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NOETHERIAN RESIDUE CURRENTS

MATS ANDERSSON & ELIZABETH WULCAN

Abstract. Given an ideal sheaf (or a finitely generated subsheaf
of a free analytic sheaf) we construct a vectorvalued residue cur-
rent whose annihilator is precisely the given sheaf. Using ex-
plicit integral formulas in Cn we obtain a residue version of the
Ehrenpreis-Palamodov fundamental principle. Also other results,
previously known for a complete intersection, such as characteri-
zation of ideals of smooth functions extend to general ideals.

1. Introduction

Let f = f1, . . . , fm be a tuple of holomorphic functions in some do-
main X in Cn and assume that their common zero set Z has codimen-
sion m, i.e., f define a complete intersection. The duality theorem,
due to Dickenstein-Sessa and Passare, [15] and [25], asserts that the
annihilator of the Coleff-Herrera current

(1.1) Rch = ∂̄
1

f1

∧ . . .∧∂̄ 1

fm

is equal to the ideal sheaf generated by f , i.e., a holomorphic function
φ is locally in the ideal (f1, . . . , fm) if and only of φRch = 0. This fact,
combined by integral formulas for division and interpolation from [10],
made it possible, [11], to obtain an explicit proof of the fundamental
principle in the case where the symbols of the differential operators
define a complete intersection in Cn.

Inspired by [26], the first author introduced in [1] a vector-valued
residue currentR for an arbitrary tuple f , based on the Koszul complex,
with the property that the annihilator annR of R is contained in the
ideal sheaf; this, e.g., led to a simple proof of the Briançon-Skoda
theorem. Moreover, the construction is global, and if f is a section of
a Hermitian vector bundle E∗ over a complex manifold X, then R is
a global current on X taking values in ΛE. In case when f defines
a complete intersection, this current coincides with the Coleff-Herrera
current and thus annR = (f). However, the inclusion annR ⊂ (f)
may be strict; recently the second author has proved, [28], that in case
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2 MATS ANDERSSON & ELIZABETH WULCAN

of monomial ideals of dimension zero, the inequality is always strict
unless (f) is defined by a complete intersection.

Using the Eagon-Northcott complex the construction in [1] was ex-
tended, [4] and [5], to a generically surjective morphism f : E → Q, as
well as to the corresponding determinant ideal, i.e., the ideal generated
by det f . Again, in the generic case, i.e., when codimZ = m − r + 1,
the annihilator of the resulting residue currents are equal to the module
sheaf Im f and ideal sheaf (det f), respectively, if Z is the set where f
is not surjective, and m, r are the ranks of E and Q, respectively.

In this paper we consider general generically exact complexes

(1.2) 0 → EN
fN−→ . . .

f3−→ E2
f2−→ E1

f1−→ E0 → 0

of Hermitian holomorphic vector bundles over a complex manifold X.
We introduce currents R` with support on the variety Z where (1.2) is
not exact, taking values in Hom (E`, E•), and with the property that
if φ is a holomorphic section of E` such that f`φ = 0 and morever
R`φ = 0, then locally φ = f`+1ψ for some holomorhic ψ. To each
such complex there is a corresponding complex of sheaves of locally
free O-modules,

(1.3) 0 → O(EN) → · · · → O(E1) → O(E0) → 0.

that is exact outside Z. Conversely, given such a complex of sheaves
of locally free O-modules that is exaxt outside some analytic set, there
is a generically exact complex of vector bundles which we can equip
with a Hermitian structure. It turns out that (1.3) is exact at O(E`)
for all ` ≥ 1, if and only if R` = 0 for all ` ≥ 1. Moreover, we have
that if R`+1 = 0, then R`φ = 0 and f`φ = 0 if and only if φ = f`+1ψ is
solvable locally. In particular, if (1.3) is exact, then annR0 = J , where
J is the sheaf Im f1. Since any finitely generated subsheaf J of Or

(locally) admits a resolution, this is Hilbert’s syzygy theorem, we thus
obtain a current R such that annR = J ; we will call R a Noetherian
residue current for J .

In the case when J is a Cohen-Macaulay sheaf, by choosing a minimal
resolution, one gets a current R which is independent of the choice of
Hermitian metric, and in fact essentially independent of the choice of
minimal resolution as well; this generalizes the fact that in the complete
intersection case, the resulting current is just the Coleff-Herrera current
(times a non-vanishing holomorphic function).

Let F (z) be an r ×m-matrix of polynomials in Cn of generic rank
r. The fundamental principle of Ehrenpreis and Palamodov, [17] and
[24], states that every homogeneous solution to the system of equations
F ∗(i∂/∂t)ξ(t) = 0 on a convex compact set in Rn is a superposition of
exponential solutions to this equation, with frequencies in the algebraic
set Z = {z; rankF (z) < r}. After a primary decomposition J = ∩Jk

of the module J = Im (Om → Or), a principal step is to prove the
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existence of Noetherian operators. This is a finite set of holomorphic
differential operators Ljk such that φ ∈ Jk if and only if Ljkφ = 0 on
Zk for all j, where Zk is the irreducible algebraic variety associated to
the primary module Jk. The next principal step is to solve a certain
interpolation problem with precise bounds. For an accessible account
of these matters, see [22].

The Noetherian currents defines in this paper fit perfectly into the
framework of integral formulas developped in [6], and we obtain a cur-
rent version of the fundamental principle for a matrix of constant coeffi-
cient differential operators, generalizing [11]. Indeed, if ξ(t) is a smooth
homogeneous solution of F ∗(i∂/∂t)ξ = 0 onK we have a representation

ξ(t) =

∫
Cn

F ∗(ζ)R∗(ζ)A(ζ)e−i〈t,ζ〉

for an appropriate (explicitly given matrix of functions) A. Conversely,
any ξ given in this way is a homogenous solution; in fact,

F ∗(i∂/∂t)ξ(t) =

∫
Cn

F ∗(ζ)R∗(ζ)A(ζ)e−i〈t,ζ〉 = 0

since RF = 0. The principal ingredients in this proof of the funda-
mental principle is the existence of a graded resolution in Cn+1 of the
homogenized module induced by F , Hironaka’s theorem and toric reso-
lutions of singularities, which are needed to define the residue currents.

We also obtain a residue characterization of the sheaf EJ : If R is
a Noetherian residue current for J , then a smooth tuple of functions
belongs to EJ if and only of R(∂̄αφ) = 0 for all multi-indices α, gener-
alizing the result in [2] for a complete intersection.

Acknowledgement: We express our gratitude to Ralf Fröberg for
valuable discussions on commutative algebra.

