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Intelligent Design and the NFL Theorems:Debunking DembskiOlle Häggström�September 8, 2005AbstratAnother look is taken at the model assumptions involved in WilliamDembski's (2002a) use of the NFL theorems from optimization theoryto disprove the Darwinian theory of evolution by natural seletion, andhis argument is shown to lak any relevane whatsoever to evolutionarybiology.1 Mathematis for good and for badSiene, from Newton and onwards, owes muh of its suess to mathemat-is. Physis in partiular is so permeated by mathematial modelling andmethodology so as to beome almost inoneivable without it, a situationthat has even triggered some thinkers to raise the metaphysial question ofwhy nature is so amenable to mathematial study (Wigner, 1960; Omnès,2005). Biology is urrently undergoing a mathematization whih may ormay not turn out as far reahing as that of physis. Looking further a�eld,we may note the prevalene of mathematial formalism in the soial sienes(partiularly in eonomis) where, however, its suess has so far been farless overwhelming than in the natural sienes.Unfortunately, not all uses of mathematis in other disiplines are good,and some of them are outright bad. Overall, most researhers have little or nouniversity-level mathematial training, and are easily intimidated by thoseolleagues who master � or pretend to master � the language of mathematis.Members of the latter group often manage to gain aeptane for their poor�Professor of mathematial statistis, Chalmers University of Tehnology, Sweden,http://www.math.halmers.se/�olleh/ 1



mathematial appliations, unhallenged by a researh ommunity that isunable to penetrate their formulae.This leads, of ourse, to bad researh. Besides that, it has had � if I mayspeulate a little � another undesirable onsequene: it seems likely thatthe extensive (ab)use of mathematis in various �elds has ontributed toan inferiority omplex that triggered poststruturalists and postmoderniststo invade muh of humanities and soial sienes with a jargon even moreimpenetrable than that of mathematis, but to a atastrophi extent lakingin meaningful ontent, as exposed in the Sokal Hoax (Sokal, 1996; Sokal andBrimont, 1998).In this paper, I will draw attention to a partiularly bad appliationof mathematis in a ontext of muh urrent interest in Amerian politis,namely the brand of anti-Darwinian ritiism known as Intelligent Design.Spei�ally, what I have in mind is William Dembski's (2002a) use of theso-alled NFL (No Free Lunh) theorems in optimization theory to �refute�evolution by natural seletion.1 After giving some bakground on the In-telligent Design movement and the NFL theorems, respetively, in Setions2 and 3, I will outline Dembski's use of the latter in Setion 4. Then, inSetions 5, 6 and 7, I will demonstrate the error in Dembski's argument,followed in Setion 8 by some remarks on possible extensions.Dembski's No Free Lunh (2002a) has been amply debunked elsewhere;see, e.g., Orr (2002), Shallit (2002) and espeially Rihard Wein's (2002a)2devastating atalogue of errors and pseudosienti� reasoning on Dembski'spart. The role of the present paper is to o�er a mathematiian's aountof what the NFL theorems atually say, and why Dembski's use of themis so utterly wrong. The entral argument in Setion 6 onerning �tnesslandsapes is essentially the same as one put forth by Wein (2002a), althoughhere I will onsider Dembski's impliit model assumption about these inmore detail. Along the way, it will beome lear that the NFL theoremsonstitute a orret but banal mathematial observation whose potentialfor saying anything interesting about evolutionary biology is, realistiallyspeaking, zero.I feel that I must warn the reader from the outset that no deep resultswhatsoever will be onveyed in this paper. In fat, muh to the ontrary,fats and results that have been desribed as profound by others will be1More reently, Dembski (2005) provides an additional smokesreen of fany-lookingbut irrelevant mathematis that he laims supports his NFL-based argument against Dar-winism. I will refrain from disussing that paper here, as it makes no di�erene to thearguments of the present paper or to the �nal verdit on Dembski's approah.2See also the subsequent exhange in Dembski (2002b, 2002) and Wein (2002b).2



