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Intelligent Design and the NFL Theorems:Debunking DembskiOlle Häggström�September 8, 2005Abstra
tAnother look is taken at the model assumptions involved in WilliamDembski's (2002a) use of the NFL theorems from optimization theoryto disprove the Darwinian theory of evolution by natural sele
tion, andhis argument is shown to la
k any relevan
e whatsoever to evolutionarybiology.1 Mathemati
s for good and for badS
ien
e, from Newton and onwards, owes mu
h of its su

ess to mathemat-i
s. Physi
s in parti
ular is so permeated by mathemati
al modelling andmethodology so as to be
ome almost in
on
eivable without it, a situationthat has even triggered some thinkers to raise the metaphysi
al question ofwhy nature is so amenable to mathemati
al study (Wigner, 1960; Omnès,2005). Biology is 
urrently undergoing a mathematization whi
h may ormay not turn out as far rea
hing as that of physi
s. Looking further a�eld,we may note the prevalen
e of mathemati
al formalism in the so
ial s
ien
es(parti
ularly in e
onomi
s) where, however, its su

ess has so far been farless overwhelming than in the natural s
ien
es.Unfortunately, not all uses of mathemati
s in other dis
iplines are good,and some of them are outright bad. Overall, most resear
hers have little or nouniversity-level mathemati
al training, and are easily intimidated by those
olleagues who master � or pretend to master � the language of mathemati
s.Members of the latter group often manage to gain a

eptan
e for their poor�Professor of mathemati
al statisti
s, Chalmers University of Te
hnology, Sweden,http://www.math.
halmers.se/�olleh/ 1



mathemati
al appli
ations, un
hallenged by a resear
h 
ommunity that isunable to penetrate their formulae.This leads, of 
ourse, to bad resear
h. Besides that, it has had � if I mayspe
ulate a little � another undesirable 
onsequen
e: it seems likely thatthe extensive (ab)use of mathemati
s in various �elds has 
ontributed toan inferiority 
omplex that triggered poststru
turalists and postmoderniststo invade mu
h of humanities and so
ial s
ien
es with a jargon even moreimpenetrable than that of mathemati
s, but to a 
atastrophi
 extent la
kingin meaningful 
ontent, as exposed in the Sokal Hoax (Sokal, 1996; Sokal andBri
mont, 1998).In this paper, I will draw attention to a parti
ularly bad appli
ationof mathemati
s in a 
ontext of mu
h 
urrent interest in Ameri
an politi
s,namely the brand of anti-Darwinian 
riti
ism known as Intelligent Design.Spe
i�
ally, what I have in mind is William Dembski's (2002a) use of theso-
alled NFL (No Free Lun
h) theorems in optimization theory to �refute�evolution by natural sele
tion.1 After giving some ba
kground on the In-telligent Design movement and the NFL theorems, respe
tively, in Se
tions2 and 3, I will outline Dembski's use of the latter in Se
tion 4. Then, inSe
tions 5, 6 and 7, I will demonstrate the error in Dembski's argument,followed in Se
tion 8 by some remarks on possible extensions.Dembski's No Free Lun
h (2002a) has been amply debunked elsewhere;see, e.g., Orr (2002), Shallit (2002) and espe
ially Ri
hard Wein's (2002a)2devastating 
atalogue of errors and pseudos
ienti�
 reasoning on Dembski'spart. The role of the present paper is to o�er a mathemati
ian's a

ountof what the NFL theorems a
tually say, and why Dembski's use of themis so utterly wrong. The 
entral argument in Se
tion 6 
on
erning �tnesslands
apes is essentially the same as one put forth by Wein (2002a), althoughhere I will 
onsider Dembski's impli
it model assumption about these inmore detail. Along the way, it will be
ome 
lear that the NFL theorems
onstitute a 
orre
t but banal mathemati
al observation whose potentialfor saying anything interesting about evolutionary biology is, realisti
allyspeaking, zero.I feel that I must warn the reader from the outset that no deep resultswhatsoever will be 
onveyed in this paper. In fa
t, mu
h to the 
ontrary,fa
ts and results that have been des
ribed as profound by others will be1More re
ently, Dembski (2005) provides an additional smokes
reen of fan
y-lookingbut irrelevant mathemati
s that he 
laims supports his NFL-based argument against Dar-winism. I will refrain from dis
ussing that paper here, as it makes no di�eren
e to thearguments of the present paper or to the �nal verdi
t on Dembski's approa
h.2See also the subsequent ex
hange in Dembski (2002b, 2002
) and Wein (2002b).2



shown to be fairly trivial.2 Intelligent DesignChristian fundamentalists have long sin
e given up their �ght against he-lio
entrism. In 
ontrast, Darwin's theory of natural sele
tion is still underatta
k. In the United States, anti-Darwinians have gained 
onsiderable po-liti
al su

ess, with many lo
al and state s
hool boards having invoked reg-ulations to the extent that Darwin's theory must be taught as just one ofseveral theories about the origin of spe
ies � a poli
y that has even beenendorsed by President George W. Bush.3Opponents of Darwinism have, however, found that Bibli
al literalismand young-earth 
reationism does not always work well in 
ourtrooms andin rational dis
ussion. Therefore, these 
rude versions of 
reationism havein re
ent years to a large extent been repla
ed by Intelligent Design as theproposed main alternative to Darwinism. Proponents of Intelligent Designa

