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CURVATURE OF VECTOR BUNDLES ASSOCIATED TO
HOLOMORPHIC FIBRATIONS.

BO BERNDTSSON

ABSTRACT. Let L be a (semi)-positive line bundle over a Kahler man-
ifold, X, fibered over a complex manifold. Assuming the fibers are
compact and non-singular we prove that the hermitian vector buridle
whose fibers are the space of global sections®ok x /3- endowed with

the L2-metric is (semi)-positive in the sense of Nakano. As an applica-
tion we prove a partial result on a conjecture of Griffiths on the positiv-
ity of ample bundles. This is a revised and much expanded version of a
previous preprint with the title “ Bergman kernels and the curvature of
vector bundles”.

1. INTRODUCTION

Let us first consider a domaib = U x 2 in C™ x C™ and a functionp,
plurisubharmonic inD. We also assume for simplicity thatis smooth up
to the boundary and strictly plurisubharmoniclin Then, for eacht in U,
®'(-) := ¢(t,-) is plurisubharmonic if2 and we denote byl? the Bergman
spaces of holomorphic functions §hwith norm

1h]2 = A2 = / hPe .
Q

The spaces!? are then all equal as vector spaces but have norms that vary
with ¢. The - infinite rank - vector bundI& over U with fiber £, = A? is
therefore trivial as a bundle but is equipped with a nontrivial metric. The
first result of this paper is the following theorem.

Theorem 1.1. The hermitian bundl€E, || - ||;) is strictly positive in the
sense of Nakano.

Of the two main differential geometric notions of positivity (see section
2, where these matters will be reviewed in the slightly non standard setting
of bundles of infinite rank), positivity in the sense of Nakano is the stronger
one and implies the weaker property of positivity in the sense of Griffiths.
On the other hand the Griffiths notion of positivity has nicer functorial prop-
erties and implies in particular that the dual bundle is negative (in the sense
of Griffiths). This latter property is in turn equivalent to the condition that
if £is any nonvanishing local holomorphic section to the dual bundle, then
the function

log [|€]I*
1
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is strictly plurisubharmonic. We can obtain such holomorphic sections to
the dual bundle from point evaluations. More precisely, fldie a holo-
morphic map fromUJ to €2 and defin€; by is action on a local section to

E

<5t7 ht> = ht(f(t»-

Since the right hand side here is a holomorphic functioty 6fis indeed a
holomorphic section t&’*. The norm of¢ at a point is given by

l&l7 = sup h(F(E)] = Kl £(2), F(2),
hell<1

where K(z, z) is the Bergman kernel function fot?. It therefore fol-
lows from Theorem 1.1 thak(,(z, z) is plurisubharmonic inD, which is
the starting point of the results in [1].

In [1] it is proved that this subharmonicity property of the Bergman ker-
nel persists ifD is a general pseudoconvex domaindrt x C”, for gen-
eral plurisubharmonic weight functions. In this case the spaéemre the
Bergman spaces for the slices Bf D, = {z;(t,z) liesin D}. This
more general case should also lead to a positively curved vector bundle.
The main problem in proving such an extension of Theorem 1.1 is not to
prove the inequalities involved, but rather to define the right notion of vector
bundle in this case. In general, the spadéswill not be identical as vector
spaces, so the bundle in question is not locally trivial.

There is however a natural analog of Theorem 1.1 for holomorphic fibra-
tions with compact fibers. Consider a complex manifélcf dimension
n + m which is fibered over another connected complexdimensional
manifold Y. We then have a holomorphic map,from X to Y with sur-
jective differential, and all the fiberX;, = p~!(¢) are assumed compact.
This implies, see [23], that the fibers are all diffemorphic, but they are in
general not biholomorphic to each other. We also need to assume that the
total space has a Kéhler metrig, Let L. be a holomorphic, hermitian line
bundle over the total spaceé. Our substitute for the Bergman spacgsis
now the space of global sections over each fibdr to Ky,

Et — F(Xt, L|Xt ® KXt)7

where K, is the canonical bundle of, i e the bundle of forms of bidegree
(n,0) on each fiber. We assume thiats semipositive so that the hermitian
metric onL can be, and is, chosen so that it has nonnegative curvature form.
Fix a pointy in Y and choose local coordinates= (¢4, ...t,,) neary with

t(y) = 0. We consider the coordinates as functions’omy identifyingt

with ¢ o p, and letdt = dt; A ...dt,,. The canonical bundle of a fibe¥,

can then be identified with the restriction Afy, the canonical bundle of

the total space, t&; by mapping a local sectiomto Kx, to u A dt. This

map is clearly injective, and it is also surjective since any section K x

can locally be written

w=uAdt,
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and the restriction of, to X, is independent of the choice af With this
identification, any global holomorphic section bfx Ky, over a fiber can
be extended to a holomorphic sectionlof® Kx_, for s neart. WhenL

is trivial this follows from the Kahler assumption, by invariance of Hodge
numbers, see [23]. Wheh is semipositive it follows from a variant of
the Ohsawa-Takegoshi extension theorem, that we discuss in an appendix
. Starting from a basis fol'(X;, L| X; ® Kx,) we therefore get a local
holomorphic frame forE, so £ has a natural structure as a holomorphic
vector bundle. Moreover, elements Bf can be naturally integrated over
the fiber and we obtain in this way a metrjic,|| on £ in complete analogy
with the plane case. We then get the same conclusion as before:

Theorem 1.2. If the total spaceX is Kahler andL is (semi)positive over
X, then(E, || - ||) is (semi)positive in the sense of Nakano.

This can be compared to a result of Kollar, [17], section 3, , who proved
positivity properties forE when L is trivial and X projective. Kollar's
results are however formulated in an algebraic way and not in terms of an
explicit bound for the curvature tensor and the precise relation to Theorem
1.2 is not clear to me. Related work is also due to Tsuiji, see [21] and the
references therein. Tsuji's method is more analytical, but still assudnes
be trivial as well as some additional assumption on the fibration.

Not surprisingly, the curvature of the bundiein Theorem 1.2 can be
zero at some point and in some direction only if the curvature of the line
bundle L also degenerates. In section 5 we shall prove a result that indi-
cates that conditions for degeneracy of the curvatur® efe much more
restrictive than that: WheX is a product, null vectors for the curvature can
only come from infinitesimal automorphisms of the fiber.