shown to be fairly trivial.2 Intelligent DesignChristian fundamentalists have long sine given up their �ght against he-lioentrism. In ontrast, Darwin's theory of natural seletion is still underattak. In the United States, anti-Darwinians have gained onsiderable po-litial suess, with many loal and state shool boards having invoked reg-ulations to the extent that Darwin's theory must be taught as just one ofseveral theories about the origin of speies � a poliy that has even beenendorsed by President George W. Bush.3Opponents of Darwinism have, however, found that Biblial literalismand young-earth reationism does not always work well in ourtrooms andin rational disussion. Therefore, these rude versions of reationism havein reent years to a large extent been replaed by Intelligent Design as theproposed main alternative to Darwinism. Proponents of Intelligent Designaept muh of modern biology and natural history, insisting only that om-plex reatures suh has ourselves annot ome about �bottom-up� in a uni-verse governed just by natural laws, but bear unmistakable signs of beingthe work of an intelligent agent. As a kind of tatial retreat, they generallykeep a low pro�le onerning the identity of this agent � God, extraterrestrialaliens, or something else.4Here, I will only give a very brief reolletion of some of the main featuresof Intelligent Design. For an exellent ritial survey, see Crews (2001), orsee Orr (2005) for a more reent disussion.Intelligent Design is being promoted as a siene, but as suh it has someobvious di�ulties. For instane, the simple question �who designed thedesigner?� shows that Intelligent Design annot hope to solve the problemof emergene of omplexity and life, but only move it one step away. Andthose of us who take seriously Popper's idea of the entral role played byfalsi�ation may ask: how in the world ould one ever falsify IntelligentDesign? I will ignore these di�ulties and instead fous on key argumentsput forth by the two leading thinkers of the Intelligent Design movement:Mihael Behe and William Dembski.3See Dawkins and Coyne (2005) for an eloquent omment on Bush's endorsement andwhat is at stake.4Or ould it be that we live in sombody else's omputer simulation, à la The Matrix?This mind-blowing senario is not only a reurrent theme in �tion � it has also beendefended seriously; see, e.g., Bostrom (2003).3



Behe's Darwin's Blak Box (1996) is by far the most well-known ontri-bution to Intelligent Design. The entral onept in Behe's book is that ofirreduible omplexity, neatly illustrated by a mousetrap onsisting, say, of�ve parts (platform, spring, hammer, ath, and hold-down bar). Removingany one of these parts will not result in a devie that is slightly worse atathing mie ompared to a omplete moustrap, but rather something thatdoes not ath mie at all. Likewise, Behe argues, many biologial systemshave the same property of indispensability of eah of its omponents. Andhow ould suh a system have evolved along a Darwinian path of gradualimprovement? This seems impossible, beause up until the last of the om-ponents is formed the others are worthless, removing all seletion pressurein the diretion of forming the system.The irreduible omplexity argument goes bak, of ourse, further thanto Behe: lassial ases that have been brought up (and aounted for byDarwinians) are the evolutions of eyes and of wings. Behe's main novelty isto fous not on the organi level but rather on the mirosopi mahineryinside ells.Behe's work has, however, been sharply ritiized � see, e.g., Miller(1996), Dennett (1997), and Orr (2002) � and it is lear from these ritiquesthat Behe takes insu�ient aount of a variety of mehanisms inludingexaptation (i.e., when a system �rst evolves for some partiular funtion butis later exploited by the organism for a di�erent funtion) and gene dupli-ation. His ase is therefore not nearly as strong as he laims it to be inDarwin's Blak Box.The so-alled �argument from design� is old and straightforward, but verypersuasive: Of ourse the blind fores of nature annot produe omplexreatures suh as ourselves � some kind of divine reator has to be involved.The argument su�ers, however, from an obvious lak of preision. In hisbook The Design Inferene (1998), Dembski sets out to remedy this (at leastpartially) by making preise the meaning of �omplex� through his notion ofspei�ed omplexity. It is, however, very di�ult for the reader of Dembski'swork to understand preisely what spei�ed omplexity means.5 In any ase,evolutionary biologists have � using theoretial arguments supplemented byomputer simulations � amply demonstrated that the blind fores of naturean in fat, via the mehanism of natural seletion, produe objets thatexhibit any reasonable biologial notion of omplexity. For Dembski andothers who �nd themselves unable to aept this onlusion, I really have no5A disussion of how inonsistently Dembski uses his own onept an be found inWein (2002a). 4