2. Some preliminaries

Assume that E and Q are holomorphic Hermitian vector bundles
over an n-dimensional complex manifold X, and let f : E → Q be a
holomorphic vector bundle morphism. If we consider f as a section of
E∗ ⊗ Q ' E∗∧Q, then for any positive integer q, f q is a well-defined
section of ΛqE∗ ⊗ ΛqQ ' ΛqE∗∧ΛqQ, and it is easily seen that f q is
nonvanishing at a point z if and only if rank f(z) = dim Im f(z) ≥ q.
In fact, if ej is a local frame for E, with dual frame e∗j for E∗, and εk
is a frame for Q, then f =

∑
jk fjke

∗
j∧εk, and

f q = q!
′∑

|I|=q

′∑
|K|=q

fI,Ke
∗
I∧εK ,

where fI,K is ± the determinant of the q-minor of the matrix (fjk(z))jk

determined by the multiindices I and K. Hence f q(z) is nonvanishing
at z if and only if there is some invertible q × q-minor of the matrix
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(fjk(z))jk, and this in turn holds if and only if the rank if the mapping
f(z) is at least q.

Assume now that rank f(z) = dim Im f(z) ≤ q for all z ∈ X. If
F = f q/q! it follows that Z = {z; rank f(z) < q} is equal to the
analytic variety {F = 0}. For any section ξ of a Hermitian bundle
we let ξ∗ be its dual section, i.e., the section of the dual bundle with
minimal norm such that ξ∗ξ = |ξ|2. Let S be the section of ΛqE⊗ΛqQ∗

that is dual to F and let f ∗ be the section of E ⊗Q∗ that is dual to f .
Notice that f induces a natural mapping

δf : Λ`+1E ⊗ Λ`+1Q∗ → Λ`E ⊗ Λ`Q∗

and let (δf )` = δ`
f/`!. Moreover, in X \Z, let σ : Q→ E be the minimal

inverse of f , i.e., such that fσ = ΠIm f and ΠKer fσ = 0.

Lemma 2.1. In X \ Z we have that

(2.1) S = (f ∗)q/q!

and

(2.2) σ = (δf )q−1S/|F |2.
Proof. Since the statements are pointwise we may assume that f : E →
Q is just a linear mapping between finite-dimensional Hermitian vector
spaces. Let εk be an ON-basis for Q such that Im f is spanned by
ε1, . . . , εq. Then f =

∑q
1 fk⊗ εk with fk ∈ E∗, and it is easy to see that

f ∗ =

q∑
1

f ∗k ⊗ ε∗k,

where ε∗ is the dual basis. Now F = f q/q! = f1∧ . . .∧fq ⊗ ε1∧ . . .∧εq,
and since f ∗1∧ . . .∧f ∗q is the dual of f1∧ . . .∧fq it follows that (f ∗)q/q! =
f ∗1∧ . . .∧f ∗q ⊗ ε∗1∧ . . .∧ε∗q is the dual of F , and thus (2.1) is shown. In
particular,

(2.3) |F |2 = δf1 · · · δfq(f
∗
1∧ . . . f ∗q ),

where δfj
is interior multiplication with fj. To see (2.2), notice that

(δf )q−1S =

q∑
j=1

(−1)jδf1 · · · δfj−1
δfj+1

· · · δfq(f
∗
1∧ . . .∧f ∗q )⊗ ε∗j .

If we consider α = (δf )q−1S as an element in Hom (Q,E) ' E ⊗ Q∗,
and compose with f we get, cf., (2.3),

fα =

q∑
1

δf1 · · · δfq(f
∗
1∧ . . . f ∗q )εj ⊗ ε∗j = |F |2ΠIm f .

Thus fσ = ΠIm f . Moreover, if v ∈ Ker f , then

〈δf1 · · · δfj−1
δfj+1

· · · δfq(f
∗
1∧ . . .∧f ∗q ), v〉E =

δvδf∗1 · · · δf∗j−1
δf∗j+1

· · · δf∗q (f1∧ . . .∧fq) = 0
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since δvfj = 0 for 1 ≤ j ≤ q. Thus Imσ is orthogonal to Ker f . �

Clearly σ is smooth outside Z. We also have

Proposition 2.2. If F = F 0F ′ in X, where F 0 is a holomorphic
function and F ′ is non-vanishing, then F 0σ is smooth across Z.

Proof. Since F = F 0F ′ we have that S = F 0S ′, where S ′ is the dual
of F ′, and |F |2 = |F 0|2|F ′|2, where |F ′|2 is smooth and non-vanishing.
Thus by Lemma 2.1,

F 0σ = F 0(δf )q−1S/|F |2 = (δf )q−1S
′/|F ′|2,

which is smooth across Z. �

3. Residue currents of generically exact complexes

Let

(3.1) 0 → EN
fN−→ . . .

f3−→ E2
f2−→ E1

f1−→ E0 → 0

a complex of Hermitian vector bundles over the n-dimensional complex
manifold X, and assume that it is pointwise exact outside an analytic
set Z of positive codimension. Then clearly for each k, the rank of fk,
rank fk = dim Im fk, is constant over X \ Z, and equal to

ρk = dimEk−1 − dimEk−2 + · · ·+ (−1)k+1 dimE0.

Since z 7→ rank fk(z) is lower semicontinuous it follows that rank fk(z) ≤
ρk everywhere in X.

The bundle E = ⊕Ek has a natural superbundle structure, i.e., Z2-
grading, E = E+ ⊕ E−, E+ and E− being the subspaces of even and
odd elements, respectively, by letting E+ = ⊕2kEk and E− = ⊕2k+1Ek.
The space of E-valued currents

D′
•(X,E) = D′

•(X)⊗E(X) E(X,E)

has a natural structure as a left E•(X)-module, and it gets a natural
grading by combining that gradings of D•(X) and E(X,E). We make
D′

•(X,E) into a right E•(X)-module, by letting ξφ = (−1)deg ξdeg φφξ
for sections ξ of E•(X,E) and smooth forms φ. The superstructure on
E induces a superstructure EndE = End(E)+ ⊕End(E)−, such that a
mapping is odd if, like f = f1+. . .+fN , maps E+ → E− and E− → E+.
In the same way we get a Z2-grading of D′

•(X,EndE). For instance, ∂̄
extends to an odd mapping on D′

•(X,E), as well as on D′
•(X,EndE); if

A is a section of D′
•(X,EndE), then ∂̄A = ∂̄ ◦A− (−1)deg AA ◦ ∂̄. Here

∂̄ ◦ A means A composed with ∂̄ so that for a section ξ of E we have
(∂̄ ◦ A)ξ = ∂̄(Aξ), whereas (∂̄A)ξ = ∂̄(Aξ) − (−1)deg AA(∂̄ξ). Recall
that two mappings A and B supercommutes if the supercommutator
[A,B] = AB − (−1)deg Adeg BBA vanishes. Since f is holomorphic and
of odd degree, we have that ∂̄◦f = −f ◦∂̄, i.e., ∂̄ and f supercommutes.
Thus ∇ = f − ∂̄ is an odd mapping, and it extends to a mapping on
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an endomorphism A by the formula ∇EndA = ∇ ◦A− (−1)deg AA ◦ ∇.
In fact, ∇ is (minus) the (0, 1)-part of the super connection D − f
introduced by Quillen, [27], where D is the Chern connection on E.

