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L2-ESTIMATES FOR THE d-EQUATION AND WITTEN’S
PROOF OF THE MORSE INEQUALITIES.

BO BERNDTSSON

ABSTRACT. This is an introduction to Witten’s analytic proof of the
Morse inequalities. The text is directed primarily to readers whose main
interest is in complex analysis, and the similarities to Hörmander’sL2-
estimates for thē∂-equation is used as motivation. We also use the
method to proveL2-estimates for thed-equation with a weighte−tφ

whereφ is a nondegenerate Morse function.

1. INTRODUCTION

The aim of these notes is primarily to give an easy introduction to Wit-
ten’s proof of the Morse inequalities, see [8]. There are already excellent
such accounts ( see e g [5]), and the main particularity with this presentation
is that it emphasises the relation between Witten’s proof and the theory of
L2-estimates for thē∂-equation. It is thus written with a mind to a reader
whose main interest is in complex analysis, and we shall also take the op-
portunity to state and prove some weightedL2-estimates for thed-equation
that follow from Witten’s method.

The simplest case of Hörmander’sL2-estimates for thē∂-equation deal
with the equation

∂̄u = f

wheref is a ∂̄-closed(0, q)-form in a bounded pseudoconvex domainΩ in
Cn. The theorem says that this equation can be solved with a solutionu that
satisfies the estimate

(1.1)
∫

Ω

|u|2e−φ ≤ C

∫
Ω

|f |2e−φ

whereC is a constant depending only on the diameter ofΩ, andφ is any
plurisubharmonic function.

This theorem follows from an a priori estimate for a dual problem and the
plurisubharmonicity ofφ enters in this dual estimate through the complex
hessian (

∂2φ/∂zj∂z̄k

)
= (φjk)

which is positively semidefinite. It is quite clear that this proof can be
adapted to thed-equation (even with some simplifications), and that in that
way one obtainsL2-estimates for thed-equation in convex domains and
with a convex weight function.
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This is however not satisfactory since the condition on a domain for solv-
ability of thed-equation is a purely toplogical one for which convexity is
sufficient but far from necessary. It is also not clear why the weight function
should be required to be convex. We shall see that the Morse inequalities
give us a clue as to what the “right” condition on the weight function should
be.

Let us first change the setting somewhat and letΩ be a compact mani-
fold. Let φ be a smooth function onΩ. At each critical point ofφ, i e a
point p such thatdφ(p) = 0, the hessian ofφ is a well defined quadratic
form on the tangent space ofΩ. If this quadratic form is nondegenerate at
each critical point,φ is said to be a nondegenerateMorse function, and the
index of a critical point is by definition the number of negative eigenvalues
of the quadratic form. Letmq be the number of critical points of indexq -
we assume there are only a finite number of critical points (which is auto-
matically fulfilled if Ω is compact). We also letbq be theq:th Betti number
of Ω, i e the dimension of theq:th de Rham cohomology group with real
coefficients. Recall that the de Rham cohomology group is by definition
the space ofd-closedq-forms modulo the space of exact forms. The Betti
numberbq is thus zero precisely when the equation

(1.2) du = f

is solvable for each closedq-form f . The weak Morse inequalities now state
that

(1.3) bq ≤ mq

for eachq. In particular it follows that ifmq is zero, i e ifφ has no critical
points of indexq, then (1.2) is always solvable. The strong Morse inequali-
ties say that for anyq

(1.4) bq − bq−1 + bq−2... ≤ mq −mq−1 +mq−2....