ept mu
h of modern biology and natural history, insisting only that 
om-plex 
reatures su
h has ourselves 
annot 
ome about �bottom-up� in a uni-verse governed just by natural laws, but bear unmistakable signs of beingthe work of an intelligent agent. As a kind of ta
ti
al retreat, they generallykeep a low pro�le 
on
erning the identity of this agent � God, extraterrestrialaliens, or something else.4Here, I will only give a very brief re
olle
tion of some of the main featuresof Intelligent Design. For an ex
ellent 
riti
al survey, see Crews (2001), orsee Orr (2005) for a more re
ent dis
ussion.Intelligent Design is being promoted as a s
ien
e, but as su
h it has someobvious di�
ulties. For instan
e, the simple question �who designed thedesigner?� shows that Intelligent Design 
annot hope to solve the problemof emergen
e of 
omplexity and life, but only move it one step away. Andthose of us who take seriously Popper's idea of the 
entral role played byfalsi�
ation may ask: how in the world 
ould one ever falsify IntelligentDesign? I will ignore these di�
ulties and instead fo
us on key argumentsput forth by the two leading thinkers of the Intelligent Design movement:Mi
hael Behe and William Dembski.3See Dawkins and Coyne (2005) for an eloquent 
omment on Bush's endorsement andwhat is at stake.4Or 
ould it be that we live in sombody else's 
omputer simulation, à la The Matrix?This mind-blowing s
enario is not only a re
urrent theme in �
tion � it has also beendefended seriously; see, e.g., Bostrom (2003).3



Behe's Darwin's Bla
k Box (1996) is by far the most well-known 
ontri-bution to Intelligent Design. The 
entral 
on
ept in Behe's book is that ofirredu
ible 
omplexity, neatly illustrated by a mousetrap 
onsisting, say, of�ve parts (platform, spring, hammer, 
at
h, and hold-down bar). Removingany one of these parts will not result in a devi
e that is slightly worse at
at
hing mi
e 
ompared to a 
omplete moustrap, but rather something thatdoes not 
at
h mi
e at all. Likewise, Behe argues, many biologi
al systemshave the same property of indispensability of ea
h of its 
omponents. Andhow 
ould su
h a system have evolved along a Darwinian path of gradualimprovement? This seems impossible, be
ause up until the last of the 
om-ponents is formed the others are worthless, removing all sele
tion pressurein the dire
tion of forming the system.The irredu
ible 
omplexity argument goes ba
k, of 
ourse, further thanto Behe: 
lassi
al 
ases that have been brought up (and a

ounted for byDarwinians) are the evolutions of eyes and of wings. Behe's main novelty isto fo
us not on the organi
 level but rather on the mi
ros
opi
 ma
hineryinside 
ells.Behe's work has, however, been sharply 
riti
ized � see, e.g., Miller(1996), Dennett (1997), and Orr (2002) � and it is 
lear from these 
ritiquesthat Behe takes insu�
ient a

ount of a variety of me
hanisms in
ludingexaptation (i.e., when a system �rst evolves for some parti
ular fun
tion butis later exploited by the organism for a di�erent fun
tion) and gene dupli-
ation. His 
ase is therefore not nearly as strong as he 
laims it to be inDarwin's Bla
k Box.The so-
alled �argument from design� is old and straightforward, but verypersuasive: Of 
ourse the blind for
es of nature 
annot produ
e 
omplex
reatures su
h as ourselves � some kind of divine 
reator has to be involved.The argument su�ers, however, from an obvious la
k of pre
ision. In hisbook The Design Inferen
e (1998), Dembski sets out to remedy this (at leastpartially) by making pre
ise the meaning of �
omplex� through his notion ofspe
i�ed 
omplexity. It is, however, very di�
ult for the reader of Dembski'swork to understand pre
isely what spe
i�ed 
omplexity means.5 In any 
ase,evolutionary biologists have � using theoreti
al arguments supplemented by
omputer simulations � amply demonstrated that the blind for
es of nature
an in fa
t, via the me
hanism of natural sele
tion, produ
e obje
ts thatexhibit any reasonable biologi
al notion of 
omplexity. For Dembski andothers who �nd themselves unable to a

ept this 
on
lusion, I really have no5A dis
ussion of how in
onsistently Dembski uses his own 
on
ept 
an be found inWein (2002a). 4