In X \Z we have the minimal inverses σk : Ek−1 → Ek of fk, and we
let σ = σ1 + · · ·+ σN : E → E. Then

(3.2) fσ = I − σf.

We claim that

(3.3) f(∂̄σ) = (∂̄σ)f and σ(∂̄σ) = (∂̄σ)σ.

In fact, by (3.2), f∂̄σ = −∂̄(fσ) = −∂̄(I − σf) = (∂̄σ)f ; the second
assertion is verified in a similar way, using that σσ = 0. It is also easily
checked that

(3.4) ∇Endσ = I − ∂̄σ.

In X \ Z we now define the EndE-valued form

(3.5) u = σ(∇Endσ)−1 = σ(I − ∂̄σ)−1 = σ + σ(∂̄σ) + σ(∂̄σ)2 + . . . .

Since ∇2
End = 0 and u is odd, (3.4) immediately implies

Proposition 3.1. If ∇ = f−∂̄, then ∇◦u = I−u◦∇, i.e., ∇Endu = I.

Notice that

u =
∑
`≥0

∑
k≥`+1

u`
k

where

u`
`+k = σ`+k(∂̄σ`+k−2) · · · (∂̄σ`+1) ∈ E0,k−1(X \ Z,Hom (E`, E`+k)).

In view of (3.3) we also have

u`
`+k = (∂̄σ`+k−1)(∂̄σ`+k−2) · · · (∂̄σ`+1)σ`.

Let

u` = uΠE`
=

∑
k≥`+1

u`
k.

In particular we have ∇◦u0 = IE0 and ∇◦u1 = IE1−u0 ◦∇. Following
[26] and [1] we are now going to make a current extension of u across
Z.

Proposition 3.2. Let F be any holomorphic function (or tuple of holo-
morphic functions) that vanishes on Z. Then λ 7→ |F |2λu, a priori
defined for Reλ >> 0, has a continuation as a current-valued analytic
function to Reλ > −ε. Moreover,

U = |F |2λu|λ=0

is a current extension of u across Z that is independent of the choice
of F .
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Proof. The proof is very similar to the proof of Theorem 1.1 in [1]
so we only provide an outline. For each σk, following Section 2, we
have a section Fk of ΛρkE∗

k ⊗ ΛρkEk−1, and its dual Sk such that
σk = (δfk

)ρk−1Sk/|Fk|2. After a sequence of suitable resolutions of sin-
gularities we may assume that, for all k, Fk = F 0

kF
′
k, where F 0

k is a
monomial and F ′

k is nonvanishing, and that also F is a monomial times
a nonvanishing factor. By Proposition 2.2 therefore σk = αk/F

0
k , where

αk is smooth across Z. Since αj+1αj = 0 outside the set {F 0
j+1F

∗
j = 0}

thus αj+1αj = 0 everywhere. Therefore, it is easy to see that

u`
`+k =

(∂̄α`+k−1)(∂̄α`+k−2) · · · (∂̄α`+1)α`

F 0
`+k−1 · · ·F 0

`

.

Since the monomials Fk only vanish on Z and F vanishes there, F
must contain each coordinate factor that occurs in any F 0

k . Therefore
the proposed analytic continuation exists and the value at λ = 0 is the
natural principal value current extension. �

In the same way we can define the residue current

R = ∂̄|F |2λ∧u|λ=0

which has its support on Z. Our main result is

Theorem 3.3. Let (3.1) be a generically exact complex of Hermitian
holomorphic vector bundles and let U and R be the currents defines
above. Then

(3.6) ∇EndU = I −R, ∇EndR = 0.

Moreover, if codimZ = p, then R`
`+k vanishes if k < p.

We can also write (3.6) as

∇ ◦ U = I − U ◦ ∇ −R, ∇ ◦R = R ◦ ∇.

Proof. In fact,

∇End

(
|F |2λu

)
= |F |2λ∇Endu− ∂̄|F |2λ∧u = |F |2λI − ∂̄|F |2λ∧u.

The first statement in (3.6) now follows by taking λ = 0. The second
statement follows immediately since ∇2

End = 0. The vanishing of R`
`+k

for k < p follows from the basic principle that a residue current of bide-
gree (0, k) cannot have support on a variety with higher codimension
than k. For a precise argument see [26] or [1]. �

Corollary 3.4. Assume that φ is a holomorphic section of E` such
that f`φ = 0.
(i) If R`φ = 0, then locally there is a holomorphic section ψ of E`+1

such that f`+1ψ = φ.
(ii) If moreover R`+1 = 0, then the existence of such a local solution ψ
implies that R`φ = 0.
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Proof. By (3.6) we we have that ∇(U `φ) = φ − U `−1
` (∇φ) − R`φ and

by the assumptions of φ therefore ∇(U `φ) = 0. Thus we have a cur-
rent solution v to f`+1v`+1 = φ, f`+k+1v`+k+1 = ∂̄v`+k. By solving a
sequence of ∂̄-equations, we end up with the desired holomorphic so-
lution, cf., [1]. For the second part, assume that f`+1ψ = φ. Then by
(3.6), R`φ = Rφ = R(∇ψ) = ∇(Rψ) = ∇(R`+1ψ) = 0. �

4. Definition of Noetherian residue currents

We will now discuss how one can find a current whose annihilator
coincides with a given ideal sheaf (or subsheaf of Or). Notice that the
complex (3.1) corresponds to a complex of locally free analytic sheaves

(4.1) 0 → O(EN) → · · · → O(E1) → O(E0) → 0,

that is exact outside Z, and conversely, any such sequence of locally
free sheaves that is exact outside some analytic set Z gives rise to a
generically exact complex (3.1) of vector bundles. From Corollary 3.4
above we get one of the implications in the following basic result.

Theorem 4.1. Assume that (3.1) is generically exact, let R be the
associated residue current, and let (4.1) be the associated complex of
sheaves. Then R` = 0 for all ` ≥ 1 if and only if (4.1) is exact at
O(E`) for all ` ≥ 1.

Thus, if J is the subsheaf Im (O(E1) → O(E0) of O(E0), then

(4.2) 0 → O(EN) → · · · → O(E1) → J → 0

is a resolution of J if and only if R` = 0 for all ` ≥ 1.

Proof. Since one direction is already settled, let us assume that (4.1)
is exact, and let

Zj = {z; rank fj < ρj}.
According to a theorem of Buchsbaum-Eisenbud, see [18] Theorem 20.9,

(4.3) codimZj ≥ ρj.