better advie than to diret them to the modern lassis in this �eld, suhas Dawkins (1986, 1989) and Dennett (1995).Of ourse, Dembski still has the right to stik to his view, and in hisfollow-up book No Free Lunh (2002a) he laims to give mathematial jus-ti�ation for �why spei�ed omplexity annot be purhased without intelli-gene� by invoking the NFL theorems. These will be the topi of the nextsetion.3 Optimization and the NFL theoremsIn ombinatorial optimization, one is given a �nite set V and a funtionf : V ! R whih to eah x 2 V assigns a real number.6 The task is to �ndan element x 2 V that maximizes f(x). At �rst sight, this may seem like atrivial task: sine V is �nite, all we need to do is simply to go through allx 2 V systematially, alulate f(x) for eah of them, while keeping trak ofthe maximum seen so far.The reason why this �brute fore� approah does not su�e is that Vis usually so large that time onstraints make it infeasible. Typially, thenumber of elements of V grows exponentially (or faster) in some parametern that desribes the size of the problem in some natural way. For instane,V ould be the set of binary strings of length n, or it ould be the numberof permutations of n objets; this gives 2n resp. n! elements in V , in bothases making the brute fore method out of the question even for moderatelysized problems suh as n = 100.Other, less time-onsuming, algorithms are therefore needed. A ommonapproah involves so-alled loal searh in V . This neessitates the intro-dution of some �geographi� struture in V , whih an be aomplished bydelaring the existene of links between some (but not all) pairs of elementsx; y 2 V . The set of all y that are linked to a given x 2 V is alled the neigh-borhood of x. There is muh freedom in setting up the links, but it needsto be done in suh a way that, on one hand, eah x has a neighborhoodof managable size, and, on the other hand, the network of links beomes�well onneted� (in some sense). In spei� examples, natural link stru-tures often more or less suggest themselves: when V is the set of length-nbinary strings, we may delare links preisely between those x; y 2 V thatdi�er only in one bit, or when V is the set of permutations of n objets wemay deide to delare a link between two permutations preisely when oneof them an arise from the other by interhange of just two of the objets.6We write, following onvention, R for the set of all real numbers.5



Given the link struture, the basi loal searh algorithm proeeds asfollows. Start at some arbitrary x 2 V , ompute f at x and at all of itsneighbors, and move to the neighbor y whose f -value is the largest (unlessthey are all smaller than f(x) in whih ase we stay at x). Then repeat theproess, moving to the vertex z that has the largest f -value among y and itsneighbors. This goes on until we get stuk.This algorithm is sometimes alled the hill-limber, as it an be pituredas a hiker in a hilly landsape, always going in the diretion of the steepestlimb, until the top of a hill is reahed. Suh hill-limbing sometimes workswell, but a huge drawbak is that the algorithm may get stuk on a relativelymodest hill without notiing the huge mountain peak further away.To deal with this drawbak, a variety of modi�ations of the hill-limberalgorithm have been proposed and are widely used; see, e.g., Aarts andLenstra (1997). These modi�ations may for instane inlude randomizingthe walk in suh a way as to allow oasional downhill steps (as in the famoussimulated annealing algorithm) or permitting oasional �long jumps� in thelandsape. Many of these are quite sophistiated.These algorithms are not only used for the pure optimization problemthat we have foused on so far, but also � in fat more often � for thepurpose of loating some large (but not neessarily the largest) value of f .Spei�ally, the goal may be to �nd and x 2 V suh that f(x) exeeds somegiven level t. The algorithm then proeeds until it enounters an elementof the set T onsisting of all x 2 V satisfying f(x) � t. The problem of�nding some x 2 T should really be alled a searh problem rather than anoptimization problem. We all T the target set, and it an be written inompat mathematial notation asT = fx 2 V : f(x) � tg : (1)More generally, we may not always be in a situation where �the larger valueof f , the better�, so it makes sense to allow for a target set T that is not ne-essarily of the form (1), but may be an arbitrary subset of V . In interestingsearh problems, T is typially very rare, in the sense that only a very smallfration of all elements x 2 V are also in T .This sets the stage for the NFL theorems of Wolpert and Maready(1997), who showed that for these optimization and searh problems, noalgorithm is better than any other, in a ertain average sense. This maysound very surprising, so let me desribe in more detail what the basi NFLtheorem atually says.77Most of the disussion will fous on this partiular NFL theorem, but see Setion 86