Witten’s proof of the Morse inequalities is based on the representation
of a cohomology class by a harmonic form, i e one choses in each coho-
mology class the unique element of minimal (L2) norm. For this one has
to choose a Riemannian metric, and the main idea in the proof is to per-
turb theL2-norms by introducing a weight factor,e−φ. Hereφ is the Morse
function in question andt is a large parameter. For these weighted norms
one derives an identity, similar to but different from, thed-version of the
Kodaira-Nakano-Hörmander identity for̄∂. In casemq = 0, i e whenφ
has no critical points of indexq the identity shows that there can be no har-
monicq-forms if t is large enough, so the cohomology must vanish, and we
shall see that the identity also leads toL2-estimates for solutions to (1.2).
In the general case the identity implies that the harmonic forms must, ift is
large enough, be very concentrated near the critical points of indexq with
at most one harmonic form concentrated near each such critical point. This
leads to the weak Morse inequalities. In general equality does not hold in
these inequalities for the reason that at some critical points there may be
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no corresponding harmonic forms. It turns out however that if instead of
harmonic forms one studies spaces of eigenforms with small eigenvalues -
“low-energy forms”- then there will be exactly one such form concentrated
near each critical point of indexq. The space of low-energy forms also gives
a complex with the same cohomology as the space of all forms, and this is
what eventually leads to the strong Morse inequalities.

In the case of non compact manifolds, like (domains in)Rn, it turns out
that similar arguments can be carried through provided that the manifold is
endowed with a Riemannian metric which is complete, and that the Morse
function satisfies appropriate conditions at infinity. We will not discuss the
Morse inequalities themselves for open manifolds, but we will give a variant
of theL2-estimates for the case when solvability of (1.2) is predicted by the
inequalities, i e when the weight function has no critical points of indexq.
I do not know if suchL2-estimates hold without the completeness assump-
tion, but I believe they don’t, since the estimates for noncomplete metrics
seem to imply strong conditions on the boundary behaviour of solutions

This paper is organized as follows. In the next section we give an ex-
tremely simple motivating example. After that we compare the Witten iden-
tity and thed-version of the Hörmander identity for 1-forms in domains in
Rn. Section 4 is devoted to the proof of the weak Morse inequalities on
compact manifolds , andL2 estimates for (1.2) on complete Riemannian
manifolds. The final section gives a short account of Witten’s derivation of
the strong Morse inequalties.

The content of these notes was presented at a minicourse in Toulouse in
January -05. I would like to thank the organizers and participants in the
course for creating such a stimulating atmosphere, and for “encouraging”
me to write down the notes of the course. In the course we also discussed the
holomorphic Morse inequalities of Demailly, [4], following the approach of
Berman, [2]. We have not included this part of the course in these notes and
instead refer to the original papers [4], [2] and the survey [1]. It should
however be mentioned that the presentation of Witten’s method in sections
4 and 6 is influenced by the scaling method of [2].

2. A MOTIVATING EXAMPLE IN R

In this section we study weighted estimates for thed-equation for 1-forms
on the real line. This amounts to solving what is arguably the simplest of
all differential equations

(2.1) du/dx = f,

with weighted estimates. To simplify even further we shall, instead ofL2-
estimates discuss weightedL1-estimates of the form

(2.2)
∫
|ut|e−tφ ≤ C

∫
|f |e−tφ,
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wheret is a large positive parameter and the constantC does not depend on
t. For what smooth ( Morse) functionsφ is it possible to find solutionsut

such that this estimate holds?
Let first f be a point massδp at a pointp. It is clear that if we can solve

this equation with a solutionu(p) satisfying an estimate (2.2), then

u =

∫
u(p)f(p)dp

will be a good solution for an arbitraryf in L1(e−tφ). With no loss of
generality we may assume thatφ(p) = 0, so that the right hand side in (2.2)
is just a constant. The general solution to (2.1) is constant forx < p and
x > p and has a jump discontinuity of size 1 atp. To satisfy (2.2) locally
we separate 4 different cases in the behaviour ofφ , depending on whether
φ is increasing, decreasing, has a local minimum or a local maximum atp.

In the first case our estimate will be satisfied locally if we chooseu(p)

equal to 0 to the left ofp. In the second case we takeu(p) = 0 to the right
of p. If φ has a local minimum atp both of the two previous alternatives
work, whereas ifφ has a local maximum atp no solution to (2.1) satisfies
(2.2) even locally.

The condition on (a smooth Morse function ) that we arrive at in or-
der to have (2.2) satisfied locally is thus that there be no local maxima, or
equivalently no critical point of index 1. This condition is precisely what is
predicted by the Morse inequalities, and it is easy to see that if it is satisfied
we also have a global weighted estimate.