The intuitive idea in the proof is based on the (somewhat vague) prin-
ciple that a residue current of degree (0, q) cannot be supported on
a variety of codimension q + 1. To begin with, R1

2 = ∂̄|F |2λ∧σ2|λ=0

is a (0, 1)-current and has its support on Z2 which has codimension 2
and hence it must vanish. Now, σ3 is smooth outside Z3, and hence
R1

3 = ∂̄σ3∧R1
2 = 0 outside Z3; thus R1

3 is supported on Z3 and again
by the same principle R1

3 must vanish etc. To make this into a strict
argument we will need the following simple lemma.

Lemma 4.2. Suppose γ(s, τ) is smooth and moreover that ω(s, τ) =
γ(s, τ)/s̄ is smooth where τ1 · · · τk 6= 0. Then γ(s, τ)/s̄ is smooth ev-
erywhere.
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Proof. Assume that γ(s, τ) = s̄ω(s, τ) where τ1 · · · τk 6= 0. It follows
that (∂k/∂sk)γ(0, τ) = 0 when τ1 · · · τk 6= 0, and hence by continuity it
holds also when τ1 · · · τk = 0. It now follows from a Taylor expansion
in s that γ(s, τ)/s̄ is smooth. �

We have to show that for each k,∫
∂̄|F |2λ∧ ∂̄αk

F 0
k

∧ ∂̄αk−1

F 0
k−1

∧ . . .∧ ∂̄α3

F 0
3

∧α2

F 0
2

∧ξ̃
∣∣∣
λ=0

= 0,

where ξ̃ is the pullback of a test form ξ. To be precise, there are also
cutoff functions involved that we suppress for simplicity. Observe that
∂̄|F |2λ is a sum of terms like aλ|F |2λds̄/s̄. We have to show that all
the corresponding integrals vanish. First suppose that s is a factor in
Fk. Since ξ has degree n− k + 1 in dz̄ it must vanish on Zk and hence
by standard argument, see, e.g., [26] or [1], (ds̄/s̄)∧ξ̃ is smooth (i.e.,

each term of ξ̃ contains either a factor s̄ or ds̄. If s is not a factor in
F 0

k , . . . , F
0
`+1 but in F`, then where F 0

k · · ·F 0
`+1 6= 0 we have that

ds̄

s̄
∧ ∂̄αk

F 0
k

∧ . . .∧ ∂̄α`+1

F 0
`+1

∧ξ̃

is smooth, since outside where Fk · · ·F`+1 = 0, the form ∂̄σk∧ . . . ∂̄σ`+1∧ξ
must vanish on Z` for degree reasons. From the lemma it follows now
that

ds̄

s̄
∧∂̄αk∧ . . .∧∂̄α`+1∧ξ̃

is smooth, and therefore the corresponding integral vanishes at λ =
0. �

Definition 1. A current R satisfying one of the equivalent conditions
in Theorem 4.1 will be called a Noetherian residue current for the sheaf
J = Im (O(E1) → O(E0)).

Corollary 4.3. Assume that R is a Noetherian residue current for the
sheaf J . Then R has support on the support Z of O(E0)/J , R = R0,
and annR = J .

For a Noetherian current, with no ambiguity, we will write Rk instead
of R0

k.

Proof. If (4.2) is exact, then (4.1) is exact outside the support Z of
O(E0)/J , and therefore (3.1) is pointwise exact outside Z, and hence
the corresponding residue current R is supported on Z. From Theo-
rem 4.1 it follows that R` = 0 for ` ≥ 1, and from Corollary 3.4 it
follows that annR = J . �

The degree of explicitness is directly depending on the degree of
explicitness of a resolution of J ; notice that there are no assumption
here of minimality of the resolution.
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5. Examples

Given a finitely generated subsheaf J of Or0 in, e.g., a polydisk X
we can always find a resolution of J in any slightly smaller polydisk
X ′ ⊂⊂ X, see, [21], and hence, if Or0/J has support on a variety of
positive codimension, we get a Noetherian residue current R in X ′ for
J . We will now consider some more explicit examples.

Example 1 (The Koszul complex). Let E1 be a Hermitian bundle over
X of rank m, let E0 ' C be the trivial line bundle, and let f be a
nontrivial section of E∗

1 . If δ is interior multiplication with f , we have
the Koszul complex

0 → ΛmE1
δ→ · · · δ→ Λ2E1

δ→ E1
δ→ E0 → 0

which is exact precisely where f is non-vanishing. Notice that in this
case the total bundle E = ⊕Ek is just ΛE1, and the superbundle struc-
ture is obtained from the grading in ΛE. Moreover, the desired E•(X)-
module structure of D′

•(X,E) is obtained from the wedge product in
Λ(E ⊕ T ∗(X)). The induced complex of sheaves is exact for ` ≥ 1 if
and only if codimZ = m, see, e.g., [18]. In that case R just consists of
the single term Rm. If f = f1e

∗
1 + · · ·+fme

∗
m in some local holomorphic

frame e∗j for E∗, then Rm is just the Coleff-Herrera current (1.1) times
e1∧ . . .∧em, where ej is the dual frame, see [1]. �

Example 2 (The Eagon-Northcott complex). Suppose that E and Q are
Hermitian bundles of ranks m and r, and Φ: E → Q is a generically
surjective morphism. Let f1 = det Φ: ΛrE ⊗ detQ∗ → C. The Eagon-
Northcott complex is obtained by letting E0 = C and Ek = Λr+k−1E⊗
Sr+k−1Q∗ for k ≥ 1, where fk for k ≥ 2 is the natural mappings induced
by Φ. The corresponding complex of sheaves is exact for ` ≥ 1 in the
generic case when codimZ = m−r+1, see, e.g., [18]. This also follows
from Theorem 4.1 since the corresponding residues R` must vanish for
` ≥ 1 for codimension reasons, see also [5] for details. Thus R = R0 is
a Noetherian residue current for the ideal sheaf J = (det Φ). This was
already proved in [5].