In section 6 we discuss some, largely philosophical, relations between
Theorem 1.2 and recent work on the variation of Kahler metrics. This cor-
responds to the case whahis a product/ x Z with one-dimensional base
U, and whenL is the pull-back of a bundle oA under the second projec-
tion map. The variation of the metric ahthat we get from the fibration
then gives a path in the space of Kéhler metricsZoand the lower bound
that we get for the curvature operator in this case is precisely the Toepliz
operator defined by the geodesic curvature of this path.

Another example of the situation in Theorem 1.2 arises naturally if we
start with a (finite rank) holomorphic vector bundfeoverY and letP(V)
be the associated bundle of projective spaxfeéke dual bundlé *. This is
then clearly an - even locally trivial - holomorphic fibration and there is a
naturally defined line bundlé over the total space

L= OP(V)(l)ﬂ

that restricts to the hyperplane section bundle over each fiber. The global
holomorphic sections of this bundle over each fiber are now the linear forms
onV*, i e the elements of . In other words £ is isomorphic tol/. To be
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able to integrate over the fibers, we need to take tensor products with the
canonical bundle, and we therefore replécey

LT—H = OP(V)(T + 1)

(with r being the rank of”). Since the canonical bundle of a fibei$—r)
we see that on each fibére Kx, = O(1) so its space of global sections is
again equal td/;. Define as before

E=T(X,, L' X, ® Kx,).

One can then verify that, globallyy’ is isomorphic toV ® det V. The
condition thatL is positive is now equivalent tOp (1) being positive
which is the same as saying thidtis amplein the sense of Hartshorne,
[12]. We therefore obtain the following result as a corollary of Theorem
1.2.

Theorem 1.3. Let V' be a (finite rank) holomorphic vector bundle over a
complex manifold which is ample in the sense of Hartshorne. Then

det V' has a smooth hermitian metric which is strictly positive in the sense
of Nakano.

ReplacingOp(v(r + 1) by Oppy(r + m), we also get that™ (V) ®
det V' is Nakano-positive for any non-negative whereS™ (1) is them:th
symmetric power of/.

It is a well known conjecture of Griffiths, [10], that an ample vector bun-
dle is positive in the sense of Griffiths. Theorem 1.3 can perhaps be seen as
indirect evidence for this conjecture, since by a a theorem of Demailly, [7],
V ® det V' is Nakano positive il itself is Griffiths positive. It seems that
not so much is known about Griffiths’ conjecture in general, except that it
does hold when is a compact curve (see [22], [4]).

After the first version of this mansucript was completed | received a
preprint by C Mourogane and S Takayama, [16]. There they prove that
V ® det V is positive in the sense of Griffiths, assuming the base manifold
is projective. The method of proof is quite different from this paper, as is
the metric they find.

The proof of Theorem 1.1 is based on regarding the buAdés a holo-
morphic subbundle of the hermitian bundiewith fibers

F, = L}Q,e ) =: L2,
By definition, the curvature of' is a(1, 1)-form
> Ohdt; A diy,
whose coefficients are operators Bn By direct and simple computation,
@F
is the operator of multiplication with,0,¢, so this is positive as soon as

is plurisubharmonic of for z fixed. By a formula of Griffiths, the curvature
of the holomorphic subbundl&' is obtained from the curvature df by
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subtracting thesecond fundamental forraf £, and the crux of the proof is

to control this term by the curvature éf. For this we note that the second
fundamental form is given by the square of the norm of an element in the
orthogonal complement of? in LZ. This element is therefore the minimal
solution of a certai®-equation, and the needed inequality follows from an
application of Hormander’'é?-estimate.

We have not been able to generalize this proof to the situation of Theo-
rem 1.2. The proof does generalize to the case of a holomorphically trivial
fibration, but in the general case we have not been able to find a good choice
of the bundleF’ with easily computed Chern connection and curvature op-
erator. We therefore compute directly the Chern connection of the biithdle
itself, and compute the curvature from there, much as one proves Griffiths’
formula. In these computations appears also the Kodaira-Spencer class of
the fibration, [23]. This class plays somewhat the role of another second
fundamental form, but this time of a quotient bundle, arising when we re-
strict (n, 0)-forms to the fiber. The Kodaira-Spencer class therefore turns
out to give a positive contribution to the curvature. This proof could also be
adapted to give Theorem 1.1 by using fiberwise complete Kahler metrics,
but we have chosen not to do so since the first proof seems conceptually
clearer.

Finally, | would like to thank Sebastien Boucksom for pointing out the
relation between Theorem 1.1 and the Griffiths conjecture, Jean-Pierre De-
mailly for encouraging me to treat also the case of a general non-trivial
fibration and Yum-Tong Siu for helpful discussions and for mentioning
to me the work of Kollar. Last but not least, thanks are due to H Yam-
aguchi, whose work on plurisubharmonicity of the Robin function [24] and
Bergman kernels, [15] was an important source of inspiration for this work.

2. CURVATURE OF FINITE AND INFINITE RANK BUNDLES

Let £ be a holomorphic vector bundle with a hermitian metric over a
complex manifoldY”. By definition this means that there is a holomorphic
projection map from £ to Y and that every pointil” has a neighbourhood
U such thatp=!(U) is isomorphic to/ x W, whereW is a vector space
equipped with a smoothly varying hermitian metric. In our applications it is
important to be able to allow this vector space to have infinite dimension, in
which case we assume that the metrics are also complete, so that the fibers
are Hilbert spaces.

Lett = (4,...t,,) be a system of local coordinates &h The Chern
connectionD;; is now given by a collection of differential operators acting
on smooth sections 1@ x W and satisfying

O, (u,v) = (Dy,u,v) + (u, 5tjv),
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with 9,, = 0/0,, andétj = 0/0t;. The curvature of the Chern connection
is a(1, 1)-form of operators

O = Odt; Adiy,
where the coefficient®;, are densily defined operators oin. By defini-
tion these coefficients are the commutators
@jk = [Dtj7 5tk]

The vector bundle is said to be positive in the sense of Griffiths if for any
sectionu to W and any vector in C™

S (O, u)vsn = 3lull?fol?

for som positive). E is said to be positive in the sense of Nakano if for any
m-tuple (uy, ...u,,) of sections tdV’

> (Ojkuun) =6l

Taking u; = wv,; we see that Nakano positivity implies positivity in the
sense of Griffiths.