3. THE d-EQUATION FOR1-FORMS IN Rn

Let us first recall the fundamental Hörmander identity for compactly sup-
ported(0, 1) forms inCn. We let

α =
∑

αjdz̄j

be a smooth compactly supported form, andφ be a smooth weight function.
The formal adjoint of̄∂ in L2(e−φ) is

ϑα =
∑

δjαj,

where
δjv = −eφ∂/∂zj(e

−φv) = −vj + φjv.

Then we have

(3.1)
∫ (∑

φjk̄αjᾱk +
∑

|∂αj/∂z̄k|2
)
e−φ =

∫ (
|ϑα|2 + |∂̄α|2

)
e−φ

In particular, if the complex Hessian ofφ is uniformly bounded from below,
and if ∂̄α = 0 we obtain an estimate∫

|α|2e−φ ≤ C

∫
|ϑα|2e−φ.
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Roughly speaking, this means that the adjoint of the∂̄-operator is strongly
injective on the space of̄∂-closed forms. Via a functional analysis argu-
ment this leads to the surjectivity of thē∂-operator itself, which means that
the ∂̄-equation is solvable with an estimate. We skip over here the compli-
cations in this argument that come from the fact thatϑ is only the formal
adjoint, and that we at first only have the inequality for smooth compactly
supported forms. In the case of the∂̄-equation in all ofCn it is relatively
easy to overcome this complication by approximating a general element in
the domain of the adjoint tō∂ with test forms.

We now state and prove the corresponding identity for real forms. Here
we let

∂j = ∂/∂xj,

φj = ∂jφ, (φjk) be the Hessian ofφ, and denote by

δα = −eφ
∑

∂j(e
−φαj) =:

∑
δjαj = −

∑
∂jαj − φjαj

the formal adjoint ofd in L2(e−φ).

Proposition 3.1. Letα be a smooth compactly supported form inRn. Then

(3.2)
∫ (∑

φjkαjαk +
∑

|∂kαj|2
)
e−φ =

∫ (
|δα|2 + |dα|2

)
e−φ

Proof. Integrating by parts we get∫
|δα|2e−φ = −

∫ ∑
∂j(e

−φαj)δα =

∫ ∑
αj∂jδkαke

−φ+

=

∫ ∑
φjkαjαke

−φ +

∫ ∑
αjδk∂jαke

−φ =

=

∫ ∑
φjkαjαke

−φ +

∫ ∑
∂kαj∂jαke

−φ.

Formula (3.2) now follows since∑
∂kαj∂jαk =

∑
|∂kαj|2 − |dα|2

�

This identity can be used to obtain solvability of thed-equation in convex
domains and estimates for the solution with a convex weight function. To
obtain a more general result we shall rewrite the identity.

First replaceφ by 2φ and substituteαeφ for α. Then we introduce the
twistedd andδ operators by

d−φα = e−φd(eφα)

and
δφα = eφδ(e−φα).

Formula (3.2) then says that

(3.3)
∫ ∑

φjkαjαk +
∑

|e−φ∂k(e
φαj)|2 =

∫
|δφα|2 + |d−φα|2
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The second term in the integrand on the left hand side is∑
(∂kαj + φkαj)

2 =
∑

|∂kαj|2 + 2
∑

φk∂kαjαj +
∑

φ2
k|α|2 =

=
∑

|∂kαj|2 +
∑

φk∂kα
2
j + |dφ|2|α|2.

Integrating by parts again, the second term∑
φk∂kα

2
j

gives a contribution that equals

−
∫

∆φ|α|2.

Summing up we have therefore proved the next proposition.

Proposition 3.2. Under the same hypotheses as in the previous proposition
we have
(3.4)∫ ∑

|∂kαj|2 + |dφ|2|α|2 +2
∑

φjkαjαk−∆φ|α|2 =

∫
|δφα|2 + |d−φα|2

Proposition 3.2 is a special case of the formula used by Witten in his
proof of the Morse inequalities. To get solvability of thed-equation from it
we need to chooseφ so that the left hand side dominates theL2-norm ofα.