Wolpert and Maready restrit to the setting where the funtion f isonly allowed to take values in some presribed �nite subset S of R. Thisis natural beause in a omputer implementation everything is neessarilydisrete.Given V and S, how many di�erent ways are there to de�ne a funtionf : V ! S? Writing jV j and jSj for the number of elements of V andS, respetively, there are for any partiular x 2 V preisely jSj possiblehoies of f(x). Multiplying over all elements of V tells us that there arejSjjV j di�erent hoies of funtions f : V ! S (usually a stupendously largenumbers, sine already jV j is typially very large). The basi NFL theoremonerns an average over all these funtions.The algorithms onsidered by Wolpert and Maready are of the followingform. First, an x(1) 2 V is hosen aording to some rule (whih, like thosethat follow, may or may not involve the use of random numbers), and f(x(1))is omputed. Then x(2) 2 V is hosen aording to some rule that may takeinto aount x(1) and f(x(1)), after whih f(x(2)) is omputed. And so on:given x(1); : : : ; x(k) and f(x(1)); : : : ; f(x(k)), the algorithm hooses an x(k+1)using a rule that may take into aount all these previous values. The onlyother proviso that the basi NFL theorem requires is that no x 2 V is hosenmore than one.Imagine now that the �rst k f -values f(x(1)); : : : ; f(x(k)) have been re-orded, and de�ne some event Ek solely in terms of these; the prototypeexample is to take Ek to be the event that at least one of the reorded valuesf(x(1)); : : : ; f(x(k)) puts its orresponding x(i) in the target set T . The basiNFL theorem now states thataveraged over all the jSjjV j di�erent possible funtion f , the prob-ability of the event Ek is the same for any hoie of algorithm.Among other things, this tells us that no algorithm is better at quikly �ndingsome x in the target set T than any other. In partiular, no algorithmis better than the �blind searh� algorithm that does the following: �rstpik x(1) uniformly at random from V (i.e., any element of V has the sameprobability 1=jV j of being hosen), then x(2) is hosen uniformly at randomamong the others (regardless of f(x(1))), and so on. If, as usual, V is a verybig set and the target set T is very rare, then the time taken to �nd somex 2 T will most likely be opiously large.Thus, the basi NFL theorem seems to provide us with a dishearteningmessage: no matter how lever we are, we annot expet to devise algorithmsfor some indiation of why the plural form �theorems� is used above.7



that are better than the hopelessly primitive and ine�ient blind searhalgorithm.In pratie, however, there is no reason to despair. The key propertyof the basi NFL theorem that allow us to irumvent its dark message, isthe averaging over all possible funtions f that is involved. In almost allonrete optimization problems, we have some prior information or at leastsome rough idea of how f varies aross V , and suh information an beexploited in the onstrution of lever and e�ient optimization algorithms,unfettered by any NFL theorem. The reason why the pessimisti messageof the basi NFL theorem no longer applies in suh a situation is that itaverages over all possible f , and not just over the kinds of f that we knowto be more likely.The moral of Wolpert and Maready (1997) is, thus, that we annotexpet to onstrut e�ient optimization or searh algorithms unless weexploit some prior knowledge of f .8 Further light on their result will be shedin Setion 5, but before that, I will explain how NFL is laimed to disproveDarwinian evolution.4 Dembski's appliation to evolutionWhat, the reader may now ask, ould possibly be the relevane of the theoryof algorithms to evolutionary biology? Quite a lot, in fat. In the wakeof the omputer revolution, various searh algorithms, in the spirit of thosedisussed in the previous setion, began to �ourish aross the sienti� lit-erature (and still do). Some researhers turned to evolutionary biology forinspiration, and devised turbo-versions of searh algorithms based on thepriniples of reprodution, mutation, and seletion. The analogies betweenon one hand these algorithms, and on the other hand the Darwinian meh-anisms in biology, stared researhers in the eyes with inreasing intensity,and it beame lear that viewing and analyzing biologial evolution as analgorithm (albeit one that heavily involves randomization and parallelism� two features that omputer sientists nowadays are quite good at dealingwith) ould be fruitful. See, e.g., Dennett (1995), who take this perspetivein a very onsistent manner.The algorithmi view on Darwinian evolution is also taken up by Dembski(2002a) in his attempt to refute it. In this setion, I will desribe his NFL-based argument in the ase of a single speies evolving in a �xed environment.I will thus ignore for the moment the ompliations of time-dependent en-8It is this observation that prompted them to use the phrase No Free Lunh.8