Now let instead E1 = E and E0 = Q. There is a closely related
complex, with

Ek = Λr+k−1E ⊗ Sk−2Q∗ ⊗ detQ∗, k ≥ 2,

where f2 is det Φ and fk is the natural mapping induced by Φ for k ≥ 3,
see [4]. Again, if codimZ = m− r+ 1, the induced complex of sheaves
is exact for ` ≥ 1 and hence R = R0 is a Noetherian residue current
for the sheaf J = Im Φ. This was already proved in [4]. �

There are simple algorithms that produce resolutions of monomial
ideals, see, e.g., [19]. We conclude this section by computing a couple
of Noetherian residue currents in two variables. We begin with the
possibly simplest example of a non-complete intersection ideal.
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Example 3. Consider the ideal J = (z2
1 , z1z2), with zero variety {0}. It

is easy to see that

(5.1) 0 → O f2−→ O2 f1−→ J → 0,

where

(5.2) f1 =
[
z2
1 z1z2

]
and f2 =

[
z2

−z1

]
is a (minimal) resolution of J . We assume that the corresponding vector
bundles are equipped with the trivial Hermitian metrics. Observe that
Z is of dimension 1, so R consists of the two parts R2 = ∂̄|F |2λ∧u2|λ=0

and R1 = ∂̄|F |2λ∧u1|λ=0, where u2 = σ2∂̄σ1 and u1 = σ1 respectively.
Notice that σ1 = f ∗1 (f1f

∗
1 )−1 and σ2 = (f ∗2 f2)

−1f ∗2 . To compute R we

consider the proper mapping Π : Ũ → U , where U is a neighborhood

of the origin and Ũ is the blow up at the origin of U . We cover Ũ by
the two coordinate neighborhoods

Ω1 = {t; (t1t2, t1) = z ∈ U} and Ω2 = {s; (s1, s1s2) = z ∈ U}.

In Ω1 we get

(5.3) Π∗f1 = t21t2
[
t2 1

]
so Π∗σ1 =

1

t21t2(1 + |t2|2)

[
t̄2
1

]
.

Moreover

(5.4) Π∗f2 =

[
t̄2
1

]
which gives Π∗σ2 =

1

t1(1 + |t2|2)
[

1 −t̄2
]
.

It follows that

u0
2 =

dt̄2
t31t2(1 + |t2|2)2

To compute R2 take a test form φ = ϕ(z)dz1∧dz2; in Ω1, Π∗dz1∧dz2 =
−t1dt1 ∧ dt2 and thus

(5.5) R0
2.φ = −

∫
∂̄

[
1

t21

]
∧

[
1

t2

]
dt̄2

(1 + |t2|2)2
ϕ(t1t2, t1) dt1 ∧ dt2,

where the brackets denote one-variable principal value currents. In
view of the one-variable formula

∂̄
[1

s

]
∧ds
s

= 2πi[s = 0]

([V ] means the current of integration over V ), a Taylor expansion of ϕ
and symmetri considerations reveals that (5.5) is equal to

2πi

∫
t2

dt̄2 ∧ dt2
(1 + |t2|2)2

ϕ1,0(0, 0) = (2πi)2ϕ1,0(0, 0),
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where ϕ1,0 = ∂ϕ/∂z1. One can check that there is no extra contribution
from the other coordinate chart, and hence

R2 = ∂̄

[
1

z2
1

]
∧ ∂̄

[
1

z2

]
.

Notice that R1, taking values in Hom (C,C2), is a column matrix. A
similar computation yields that

R1 =

[
0
1

] [ 1

z2

]
∂̄
[ 1

z1

]
.

We see that annR2 = (z2
1 , z2) and annR1 = (z1), and hence annR =

(z2
1 , z2) ∩ (z1) = J as expected. �

We now consider a nontrivial zero-dimensional example.

Example 4. Consider the ideal J = (z5
1 , z

3
1z2, z

4
2) in O0 with variety

Z = {0} ⊂ U , where U is a neighborhood of the origin in C2. Notice
that J is Cohen-Macaulay, since Z is zero-dimensional, and therefore
R is essentially canonical, see Section 7. We have a minimal resolution

(5.6) 0 → O2 f2−→ O3 f1−→ J → 0,

where

(5.7) f1 =
[
z5
1 z3

1z2 z4
2

]
and f2 =

 0 z2

−z3
2 −z2

1

−z3
1 0

 .
Since Z is of dimension 0, R = R2 = ∂̄|F |2λ∧u2|λ=0. To compute R

we consider the proper mapping Π : Ũ → U , where Ũ is a toric variety
that can be covered by the three coordinate neihgborhoods

Ω1 = {t; (t1t2, t2) = z ∈ U} , Ω2 = {s; (s1s2, s1s
2
2) = z ∈ U} and

Ω3 = {r; (r1, r
2
1r2) = z ∈ U}.

By considerations inspired by [28] it is enough to make the computation
in Ω2. We get

(5.8) Π∗f1 = s4
1s

5
2

[
s1 1 s3

2

]
and Π∗f2 = s1s

2
2

 0 1
s2
1s

4
2 −s1

−s2
1s2 0

 .
It follows that

(5.9) Π∗σ1 =
1

s4
1s

5
2ν(s)

 s̄1

1
s̄2

 ,
where ν(s) = (1 + |s1|2 + |s3

2|2). A simple computation yields

(5.10) Π∗σ2 =
1

s3
1s

3
2ν(s)

[
s1s̄

3
2 s̄3

2 −(1 + |s1|2)
s2
1s2(1 + |s3

2|2) −s2
1s̄1s2 −s2

1s̄1s
4
2

]
,
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and thus

(5.11) u2 =
1

s7
1s

8
2ν(s)

2

[
s1s̄

3
2ds̄1 − 3s̄2(1− |s1|2)ds̄2

s2
1s2(1 + |s3

2|2)ds̄1 − 3s2
1s̄1s

4
2s̄

2
2ds̄2

]
.

Let us compute the action of R0
2 on a test form φ = ϕdz1∧dz2. In Ω2,

Π∗dz1∧dz2 = s1s
2
2ds1 ∧ ds2, and so

(5.12) R2.φ =

∫
∂̄

[
1

s6
1

][
1

s6
2

]
1

ν2

[
3s̄2ds̄2

0

]
ϕ(s1s2, s1s

2
2) ds1 ∧ ds2+∫

∂̄

[
1

s5
2

][
1

s4
1

]
1

ν2

[
0
ds̄1

]
ϕ(s1s2, s1s

2
2) ds1 ∧ ds2.

Let us start by considering the first term. Evaluating the s1-integral
the “upper” integral becomes

(5.13) 2πi

∫
3|s2|4

(1 + |s2|6)2
ϕ2,3(0, 0) ds̄2 ∧ ds2 = 12 ∂̄

[
1

z3
1

]
∧ ∂̄

[
1

z4
2

]
.φ;

indeed, for symmetry reasons everything else vanishes as in Example 3.
Continuing with the second term, the “lower” integral is

(5.14) 2πi

∫
1

(1 + |s1|2)2
ϕ4,0(0, 0) ds̄1 ∧ ds1 = 24 ∂̄

[
1

z5
1

]
∧ ∂̄

[
1

z2

]
.φ

Thus annR = (z3
1 , z

4
2) ∩ (z5

1 , z2) = J as expected. �

6. Division and interpolation formulas

The currents U and R constructed in Section 3 fits perfectly into
a general scheme for constructing division and interpolation formulas
in pseudoconvex domains in Cn, developed in [6]. For simplicity we
restrict here to the unit ball D = {z; |z| < 1}; for more general cases
see [6]. Let (3.1) be a complex of (trivial) bundles over a neighborhood
of the closed unit ball in Cn, and let J = Im f1.

