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Abstract

The subject of this paper is a Galton-Watson (GW) process with
the linear fractional offspring distribution. Four ways of constructing
a Markov chain to model the time-reversed process are presented and
analyzed. The approach by Esty is related to the construction based
on quasi-stationary distributions. We establish a surprising fact that it
has the same transition probabilities as the (Q-process associated with
the linear fractional GW process, Theorem 5.1. Then we discuss two
closely related definitions: the uniform prior reverse, and the minimal
reverse, studied earlier by us in the case of geometric reproduction. The
fourth approach is by Asmussen and Sigman [2]. A remarkable fact is
that all four constructions of the reverse process have the transition
probabilities of the GW process with a dual reproduction law and some
kind of immigration. In particular, we generalize a result of [5] in which

only a geometric offspring distribution was considered.
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1 Introduction

In population genetics it is important to look back from now and model random
fluctuations in population’s development. Our approach is to consider the
time-reversed Galton-Watson Process.

In general, for a process {Z,,} defined on the time interval n < N, the time-
reversed process is Y,V is the process Zy ,. As usual, we are interested in the
probabilistic structure, and understand equality of processes Y}V Lz N_e IN
distribution.

It is easy to see that if {Z,},cz is a stationary Markov Chain with transi-
tion probabilities (P;;) and a stationary distribution {7;} then for any N the
time-reversed process {Y,V}, is also a Markov chain with the same stationary

distribution and transition probabilities obtained by the Bayes formula

PYY, =YY = i) = P(Zy-eyy = jlZn-n =) = 22 (1)

Thus the distribution of the reversed process is independent of N, and one
can define the time-reversed process as a Markov chain {Y,,} with transition
probabilities

7 i

P(Yo1=jlYn=1i) = (2)

If {Z,} is non-stationary, then the finite dimensional distributions of the time-

U

reversed process Y,¥ = Zy_, depend on N. Since it is not clear what N should
be, this is inconvenient. It is possible eliminate N by taking it to be large,
N — oo. The limit in distribution of finite dimensional distributions of {Y,V}
may not exist for a non-stationary process {7, }. However, for Markov chains
with a quasi-stationary distribution, it is possible to think that for large N
the chain is in a quasi-stationary regime, and one can use such a distribution
to define the time-reversed process by analogy with (2). The process we are
interested in, the Galton-Watson process {Z,} is non-stationary but possesses
quasi-stationary distributions (see e.g. [3], Ch 2.), and for any such distribution

{n;};>1 the time-reversed chain can be defined by analogy with (2)
. . n; Pj;
P(Yni1 =jlYn=1) = M (3)

This approach is given in Alsmeyer and Résler [1]. For critical Galton-Watson
process the quasi-stationary distribution is unique, but there are infinitely

Galton-Watson process, linear fractional generating function, Q-process.



many quasi-stationary distributions in the sub-critical and supercritical cases.
For such processes it is not clear which quasi-stationary distribution to take.

There are other approaches to time reversal, some are based on the limiting
procedure N — oo, such as in Esty [4], and some follow different ideas. This
paper deals with four constructions, all different from the above mentioned ap-
proach based on quasi-stationarity. Three methods are found in the literature
and we suggest another one, with each method having its own logic.

We give explicit constructions of the time-reversed processes for the Galton-
Watson process with a linear fractional offspring distribution. It is a remark-
able result that the time-reversed processes for principally different construc-
tions turn out to be again Galton-Watson processes, with a linear fractional
reproduction but with immigration. This finding generalizes our earlier result
in [5], where only a geometric offspring distribution was considered. Con-
struction of the time-reversed process allows to answer some questions on the
original branching population. For example, the question of the age of the
population can be answered by considering the hitting time of one by the
time-reversed process, see [5].

The paper is organized as follows. First we present the necessary results
on the GW process with a linear fractional reproduction needed in the sequel.
These results include explicit formulae for the transition probabilities and gen-
erating functions, the duality between the subcritical and supercritical cases,
eternal particles and immigration. Then we give different constructions of the

reversed GW processes.