The dual bundle of7 is the vector bundlégZ* whose fiber at a point
in Y is the Hilbert space dual df;. There is therefore a natural antilinear
isometry betweert* and E, which we will denote byJ. If « is a local
section toF, ¢ is a local section tdZ*, and(-, -) denotes the pairing between
E* andE we have

(€, u) = (u, JE).
Under the natural holomorphic structure Bh we then have
525]'5 = JﬁlDtJ’ ‘]67
and the Chern connection @ is given by
D& =Ty, J¢.
It follows that B B -
atj <€7 u> == <atj€’ u> + <€’ atju>a
and
O, (&, u) = (D[ &, u) + (& Dyjuy,
and hence
O - [atj7 525]'] <£7 u> = <®;k€7u> + <€7 ®]ku>7

if we let ©* be the curvature of*. If {; is anr-tuple of sections td’*, and
u; = J&;, we thus see that

Z(@;kfp &) = — Z(@jkuk, uj).

Notice that the order between andw; in the right hand side is opposite to
the order between thgs in the left hand side. Therefokg* is negative in
the sense of Griffiths iffe is positive in the sense of Griffiths, but we can
not draw the same conclusion in the the case of Nakano positivity.



If v is a holomorphic section t&' we also find that
82
Ot ;0ty,
and it follows after a short computation thatis (strictly) negative in the
sense of Griffiths if and only ifog ||u||? is (strictly) plurisubharmonic for
any nonvanishing holomorphic section
We next briefly recapitulate the Griffiths formula for the curvature of a
subbundle. Assumé’ is a holomorphic subbundle of the bundig and
let = be the fiberwise orthogonal projection fromto £. We also letr

be the orthogonal projection on the orthogonal complemeri.oBy the
definition of Chern connection we have

DY = nDF.

(U,U) = (Dtjuv Dtku) - (®]ku7 U)

Let d,, 7 be defined by
(2.1) Oy, (mu) = (O, m)u + (0, u).

Computing the commutators occuring in the definition of curvature we see
that

(2.2) @ﬁcu = —(5tk7r)D5u + W@ﬂu,
if u is a section tay. By (2.1) (O7)v = 0 if v is a section ta¥, so
(2.3) (0m)DFu = ()7 DF u.

Sincerrm; = 0 it also follows that
(On)n . D¥u = —70(m DFu),
so if v is also a section td’,
((@kﬂ)Dgu,v) = —(@k(wLDi_u), v) =

= ((WLDf;u),DtFkv) = (WL(Df;U),WL(DtFkU)).
Combining with (2.2) we finally get that if andv are both sections t&
then

(2.4) (@ﬂu,v) = (WL(Dt};u),WL(D,iU)) + (@ﬁu,v),

which is the starting point for the proof of Theorem 1.1.

For the proof of Theorem 1.2 we finally describe another way of com-
puting the curvature form of a vector bundle. Fix a pagijm Y and choose
local coordinates centered afy. Any pointuy in the fiberE, overy can be
extended to a holomorphic sectiarof £ near 0. Modifyingu by a linear
combination)  ¢;v; for suitably chosen local holomorphic sectianswe
can also arrange things so that. = 0 att = 0. Let« andv be two local
sections with this property and compute

Op, 0, (u,v) = O, (Dy,u,v) = (05, Dy,u,v) = —(Oju,v).

Let u; me anm-tuple of holomorphic sections tb, satisfyingDu; = 0 at
0. Put



Heredt; A dt), denotes the wedge product of dt}; anddt; exceptdt; and
dt;., with a sign chosen so thdj, is a positive form. Then

i00T, = — Z(@jkuj7 ug)dVy,

so F is Nakano-positive at a given point if and only if this expression is
negative for any choice of holomorphic sectianssatisfyingDu; = 0 at
the point.

3. THE PROOF OFTHEOREM1.1

We consider the setup described before the statement of Theorem 1.1
in the introduction. Thudg is the vector bundle ovey whose fibers are
the Bergman space$’ equipped with the weightef> metrics induced by
L*(Q,e7?"). We also letF be the vector bundle with fibei?(, e~ "), so
that E is a trivial subbundle of the trivial bundIl& with a metric induced
from a nontrivial metric or¥’. From the definition of the Chern connection
we see that

Dt}; = atj - (b]a

where the last term in the right hand side should be interpreted as the opera-
tor of multiplication by the (smooth) function¢; = —d;,¢". (In the sequel
we use the letterg, & for indices of thet-variables,and the letters p for
indices of thez-variables.) For the curvature 6f we therefore get

the operator of multiplication with the Hessian @fwith respect to the-
variables. We shall now apply formula (2.4), sodetbe smooth sections
to E. This means that; are functions that depend smoothly#and holo-

morphically onz. To verify the positivity of £’ in the sense of Nakano we
need to estimate from below the curvaturetbécting on thek-tupleu,

Z(Gﬁru]" uk)

By (2.4) this means that we need to estimate from above

D (wu(dguy), muldrun) = (> djuy)l.
Putw = 7, (Y ¢;u;). For fixedt, w solves the),-equation

gw = Zu]'¢j)\d2)\,
since they;s are holomorphic in. Moreover, sincev lies in the orthogonal
complement ofA?, w is the minimal solution to this equation.
We shall next apply Hormander's weight&é-estimates for thé-equation.