better advi
e than to dire
t them to the modern 
lassi
s in this �eld, su
has Dawkins (1986, 1989) and Dennett (1995).Of 
ourse, Dembski still has the right to sti
k to his view, and in hisfollow-up book No Free Lun
h (2002a) he 
laims to give mathemati
al jus-ti�
ation for �why spe
i�ed 
omplexity 
annot be pur
hased without intelli-gen
e� by invoking the NFL theorems. These will be the topi
 of the nextse
tion.3 Optimization and the NFL theoremsIn 
ombinatorial optimization, one is given a �nite set V and a fun
tionf : V ! R whi
h to ea
h x 2 V assigns a real number.6 The task is to �ndan element x 2 V that maximizes f(x). At �rst sight, this may seem like atrivial task: sin
e V is �nite, all we need to do is simply to go through allx 2 V systemati
ally, 
al
ulate f(x) for ea
h of them, while keeping tra
k ofthe maximum seen so far.The reason why this �brute for
e� approa
h does not su�
e is that Vis usually so large that time 
onstraints make it infeasible. Typi
ally, thenumber of elements of V grows exponentially (or faster) in some parametern that des
ribes the size of the problem in some natural way. For instan
e,V 
ould be the set of binary strings of length n, or it 
ould be the numberof permutations of n obje
ts; this gives 2n resp. n! elements in V , in both
ases making the brute for
e method out of the question even for moderatelysized problems su
h as n = 100.Other, less time-
onsuming, algorithms are therefore needed. A 
ommonapproa
h involves so-
alled lo
al sear
h in V . This ne
essitates the intro-du
tion of some �geographi
� stru
ture in V , whi
h 
an be a

omplished byde
laring the existen
e of links between some (but not all) pairs of elementsx; y 2 V . The set of all y that are linked to a given x 2 V is 
alled the neigh-borhood of x. There is mu
h freedom in setting up the links, but it needsto be done in su
h a way that, on one hand, ea
h x has a neighborhoodof managable size, and, on the other hand, the network of links be
omes�well 
onne
ted� (in some sense). In spe
i�
 examples, natural link stru
-tures often more or less suggest themselves: when V is the set of length-nbinary strings, we may de
lare links pre
isely between those x; y 2 V thatdi�er only in one bit, or when V is the set of permutations of n obje
ts wemay de
ide to de
lare a link between two permutations pre
isely when oneof them 
an arise from the other by inter
hange of just two of the obje
ts.6We write, following 
onvention, R for the set of all real numbers.5



Given the link stru
ture, the basi
 lo
al sear
h algorithm pro
eeds asfollows. Start at some arbitrary x 2 V , 
ompute f at x and at all of itsneighbors, and move to the neighbor y whose f -value is the largest (unlessthey are all smaller than f(x) in whi
h 
ase we stay at x). Then repeat thepro
ess, moving to the vertex z that has the largest f -value among y and itsneighbors. This goes on until we get stu
k.This algorithm is sometimes 
alled the hill-
limber, as it 
an be pi
turedas a hiker in a hilly lands
ape, always going in the dire
tion of the steepest
limb, until the top of a hill is rea
hed. Su
h hill-
limbing sometimes workswell, but a huge drawba
k is that the algorithm may get stu
k on a relativelymodest hill without noti
ing the huge mountain peak further away.To deal with this drawba
k, a variety of modi�
ations of the hill-
limberalgorithm have been proposed and are widely used; see, e.g., Aarts andLenstra (1997). These modi�
ations may for instan
e in
lude randomizingthe walk in su
h a way as to allow o

asional downhill steps (as in the famoussimulated annealing algorithm) or permitting o

asional �long jumps� in thelands
ape. Many of these are quite sophisti
ated.These algorithms are not only used for the pure optimization problemthat we have fo
used on so far, but also � in fa
t more often � for thepurpose of lo
ating some large (but not ne
essarily the largest) value of f .Spe
i�
ally, the goal may be to �nd and x 2 V su
h that f(x) ex
eeds somegiven level t. The algorithm then pro
eeds until it en
ounters an elementof the set T 
onsisting of all x 2 V satisfying f(x) � t. The problem of�nding some x 2 T should really be 
alled a sear
h problem rather than anoptimization problem. We 
all T the target set, and it 
an be written in
ompa
t mathemati
al notation asT = fx 2 V : f(x) � tg : (1)More generally, we may not always be in a situation where �the larger valueof f , the better�, so it makes sense to allow for a target set T that is not ne
-essarily of the form (1), but may be an arbitrary subset of V . In interestingsear
h problems, T is typi
ally very rare, in the sense that only a very smallfra
tion of all elements x 2 V are also in T .This sets the stage for the NFL theorems of Wolpert and Ma
ready(1997), who showed that for these optimization and sear
h problems, noalgorithm is better than any other, in a 
ertain average sense. This maysound very surprising, so let me des
ribe in more detail what the basi
 NFLtheorem a
tually says.77Most of the dis
ussion will fo
us on this parti
ular NFL theorem, but see Se
tion 86