vironments or of several speies oevolving. Dembski's argument, as well asmy refutation of it, extend in a straightforward manner to these situations;see Setion 8 for some brief remarks in this diretion.As a preparatory lemma to his main argument, Dembski notes that thekind of blind searh that was desribed in the previous setion annot possi-bly aount for the ourrene of what he alls spei�ed omplexity, suh asourselves or other large animals and plants. This is absolutely orret. Thehuman genome is about 3 000 000 000 base pairs long. Let us now take V toonsist of all DNA sequenes up to that length, and the target set T to bethe set of all suh DNA sequenes giving rise to a reature exhibiting spe-i�ed omplexity. The number of elements of V then beomes something ofthe order 101 800 000 000 � a truly Vast number. (Following Dennett (1995),I write Vast for �Very muh larger than ASTronomial�.) The target set T isalso Vast, but a more important observation is that T so muh smaller thanV that if we pik an element at random (uniform distribution) from V , thenthe odds against getting an element of T are also Vast. The preise Vast-nessof this quantity is very di�ult to estimate (partly beause of the di�ultyin pinpointing exatly what spei�ed omplexity is), but it seems reasonablysafe to state that jV j=jT j is somewhere between 101000 and 101 000 000 000.Assuming this, the probability that a random hoie from jV j hits the targetset jT j is between 10�1000 and 10�1 000 000 000, and the number of attemptsneeded by the blind searh algorithm before hitting T will most likely besomewhere between 101000 and 101 000 000 000. The age of the earth (or ofthe universe, for that matter) is nowhere near long enough to enompasssuh a searh proedure � even if we take into aount the massive paral-lelism that evolution may exploit through searhing along a large number oflines of desent simultaneously. Thus, the infeasibility of the blind searhalgorithm is settled.Equipped with this lemma, the basi NFL theorem does the rest, aord-ing to Dembski. Of ourse, no one laims that Darwinian evolution proeedsvia the above blind searh algorithm. The basi NFL theorem, however,tells us that no other algorithm an expet to do better, and hene Dar-winian evolution annot produe spei�ed omplexity. That is, unless eitherthe algorithm is set up using prior knowledge of the funtion f (and hereit is inonsequential whether this funtion represents some �tness quantity,or some more general phenotype aspet) to help it reah the target set T ,or onversely f is set up to �t the algorithm. In either ase, suh priorknowledge requires (still aording to Dembski) an intelligent designer.Of ourse, this argument is elaborated in muh more detail in No FreeLunh, and perhaps Dembski upon reading this will feel that the last two9



sentenes of the previous paragraph do not give omplete justie to his lineof reasoning. The rough desription I have given of Dembski's argument inthis setion is nevertheless su�ient to make it lear that the arguments ofthe next two setions refute it irrepairably.5 A probabilisti interpretation of NFLThe basi NFL theorem involves an average over all possible funtions f .Whenever an average or a weighted average appears in a mathematial argu-ment, one may stop and onsider whether the averaging has some probabilis-ti interpretation (as it usually does), and if so, how the impliit probabilistimodel might be interpreted; this an often be quite illuminating.In the setting of Setion 3, the averaging amounts to piking one of thejSjjV j di�erent possible funtions f : V ! S at random aording to uniformdistribution, meaning that eah one is piked with probability 1=jSjjV j. Anequivalent probabilisti way of formulating the basi NFL theorem as appliedto the searh problem of �nding some x 2 V belonging to the target set T ,is thus as follows: the distribution of the time taken for a searh algorithmA to �nd an element of T is � provided that the funtion f is generated bya random mehanism that piks one of the jSjjV j possible realizations withequal probability � the same regardless of the hoie of A.It is worthwile to re�et over what it means that f is hosen aordingto uniform distribution on SV . I laim that9hoosing a random funtion f : V ! S aording touniform distribution on SV , is equivalent to hoosing,for eah x 2 V independently, f(x) aording touniform distribution on S. (2)This is a well-known fat in probability theory, and really nothing morethan a straightforward extension of the standard �rst-year textbook exam-ple onerning the roll of two die: the statement that all 36 outomes(1; 1); (1; 2); : : : ; (1; 6); (2; 1); : : : ; (6; 6) have the same probability, is equiva-lent to the the statement that the two die are independent and that thedistribution for eah of them is uniform on f1; 2; : : : ; 6g.For ompleteness and for the reader's onveniene, let me neverthe-less give the expliit argument for (2): Suppose that V has m elementsx1; : : : ; xm, and that S has l elements s1; : : : ; sl. Suppose furthermore that9Here and thoughout, independene means statistial independene.10