The precise form of these estimates that we need says tlfatsifa 0-
closed form in a psedudoconvex domé&inand if ¢) is a smooth strictly
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plurisubharmonic weight function, then the minimal solutioto the equa-
tion Ov = f satisfies

[uke < [ S umnge,

where(y*) is the inverse of the complex Hessianyofsee [6]).
In our case this means that

/’w’%(ﬁt §/2¢Au¢j)\uj¢kuuke¢t-
Q Q

Inserting this estimate in formula (2.4) together with the formula for the
curvature ofF’ we find

@1 D (O w) > /QZ <¢jk - ZQSAMij/\QSku) wjtige .
Jk A

We claim that the expression

Dj =: <¢jkz — Z ¢A“¢jx¢ku> :
Ap

in the integrand is a positive definite matrix at any fixed point . By a linear
change of variables inwe may of course assume that the veetdhat D
acts on equal$l,0...0). Let® = i0d¢ where thedd-operator acts om,

and thez-variables, the remainingvariables being fixed. Then

q):(p11+iOéAdt_1+7:dt1/\O_é+(I)/,

where®,, is of bidegreg1, 1) in t;, « is of bidegreg1,0) in z, and®’ is
of bidegreg(1,1) in z. Then

D1 = 0" (M A1) =01 AD, —ia AaAD, | Aidty Adl.

Both sides of this equation are forms of maximal degree that can be written
as certain coefficients multiplied by the Euclidean volume fornCof .

The coefficient of the left hand side is the hessian wfith respect ta; and

z together. Similarily, the coefficient of the first term on the right hand side
is ¢11 times the hessian af with respect to the-variables only. Finally,

the coefficient of the last term on the right hand side is the norm afxhie
formin z

528151 (b

measured in the metric defined ¥, multiplied by the volume form of the
same metric. Dividing by the coefficient @, we thus see that the matrix
D acting on a vector, as above equals the hessianpolvith respect ta
andz divided by the hessian af with respect to the-variables only. This
expression is therefore positive so the proof of Theorem 1.1 is complete.
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4. KAHLER FIBRATIONS WITH COMPACT FIBERS

Let X be a K&hler manifold of dimensian + n, fibered over a complex
m-~dimensional manifold”. This means that we have a holomorphic mpap
from X to Y with surjective differential at all points. All our computations
will be local, so we may as well assume that= U is a ball or polydisk in
C™. For eacht in U we let

X, =p 1)

be the fiber ofX overt. We shall assume that all fibers are compact.
Next, we let. be a holomorphic hermitian line bundle ov&r. Our
standing assumption oh is that it is semipositive, i e that it is equipped
with a smooth hermitian metric of nonnegative curvature. For eachiiber
we are interested in the space of holomorphigalued(n, 0)-forms onX,,

F(Xt, L|Xt ® KXt> = Et'
For each, E, is a finite dimensional vector space and we claim that

E = J{t} x E,

has a natural structure as a holomorphic vector bundles.

To see this we first note théf y, is isomorphic toK x| x,, the restriction
of the canonical bundle of the total spaceXg via the map that sends a
sectionu to Ky, to

u = u Adt,

wheredt = dt; A ...dt,,. Itis clear that this map is injective. Conversely,
any local section: to Kx can be locally represented as= u A dt, and
even though is not uniquely determined, the restrictionwofo each fiber

is uniquely determined. The semipositivity 6f and the assumption that
X is Kéahler, implies that any sectianto Kx, for one fixedt can be locally
extended in the sense that there is a holomorphic sedtitm Ky over

p~ (W) for some neighbourhood” of ¢ whose restriction td{; maps tou
under the isomorphism above. In cdses trivial this follows from the fact
that Hodge numbers are locally constant, see [23]. For general semipositive
bundlesL it follows from a result of Ohsawa-Takegoshi type, that will be
discussed in an appendix.

Taking a basis foF; for one fixedt and extending as above we therefore
get a local frame for the bundig. We define a complex structure éghby
saying that artn, 0)-form overp—! (W), u, whose restriction to each fiber is
holomorphic, defines a holomorphic sectionaf « A dt is a holomorphic
section toK x. The frame we have constructed is therefore holomorphic.

Note that this means thatis holomorphic if and only ibu can be written

(4.2) ou = Zﬁj A dt;,

with 7 smooth forms of bidegre: — 1, 1). Again, ther’ are not uniquely
determined, but their restrictions to fibers are.
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Even though we will not use it, it is worth mentioning the connection
between the forms/}“ and the Kodaira-Spencer class of the fibration, see
[23]. The Kodaira-Spencer class at a paiim the base, is a map from the
holomorphic tangent space bfto the first Dolbeault conomology group,

H"Y(X,, TY (X)),

of X, with values in the holomorphic tangent spaceXofi e, ast variesiitis
a(1,0)-form, >~ 0;dt; on U with values inH*°(X,, T*°(X,)).The classes
0; can be represented Byclosed(0, 1)-forms on.X; whose coefficients are
vector fields of type1, 0). Letting the vectorfield act on forms by contrac-
tion we obtain a map fronp, ¢)-forms onX; to (p — 1, ¢ + 1)-forms. The
forms
n

is what we obtain when we let this map operateuomifferent choices of
extensions ofi from X, correspond to different representatives of the same
cohomology class.

Let nowu be a smooth local section 0. This means that can be repre-
sented by a smooth-valued form of bidegreén, 0) overp~—! (W) for some
W open inU, such that the restriction af to each fiber is holomorphic.

Then

5“ = Z dt} VAN l/j,
wherer’ define sections td. We define the0, 1)-part of the connection
D on E by letting

D%y = Z v dt;.

Sometimes we write
V= 0,u

with the understanding that this refers to th@perator onE. Note that
D%y = 0 for ¢t = t, if and only if eachv’ vanishes when restricted 16,
i eif Ju A dt = 0, which is consistent with the definition of holomorphicity
given earlier. Note also that if we chose anotper0)-form v’ to represent
the same section t&, thenu — «’ vanishes when restricted to each fiber.
Henceu — v/ = " a; A dt; and it follows thatD"! is well defined.

The bundleE has a naturally defined hermitian metric, induced by the
metric onL. To define the metric, lat; be an element of;. Locally, with
respect to a local trivialization of, u, is given by a scalar valueh, 0)-

form, v/, and the metric orl. is given by a smooth weight functiasi. Put
(e, ue] = cou’ A e ?,

with ¢, = i"" is chosen to make thig:, n)-form positive. Clearly this
definition is independent of the trivialization, 8q, «;] is globally defined.
The metric onE; is now defined as

]2 = /X i, ],
t
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and the associated scalar product is

(g, v1)y = /X o)

In the sequel we will, abusively, write, v] = ¢, u A ve~?. Whent varies
we suppress the dependencet@nd get a smooth hermitian metric én
For local sections andv to E the scalar product is then a functiontaind

it will be convenient to write this function as
(u,v) = p.([u,v]) = pu(cou A ve™?).