Wolpert and Ma
ready restri
t to the setting where the fun
tion f isonly allowed to take values in some pres
ribed �nite subset S of R. Thisis natural be
ause in a 
omputer implementation everything is ne
essarilydis
rete.Given V and S, how many di�erent ways are there to de�ne a fun
tionf : V ! S? Writing jV j and jSj for the number of elements of V andS, respe
tively, there are for any parti
ular x 2 V pre
isely jSj possible
hoi
es of f(x). Multiplying over all elements of V tells us that there arejSjjV j di�erent 
hoi
es of fun
tions f : V ! S (usually a stupendously largenumbers, sin
e already jV j is typi
ally very large). The basi
 NFL theorem
on
erns an average over all these fun
tions.The algorithms 
onsidered by Wolpert and Ma
ready are of the followingform. First, an x(1) 2 V is 
hosen a

ording to some rule (whi
h, like thosethat follow, may or may not involve the use of random numbers), and f(x(1))is 
omputed. Then x(2) 2 V is 
hosen a

ording to some rule that may takeinto a

ount x(1) and f(x(1)), after whi
h f(x(2)) is 
omputed. And so on:given x(1); : : : ; x(k) and f(x(1)); : : : ; f(x(k)), the algorithm 
hooses an x(k+1)using a rule that may take into a

ount all these previous values. The onlyother proviso that the basi
 NFL theorem requires is that no x 2 V is 
hosenmore than on
e.Imagine now that the �rst k f -values f(x(1)); : : : ; f(x(k)) have been re-
orded, and de�ne some event Ek solely in terms of these; the prototypeexample is to take Ek to be the event that at least one of the re
orded valuesf(x(1)); : : : ; f(x(k)) puts its 
orresponding x(i) in the target set T . The basi
NFL theorem now states thataveraged over all the jSjjV j di�erent possible fun
tion f , the prob-ability of the event Ek is the same for any 
hoi
e of algorithm.Among other things, this tells us that no algorithm is better at qui
kly �ndingsome x in the target set T than any other. In parti
ular, no algorithmis better than the �blind sear
h� algorithm that does the following: �rstpi
k x(1) uniformly at random from V (i.e., any element of V has the sameprobability 1=jV j of being 
hosen), then x(2) is 
hosen uniformly at randomamong the others (regardless of f(x(1))), and so on. If, as usual, V is a verybig set and the target set T is very rare, then the time taken to �nd somex 2 T will most likely be 
opiously large.Thus, the basi
 NFL theorem seems to provide us with a dishearteningmessage: no matter how 
lever we are, we 
annot expe
t to devise algorithmsfor some indi
ation of why the plural form �theorems� is used above.7



that are better than the hopelessly primitive and ine�
ient blind sear
halgorithm.In pra
ti
e, however, there is no reason to despair. The key propertyof the basi
 NFL theorem that allow us to 
ir
umvent its dark message, isthe averaging over all possible fun
tions f that is involved. In almost all
on
rete optimization problems, we have some prior information or at leastsome rough idea of how f varies a
ross V , and su
h information 
an beexploited in the 
onstru
tion of 
lever and e�
ient optimization algorithms,unfettered by any NFL theorem. The reason why the pessimisti
 messageof the basi
 NFL theorem no longer applies in su
h a situation is that itaverages over all possible f , and not just over the kinds of f that we knowto be more likely.The moral of Wolpert and Ma
ready (1997) is, thus, that we 
annotexpe
t to 
onstru
t e�
ient optimization or sear
h algorithms unless weexploit some prior knowledge of f .8 Further light on their result will be shedin Se
tion 5, but before that, I will explain how NFL is 
laimed to disproveDarwinian evolution.4 Dembski's appli
ation to evolutionWhat, the reader may now ask, 
ould possibly be the relevan
e of the theoryof algorithms to evolutionary biology? Quite a lot, in fa
t. In the wakeof the 
omputer revolution, various sear
h algorithms, in the spirit of thosedis
ussed in the previous se
tion, began to �ourish a
ross the s
ienti�
 lit-erature (and still do). Some resear
hers turned to evolutionary biology forinspiration, and devised turbo-versions of sear
h algorithms based on theprin
iples of reprodu
tion, mutation, and sele
tion. The analogies betweenon one hand these algorithms, and on the other hand the Darwinian me
h-anisms in biology, stared resear
hers in the eyes with in
reasing intensity,and it be
ame 
lear that viewing and analyzing biologi
al evolution as analgorithm (albeit one that heavily involves randomization and parallelism� two features that 
omputer s
ientists nowadays are quite good at dealingwith) 
ould be fruitful. See, e.g., Dennett (1995), who take this perspe
tivein a very 
onsistent manner.The algorithmi
 view on Darwinian evolution is also taken up by Dembski(2002a) in his attempt to refute it. In this se
tion, I will des
ribe his NFL-based argument in the 
ase of a single spe
ies evolving in a �xed environment.I will thus ignore for the moment the 
ompli
ations of time-dependent en-8It is this observation that prompted them to use the phrase No Free Lun
h.8



vironments or of several spe
ies 
oevolving. Dembski's argument, as well asmy refutation of it, extend in a straightforward manner to these situations;see Se
tion 8 for some brief remarks in this dire
tion.As a preparatory lemma to his main argument, Dembski notes that thekind of blind sear
h that was des
ribed in the previous se
tion 
annot possi-bly a