for eah x 2 V independently, we hoose f(x) aording to uniform dis-tribution on S. To prove the laim (2), we need to show that for any(s1; : : : ; sm) 2 Sm the formula10P((f(x1); : : : ; f(xm)) = (s1; : : : ; sm)) = 1=lm (3)holds. Now, the independene assumption tells us that the left-hand-side of(3) an be fatorized intoP(f(x1) = s1)� � � � �P(f(xm) = sm) : (4)Sine eah of the fators in (4) equals 1=l, the identity (3) is veri�ed, andthe laim (2) established.Now that we are equipped with the haraterization (2), the basi NFLtheorem beomes very easy to understand (and to prove). To this end,imagine an algorithm A as in Setion 3, that after k steps has visitedx(1); : : : ; x(k) 2 V , and observed f(x(1)); : : : ; f(x(k)).11 Now, whiheverx(k+1) the algorithm hooses to visit next, the onditional distribution ofwhat it will �nd there (given x(1); : : : ; x(k) and f(x(1)); : : : ; f(x(k))) is, dueto the independene property in (2), uniform on S. Hene, the rule for howto selet x(k+1) does not in�uene what we see there, and sine k was arbi-trary it follows that f(x(1)); f(x(2)); : : : form a sequene of independent andidentially distributed (i.i.d.) random variables whose ommon distributionis uniform on S. Sine this onlusion is reahed regardless of the detailsof A, it follows that the hoie of A has no in�uene on the distribution ofthe sequene f(x(1)); f(x(2)); : : :. And this is preisely what the basi NLFtheorem says.In fat, not only does the observation (2) provide us with an almosttrivial proof of the basi NFL theorem � it also suggests some immediategeneralizations. Indeed, the argument we just indiated uses that the f(x)'sare i.i.d., but not that their ommon distribution is uniform on S. Hene, theassertion of the basi NFL theorem holds under this weaker i.i.d. assumption.And by the same token, the assumption an be weakened even further tothat of so-alled exhangeability, whih means that the joint distribution off(x1); : : : ; f(xm) equals the joint distribution of any permutation of them(see, e.g., Kallenberg, 2005). With this latter generality in mind, the basiNFL theorem is not muh more than a fany (and more general) way of10P is short for �the probability of�.11The notation is worth stressing: x(i) denotes the i:th element visited by the algorithm,whereas xi denotes the i:th element in some �xed but arbitrary enumeration of V .11



phrasing the following fat: if we spread a well-shu�ed dek of ards fae-down over a table and wish to �nd the ae of spades by turning over as fewards as possible, then no sequential proedure for doing so is better thanany other.126 Dembski's errorLet us now examine Dembski's use of NFL in the light of the probabilistiinterpretation given in Setion 5. For onreteness, take, as in Setion 4,V to be the set of all DNA sequenes of length up to 3 000 000 000. Also,take f : V ! S to be some measure of �tness, so that for eah x 2 V , f(x)desribes the �tness of an organism with DNA sequene x. Of ourse, mostsuh DNA sequenes do not orrespond to an organism at all, so for suhx we take f(x) to be the minimum of the set S of possible values � say,f(x) = 0.Furthermore, let us equip V with a link struture as in Setion 3. Speif-ially, let us delare a link between two DNA sequenes x; y 2 V preiselywhen one of them an be obtained from the other either by hanging a singlenuleotide pair, by inserting one, or by deleting one. This hoie of linkstruture is made in order that a move from an x 2 V to a neighbor y 2 Vorresponds to a mutation of the simplest possible (single-nuleotide) kind.13Thus, the reprodution-mutation-seletion mehanism of Darwinian evolu-tion an be seen as one variant or another of the loal searh algorithmsin Setion 3, with the given link struture. Although we do not know thepreise details of this algorithm, let us all it A.Dembski's (2002a) appliation of NFL now says thatif the �tness funtion f is generated at random aordingto uniform distribution among all the jSjjV j possibilities, (5)then the Darwinian algorithm A annot be expeted to fare any better than12This obvious ard-dek example summarizes pretty muh all there is to the basi NFLtheorem (or any of its variants). In spite of this, Dembski is not the only one who has triedto reate a hype around the result. Wolpert and Maready themselves (1997) try theirbest to make their result sound like some kind of breakthrough. And, with astonishinglak of perspetive, Ho and Pepyne (2002) ompare the basi NFL theorem to Gödel'sinompleteness theorem, modestly adding that the former is �far less elebrated and muhmore reent�.13This ignores inversions, gene dupliations, and other kinds of maromutations. It alsoignores the reombination mehanisms of sexual reprodution. Still, it provides a goodenough model of evolution to make my point lear.12