2 Linear fractional or G(py, p) reproduction

With any non-negative integer valued random variable £ there is an associ-
ated GW process {Z,},>0 which is a time homogeneous Markov chain with

transition probabilities
P(Zni1=jlZn=1)=P(S;=3), 1 >0, j >0. (4)
Here and elsewhere
S; =& +...+&, where &,...,& are independent copies of . (5)

If € is interpreted as the number of offspring of a single particle, then Z,, gives
the size of the n-th generation in a population of independently multiplying
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particles.
Denote by h(s) = E(s%) the probability generating function of £, 0 < s < 1.
The generating function of Z, is given by the n-th iterate h,(s) of h

E(s”(Z0 = i) = (hn(3))", hi(s) = h(s), ha(s) = h(hn-1(5)).

Depending on the offspring mean m = E(&) the extinction probability @ =
lim,, ,o(Z, = 0|Z; = 1) is either one, if m < 1 and P(§ = 1) < 1, or less
than one, if m > 1. The exact value of @) is found as the smallest root of the
equation h(s) = s.

Consider an offspring distribution governed by two parameters 0 < py < 1
and 0 < p < 1, given by

P(§=0)=py, P(( =14) =qpg" ", i > 1, (6)

where ¢ = 1—py and ¢ = 1 —p. In the special case py = p this is the geometric
distribution G(p). In the literature distribution (6) is called either a modified
geometric distribution, or zero-modified geometric distribution. Often it is
referred to as a linear fractional distribution due to the form of its generating

function +( )
qops Do D —DPo)S
h(s) = = ) 7
() =po+ 2 - TP (7

In this paper refer to the distribution (6) as the G(pg, p)-distribution and to
the corresponding GW process as the G(pg, p) reproduction.
The key feature of the G(py, p) reproduction is an explicit formula [3, p. 7]

for the iterations

mhp2s
hn(s) =1- mnpn + Pn ;
— qnS
where m = ¢o/p and
A i py+p A1
Pn = ml_goq if _ ’ QHzl_pna nZL (8)
oty ULPoTP=1

so that in particular p; = p and ¢; = ¢. Thus given Z; = 1, the size of the n-
th generation Z, has the zero-modified geometric distribution G(1 —m"py, p,)
with the following counterpart of (6)

P(Zy=0|Zy=1)=1=m"p,, P(Zy=i|Zy=1) =m"plq} ". 9)



More generally, in the case of j > 1 initial particles we have

. . ~(i—1 i o il
P(Z, =i|Zy = j) =Z (l— )(‘;)pilqn "1 —m pp)?tm™, i > 1.

1
I=1
These formulae follow from the next property of the sum (5) in the case (6):

P(s, =0 =t 25 =0 =3,

=1

j il i ) )
)(Jﬂqﬁ%%&zzszl(w)

Here and elsewhere we put (i) = 0 for j < I. To verify (10) notice that
the number of positive summands & in S; is a binomially distributed random
variable L ~ Bin(j, go) with P(L =1) = (})p} ¢}, 0 <1< j. Given L = I, the
distribution of (S; —1) ~ NB(l, p) is Negative Binomial with P(S; —L = k|L =
) = (k+,i_1) p'g¥, k > 0. Applying the law of total probabilities we arrive at
(10).

The extinction probability of the GW process with G(pg, p) reproduction
equals Q = min(%, 1) in accordance with the first part of (9). Notice that @ is
the smallest of the two roots £ and 1 of the equation h(s) = s. An important

parameter b = h'(Q), needed later, can be computed explicitly as well,

p—d Ploo ifpotp<l
Q@/p ifpo+p=>1

3 Dual reproduction laws

Definition 3.1 Consider a reproduction law with the offspring distribution
generating function h(s) and mean m. A dual reproduction law is defined by

the transformed generating function
h*(s) = h(Rs)/R, 0 < s <1,
where R satisfies h(R) = R and R # 1 if m # 1.

This definition is symmetric in that h(s) = h*(R*s)/R*. A critical re-
production law is self-dual. The dual offspring mean is m* = h'(R). In the

supercritical case R = () with m* = b, and the dual law governs the subcritical



part of the well known decomposition due to Harris-Sevastyanov transforma-
tion [3, p. 47-53]. The dual to a subcritical reproduction law is a supercritical
law with the extinction probability @* = 1/R and b* = m.

In the special case of the G(pg, p) reproduction the dual law is the G(q, ¢o)

reproduction with

R=py/q, m" =p/g=1/m, Q" =1/Q, b" =1/b,

and generating function

qoPs
*(o) — ) 11
h*(s) =q+ 1 05 (11)

The next observation is fundamental to our forthcoming analysis.