Replaceφ by tφ wheret is a large parameter. Then the gradient term in
the left hand side of (3.4) grows quadratically int, whereas the term that
contain second order derivatives ofφ grow only linearly. For larget the
(nonnegative) gradient term therefore dominates the two last terms outside
the critical points ofφ, so we now need to study more closely the behaviour
of the integrand near the critical points.

Let x = 0 be a critical point ofφ. After an orthogonal change of coordi-
nates we may assume that near 0

(3.5) φ(x) = φ(0) + 1/2
∑

λjx
2
j +O(x3).

Then
|dφ|2(x) =

∑
λ2

jx
2
j +O(x3),

and
2
∑

φjkαjαk −∆φ|α|2 =
∑

(2λj − λ)α2
j +O(x),

with λ =
∑
λj. For the estimates we now need a version of the Heisenberg

uncertainty inequality.

Lemma 3.3. Letu be a smooth function onRn and letλk be real numbers.
Then ∫

|du|2 +
∑

λ2
kx

2
ku

2dx ≥
∑

|λk|
∫
u2dx

If the left hand side is finite, equality holds if and only ifu is a Gaussian
function

u = Ce−
P

|λk|x2
k/2.
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Proof. We first prove the statement whenn = 1, and assume to start with
thatu has compact support. Then∫

u2dx =

∫
u2dx

dx
dx = −

∫
2xu′udx.

Multiplying by |λ| we find

|λ|
∫
u2dx =

∫
2|λ|xu′udx ≤

∫
λ2x2u2 + (u′)2dx,

and the inequality follows. The same argument works ifu′ andxu lie in L2

and we see that equality can hold only if

−|λ|xu = u′

which means thatu = Ce−|λ|x
2/2. This proves the Lemma forn = 1.

In higher dimensions the inequality follows from the one-variable case if
we write

|du|2 =
∑

(∂ku)
2,

and apply the one-variable result in each variable separately. Equality holds
iff u is a Gaussian function in each variable separately, and so is Gaussian.

�

For the applications we need a weaker local form of the lemma.

Lemma 3.4. Let a > 0. Then for eachε > 0 there is a finite constantC,
depending only onε anda, such that for any smooth functionu on [−a, a]n
we have∫

[−a,a]n
|du|2 +

∑
k

λ2
kx

2
ku

2dx ≥ (1− ε)
∑

(|λk| − C)

∫
u2dx

Proof. Again it it suffices to prove the theorem forn = 1. Letχ be a smooth
positive function between 0 and 1, which equals 1 on[−a/2, a/2] and has
compact support in[−a, a], and apply the previous lemma toχu. We then
get

|λ|
∫ a

−a

χ2u2dx ≤
∫ a

−a

λ2x2u2χ2 + (u′)2 + (χ′)2u2 + 2χ′χu′udx ≤

≤
∫ a

−a

λ2x2u2χ2 + (1 + ε)(u′)2 + Cu2dx.

On the other hand∫ a

−a

(1−χ2)λ2x2u2dx ≥ λ2/4a2

∫ a

−a

u2(1−χ2)dx ≥ (|λ|−a2)

∫ a

−a

u2(1−χ2)dx.

Adding this to the previous inequality we get the claim of the lemma.
�
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Now we return to the critical pointx = 0 and assume thatφ is given by
(3.5) near 0. Replaceφ by tφ wheret is a large parameter. Considering the
expression in the left hand side of (3.4) it follows from the previous lemma
that, withλ =

∑
λk,∫

[−a,a]n

∑
|∂kαj|2 + t2|dφ|2|α|2 + 2t

∑
φjkαjαk − t∆φ|α|2 ≥

≥
∫

[−a,a]n
ε|x|2|α|2 + t

∑
(2λj − λ+ (1− ε)

∑
|λk|)α2

j ,

modulo an error term of size∫
C|α|2 + t2O(a3)|α|2 + tO(a)|α|2.

HereC depends only ona andε and is in particular independent oft. We
have assumed thatφ is a Morse function so the critical point is non degen-
erate which means that all the numbersλj are different from 0. Since

(2λj − λ+
∑

|λk|) = 2(λj −
∑
λk<0

λk),

this expression is strictly greater than 0 except ifλj is negative and all the
otherλks are positive. In particular, if it is negative 0 must be a critical point
of index 1.