Herep, denotes the direct image, or push-forward, of a form, defined by

/Up*(a)AﬂZ/XOMP*(ﬁ),

if ais aformonX andg is a form onU.

With the metric and thé operator defined o/ we can now proceed to
find the (1, 0)-part of the Chern connection. Letbe a form onX with
values inL. Locally, with respect to a trivialization of, « is given by a
scalar valued form’ and the metric or. is given by a functiory’. Let

v = e’ (e ).
One easily verifies that this expression is invariantly defined, and we will,
somewhat abusively, wri@® v/ = 9%u, usinge to indicate the metric of.

Let now in particulat: be of bidegreén, 0) and such that the restrictions of
u to fibers are holomorphic. A8« is of bidegregn + 1, 0) we can write

O%u = Zdtj A,

wherey’ are smooth(n, 0)-forms whose restrictions to fibers are uniquely
defined. These restrictions are in general not holomorphic so we let

P(u)
be the orthogonal projection @f on the space of holomorphic forms on

each fiber. We claim that th@, 0)-part of the Chern connection afi is
given by

DYy =" P(u)dt;.
To prove this it suffices, by the definition of Chern connection, to verify that
(4.2)  8,(u,0) = (P('),v) + (u,8,0) = (17, 0) + (u, By,v)
if v andv are smooth sections 6. But
O(u,v) = Op.([u, v]) =
— (e (DPu AT e®) + (=1)"p.(u A v e?))
a(pe() iy ADNdE e ) + p(u AP Adtje?)).
This equals

Z((va U) + (u7 Vj))dtj7
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so we have proved 4.2. We will writé(,/) = D, u.

We are now ready to verify the Nakano positivity of the bungleFor
this we will use the recipe given at the end of section 2. {Lebe anm-
tuple of holomorphic sections tb that satisfyD'“w; = 0 at a given point
that we take to be equal to 0. Let

Heredtj//\\dfk denotes the product of all differentials; anddt;, exceptdt;
anddt;, multiplied by a number of modulus 1, so thatis nonnegative. We
need to verify that

i00T,
is negative. Represent thes by smooth forms oX', and put
Then, withN =n +m — 1,
T, =cnp:(aNae™)
Thus
T, = cn(p. (00 A te™?) 4+ (—=1)Np. (6 A D%0e™?)).
Since eachy; is holomorphic we have seen that
ou; = Zné A dt,

so the first term on the right hand side vanishes identically for reasons of
bidegree. Thus

99T, = cn((=1)p.(0%0 A 9%te™®) + p, (4 A DO*0))
We rewrite the last term, using
0% 4+ 9°0 = 00¢.

Since

P (U A OU)
vanishes identically we find that
(=) p.(a A 9°00) + p.(da A da) = 0,
so allin all
(4.3) 00T, =
. ((—1)Np*(a¢a A D%he=?) — (i AT A D) + (—1)V pu(Jit A %)) .

Now recall that
Ouj = Z dt, N /L?.
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Since we have chosen the so thatD'%u; = 0 att = 0 it follows that
the restrictions of alp;? to X, are orthogonal to the space of holomorphic
L-valued(n, 0)-forms. Thus

0% = (—1)" Zu?dt =: udt,

where s is also orthogonal to holomorphic forms oxy Let dV; be the
(Euclidean) volume element in thtevariables.If we multiply 4.3 by, the
first term in the right hand side is

/ ul? V.
Xo

This therefore gives a positive contribution in the computationdofr,,
and it plays a role of the second fundamental form for the subbundle of
holomorphic forms in section 3. We will control it in the same way as
before, using that: is the L2-minimal solution to a certaif-equation.

To compute the contribution coming from the third term in 4.3 we use
thatu; are holomorphic sections t6. This means that

ou; = an A dty,
wheren* are of bidegre¢n — 1,1). Hence
0t =" mldt =: nd.
What we get from the third term is thus

cn/ n A ndVy.
Xo

The quadratic form im appearing here is indefinite. To see that we can
choose; so that this form is negative we need a lemma.

Lemma 4.1. Letw be the Kahler form onY. All 77;‘? A w, and hence) A w
are 0-exact onXj,.

Proof. Let 7 be ad-closedL~!-valued(0, n — 2)-form on X, and extend
smoothly toX. By Serre duality it is enough to prove that

/ nf/\w/\T:O.
Xo

5uj = Z n]’?dtk,

5uj ANw = an/\w/\dtk.
It is therefore enough to prove that
pe(Ou; Aw AT) =0

But

SO

fort = 0. We use
Pe(Ouj Aw AT) = Ops(uj Aw A T) + (=1)"pu(uj Aw A ).
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The first term on the right hand side here vanishes identically gir{eg A
w A7) is zero for degree reasons. The second term vanisheésférsince
it is a form of bidegre€1,0) in ¢t andor is zero onX, sodr A dt = 0 for

= 0. O

This means that we can write
nf ANw = gfj’-“,

on X, with ¢¥ of bidegree(n, 1). Moreover,£F can be writtem A w for
some(n — 1,0)-forms onX, that we extend smoothly t&.
Now replace our choice of the:, 0)-formsu; by

uj — Z’y]k A dty.
k

This does not change thg considered as sections k) but it has the effect
of changingy} to

s — o,
so after this change we get that all fornjsw vanish onXj. It also changes
the %, but sinceD'u; is unchanged the new are also orthogonal to the
space of holomorphic forms oK, - which is easy to see directly too.