Lemma 3.1 Given (5) and (6),

Zsjp(sj =1i)=s(h*(s)) (h*(s))"", i > 1. (12)

ProOF If i > 1 and 0 < s < 1/py, then according to (10)

S $Ip(S, = ) = zz( D (7)o
=0 1 =t
Since - N
I\ i _ k+1\ & _ -1
Z<l>xj —Z<k>x—(1—x) , 0<z <1,
3=l k=0
it follows

0o % . -1
, . Pqos L= 1) -1 il ( QoS )

E s'P(S;=1) = ——— P’ g —

= (S5 =1) (1 —pos)? & (l -1 1 — pos

and after some algebra we obtain

o0 1—1
; . Pbqos Pqos .
SP(S; =1)=——— | q+ ) , 1 >1, 13
;0 ( ’ ) (1—1705)2 ( ( )

which in view of (11) is equivalent to (12).




An alternative way of verifying (13) is to use the joint generating function

ZZsjP(Sj =i)u' = Zsj (h(u)j — pf))
i=1 j=1 7=0
1—qu 1 PGoUS

(L= pos) (T — qu) — paous 1 —pos (1= pos)(L— qu) — dopuss) (1 — pos)

ZC’O Pgos pgs \'
0 0 7
P (1 — pos)? ( 1 —pos

O

Figure 1 reflects our vision of two dual random walks with jump distribu-

tions G(po, p) and G(q, go). It is useful for graphical illustrations of the proofs
of the forthcoming propositions.

R B
i G(po, p)-walk [q : . G(g, qo)-walk Tpo :
| A |
| p, m|® [ | gl :
P, qo Tp) | a|” P m,
I q Q q Tp | &) q :
| G | A A
' [
| o g q P plo
A | A A |
| pr QO qo' p | H) p p); qo |
A | A A |
q @ q_qP o q i
p G(q,qo)-walkJ' % G(po,p)-walk !
qQ q n » »

Figure 1: Two examples of dual pairs of random walk trajectories.

4 Eternal particles and immigration

Definition 4.1 A GW process with an eternal particle, a GW process {Zn}nzo
15 defined by

P(Znir =jlZn=10)=P(Sisi+1+7=73), i>0, >0,  (14)

where n s independent of S;_1 and stands for the number of offspring of the

eternal particle.



Comparing with (4) we see that the eternal particle does not contribute to
the sum S;_; and counted separately to produce the next generation size j. If
g(s) = E(s"), then the generating function of the GW process with an eternal

particle becomes (compare with (12))
E(sZ+1|Z, = i) = sg(s)h' (s).

Notice that {Zn—l}nzo is known as a Galton-Watson process with immigration
(GWI) process with the immigration generating function g(s). Sometimes we
will refer to a GW process as a CW process with F; reproduction and F5
immigration to specify the offspring distribution F} for ordinary particles and
the offspring distribution F; for the eternal particle.

An important example of a GW process is the so called Q-process {Zn}nZO
associated with the GW process {Z,},>o introduced in [6]. This is the GW
process {Z,},>o conditioned on not being extinct in the distant future and on
being extinct in the even more distant future [3, p. 59]. It is a Markov chain
with transition probabilities
jQ

ib

P(Zn+1 = ]|Zn = Z) = P(SZ = J)

The corresponding generating function is given by

S IPS= i = o

i
=1

1
DO

>_(sQYTiP(S: = )

s ; ' 5, h(sQ) ot
BT (h (x))z:sQ = gh (sQ) (T) -

The last representation shows that in the subcritical case when @ = 1,
the Q)-process is a GW process governed by the reproduction generating func-
tion A(s) and the immigration generating function g(s) = A'(s)/m. In the
supercritical and critical cases, the ()-process is again a W process but now
the reproduction generating function is h*(s) and the immigration generating
function is g(s) = h'(sQ)/b = (h*(s))'/m*.

Turning to the case of the G(pg,p) reproduction we find that in the su-

, 2
percritical and critical cases we have 2 (zQ) = (1_‘1305) , which means that the

immigration number 7 has a negative binomial distribution NB(2,¢qy). We

summarise our findings in the next proposition.



Proposition 4.1 In the supercritical and critical cases the @Q-process associ-
ated with the G(pg,p) reproduction is a GW process with the G(q, qo) repro-
duction and G(qo) + G(gqo) immigration.