ount for the o

urren
e of what he 
alls spe
i�ed 
omplexity, su
h asourselves or other large animals and plants. This is absolutely 
orre
t. Thehuman genome is about 3 000 000 000 base pairs long. Let us now take V to
onsist of all DNA sequen
es up to that length, and the target set T to bethe set of all su
h DNA sequen
es giving rise to a 
reature exhibiting spe
-i�ed 
omplexity. The number of elements of V then be
omes something ofthe order 101 800 000 000 � a truly Vast number. (Following Dennett (1995),I write Vast for �Very mu
h larger than ASTronomi
al�.) The target set T isalso Vast, but a more important observation is that T so mu
h smaller thanV that if we pi
k an element at random (uniform distribution) from V , thenthe odds against getting an element of T are also Vast. The pre
ise Vast-nessof this quantity is very di�
ult to estimate (partly be
ause of the di�
ultyin pinpointing exa
tly what spe
i�ed 
omplexity is), but it seems reasonablysafe to state that jV j=jT j is somewhere between 101000 and 101 000 000 000.Assuming this, the probability that a random 
hoi
e from jV j hits the targetset jT j is between 10�1000 and 10�1 000 000 000, and the number of attemptsneeded by the blind sear
h algorithm before hitting T will most likely besomewhere between 101000 and 101 000 000 000. The age of the earth (or ofthe universe, for that matter) is nowhere near long enough to en
ompasssu
h a sear
h pro
edure � even if we take into a

ount the massive paral-lelism that evolution may exploit through sear
hing along a large number oflines of des
ent simultaneously. Thus, the infeasibility of the blind sear
halgorithm is settled.Equipped with this lemma, the basi
 NFL theorem does the rest, a

ord-ing to Dembski. Of 
ourse, no one 
laims that Darwinian evolution pro
eedsvia the above blind sear
h algorithm. The basi
 NFL theorem, however,tells us that no other algorithm 
an expe
t to do better, and hen
e Dar-winian evolution 
annot produ
e spe
i�ed 
omplexity. That is, unless eitherthe algorithm is set up using prior knowledge of the fun
tion f (and hereit is in
onsequential whether this fun
tion represents some �tness quantity,or some more general phenotype aspe
t) to help it rea
h the target set T ,or 
onversely f is set up to �t the algorithm. In either 
ase, su
h priorknowledge requires (still a

ording to Dembski) an intelligent designer.Of 
ourse, this argument is elaborated in mu
h more detail in No FreeLun
h, and perhaps Dembski upon reading this will feel that the last two9



senten
es of the previous paragraph do not give 
omplete justi
e to his lineof reasoning. The rough des
ription I have given of Dembski's argument inthis se
tion is nevertheless su�
ient to make it 
lear that the arguments ofthe next two se
tions refute it irrepairably.5 A probabilisti
 interpretation of NFLThe basi
 NFL theorem involves an average over all possible fun
tions f .Whenever an average or a weighted average appears in a mathemati
al argu-ment, one may stop and 
onsider whether the averaging has some probabilis-ti
 interpretation (as it usually does), and if so, how the impli
it probabilisti
model might be interpreted; this 
an often be quite illuminating.In the setting of Se
tion 3, the averaging amounts to pi
king one of thejSjjV j di�erent possible fun
tions f : V ! S at random a

ording to uniformdistribution, meaning that ea
h one is pi
ked with probability 1=jSjjV j. Anequivalent probabilisti
 way of formulating the basi
 NFL theorem as appliedto the sear
h problem of �nding some x 2 V belonging to the target set T ,is thus as follows: the distribution of the time taken for a sear
h algorithmA to �nd an element of T is � provided that the fun
tion f is generated bya random me
hanism that pi
ks one of the jSjjV j possible realizations withequal probability � the same regardless of the 
hoi
e of A.It is worthwile to re�e
t over what it means that f is 
hosen a

ordingto uniform distribution on SV . I 
laim that9
hoosing a random fun
tion f : V ! S a

ording touniform distribution on SV , is equivalent to 
hoosing,for ea
h x 2 V independently, f(x) a

ording touniform distribution on S. (2)This is a well-known fa
t in probability theory, and really nothing morethan a straightforward extension of the standard �rst-year textbook exam-ple 
on
erning the roll of two di
e: the statement that all 36 out
omes(1; 1); (1; 2); : : : ; (1; 6); (2; 1); : : : ; (6; 6) have the same probability, is equiva-lent to the the statement that the two di
e are independent and that thedistribution for ea
h of them is uniform on f1; 2; : : : ; 6g.For 
ompleteness and for the reader's 
onvenien
e, let me neverthe-less give the expli
it argument for (2): Suppose that V has m elementsx1; : : : ; xm, and that S has l elements s1; : : : ; sl. Suppose furthermore that9Here and thoughout, independen
e means statisti
al independen
e.10