The upshot of this is that we may now assume thatw = 0 on X, So
7 is a primitive form onX,. For primitive forms

cn/ nAi=— [ In
Xo XO

With this we have obtained that, for= 0,

(4.4) i00T, = (/ W—/ W) dVi — p. (0 A0 A i0OP),
Xo Xo

and we are now ready for the final estimate.
Recall that)?@ = p A dt and thatdi = n A dt. Hence
00 N = 00%0 + 0°0u = (O + 0%n) A dt.
This means that, o,
op = —0°n + R,

whereR satisfies

RAdt =i00¢ A 1.
Sincey is orthogonal to the space of holomorphic forms.¥nit follows
that on.X, 1 can be written

p=0%a,

wherea is ad-closed form of bidegre¢n, 1). Letting y be equal to the
Hodge-* of«, so thaty A w = «, we get

p=0%x.
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Then, withM = n + m,

> dV, = cype (A dt A LA dEe™®) =
Xo

= (= DMpo(x Adt A D AdEe?) =

= ey (—1)M (—p*(x Adt A 9% A dte™) + po(x Adt A A i85¢6_¢)> :
att = 0. The first term here is, up to a sign equal to

ox Ane~?dV,

Xo

where the integral, by the Cauchy inequality, is dominated by
2 [ oz [
XO XO
For the second term we use the Cauchy inequality for the quadratic form

(, B) = a A B AiDI,
and find that it can be dominated by

1/2/ X AX Ai00¢dV; + 1/2p, (0 A6 A i0OP).
Xo
Collecting, we have proved that

(4.5) |ul? dV; <

Xo

<1/2 ( |0x|? +/ In|? +/ XAXA i@(’?qb) dVi+1/2p. (ANGNIOOD).
Xo Xo Xo

We now apply the Hérmander, or in this case of compact manifolds, Kodaira-
Nakano, identity:

/XAXAi85¢e_¢+ X = [ |ul*.
Xo

Xo Xo
Inserting in 4.5, we get after simplification that

(4.6) ( - [ W) 4V, — p.(is AT A i006) < 0.
Xo Xo

By 4.4, this means thatoT, < 0, soE is at least seminegative in the
sense of Nakano. {90¢ is strictly positive, equality can hold only if A dt
is equal tou, which is only possible if:; vanish onX,. Thereforek£ is
strictly positive if L is strictly positive so we have proved Theorem 1.2.
In the next section we shall see that even wlieis only semipositive,
equality can hold in our estimates only in very special cases.
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5. SEMIPOSITIVE VECTOR BUNDLES

In this section we will discuss when equality holds in the inequalities of
Theorem 1.2, i e when the bundle is not strictly positive. As we have
already seen in the last section, this can only happen if the line bundle
not strictly positive. More specifically, it requires that equality holds in both
applications of the Cauchy inequality at the end of the previous section. In
the first case, this implies that= 0y, so in particulan is 9-exact onX,.

For simplicity we assume from now that the base domiaiis one-
dimensional, so that we do not need to discuss degeneracy in different di-
rections. Then, if) = dx, we may change our form

U =1u; =: U

tou — x A dt. Since the restriction of A dt to each fiber vanishes, this new
form still represents the same sectiont@nd nowd(u — x A dt) = 0 (on
Xp). In other words, we may assume that= 0 on X,. But, then it also
follows thatdy = 0, soy is a holomorphid_-valued(n — 1, 0)-form on X,.

To continue to analyse this situation one step further we now assume that
the fibration we consider is locally holomorphically trivial, i e thét =
U x Z,whereZ is a compact.-dimensional complex manifold. Moreover,
we assume that the curvature of our metrion L, ©%, is strictly positive
along each fibeX; ~ Z. Then we can also assume that we have chosen
our Kahler metricv on X so thatw;, := w|X; = i©%| X, on each fiber.

SinceX now is a global product we can decomp@seaccording to its
degree int andz, wherez is a ny local coordinate of. In particular, there
is a well defined0, 1)-form % on X such thatit A 6% is the component of
©r of degree 1 init. Expressed in invariant language,

0" = 59/0:0",

whered. means contraction with a vector field. Using the formulas
(5.1) ddy +6y0 = Ly,
where/ is the Lie derivative, and
(5.2) Iy + 6y0 = 0,
if V is a holomorhic vector field we see titdtis 0-closed, and that

90" = Ly/0".
There is a uniquél, 0) vector fieldV; on eachX;, defined by

Sy,w, = OF.

Our key obeservation is contained in the next lemma.

Lemma 5.1. Assume that for some# 0 in E,, (©%u,u) = 0. ThenVj is
a holomorphic vector field oX.



18

Proof. Recall that, with the notation of the previous section,
(Op + 0%n) Adt = 00¢ A .
Sincen = 0 on X, it follows thatd?n A dt A dt = 0 for t = 0. Choose local
coordinates on Z =< X, and write
u = ugdz +v A dt,
wheredv = 0 on X, sincen = 0 on X,,. Then
00 N ugdz A dt = (O — 0P A v) Adt A dt.
But on X,
O = 00%°x = d0d A ¥,

sincedy = 0, SO
idt A OF Nugdz Adt =i(x —v) NOF Ndt AdE = (x —v) Awy Adt A dE
for t = 0. Thus, restricted td,

i(—1)" 08 A ugdz = (x — v) A wp.
ASwy Augdz =0

dvp (Wo) A updz + wy A dy, (updz) =0
so finally we obtain that

(=1)"0v; (uodz) = (x —v)

on X,. Sincedy = dv = 0 the right hand side is a holomorphic form on
X). Sinceuy is also holomorphic it follows that” must be holomorphic
too, except possibly where vanishes. But sinc& is smooth,V must
actually be holomorphic everywhere by Riemann’s theorem on removable
singularities. O

The proof of the Lemma may seem a bit obscure, but the idea behind it is
more easily explained if we assume that the line burdis the pull-back
of a fixed bundle orZ. Then we can choose from the start an extension
of u - namely the pull back under the projection on the central fiber- such
thatn andv are zero. The proof of Theorem 1.2 then reduces to an estimate
of 1, an L?-minimal solution to a certaid-equation, just as in the case of
Theorem 1.1. Lemma 5.1 is then a consequence of the next proposition that
we state separately, since we feel it has an independent interest.