Let δζ−z denote interior multiplication by the vector field

2πi
n∑
1

(ζj − zj)(∂/∂ζj)

and let ∇ζ−z = δζ−z − ∂̄. Moreover, let

s =
∂|ζ|2

2πi(|ζ|2 − ζ̄ · z)
and let χ be a cutoff function that is 1 in a neighborhood of D. For
each fixed z ∈ D we define the form

g = χ− ∂̄χ∧ s

∇ζ−zs
= χ− ∂̄χ∧[s+ s∧∂̄s+ s∧(∂̄s)2 + · · ·+ s∧(∂̄s)n−1].

In the terminology of [6] it is a compactly supported weight that de-
pends holomorphically on z ∈ D, i.e., ∇ζ−zg = 0 and g0,0(z) = 1, where
lower indices denote bidegree.
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Let us fix global frames for the bundles Ek. The morphisms fk are
then just matrices of holomorphic functions, and one can find (see
[6] for explicit choices) (k − `, 0)-form-valued holomorphic morphisms
H`

k : Ek → E`, depending holomorphically on z, such that H`
k = 0 for

k < `, H`
` = IE`

, and in general,

(6.1) δζ−zH
`
k = H`

k−1fk − f`+1(z)H
`+1
k , k ≥ `;

here f stands for f(ζ). Let

H`+1U =
∑

k

H`+1
k U `

k, H`R =
∑

k

H`
kR

`
k;

thusH`+1U takes a section of E` depending on ζ into a (current-valued)
section of E`+1 depending on both ζ and z, and similarily, H`R takes
a section of E` into section of E`. We let HU =

∑
`H

`U and HR =∑
`H

`R. Then, precisely as in [6], a straight-forward computation,
using (6.1), yields that

g′ = f(z)HU +HUf +HR

is an E-valued weight, i.e., ∇ζ−zg
′ = 0 and g′0,0 = IE. Therefore, see

[6], we get the representation

φ(z) =

∫
g′φ∧g,

or expressed in another way,

(6.2) φ(z) = f(z)(Tφ)(z) + T (fφ)(z) + Sφ(z),

where

Tφ(z) =

∫
ζ

HU(ζ, z)φ∧g, Sφ(z) =

∫
ζ

HR(ζ, z)φ(ζ)∧g.

In particular, we get an explicit (in terms of U and R) realization of a
solution ψ = Tφ of fψ = φ, if fφ = 0 and Rφ = 0, thus providing an
explicit proof of Corollary 3.4 (i).

If now R is a Noetherian residue current we see that Sφ = 0 as soon
as φ belongs to J or φ is a section of E` for ` ≥ 1.

In the same way as in [2] one can extend these formulas slightly, and
get a characterization of the module EJ of smooth tuples of functions
generated by J , i.e., the set of all φ = f1ψ for smooth ψ. First notice
that if φ = f1ψ, then Rφ = R0φ = R0f1ψ − R1∂̄ψ = R∇ψ = ∇R1ψ =
0, so that R0φ = 0. Since each partial derivative ∂/∂z̄j commutes with
∇, we get that

(6.3) R(∂αφ/∂z̄α) = 0

for all multiindices α. The converse is obtained by integral formulas
precisely as in [2], and hence we have
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Theorem 6.1. Assume that J ⊂ Or0 is an analytic sheaf such that the
support of Or0/J has positive codimension, and let R be a Noetherian
residue current for J . Then an r0-tuple φ ∈ (E)r0 of smooth functions
is in EJ if and only if (6.3) holds for all α.

One can also obtain analogous results with lower regularity, see [2]
and [6].

7. Cohen-Macaulay ideals and modules

Let Jx be an ideal in the local ring Ox at x ∈ X. The length νx

of a minimal resolution of Ox/Jx is precisely n − depth (Ox/Jx). We
always have that depth (Ox/Jx) ≤ n−codim Jx and it may happen that
the inequality is strict; e.g., if Jx has embedded primary components.
In particular, the minimal length can vary along Z. However, if J is
Cohen-Macauley, i.e., depth (Ox/Jx) = codim Jx for each x, thus ν is
equal to the codimension everywhere.

More generally, if J ⊂ Or is finitely generated and Or/J is a sheaf of
Cohen-Macaulay modules, then, see [18], (locally) each primary factor
has the same codimension p, and any minimal resolution ends up at
position p. Special cases are the sheaves in Examples 1 and 2 above, i.e.,
(f) if f is a complete intersection, J = (det Φ) or J = Im Φ if Φ: E →
Q and codimZ = m − r + 1. We have the following generalization of
the corresponding known result for a complete intersection.

Theorem 7.1. Suppose that J is a finitely generated subsheaf of a
locally free sheaf of O-modules O(E0), and suppose that O(E0)/J is
Cohen-Macaulay. If

0 → O(Ep) → · · · → O(E1) → J → 0

is a minimal resolution, then the corresponding Noetherian residue cur-
rent R = R0

p is independent of the choice of Hermitian metric. More-
over, if we choose another minimal resolution

0 → O(E ′
p) → · · · → O(E ′

1) → J → 0

and R′ is the corresponding residue current, then there is a holomorphic
isomorphism gp : Ep ' E ′

p such that R′ = gpR.

Proof. Assume that u and v are the forms in X \ Z constructed by
means of two different choices of metrics on E. Then ∇Endu = I and
∇Endv = I in X \ Z, and hence if w = uv we have

∇Endw = ∇End(uv) = (∇Endu)v − u∇Endv = v − u,

where the minus sign occurs since u has odd order. Thus

∇End

(
|F |2λw

)
= |F |2λv − |F |2λu− ∂̄|F |2λ∧w,

and evaluating at λ = 0 we get

∇EndW = V − U −M,
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where M is the residue current M = ∂̄|F |2λ∧w|λ=0. However, since the
complex ends up at p, w has at most bidegree (0, p− 2) and hence the
current M has at most bidegree (0, p − 1). Therefore W must vanish
since it is supported on Z which has codimension p. Thus we have

0 = ∇2
EndW = I −Rv − I +Ru = Ru −Rv.