for ea
h x 2 V independently, we 
hoose f(x) a

ording to uniform dis-tribution on S. To prove the 
laim (2), we need to show that for any(s1; : : : ; sm) 2 Sm the formula10P((f(x1); : : : ; f(xm)) = (s1; : : : ; sm)) = 1=lm (3)holds. Now, the independen
e assumption tells us that the left-hand-side of(3) 
an be fa
torized intoP(f(x1) = s1)� � � � �P(f(xm) = sm) : (4)Sin
e ea
h of the fa
tors in (4) equals 1=l, the identity (3) is veri�ed, andthe 
laim (2) established.Now that we are equipped with the 
hara
terization (2), the basi
 NFLtheorem be
omes very easy to understand (and to prove). To this end,imagine an algorithm A as in Se
tion 3, that after k steps has visitedx(1); : : : ; x(k) 2 V , and observed f(x(1)); : : : ; f(x(k)).11 Now, whi
heverx(k+1) the algorithm 
hooses to visit next, the 
onditional distribution ofwhat it will �nd there (given x(1); : : : ; x(k) and f(x(1)); : : : ; f(x(k))) is, dueto the independen
e property in (2), uniform on S. Hen
e, the rule for howto sele
t x(k+1) does not in�uen
e what we see there, and sin
e k was arbi-trary it follows that f(x(1)); f(x(2)); : : : form a sequen
e of independent andidenti
ally distributed (i.i.d.) random variables whose 
ommon distributionis uniform on S. Sin
e this 
on
lusion is rea
hed regardless of the detailsof A, it follows that the 
hoi
e of A has no in�uen
e on the distribution ofthe sequen
e f(x(1)); f(x(2)); : : :. And this is pre
isely what the basi
 NLFtheorem says.In fa
t, not only does the observation (2) provide us with an almosttrivial proof of the basi
 NFL theorem � it also suggests some immediategeneralizations. Indeed, the argument we just indi
ated uses that the f(x)'sare i.i.d., but not that their 
ommon distribution is uniform on S. Hen
e, theassertion of the basi
 NFL theorem holds under this weaker i.i.d. assumption.And by the same token, the assumption 
an be weakened even further tothat of so-
alled ex
hangeability, whi
h means that the joint distribution off(x1); : : : ; f(xm) equals the joint distribution of any permutation of them(see, e.g., Kallenberg, 2005). With this latter generality in mind, the basi
NFL theorem is not mu
h more than a fan
y (and more general) way of10P is short for �the probability of�.11The notation is worth stressing: x(i) denotes the i:th element visited by the algorithm,whereas xi denotes the i:th element in some �xed but arbitrary enumeration of V .11



phrasing the following fa
t: if we spread a well-shu�ed de
k of 
ards fa
e-down over a table and wish to �nd the a
e of spades by turning over as few
ards as possible, then no sequential pro
edure for doing so is better thanany other.126 Dembski's errorLet us now examine Dembski's use of NFL in the light of the probabilisti
interpretation given in Se
tion 5. For 
on
reteness, take, as in Se
tion 4,V to be the set of all DNA sequen
es of length up to 3 000 000 000. Also,take f : V ! S to be some measure of �tness, so that for ea
h x 2 V , f(x)des
ribes the �tness of an organism with DNA sequen
e x. Of 
ourse, mostsu
h DNA sequen
es do not 
orrespond to an organism at all, so for su
hx we take f(x) to be the minimum of the set S of possible values � say,f(x) = 0.Furthermore, let us equip V with a link stru
ture as in Se
tion 3. Spe
if-i
ally, let us de
lare a link between two DNA sequen
es x; y 2 V pre
iselywhen one of them 
an be obtained from the other either by 
hanging a singlenu
leotide pair, by inserting one, or by deleting one. This 
hoi
e of linkstru
ture is made in order that a move from an x 2 V to a neighbor y 2 V
orresponds to a mutation of the simplest possible (single-nu
leotide) kind.13Thus, the reprodu
tion-mutation-sele
tion me
hanism of Darwinian evolu-tion 
an be seen as one variant or another of the lo
al sear
h algorithmsin Se
tion 3, with the given link stru
ture. Although we do not know thepre
ise details of this algorithm, let us 
all it A.Dembski's (2002a) appli
ation of NFL now says thatif the �tness fun
tion f is generated at random a

ordingto uniform distribution among all the jSjjV j possibilities, (5)then the Darwinian algorithm A 
annot be expe
ted to fare any better than12This obvious 
ard-de
k example summarizes pretty mu
h all there is to the basi
 NFLtheorem (or any of its variants). In spite of this, Dembski is not the only one who has triedto 
reate a hype around the result. Wolpert and Ma
ready themselves (1997) try theirbest to make their result sound like some kind of breakthrough. And, with astonishingla
k of perspe
tive, Ho and Pepyne (2002) 
ompare the basi
 NFL theorem to Gödel'sin
ompleteness theorem, modestly adding that the former is �far less 
elebrated and mu
hmore re
ent�.13This ignores inversions, gene dupli
ations, and other kinds of ma
romutations. It alsoignores the re
ombination me
hanisms of sexual reprodu
tion. Still, it provides a goodenough model of evolution to make my point 
lear.12



blind sear
h, and will therefore almost 
ertainly fail to produ
e spe
i�ed
omplexity (the odds against it su
eeding to do so are Vast).Phrased in this way, the result is pretty mu
h 
orre
t.14 Its relevan
e toevolution depends, however, on the extent to whi
h (5) re�e
ts propertiesof the true �tness lands
ape. If (5) is shown (as I am about to do) to beway o� in this regard, then we 
an 
on
lude that NFL has nothing to o�erevolutionary biology. From that, it would be tempting to 
on
lude thatDembski's entire argument falls apart, but that is (only slightly) premature,as he has one more 
ard up his sleeve. Namely, after having invoked NFL,Dembski's line of reasoning bran
hes into two parts: he 
laims that either(a) assumption (5) is an a

