act on ¢(t) and evaluate at the point p/(().
Thus we have

Theorem 9.2. For any solution ¢ € E(K) of F*(D)¢ = 0, there is a
smooth A(C) such that

o(t) = /C R*(Q)A(C)e™ Gt (),

Conversely, for any smooth A(C) with not too high polynomial growth
(depending on the choice of M'), the residue integral defines a homo-
geneous solution.
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