In the subcritical case the Q-process of the G(po, p) reproduction is a GW
process with G(pg, p) reproduction and G(q) + G(q) immigration.

5 Reverse GW process

Let {Z,}n>0 be a GW process with an arbitrary reproduction law
{P(§ = k)}k>o with P(§ = 1) > 0. In [4] a reverse GW process {Y;}n>0
was introduced in terms of the finite-dimensional distributions by using the

following limit procedure

P(Y,, =t,...,Y,, =i|Yo=1) = ]\}i_rgaooP(ZN,n1 =U1,..., IN_n, = Ik|ZNn = ).
(15)

(Here we restrict the definition of the reverse chain {Y, },>¢ to the state space

of positive integers.) According to [4], the process {Y}, },>o is well defined, and

it is a time-homogeneous Markov chain with transition probabilities

P(Ypor = jVo=i) = L .P(S;=i), i>1, j>1, (16)

where

Theorem 5.1 The reverse process of the GW process with the G(po,p) re-
production is a Markov chain with the same transition probabilities as the Q-

process associated with the G(po,p) reproduction.

PRroOOF Using (9) and (8) we obtain

1 ifpo+p<1
U,j: q j—1 .
<p—0) ifpo+p>1

In view of Lemma 3.1 this implies, on one hand,

oo 2 i—1

90 N q 9o Pqos

=P(S;, =1i)s’ =5 + ) ; 17
R N = (A )




and on the other hand,

fip(q)jﬂm$=ny - B(q)ifi(ﬁ)amg=n

=0 20 \Po Do =1 \Po
- P (i) ~ paogs (q+ Pogs )H
g \Po/) po(l—gqs)? po(1 —gs)

2 i-1
p Pqos

= . 18

8(1—qs> (p0+1—qs) ( )

According to (17), the reverse process to the supercritical or critical GW

process with G(pg,p) reproduction is a GW process with the G(g, qo) repro-
duction and G(go) + G(go) immigration. While according to (18), the reverse
process to the subcritical GW process with G(pg,p) reproduction is again a
GW process but now with the G(py, p) reproduction and G(g)+G(g) immigra-
tion. This is exactly the description of the Q-process associated with G(po, p)

reproduction given in the Proposition 4.1.

O

e Py A
Znir =8 q | Y, —1= Tq
| A |

I
| W . | v
I q : I q :
| A | 4

I I
: Lq lx(g)_: Aq !
I q : I q :
| A | 4

I I
S 2 o AL
I q : I q :
| " A ., T T
Ip0 o qi) _____ %n_:_7J| oy m‘]ﬂ Yn+1—1—6

_Zq%

Figure 2: Picture proof of Theorem 5.1 in the supercritical and critical cases.

The assertion of Theorem 5.1 is somewhat counter intuitive. We illustrate
it with Figure 2, where the left panel represents a one-generation transition in
the forward GW process and the right panel gives the corresponding change
in the reverse process. The left panel depicts a path of the G(pg,p) random
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walk (cf. Figure 1) with seven steps leading from level zero to level eight. This
corresponds to seven particles producing eight offspring.

In the right panel the G(py, p) path from the left panel is rearranged into
a G(g, qo) path by

1. removing the last p arrow in the left path,
2. placing an additional gy arrow to the begining of the right path,

3. moving the last py arrow in the left path to the begining of the right
path.

a
a;b

in the supercritical and critical cases. Notice that the origin of the coordinate

The first two changes are meant to reflect the factor ;% in (16) which equals £}

system on the right panel is shifted so that the reverse transition is now from
seven to six particles. This is done to discount the eternal particle from the
picture. It remains to recognize that the resulting G(g, go) path corresponds

to the G(q, go) reproduction with G(qo) + G(go) immigration.

Remark. Observe that the results in [4] concerning the asymptotic behaviour
of the reverse GW process in the particular case of zero-modified geometric
distribution can be deduced from the known limit theorems for the GWI pro-

cesses.