urate model the real �tness lands
ape, in whi
h
ase Darwinian evolution by natural sele
tion 
an be ruled out,or(b) assumption (5) fails to be an a

urate model the real �tness lands
apef , in whi
h 
ase an intelligent designer must have been involved insetting up f .Either way, Darwinism loses and Dembski wins.What I will do in the remainder of this se
tion is �rst to deal with (a) byshowing (5) to be a totally unrealisti
 model for the true �tness lands
ape f ,and then to deal with (b) by showing that the 
on
lusion about intelligentdesign is unwarranted. Clearly, on
e those two things are taken 
are of, theanti-Darwinian for
e of Dembski's argument is redu
ed to zero.Of 
ourse, the assumption (5) does not have to be a 
ompletely a

uratedes
ription of reality in order for the 
on
lusion in (a) to deserve taking seri-ously. A minimum requirement, however, is that the a
tual �tness lands
apehas to have at least some rough resemblen
e with what one 
ould expe
t toarise from a model based on (5). Alas, it does not. I will now show thatany reasonably realisti
 model for the a
tual �tness lands
ape will produ
esomething that is very, very di�erent from what (5) produ
es.From the 
hara
terization (2) that we established in Se
tion 5, we seethat under assumption (5), the �tnesses of any two DNA sequen
es (or any
olle
tion of them, for that matter) are independent � a 
omplete disarray.On the other hand, any realisti
 model for a �tness lands
ape will have toexhibit a 
onsiderable amount of what I would like to 
all 
lustering, meaningthat similar DNA sequen
es will tend to produ
e similar �tness values mu
h14This statement is still somewhat 
haritable to Dembski, as it ignores his 
onfusion
on
erning what spe
i�ed 
omplexity a
tually means (
f. Footnote 5).13



more often than 
ould be expe
ted under model (5). In parti
ular, if we takethe genome of a very �t 
reature � say, you or me, whi
hever you prefer � and
hange a single nu
leotide somewhere along the DNA, then we expe
t withhigh probability that this will still produ
e an organism with high �tness. In
ontrast, under assumption (5), 
hanging a single nu
leotide is just as badas putting together a new genome from s
rat
h and 
ompletely at random,something that we have already noted will with overwhelming probabilityprodu
e not just a slightly less �t 
reature, but no 
reature at all. (If thiswere true, then, given the human mutation rate, we would all be dead.)Thus, we 
an safely rule out (5) in favor of �tness lands
apes exhibiting
lustering, and bran
h (a) of Dembski's argument is thereby dismantled.Before moving on to (b), let me just note that the distin
tion between
lustered �tness lands
apes and those produ
ed under model assumption (5)is a very important one, for the following reason. The Darwinian algorithmA introdu
ed above is some variant or other of lo
al sear
h in V with thelink stru
ture we spe
i�ed. Now, what makes hill-
limbers and other lo
alsear
h algorithms work at all is very mu
h the amount of 
lustering in f .The reason why it makes sense for a lo
al sear
h algorithm to move to aneighbor x with a high value of f(x) is not so mu
h this high value itself,as the prospe
t of �nding some even higher value among the neighbors of x,and so on. In �tness lands
apes without 
lustering, su
h as those produ
edby (5), no su
h gain from moving to elements with large values of x 
an beexpe
ted.15In bran
h (b) of his argument, Dembski 
laims that if the real �tnesslands
ape f does not look like what one would expe
t to arise under theuniform distribution model (5), then it has to be the produ
t of an intelligentdesigner. That is su
h an in
redibly silly inferen
e that I feel a bit embarrasedabout spending ink on refuting it, but sin
e it seems so 
entral to Dembski'sargument, let me still try and say a few words about it.First, there is absolutely no a priori reason to expe
t that the �blindfor
es of nature� should produ
e a �tness lands
ape distributed a

ordingto (5). Anyone reasonably experien
ed in probabilisti
 modelling in s
ien
eknows that su
h uniform distributions have no privileged status over othermodels as realisti
 des
riptions of what the laws of nature produ
e, and thatin fa
t only rarely do they turn out to provide good models for physi
al orbiologi
al systems.15This is not to say that 
lustering in itself guarantees that the Darwinian algorithmA 
an �nd its way up the high mountain peaks in the �tness lands
ape. But if Dembskiwishes to argue that A 
annot do this, then he needs to 
onsider the real �tness lands
ape(or, more likely, realisti
 models thereof) rather than the utterly irrelevant model (5).14