Assume this is not the case. Then

(2λj − λ+ (1− ε)
∑

|λk|)

is still positive if ε is small enough. If we choosea small enough and thent
large enough all the error terms are absorbed and we conclude that∫

[−a,a]n

∑
|∂kαj|2 + t2|dφ|2|α|2 + 2t

∑
φjkαjαk − t∆φ|α|2 ≥

tδ

∫
[−a,a]n

|α|2

for some positiveδ.
Now let φ be a nondegenerate Morse function inRn and assume more-

over that|dφ| is bounded from below at infinity. Thenφ has only a finite
number of critical points, and we make the hypothesis that none of the crit-
ical points is of index 1. We also assume thatφ satisfies the technical con-
dition, (C) that

|D2φ| ≤ C|dφ|2,
whereD2 stands for any second order derivative, outside of a compact sub-
set. Repeating the argument above for each of the critical points we con-
clude from Proposition 3.2 that∫

|δtφα|2 + |d−tφα|2 ≥ tδ

∫
|α|2
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for any smooth compactly supported 1-form. Substituting backe−tφ for α
we get equivalently that∫

(|δ2tφα|2 + |dα|2)e−2tφ ≥ tδ

∫
|α|2e−2tφ.

One can now apply the argument from [6] to obtain the following theorem
on solvability of thed-equation . We do not give the details here since
we come back to this kind of argument for arbitrary complete Riemannian
metrics in the next section.

Theorem 3.5. Letφ be a nondegenerate Morse function inRn whose gra-
dient is bounded from below at infinity. Assumeφ satisfies the technical
assumption (C) above. Assumeφ has no critical point of index 1. Then we
can, for anyd-closed 1-formf in Rn and anyt > t0 solve the equation

du = f

with a functionu that satisfies the estimate∫
u2e−2tφ ≤ C/t

∫
|f |2e−2tφ.

In particular, if u lies inL2(e−2tφ) ∩ L1(e−2tφ), then∫
(u− ut)

2e−2tφ ≤ C/t

∫
|du|2e−2tφ

holds if

ut =

∫
ue−2tφ/

∫
e−2tφ.

The last statement is a weakened version of the so called Brascamp-Lieb
inequality ([3]) for non-convex weights. It follows from the first statement
sinceu− ut is theL2-minimal solution to

d(u− ut) = du.

4. WEAK MORSE INEQUALITIES

Let at firstΩ be a compact differentiable manifold of dimensionn, equipped
with a Riemannian metric. We denote by

Hq(X,R)

the de Rham cohomology groups ofX of orderq, i e the quotient between
the space ofd-closedq-forms onX and its subspace of exact forms. The
Riemannian metric induces a norm and a scalar product on the space of
q-forms, that can be expressed in terms of the Hodge *-operator as

〈α, β〉 =

∫
α ∧ ∗β.

We denote byδ = d∗ the formal adjoint of thed-operator with respect to
this scalar product, defined by

〈dα, β〉 = 〈α, δβ〉,
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for smooth formsα and β. In classical Hodge theory, see eg [7], one
chooses in each cohomology class the unique representative of minimalL2-
norm. If f is such a representative of minimal norm it follows that the
function

|f + sdα|2

has a minimum fors = 0, which means thatf must be orthogonal to the
space of exact forms, so

δf = 0,

by the definition of theδ-operator. If we introduce the Laplace operator on
forms by

∆f = dδ + δd,

it therefore follows that a minimal representative must beharmonic, i e
solve∆f = 0. From the ellipticity of the∆ it follows that f is smooth.
Conversely, by Pythagoras’ theorem, any smooth closed form satisfying
δf = 0 must be a representative of minimal norm of its cohomology class.
It is also easy to see that if∆f = 0 then

〈∆f, f〉 =

∫
|df |2 + |δf |2 = 0

sof must be a closed form of minimal norm in its cohomology class. Sum-
ming up, there is a natural isomorphism between the de Rham cohomology
groups and the space of harmonic forms,H2(X).

Now letφ be a Morse function onX and consider the weighted norms

|α|2t =

∫
|α|2e−2tφ.