6 Uniform prior reverse GW process

Putting s = 1 into (13) yields ), -, P(Sk = i) = p/qo- Thus the relation (17)
implies that in the supercritical and critical cases the reverse chain has the
transition probabilities

P(S; =1)
ZkZl P(S, =1)’

In view of (4) the reverse process {Y,},>o becomes the time reversed chain

P(Ypi1 = j|Y, =) = i>1, j>1. (19)

of the original {Z,},>0 with a uniform prior as the stationary distribution.
(Remark 2.1 in [5] incorrectly attributes this description to the backward GW
process described in the next section.) This observation justifies another def-

inition of the reversed GW process, which does not require a limit procedure
like (15).

11



Definition 6.1 A Markov chain {Y; }n>o with the transition probabilities (19)

is called a uniform prior reverse of the GW process {Z,}n>o0-

Notice that the sum in the denominator of (19) is the mean number of
visits of the level ¢ by the random walk {S,},>¢. It is positive and finite for
any i > 1 if, for example, P(¢ = j) > 0 for 1 < j < jo, jo < 0.

Applying the results of the previous sections we conclude that

Proposition 6.1 The uniform prior reverse of the GW process with G(po, p)
reproduction is a GW process with the G(q, qo) reproduction and G(qo) + G(qo)

immigration.

In the subcritical case the uniform prior reverse drastically differs from the
reverse process obtained in the previous section. This is because the condi-
tioning in (15) puts a non-uniform prior distribution in the subcritical case -
it does not allow the GW process to visit high levels in the past.

It is straightforward to extend Definition 6.1 to the cases of a GWI process
and a GW process. The random walk should be set as S; +n in the former
case and as S;_; +n + 1 in the latter. We use this opportunity to see if the
double reverse in the sense of Definition 6.1 brings us back to the G(g,qo)

reproduction. The answer to this question is negative.

Proposition 6.2 The uniform prior reverse of the GW with the G(q, qo) re-
production and G(qo) + G(qo) immigration is a Markov chain of G(q,q) re-

production conditioned on non-extinction every nexrt generation.
Proor If ; ~ G(p) and 7, ~ G(p) are independent, then

i—1
: . k+1
P(Sji+m+m+1l=i)=>» P(S1=i—k- 1)( . )qkp2_
k=0

12



o
G Z1=T pom Yo =8 )

| |

: p mqo | : q |

! q : | q :

| |

P |

p':m H);qo | : q |

p 7 : p_ % :

o e |

la I Zy—1=6 q Yo =7

Figure 3: Illustration of the proof of Proposition 6.2
It follows from (13) and (10) that

ZSjP(S];1 +mt+m+l=i)=

=0
1—2 oo o0
= p’s Z(k +1)¢* ZSJP(S]- =i—k—1)+ iqz_poSZsjP(Sj =0)
k=0 =0 =0
P*es? paos \""7 i bt
= (k+1)¢* (q + ) +ig" 'p’s Y s'p)
— ps)2 _
(1 —pos)? = 1 —pos pas
3 2 i—2 1—2 k B )
P qos Pqos q 1q°" " p°s
o (14 12 2 FH D\ s | 7o
Now since
ii(kﬂ) ood (S d (1-2\ 1—dzil 4 (i—1)2f
T = — €T = — =
prs dz \ &= de \1—=z (1—x)?

we get after some algebra

ZSjP(Sj1+771+n2+1=i)=£{(Q+ PP ) —q’}

s o 1 —pos

This implies

(q + —1”_",‘,3;> -
1—¢t '

B N~ .
=) 2 S PSimm e+ 1=1) =
p(l = ¢') =

13



Ol
We finish this section with a proposition ensuring that the double uni-
form prior reverse of the GWI process with G(pg,p) reproduction and G(p)

immigration brings us back to the original GWI process.

Proposition 6.3 The uniform prior reverse of the GWI with the G(po,p)
reproduction and G(p) immigration is the GWI with the G(q, qo) reproduction

and G(qo) tmmigration.

p,
r——————-—- - - —— r—-——-—————=——-—=—— = - =
|Zn+1:8 q : |Yn:8 Tq
| |
|
l 1 :xq—o_l 1 :
: q o q |
| |
| |
' m w|P | o po o P |
ol o |
| |
Tq | Zp =T o e Yopr =7
_p()»(lo

Figure 4: Tllustration of the proof of Proposition 6.3.

PrOOF If ) ~ G(p), then
P(S;+n=i)=) P(S;=i-k)p.