Proposition 5.2. Let L be a positive line bundle over a compact complex
manifold Z. Give Z the Kéhler metric defined by the curvature form of
L. Lety be theL?-minimal solution tody = f, wheref is an L-valued
(n,1)-form onZ. Then equality holds in Hormander’s estimate, i e

Lk = [ 15

if and only ify = xf is a holomorphic form.
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Proof. Let ¢ be the metric orl.. As in the proof in the previous section
p= 0%,

for somed-closed(n — 1,0)-form~. Thus

/ P = / f Age < 1Al

By the Hérmander-Kodaira-Nakano identity

/xAxAi08¢e‘¢+/ |0x|2=/lu|2-
Z Z Z

The left hand side here is the norm squared 6b it follows that

el < 1FIP

with equality only if0y = 0. In that case
f=00% = 00p A~
sovy = xf. The argument is easily seen to be reversible. O

We are now ready to state the main theorem of this section.

Theorem 5.3. Assume tha¥ has no nonzero global holomorphic vector
field. Suppose that

()X is locally a productl/ x Z whereU is an open set ift,

(i) L is semipositive orX,

and that

(i) L restricted to each fiber is strictly positive. Letthe Kahler metric
be the fiberX; induced by the curvature df. Then if for each in U there
is some element, in £, such that

(@Eut, Ut) =0.

fortinU.
Proof. By Lemma 5.1 the restriction #f to each fiberX; is zero. Hence
00" = L/5,0"
also vanishes on fibers, which means that
d

—wt—O

dt
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6. THE SPACE OFKAHLER METRICS.

In this section we will specify the situation even more, and assume that
X = U x Z is aproduct, and that moreover the line bundiie the pullback
of a bundle onZ under the projection on the second factor. Intuitively this
means that not only are all fibers the same, but also the line bundle on them,
so it is only the metric that varies. Fix one metgigon L, that we can take
to be the pullback of a metric on the bundle @ni e independent of the
t-variable. Then any other metric dncan be written

¢:¢0+¢a

wherey) is a function onX. We also continue to assume tliats a domain
in C. Letu be an element ;.

In this situation we have an explicit lower bound for the curvature form
operating ornu, generalizing 3.1:

(6.1) (©Fu,u) > / (Vi — 1040413 [w, ul.
Xt

Here the expressioff|, means the norm of the forrfiwith respect to the
metricid0¢ on X,. This can be proved, either by adapting the method of
section 3 - note that we may replace angerivative of¢ by the corre-
sponding derivative of) since ¢, is independent of - or from the more
complicated proof in section 5. In the last case the inequality we use is

/W S/Iau\i

if 1 is orthogonal to the space of holomorphic sectiond o K x,. From

the proof(s) it is also clear that for 6.1 to hold it is not necessary that the
metric¢ be semipositive oX - it is enough that the restriction to each fiber
be positive. Then 6.1 still holds even though this of course does no longer
imply that the curvature o®’' is nonnegative. Moreover, Theorem 5.2 also
holds if we replace the hypothesis

(©Fu,u) =0,

by the hypothesis that equality holds in 6.1.
The expression occuring in the integrand in 6.1,

C(w) = (wtf - ‘@iﬂt‘i)

plays a crucial role in the recent work on variations of Kéhler metrics on
compact manifolds, see [19], [14], [8], [9],[18] and [5], to quote just a few.
Fixing a line bundlel on Z, these papers consider the sp&td.) of all
Kahler metrics whose Kéahler form is cohomologous to the Chern class of
L. This means precisely that the Kahler form can be written

i00¢ = i00py + 1001,
for some function). and so the set up we described above, witedepends
ont corresponds to a path iG(L).
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The tangent space @ (L) at a point¢ is a space of functiong and a
Riemannian metric on the tangent space is given by theorm

|¢|2=/Z|a/}|2(z'a§¢)”/n!.

In this way, k(L) becomes an infinite-dimensional Riemannian manifold.
Now consider our spac& above and letV = {|Ret| < 1} be a strip,
and consider functions that depend only oRe¢. Then

if we use dots to denote derivatives with respedRta. The link between
Theorem 1.2 and the papers quoted above lies in the fact that, by the results
in [19], the right hand side here is the geodesic curvature of the path in

K(L) determined byp.
A basic idea in the papers quoted above is to consider the spaces

Et - F(Xt, KXt ® L)

with the induced.?-metric as a finite dimensional approximation or “quan-
tization” of the manifoldZ with metric ¢, = ¢ + ¥ (t,-). (Actually this
is not quite true. In the papers quoted above one does not take the tensor
product with the canonical bundle, but instead integrates with respect to the
volume elementidde,)" /n!.) Here one also replacdsby L* - with k!
playing the role of Planck’s constant - and studies the asymptotic behaviour
ask goes to infinity. Under this “quantization” map, functions @rcorre-
spond to the induced Toepliz operator Bn

The inequality 6.1 can now be formulated as saying that “the curvature
of the quantization is greater than the quantization of the curvature”, i e
that the curvature operator of the vector bundle corresponding to a path in
KC(L) is greater than the Toepliz operator defined by the geodesic curvature
of the path. Moreover, Theorem 5.2 implies thatihas no nonzero global
holomorphic vector fields, then equality holds only for a constant path.

7. BUNDLES OF PROJECTIVE SPACES

Let V' be a holomorphic line bundle of finite ranlover a complex mani-
fold Y, and letl* be its dual bundle. We I&(1") be the fiber bundle ovér
whose fiber at each poinof the base is the projective space of lined/jh
P(V;*). ThenP(V) is a holomorphically locally trivial fibration. There is a
naturally defined line bundl®g (1) overP(V') whose restriction to any
fiberP(V;*) is the hyperplane section bundle. One way to define this bundle
is to first consider the tautological line bundbg,)(—1). The total space of
this line bundle, with the zero section removed, is just the total spaké of
with the zero section removed, and the projectiofPtd’) is the map that
sends a nonzero point ¥j* to its image inP(V;*). The bundleOp(1) is
then defined as the dual 6k (—1). The global holomorphic sections of
this bundle over any fiber are in one to one correspondence with the linear
forms onV}*, i e the elements of . More generallyDp( (1) = Op(v)(1)
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has as global holomorphic sections over each fiber the homogenuous poly-
nomials onV;* of degred, i e the elemets of theth symmetric power of
V. We shall apply Theorem 1.2 to the line bundles