For the second statement, first recall that for two minimal resolu-
tions there are isomorphisms gk : Ek → E ′

k such that the corresponding
diagram commutes, and such that g0 is the identity on E0. Given
any metric in E, we equip E ′ with the induced metric |ξ| = |g−1ξ|.
Then σ′ = gσg−1 in X \ Z and therefore u′ = σ′ + σ′(∂̄σ′) + · · · =
g(σ+ σ(∂̄σ) + · · · )g−1 = gug−1. Therefore, (u′)0

p = gpu
0
p, and from this

the statement follows. �

Notice that in X \ Z the form up is a ∂̄-closed Hom (E0, Ep)-valued
form and thus defines a Dolbeault cohomology class, and in view of
the proof of Theorem 7.1 this class is independent of the choice of
Hermitian metric. For a holomorphic section φ of E0 we therefore have
a well-defined map

Gφ : ξ 7→
∫
upφ∧∂̄ξ

for test-forms ξ of bidegree (n, n− p) that are ∂̄-closed in some neigh-
borhood of Z. Precisely as for a complete intersection, [15] and [25],
we have a cohomological version of the duality principle.

Theorem 7.2. Suppose that J is a finitely generated subsheaf of a
locally free sheaf of O-modules O(E0), and suppose that O(E0)/J is
Cohen-Macaulay. Then a section of O(E0) is in J if and only if Gφ =
0.

The “only if” direction follows from Stokes’ theorem. The converse
can be proved, using the decomposition formula (6.2), and mimicking
the proof of the corresponding statement for a complete intersection in
[25], see also Proposition 7.1 in [6].

Example 5. Let J be an ideal in O0 of dimension zero. Then it is
Cohen-Macaulay and for each germ φ in O0, Gφ is a functional on Orn

0 ,
where rn = dimEn. Moreover, Gφ = 0 if and only if φ ∈ J . If J is
generated by n functions, then a minimal resolution is given by the
Koszul complex, so rn = 1, and the resulting mapping G is precisely
the classical Grothendieck residue. �

8. Noetherian residue currents of homogeneous ideals

Let S be the graded ring of polynomials in Cn+1, and let

(8.1) 0 →MN → · · · →M1 →M0 → 0



NOETHERIAN RESIDUE CURRENTS 17

be a graded complex of free S-modules, i.e.,

(8.2) Mk = S(−dk
1)⊕ · · · ⊕ S(−dk

rk),

and the mappings are given by matrices of elements in S, see [19] for
a background. We can associate to (8.1) a complex of vector bundles
over Pn,

(8.3) 0 → EN
fN−→ . . .

f3−→ E2
f2−→ E1

f1−→ E0 → 0,

in the following way. Let O(`) be the holomorphic line bundle over Pn

whose sections are naturally identified with `-homogeneous functions
in Cn+1. Moreover, let Ei

j be disjoint trivial line bundles over Pn and
let

Ek =
(
Ek

1 ⊗O(−dk
1)

)
⊕ · · · ⊕

(
Ek

rk
⊗O(−dk

rk
)
)
.

The mappings in (8.1) induce vector bundle morphisms fk : Ek → Ek−1.
If we equip Ek with the natural Hermitian metric

|ξ(z)|2 =

rk∑
j=1

|ξj(z)|2/|z|2dk
j

we can then define the associated currents U and R as before, following
the general scheme, provided that (8.3) is generically exact.

Let εkj be a global frame element for the bundle Ek
j . In the affine

part U0 = {[z] ∈ Pn; z0 6= 0} we then have a local holomorphic frame

ek
j = z

−dk
j

0 εkj , j = 1, . . . , rk,

for the bundle Ek. In these local frames

R`
k =

r∑̀
i=1

rk∑
j=1

(R`
k)ij ⊗ ek

i ⊗ (e`
j)

∗,

where (R`
k)ij are (scalar-valued) currents in U0 ' Cn. For later refer-

ence we notice that these currents have natural extensions as currents
on Pn.

Recall that, see, e.g., [14], H0,q(Pn,O(ν)) = 0 for all ν if 0 < q < n,
whereas H0,n(Pn,O(ν)) = 0 if ν ≥ −n.

We have the following analogue of Theorem 4.1.

Theorem 8.1. Let (8.1) be a graded complex of free S-modules, N ≤
n+1, and let (8.3) be the corresponding complex of vector bundles over
Pn equipped with the natural Hermitian metric. Then R` vanish for all
` ≥ 1 if and only if (8.1) is exact at M` for ` ≥ 1.

Whatever set of generators M1 → M0 for J = Im (M1 → M0) we
start with, we can always extend to a resolution of J such that N ≤
n+ 1.
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We notice that a graded resolution of Sr0/J gives rise to a Noetherian
residue current R for the corresponding analytic sheaf (generated by)
J .

Proof. First assume that (8.1) is exact for ` ≥ 1. According to the
Baumgarten-Eisenbud theorem in the homogeneous case, see [19], the
set in Cn+1 (or equivalently in Pn) where the rank of fk is strictly
less than ρk has at least codimension k. Precisely as in the proof of
Theorem 4.1 it follows that R` = 0 for ` ≥ 1.

Conversely, assume that R` = 0 for all ` ≥ 1. Let φ be an element
in M`, ` ≥ 1, of pure degree that is mapped onto zero in M`−1. It
corresponds to a global section of E`⊗O(r) for a certain r, and f`φ = 0.
Since R` = 0 we therefore have that ∇(U `φ) = φ. The first ∂̄-equation
to be solved is then ∂̄w = U `

Nφ and since N ≤ n + 1 and ` ≥ 1 the
right hand side is a (0, q)-current with q ≤ n − 1. Thus there is no
cohomologous obstruction, and so we obtain a holomorphic section ψ
of E`+1⊗O(r) such that f`ψ = φ, and thus ψ corresponds to the desired
element in M`+1. �

In view of the preceding proof we see that if φ is a section of E0⊗O(r)
such that R0ξ = 0, then we can find a holomorphic solution to f1ψ = φ
if either the complex terminates at (at most) level n, or if the occurring
∂̄-equation of top degree is solvable, which it indeed is if r−dn+1

j ≥ −n
for all j.

Given a S-module J ⊂ Sr0 , there always exists a resolution (8.1), and
the length of a minimal resolution is equal to n + 1 − depth (Sr0/J),
so we can avoid the ∂̄-equation of top degree if (and only if) Sr0/J
contains a (non-trivial) nonzerodivisor. We sum up this as

Theorem 8.2. Let J ⊂ Sr0 be an S-module and let R be the residue
current associated with a minimal resolution.

(i) Suppose that Sr0/J contains a nonzerodivisor. Then a section φ of
E0 ⊗O(r) lies in the image of f1 if and only if Rφ = 0.

(ii) Assume that r ≥ maxj(r
n+1
j )−n. Then a section φ of E0⊗Lr lies

in the image of f1 if and only if Rφ = 0.

Some remarks. If J is defined by a complete intersection then clearly
the case (i) holds. Also if Z is discrete and all the zeros are of first
order, then depthS/J = 1, see [19], so that case (i) holds.