It follows from (13) and (10) that

[ i—1 00 e
ZSjP(Sj +n=1i) = qustjP(Sj =i—k) +qiszjP(Sj =0)

j=0 k=0  j=0 J=0
P°qos paos \' ' ' N
_ 0 i} 7 Jd
= s (4 ) +q'p ) 5'm
(1 = pos)? ( 1 = pos g ( t 1pq§§s> JZO
7
p Pqos
— . 20
1 — pos (Q+1—p08> 20

14



This implies > | P(S; +7 = 4) = p/qo and thereby the assertion

oo %
. . s

> SLP(S; +n=i) = — <‘1+ = ) '

= P 1 —pos

1—pgs

7 Minimal reverse GW process

Another reverse procedure, similar to Definition 6.1, was suggested earlier in
[5]. It is based on 7; = inf{j : S; =i}, the first time the random walk {S,},>1
visits the level 7. If the random walk jumps over the level ¢+ without visiting it,

we put 7; = oQ.

Definition 7.1 The minimal reverse GW process {X,}n>0 is defined as a

Markov chain with transition probabilities
P(Xn-l-l :.7|Xn :i) :P(Ti :j|Ti < OO), [ 2 ]-’ .7 2 1.

In [5] we used the term “backward GW process”. Here we use the name
“minimal reverse GW process” to reflect the fact that the minimal reverse
chain jumps to a lower or equal level in comparison with the uniform prior
reverse if started at the same level. This fact is confirmed by the following

proposition (cf Proposition 6.1)

Proposition 7.1 The minimal reverse of the G(py, p) reproduction is the GW
with the G(q,qo) reproduction and G(qy) immigration.

PROOF Observe that

P(ri=j) = P(5;=14,5j-1#1) =P(S; =1) = P(Sj-1 = 5; =1)
= P(§;=1) = P(5;1 =9)P( =0)

and according to (13) we obtain

Y §P(m=4) = ) P(S;=0)—pos) s 'P(Sj-1 = 1)
=0 j=0 Jj=1

i—1
s s
Pqo g+ Pqo _
1 —pos 1—pos

15



This implies P(7; < co) = p and thereby the assertion

Sy Gos pgos \'
ZSJP(Ti=j|Ti<OO)= 1 0 (q+ 4 ) :
7j=1

— PosS 1 — pos
0

. P
Z1 =8 g X, —1=17 Tq
| y | |
| p, m|® | ]
I q : I q :
| A | y
| 1 Ll ? :
| \qO | P | AqO |
I P | I 2 |

| |
: ‘p QO | : ‘p qO |
| q : | q :
| A I
mom® Zn =T, o om|P X —1=6

Figure 5: Picture proof of Proposition 8.1.

The next proposition addresses the question of what reproduction process
should be reversed in the sense of Definition 7.1 to produce the G(pg, p) repro-
duction. The answer is the GWI process with the G(g, ¢o) reproduction and
G(go) immigration.

Proposition 7.2 The minimal reverse of the GWI with the G(py, p) reproduc-
tion and G(p) immigration is the GW process with the G(q, qo) reproduction.

PROOF The proof is similar to the previous one, only now instead of (13) we
use (20) and get

1—pos

o0 ) . s )
Y §P(r; =j)=p <q+ o ) :
§=0

This implies P(7; < co) = p and thereby the assertion

ZSjP(Ti:j|Ti<OO): (q+ Po® ) :

1 —pps

j=1
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i ‘ X1z ‘ I

L o ‘ |
_P,'hpo,_ﬂ);qo : I p _po>l0>q0 :
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Figure 6: Picture proof of Proposition 7.2.

8 The dual GW process

The dual GW {V, },>0 was introduced in [2]. This definition implies the fol-

lowing formula for the transition probabilities
P(Voy1 =j|Va=1) =P(Sj41 >1>S;), 1 >0, j > 0.

Proposition 8.1 The dual to the GW process with the G(po,p) reproduction
is a GWI process with the G(q,qy) reproduction and G(qy) immigration.

PROOF Since

and
Y SP(S;>0) = > ) SP(S;=k)
J=0 k=i+1 j=0
Qs pgos \'
= +
(1 —5)(1— pos) (q 1—2908)
we obtain

s 1 —pos L —pos

> 1—sN i
ZSJP(VTL-H = ]‘Vn = Z) = i ZSJP(S]' > Z) = fo (q + Plo’ ) .
j=0

=0

g
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