Se
ond, let us 
onsider spe
i�
ally the phenomenon of 
lustering in the�tness lands
ape f . If we are to believe the reasoning in bran
h (b) ofDembski's argument, 
lustering in f is su
h a mysterious phenomenon thatit 
an only be explained as the work of an intelligent designer. But thereis in fa
t nothing mysterious about it at all. Rather, it 
an be seen as a
onsequen
e of the very wide-spread phenomenon in s
ien
e (as well as ineveryday life), that �like 
auses often tend to have like 
onsequen
es�.16 Thisphenomenon itself is, as every s
ien
e student has seen plently of examplesof, the kind of thing that me
hanisti
 models of nature are very good atexplaining, thus removing any need to invoke an intelligent designer.To be a little more 
on
rete, 
onsider one parti
ular aspe
t of the strong
lustering tenden
y of the a
tual �tness lands
ape, namely that most single-nu
leotide mutations on humans lead to (as far as we 
an tell) zero 
hange in�tness. Biologists attribute this to the fa
t that most parts of human DNAdoes not 
ode for anything at all (something that 
an in turn be explained inbio
hemi
al terms, and so on down the usual redu
tionisti
 path). Dembski,instead attributes it (if we are to take his bran
h (b) argument seriously) toan intelligent designer. I leave it as an exer
ise to the reader to determinewhi
h of these two explanations belongs to the realm of s
ien
e.7 Another look at averagingAlthough the above more or less 
on
ludes the argument I wanted to makein this paper, let me still 
onsider one obje
tion that a defender of the Dem-bskian argument migh put forth at this stage. Namely, that the averagingthat takes pla
e in the basi
 NFL theorem is over all �tness lands
apes �not just the disordered ones but also those exhibiting 
lustering � and thatin the absen
e of pre
ise knowledge of f the most fair thing to do is to takeequal a

ount of all possible �tness lands
apes.The �aw in this 
ounterargument is that although all possible �tnesslands
apes are indeed taken into a

ount in NFL, the 
lustered ones re
eivesu
h a small fra
tion of the probability distribution in (5) that for all pra
ti-
al purposes it is zero. To illustrate just how biased the model (5) is against
lustered �tness lands
apes and in favor of disordered ones, 
onsider the fol-lowing thought experiment. Suppose that we have sampled 2000 elementsx1; y1; x2; y2; : : : ; x1000; y1000 from V , in su
h a way that for ea
h i, xi andyi are neighbors, but ea
h su
h pair is very far from all others. Suppose16A similar remark is made by Wein (2002a). Dembski (2002b) 
hooses to dismiss it as�bogus�. The reader may judge. 15



furthermore that we have evaluated f at all these points, and found that forea
h pair (xi; yi), the di�eren
e jf(xi) � f(yi)j is very small, while on theother hand most of the jf(xi) � f(xj)j di�eren
es between elements fromdi�erent pairs are mu
h larger. This would 
onstitute strong s
ienti�
 evi-den
e that the �tness lands
ape generally exhibits a good deal of 
lustering,but Dembski's model (5) does not allow su
h a 
on
lusion: the independen
eproperty in (2) implies that the 
onditional distribution of the rest of the�tness lands
ape given these observations, is just as disordered as (5) pre-di
ted without them. This shows that model (5) takes no reasonable a

ountof the possibility of a 
lustered �tness lands
ape.178 Remarks on extensionsOther than Wein, one of the most ardent publi
 
riti
s of Dembski's No FreeLun
h is the well-known evolutionary biologist H. Allen Orr (2002, 2005).And although Orr deserves kudos for these mostly pertinent 
ontributions,his 
riti
ism does fail to identify the preponderant short
oming of the NFLappli
ation outlined in Se
tion 6, and some of his more mathemati
al 
on-
erns are un
onvin
ing. In parti
ular, in Orr (2002), it is 
laimed that thethe NFL arguement does not apply when the fun
tion f 
hanges over time(
orresponding to an evolving �tness lands
ape). But in fa
t, Wolpert andMa
ready (1997) have a variant of the basi
 NFL theorem for pre
isely su
h
ases, and this variant 
an be plugged into Dembski's argument to givea evolving-�tness-lands
ape analog of his 
onstant-�tness-lands
ape result.Su
h a modi�ed Dembski argument is vaguely hinted at in No Free Lun
h,but the brutal truth is that it fails to be relevant to biologi
al evolution, forvery mu
h the same reasons as those outlined in Se
tion 6.In Orr (2005), it is instead 
laimed that NFL does not apply to thesituation of two or more 
oevolving spe
ies.18 But again, although I have notbeen able to �nd in the literature an NFL theorem adapted to this situation,it is easy to devise one19, and plug it into Dembski's argument. But yet17It would be an interesting idea to try to devise a prior distribution for f that takesinto a

ount �all possible models and behaviors� in a better way than does (5). Mu
hwork has been made in theoreti
al statisti
s to 
ome up with a universal s
heme for su
hpriors (see, e.g., Rissanen, 1983), but the pra
ti
al and theoreti
al obsta
les to this arelarge and perhaps even unsurmountable.18The 
laim seems to originate from Wolpert (2002).19This 
an be a
hieved by applying the probabilisti
 reasoning in Se
tion 5 to uniformdistribution on the set of all fun
tions f : V �f0; 1gV ! S, where the f0; 1gV -valued ve
torindi
ates whi
h elements of V (i.e., whi
h DNA sequen
es) are o

upied by a spe
ies, and16



again, the story is the same as in the evolving-�tness-lands
ape setting: thearguments in Se
tion 6 show that also this extension is entirely devoid ofrelevan
e to evolution.A
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