blind searh, and will therefore almost ertainly fail to produe spei�edomplexity (the odds against it sueeding to do so are Vast).Phrased in this way, the result is pretty muh orret.14 Its relevane toevolution depends, however, on the extent to whih (5) re�ets propertiesof the true �tness landsape. If (5) is shown (as I am about to do) to beway o� in this regard, then we an onlude that NFL has nothing to o�erevolutionary biology. From that, it would be tempting to onlude thatDembski's entire argument falls apart, but that is (only slightly) premature,as he has one more ard up his sleeve. Namely, after having invoked NFL,Dembski's line of reasoning branhes into two parts: he laims that either(a) assumption (5) is an aurate model the real �tness landsape, in whihase Darwinian evolution by natural seletion an be ruled out,or(b) assumption (5) fails to be an aurate model the real �tness landsapef , in whih ase an intelligent designer must have been involved insetting up f .Either way, Darwinism loses and Dembski wins.What I will do in the remainder of this setion is �rst to deal with (a) byshowing (5) to be a totally unrealisti model for the true �tness landsape f ,and then to deal with (b) by showing that the onlusion about intelligentdesign is unwarranted. Clearly, one those two things are taken are of, theanti-Darwinian fore of Dembski's argument is redued to zero.Of ourse, the assumption (5) does not have to be a ompletely auratedesription of reality in order for the onlusion in (a) to deserve taking seri-ously. A minimum requirement, however, is that the atual �tness landsapehas to have at least some rough resemblene with what one ould expet toarise from a model based on (5). Alas, it does not. I will now show thatany reasonably realisti model for the atual �tness landsape will produesomething that is very, very di�erent from what (5) produes.From the haraterization (2) that we established in Setion 5, we seethat under assumption (5), the �tnesses of any two DNA sequenes (or anyolletion of them, for that matter) are independent � a omplete disarray.On the other hand, any realisti model for a �tness landsape will have toexhibit a onsiderable amount of what I would like to all lustering, meaningthat similar DNA sequenes will tend to produe similar �tness values muh14This statement is still somewhat haritable to Dembski, as it ignores his onfusiononerning what spei�ed omplexity atually means (f. Footnote 5).13



more often than ould be expeted under model (5). In partiular, if we takethe genome of a very �t reature � say, you or me, whihever you prefer � andhange a single nuleotide somewhere along the DNA, then we expet withhigh probability that this will still produe an organism with high �tness. Inontrast, under assumption (5), hanging a single nuleotide is just as badas putting together a new genome from srath and ompletely at random,something that we have already noted will with overwhelming probabilityprodue not just a slightly less �t reature, but no reature at all. (If thiswere true, then, given the human mutation rate, we would all be dead.)Thus, we an safely rule out (5) in favor of �tness landsapes exhibitinglustering, and branh (a) of Dembski's argument is thereby dismantled.Before moving on to (b), let me just note that the distintion betweenlustered �tness landsapes and those produed under model assumption (5)is a very important one, for the following reason. The Darwinian algorithmA introdued above is some variant or other of loal searh in V with thelink struture we spei�ed. Now, what makes hill-limbers and other loalsearh algorithms work at all is very muh the amount of lustering in f .The reason why it makes sense for a loal searh algorithm to move to aneighbor x with a high value of f(x) is not so muh this high value itself,as the prospet of �nding some even higher value among the neighbors of x,and so on. In �tness landsapes without lustering, suh as those produedby (5), no suh gain from moving to elements with large values of x an beexpeted.15In branh (b) of his argument, Dembski laims that if the real �tnesslandsape f does not look like what one would expet to arise under theuniform distribution model (5), then it has to be the produt of an intelligentdesigner. That is suh an inredibly silly inferene that I feel a bit embarrasedabout spending ink on refuting it, but sine it seems so entral to Dembski'sargument, let me still try and say a few words about it.First, there is absolutely no a priori reason to expet that the �blindfores of nature� should produe a �tness landsape distributed aordingto (5). Anyone reasonably experiened in probabilisti modelling in sieneknows that suh uniform distributions have no privileged status over othermodels as realisti desriptions of what the laws of nature produe, and thatin fat only rarely do they turn out to provide good models for physial orbiologial systems.15This is not to say that lustering in itself guarantees that the Darwinian algorithmA an �nd its way up the high mountain peaks in the �tness landsape. But if Dembskiwishes to argue that A annot do this, then he needs to onsider the real �tness landsape(or, more likely, realisti models thereof) rather than the utterly irrelevant model (5).14