Let £ (1) be the vector bundle whose fiber over a paiimt Y is the space
of global holomorphic sections df(l) ® Kp(y+. If I < r there is only the
zero section, so we assume from now on thatgreater than or equal to

We claim that

E(r) =detV,

the determinant bundle 6f. To see this, note thdt(r) @ Kp(y is trivial

on each fiber, since the canonical bundlé:of- 1)-dimensional projective
space i)(—r). The space of global sections is therefore one dimensional.
A convenient basis element is

r
E Zde]‘,
1

if z; are coordinates oWi,". Herecfz\j is the wedge product of all differentials
dz;, excepldz; with a sign chosen so thdt; /\Ez\j = dziA...dz,. Ifwe make

a linear change of coordinates &fr, this basis element gets multiplied
with the determinant of the matrix giving the change of coordinates, so the
bundle of sections must transform as the determinaht.&ince

L(r +1) ® Kpw) = Opvy(1) ® L(r) @ Kp»y,

it also follows that
E(r+1)=V®detV.

In the same way
E(r4+m)=5"(V)®detV,

whereS™ (V) is themth symmetric power of/.

Let us now assume th&t is ample in the sense of Hartshorne, see [12].
By a theorem of Hartshorne, [12]; is ample if and only ifZ(1) is ample,
i e has a metric with strictly positive curvature. Theorem 1.2 then implies
that theL?-metric on each of the bundlég(r +m) for m > 0 has curvature
which is strictly positive in the sense of Nakano, so we obtain:

Theorem 7.1.Let V be a vector bundle (of finite rank) over a complex
manifold. Assumé’ is ample in the sense of Hartshorne. Then for any
m > 0 the bundle

S™(V) ® det V

has an hermitian metric with curvature which is (strictly) positive in the
sense of Nakano.
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8. APPENDIX

In this section we will state and prove an extension result of Ohsawa-
Takegoshi type which in particular implies that the bundiethat we have
discussed in this paper really are vector bundles. The proof follows the
method of [2], combined with ideas from [6], that allow us to include the
case of singular metrics. See also [20] for a closely related result.

Theorem 8.1. Let X be a Kahler manifold fibered over the unit ballin
C™, with compact fibers(,. Let L be a holomorphic line bundle ol with

a hermitian metric - possibly singular - with semipositive curvature.lLet
be a holomorphic section t& x, ® L over X, such that

/Xo[u,u} <1

Then there is a holomorphic sectianto Ky over X such thati = u A dt

fort =0and
/ [ﬁ’
X

whereC is an absolute constant.

|<C

jwg]

Proof. We assumen = 1. The general case follows in the same way,
extending with respect to one variable at the time. At first we also assume
that the metric orl. is smooth. The proof follows closely the method in [2]
so we will be somewhat sketchy.

Let f = u A [Xo]/(27i), where[X)] is the current of integration oi.
Thendf = 0 and ifv is any solution td)v = f thena = tv is a section to
K that extends: in the sense described. To find avith L?-estimates we

need to estimate
[ (.o
X

for any compactly supported test foarof bidegreg(n +1,0) on X. Fora
given, decompose = o' + o, wherea! is 9-closed, andy* is orthogonal
to the kernel of). This means that?® can be written

a? — 5*ﬁ
for someg. By the regularity of theé)-Neumann problem’ and3 are all
smooth up to the boundary. We first claim that

(8.1) /(f, a?) = 0.

This is not surprising sincé is 0-closed, but it is not quite evident singe
is not in L2. To prove it, extend: smoothly toX. Thendu A dt = 0 for
t = 0. Let x be a smooth cut-off function equal to one near the origiR,in

and put
Xe(t) = x(|t*/e)-
Then B B
f=xf=0uNdt/t)xe— OuNdt/tx. =
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= O(uNdt/tx.) —uNdt/t NOxe — OuAdt/txe =T+ II+III.

Clearly the scalar product between | antlvanishes. It is also clear that
the scalar product between Il and goes to zero as goes to zero. The
scalar product between Il and equals, up to signs

/X’((‘?u Adt A dt, [3) /e,

which is easily seen to tend to zero as well sifag\ dt vanishes for = 0.
Hence 8.1 follows. Therefore

|£}ﬁ@ﬁ=r[3ﬁaw2s[;wA7eﬂ

where~ is the Hodge-* ofa!. The form~ satifiesw A v = ! andd*a =
O*al = 0?%y. To estimate this we apply the Sild-Bochner formula ( see
[2]): If w is any nonnegative function smooth up to the boundary gthen

(8.2) — /i@@w A cny AFe™? + /i@@qb Ay A e ? <

< 2¢,Re /88¢’y AFe Pw = / |0*a*w + /(8*04, ow A 7).

Now choosew = (1/27)log(1/[t|?). If i0d¢ is nonnegative we then find
that

/ YAye™® < O/|5*a|2(1og(1/|t|2+1/|t|)+/ idt AdEAY Ny (1 [t)).
Xo X

To take care of the last term we repeat the last argument once more, this
time choosingv = (1 — |¢|) and finally obtain an estimate

[ ok < [ apasi.

This implies that there is some functioron X such that

o= [wa),

for all test formse, and satisfying

[k <c

Thena := tv satisfies the conclusion of the theorem.

We now turn to the modifications needed when the metisnot smooth.
SinceX has a complete Kahler metric, we can apply the results and meth-
ods of [6]. There is then, possibly after shrinking the domain slightly, a
decreasing sequence of smooth metrgsthat tend tap pointwise. More-
over, the curvature af, satisfies an estimate

i00¢), > —\gw
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where)\, is a decreasing sequence of continuous functions that tend to zero
almost everywhere. We can then repeat the arguments above, repbacing
with ¢;.. The estimate we obtain is

[ o< 1o/ + [l

Here the subscripts indicate the dependence of our metfc ©his implies
that there are functions, andg; such that,, satisfies the same estimate as
before, with¢ replaced byy,,

[l <c

andduv, = f + A\/%q.. Since

[aade<c [

the sequence, goes to zero inLj,.. An appropriate weak limit of the
sequence;, then solves the equati@hv = f and satisfies the same estimate
as before.

0
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