The basic idea in Witten’s proof can be described as choosing a representa-
tive of minimal weighted norm for larget. Such a minimal representative
satisfies the two equations

df = 0

and
δ2tf := δ2tφf := e2tφδ(e−2tφf) = 0.

Hereδ2t is the formal adjoint ofd with respect to the weighted scalar prod-
uct. Just as in the previous section it is convenient to substituteg = fetφ

for f and we then obtain a form that satisfies

δtg = 0

and
d−tg := e−tφd(etφg) = 0.

Introducing the perturbed Laplace operator

∆t := δtd−t + d−tδt,

we see, as in the unweighted case, that this is equivalent to the single equa-
tion

∆tg = 0.
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Just as in classical Hodge theory we therefore get an isomorphism between
the cohomology groupsHq and the spaces

Hq
t := {g q − form; ∆tg = 0}.

Alternatively, we may view this as introducing a new complex with the
coboundary operatord−t and taking a representative of minimal unweighted
norm in each cohomology class of the new complex. (Note thatδt is the
adjoint ofd−t with respect to the unweightedL2-norms.)

We shall now derive an integral identity for the expression∫
〈∆tα, α〉 =

∫
|δtα|2 + |d−tα|2

that generalizes formula (3.4). For this we expand the operator∆t in powers
of t at a pointp in X. We may take local coordinates,x, nearp, such that
x(p) = 0 and the Riemannian metric onX is euclidean to first order atp.
This means that the metric is given in terms of the coordinates by a matrix
(gij(x)) that is the identity matrix whenx = 0 and satisfiesdgij = 0 at
x = 0. Letωj denote the operator (on forms) of interior multiplication with
the formdxj, and letω∗j be the dual operator of exterior multiplication with
dxj. Denoting∂jφ = φj we get

d−t = d+ t
∑

φjω
∗
j = d+ tdφ∧

and
δt = δ + t

∑
φjωj = δ + t(dφ∧)∗.

Moreover
d =

∑
ω∗j∂j

and
δ = −

∑
∂jωj.

From the definition of the perturbed Laplacian we get atx = 0

(4.1) ∆t = ∆ + t2|dφ|2 + tMφ.

Here

(4.2) Mφ =
∑

φjk[ω
∗
j , ωk],

with [ω∗j , ωk] = ω∗jωk − ωkω
∗
j In the computations one uses that atx = 0

the operators∂j andωk commute and that

ωjω
∗
k + ω∗kωj = δjk.

The expression for the operatorMφ, holds under the assumption that the
coordinates are chosen so that the metric equals the euclidean metric to first
order, butMφ nevertheless of course defines a global zeroth order operator.

Integrating (4.1) we get∫
|d−tα|2 + |δtα|2 =
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= 〈∆tα, α〉 =

∫
∆α · α+ t2|dφ|2|α|2 + tMφ(α) · α.

The same relation holds even ifX is not compact provided thatα has
compact support. We shall now use this formula to determine all the∆t-
harmonic forms inRn in the model case whenφ = 1/2

∑
λjx

2
j . In the

computations we write with multiindex notation

α =
∑

αJdxJ ,

λJ =
∑

J

λj,

and we will need an explicit formula forMφα · α that follows from (4.2):

(4.3) Mφα · α =
∑

(λJ − λJc)|αJ |2.

Theorem 4.1. Let φ = 1/2
∑
λjx

2
j where allλj are different from 0 and

let ∆t be the corresponding laplace operator. Letα be aq-form inL2(Rn)
that satisfies

∆tα = 0.

If the number of negativeλj is not equal toq, thenα = 0. If the number of
negativeλj is equal toq and, say, the firstq λj are negative, then

α = Ce−1/2
P

|λj |x2
jdx1 ∧ ...dxq,

for some constantC.

Proof. Let χ be a smooth function with compact support in the ball with
radius 2 which equals 1 in the ball with radius 1. Let

χR := χ(·/R)2.

Then by (4.1)
0 = 〈∆tα, χRα〉 =

=

∫
χR(∆α · α+ t2

∑
λjx

2
j |α|2 + tMφα · α).