In case (ii) an estimate of maxj(r
n+1
j )− n follows from the degree of

regularity of J , see, e.g., [19]. �

We conclude this section by relating to modules of polynomials in Cn.
Let z′ = (z′1, . . . , z

′
n) be the standard coordinates in Cn that we identify

with U0 = {[z] ∈ Pn; z0 6= 0}. Let F be a Hom (Cr1 ,Cr0)-valued
polynomial in Cn, whose columns F1, . . . , Fr1 have at most degrees
d1

1, . . . , d
1
r1

. After the homogenizations fk(z) = zdk
0 F (z′/z0), we get an
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r1 × r0-matrix f whose columns are d1
k-homogeneous forms in Cn+1;

thus a graded mapping

f1 : S(−d1
1)⊕ · · · ⊕ S(−d1

r1
) → Sr0 .

Extending to a graded resolution we thus obtain a Noetherian residue
current on Pn for the sheaf generated by f1, and taking a local trivi-
alization in Cn ' U0, we get a Noetherian residue current R for F in
Cn.

Proposition 8.3. Given an r0-tuple of polynomials Φ in Cn, there are
polynomials Ψ such that Φ = FΨ in Cn if and only if RΦ = 0.

Proof. Take a homogenization φ(z) = zr
0Φ(z′/z0). The condition RΦ =

0 in Cn means that Rφ = 0 outside the hyperplane at infinity, so for a
large enough r, Rφ = 0 on Pn. Now (for a large enough r) part (ii) of
Theorem 8.2 applies and provides a solution ψ. After dehomogenization
we get the desired solution Ψ. �

Clearly the final degree of Ψ in the preceding proof depends on the
choice of r. We conclude with an example where we have optimal
control of the degree of the solution; it is a generalization of Max
Noether’s classical theorem.

Proposition 8.4. Let F1, . . . , FN be polynomials in Cn such that the
homogenized forms f1, . . . , fN define a Cohen-Macaulay ideal J in S
and assume that no irreducible component of Z is contained in the
hyperplane at infinity. If Φ belongs to the ideal (F ) in Cn, then there are
polynomials Ψj with deg (FjΨj) ≤ degΦ such that F1Ψ1+· · ·+FNΨN =
Φ.

To see this one just has to imitate the proof of Theorem 1.2 in [3].
As in [4] one can just as well assume that J is a submodule of Sr0 for
some r0 > 1.

9. The fundamental principle

Let F be a Hom (Cr1 ,Cr0)-valued polynomial of generic rank r0 and
let K be the closure of an open convex bounded set in Rn. We want to
find a description of all homogeneous solutions ξ = (ξ1, . . . , ξr0) in E(K)
to F ∗(D)ξ = 0, where F ∗ is the transposed matrix and D = i∂/∂t.

We let R be the Noetherian residue current in Cn obtained from F
by the procedure in the preceding section. Notice that this current has
a current extension to Pn.

Let ρ be the support function for K but smoothen out in a neigh-
borhood of the origin in Rn. If ν is a distribution of order at most M
with support in K, ν ∈ E ′,M(K), then

(9.1) |ν̂(z)| ≤ C(1 + |z|)Meρ(Im z),
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and conversely if ν satisfies such an estimate it is at least in E ′(K). Let
ρ(ζ) = ρ(Im ζ). Recall that ∇ζ−z = δζ−z − ∂̄. Notice that

∇ζ−z∂ρ/2π = i〈ζ − z, ρ′(ζ)〉+ ∂∂̄ρ(ζ),

so by the convexity and homogeneity of ρ we have that

(9.2) |e∇ζ−z∂ρ/2π| ≤ Ceρ(z).

It is easy to see that we can choose Hefer forms, as in Section 6, that
are polynomials in both ζ and z. In view of (9.2), therefore H1U and
H0R will be currents in Cn such that ψ∧H1U and ψ∧H0R have current
extensions to Pn if ψ is smooth in Cn and vanishes to high enough order
at the hyperplane at infinity (depending on the order of the current R
at infinity as well as the degrees of the Hefer forms). Now

g = e∇ζ−z∂ρ/2π∧
(
1 +∇ζ−z

∂|ζ|2

1 + |ζ|2
)M ′

is a weight in Cn (i.e., ∇ζ−zg = 0 and g0,0(z) = 1) which vanishes
to high order at the hyperplane at infinity if M ′ is large. Given M
we can therefore choose M ′ so that we get, for ν ∈ E ′,M(K,E0), the
decomposition

ν̂(z) = F (z)(T ν̂)(z) + Sν̂(z);

and Sν̂(z) vanishes if ν = F (−D)µ for µ ∈ E ′,M(int (K), E1). Since T ν̂
and Sν̂ satisfies (9.1) for some power, we get mappings

T : E ′,M(K,E0) → E ′(K,E1), S : E ′,M(K,E0) → E ′(K,E0),

such that

ν = F (−D)T ν + Sν,
and Sν = 0 if ν = F (−D)µ for some µ ∈ E ′,M(int (K), E1).

Theorem 9.1. If ξ ∈ E(K,E∗
0), then S∗ξ ∈ CM(K,E∗

0) satisfies
F ∗(D)S∗ξ = 0. If in addition F ∗(D)ξ = 0, then S∗ξ = ξ.

Thus S∗ is a projection onto the space of homogeneous solutions.

Proof. For a µ with values in E1, and support in int (K), we have that
µ.F ∗(D)S∗ξ = F (−D)µ.S∗ξ = S(F (−D)µ).ξ = 0, and hence first part
OK. On the other hand, if F ∗(D)ξ = 0, then τ of order M and with
values in E0 we have

τ.S∗ξ = Sτ.ξ = (τ − F (−D)τ).ξ = τ.ξ − τ.F ∗(D)ξ = τ.ξ,

which shows the second assertion. �

We can write (recall that (R = R0))

Sν̂(ζ) =

∫
ζ

α(ζ, z)R(ζ)ν̂(ζ)ei〈ζ−z,ρ′(ζ)〉



NOETHERIAN RESIDUE CURRENTS 21

where α(·, z) is a polynomial i z, and precisely as in [11] we then get
the formula

S∗φ(t) =

∫
ζ

R∗(ζ)α∗(ζ,D)φ(ρ′)e−i〈ζ,t−ρ′〉,

where α∗(ζ, z)φ(ρ′(ζ)) is the result when replacing each occurrence of z
in α∗(ζ, z) by D, letting it act on φ(t) and evaluate at the point ρ′(ζ).
Thus we have

Theorem 9.2. For any solution φ ∈ E(K) of F ∗(D)φ = 0, there is a
smooth A(ζ) such that

φ(t) =

∫
ζ

R∗(ζ)A(ζ)e−i〈ζ,t−ρ′(ζ)〉.

Conversely, for any smooth A(ζ) with not too high polynomial growth
(depending on the choice of M ′), the residue integral defines a homo-
geneous solution.
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