Seond, let us onsider spei�ally the phenomenon of lustering in the�tness landsape f . If we are to believe the reasoning in branh (b) ofDembski's argument, lustering in f is suh a mysterious phenomenon thatit an only be explained as the work of an intelligent designer. But thereis in fat nothing mysterious about it at all. Rather, it an be seen as aonsequene of the very wide-spread phenomenon in siene (as well as ineveryday life), that �like auses often tend to have like onsequenes�.16 Thisphenomenon itself is, as every siene student has seen plently of examplesof, the kind of thing that mehanisti models of nature are very good atexplaining, thus removing any need to invoke an intelligent designer.To be a little more onrete, onsider one partiular aspet of the stronglustering tendeny of the atual �tness landsape, namely that most single-nuleotide mutations on humans lead to (as far as we an tell) zero hange in�tness. Biologists attribute this to the fat that most parts of human DNAdoes not ode for anything at all (something that an in turn be explained inbiohemial terms, and so on down the usual redutionisti path). Dembski,instead attributes it (if we are to take his branh (b) argument seriously) toan intelligent designer. I leave it as an exerise to the reader to determinewhih of these two explanations belongs to the realm of siene.7 Another look at averagingAlthough the above more or less onludes the argument I wanted to makein this paper, let me still onsider one objetion that a defender of the Dem-bskian argument migh put forth at this stage. Namely, that the averagingthat takes plae in the basi NFL theorem is over all �tness landsapes �not just the disordered ones but also those exhibiting lustering � and thatin the absene of preise knowledge of f the most fair thing to do is to takeequal aount of all possible �tness landsapes.The �aw in this ounterargument is that although all possible �tnesslandsapes are indeed taken into aount in NFL, the lustered ones reeivesuh a small fration of the probability distribution in (5) that for all prati-al purposes it is zero. To illustrate just how biased the model (5) is againstlustered �tness landsapes and in favor of disordered ones, onsider the fol-lowing thought experiment. Suppose that we have sampled 2000 elementsx1; y1; x2; y2; : : : ; x1000; y1000 from V , in suh a way that for eah i, xi andyi are neighbors, but eah suh pair is very far from all others. Suppose16A similar remark is made by Wein (2002a). Dembski (2002b) hooses to dismiss it as�bogus�. The reader may judge. 15



furthermore that we have evaluated f at all these points, and found that foreah pair (xi; yi), the di�erene jf(xi) � f(yi)j is very small, while on theother hand most of the jf(xi) � f(xj)j di�erenes between elements fromdi�erent pairs are muh larger. This would onstitute strong sienti� evi-dene that the �tness landsape generally exhibits a good deal of lustering,but Dembski's model (5) does not allow suh a onlusion: the independeneproperty in (2) implies that the onditional distribution of the rest of the�tness landsape given these observations, is just as disordered as (5) pre-dited without them. This shows that model (5) takes no reasonable aountof the possibility of a lustered �tness landsape.178 Remarks on extensionsOther than Wein, one of the most ardent publi ritis of Dembski's No FreeLunh is the well-known evolutionary biologist H. Allen Orr (2002, 2005).And although Orr deserves kudos for these mostly pertinent ontributions,his ritiism does fail to identify the preponderant shortoming of the NFLappliation outlined in Setion 6, and some of his more mathematial on-erns are unonvining. In partiular, in Orr (2002), it is laimed that thethe NFL arguement does not apply when the funtion f hanges over time(orresponding to an evolving �tness landsape). But in fat, Wolpert andMaready (1997) have a variant of the basi NFL theorem for preisely suhases, and this variant an be plugged into Dembski's argument to givea evolving-�tness-landsape analog of his onstant-�tness-landsape result.Suh a modi�ed Dembski argument is vaguely hinted at in No Free Lunh,but the brutal truth is that it fails to be relevant to biologial evolution, forvery muh the same reasons as those outlined in Setion 6.In Orr (2005), it is instead laimed that NFL does not apply to thesituation of two or more oevolving speies.18 But again, although I have notbeen able to �nd in the literature an NFL theorem adapted to this situation,it is easy to devise one19, and plug it into Dembski's argument. But yet17It would be an interesting idea to try to devise a prior distribution for f that takesinto aount �all possible models and behaviors� in a better way than does (5). Muhwork has been made in theoretial statistis to ome up with a universal sheme for suhpriors (see, e.g., Rissanen, 1983), but the pratial and theoretial obstales to this arelarge and perhaps even unsurmountable.18The laim seems to originate from Wolpert (2002).19This an be ahieved by applying the probabilisti reasoning in Setion 5 to uniformdistribution on the set of all funtions f : V �f0; 1gV ! S, where the f0; 1gV -valued vetorindiates whih elements of V (i.e., whih DNA sequenes) are oupied by a speies, and16
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