Since, inRn with the euclidean metric∫
∆α · αχR =

∫ ∑
|∂kαJ |2χR

up to an error which is∫
O(|dχR||α|(

∑
|∂kαJ |).

we get, by the formula forMφ, that

0 =

∫ ∑
|∂kαJ |2 + t2

∑
λjx

2
j |αJ |2 +

∑
(λJ − λJc)|αJ |2
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modulo the same error. Since|dχR|2 ≤ CχR/R
2 the error term vanishes as

R tends to infinity. Apply Lemma 3.3 tou = αJ for eachJ . We then get

0 ≥
∫ ∑

(λJ − λJc +
∑

|λj|)|αJ |2.

The coefficient of each|αJ |2 equals twice the sum of all positiveλj with j
in J , minus the sum of all negativeλj with j outside ofJ . This number is
always nonnegative and equals 0 only when there are preciselyq negative
eigenvalues, all of them lying inJ . If α is not identically equal to 0 the
number of negative eigenvalues, i e the index of the critical point 0, must
therefore equalq andα = αJdxJ . Finally J must consist of all the indices
corresponding to negativeλj. Moreover, equality must hold in (3.3), soαJ

is a Gaussian function of the type claimed.
�

Actually, the only consequence of Theorem 4.1 that we will need is that
the dimension of the solution space is 1.

We now turn to the proof of the weak Morse inequalities. Assumeα is a
q-form onX such that∆tα = 0. It follows from (4.1) that

(4.4)
∫
|dα|2 + |δα|2 + t2|dφ|2|α|2 + tMφα · α = 0,

so

(4.5) t2
∫
|dφ|2|α|2 ≤ −t

∫
Mφα · α ≤ Ct

∫
|α|2.

Let p be a critical point ofφ and choose coordinates centered atp with
respect to which the metric is Euclidean to first order andφ has the local
form (3.5). Then|dφ|2 > c|x|2 nearp. Let p1, ...pN be the critical points
of φ and letBj be balls in coordinates centered atpj with radiusA/

√
t. It

follows that, if t is large enough,

t2
∫

(∪Bj)c

|dφ|2|α|2 ≥ cA2t

∫
(∪Bj)c

|α|2.

Hence, by (4.5), ∫
(∪Bj)c

|α|2 ≤ C

A2

∫
|α|2,

so

(4.6)
∫
∪Bj

|α|2 ≥ (1− C

A2
)

∫
|α|2.

This means that ift is large we can chooseA so large that at least half of the
mass ofα is concentrated in the union of theBjs, i e very near the critical
points.

Let Ft be the scaling map inRn

Ft(x) = x/
√
t.
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For eachj between 1 andN we restrictα toBj and let

αj = F ∗
t (α|Bj

),

soαj is a form in the Euclidean ball with radiusA. Moreover,αj is har-
monic for the operator∆t in Rn defined by the weight function

φt(x) = t(φ(x/
√
t)− φ(0)),

(the constant term ofφ plays no role in the computation of∆t) and the
Riemannian metric

tF ∗
t (ds2) =: ds2

t =
∑

gij(x/
√
t)dxidxj.

Finally, we normalize by putting

fj = t(q−n/2)/2αj,

to get a form whose norm with respect tods2
t equals the norm ofα in Bj.

Let ΨA,t be the map

ΨA,t(α) = f = (f1, ...fN).

ThusΨA,t maps forms onX that are harmonic with respect to∆t to forms
on a disjoint union ofN balls of radiusA in Rn that are harmonic with re-
spect to the corresponding operator defined by the weightφt and the metric
ds2

t . By (4.6),ΨA,t is almost an isometry ifA is sufficiently large, hence in
particular injective.

Now take for any larget an elementα(t) in Hq
t of norm 1, letf(t) =

ΨA,t(α(t)) and lett tend to infinity. Since the norms off(t) are uniformly
bounded, we take a subsequence that converges weakly to a limitf∞. By
an identity of the form (4.4) on the union of the balls inRn we have a
control of the first order derivatives off(t), so by the Rellich lemma we even
have strong convergence on every compact part. Therefore the limit form
is nonzero. Moreover, sinceds2

t tends to the euclidean metric ast tends to
infinity, andφt tends to a quadratic form1/2

∑
λjx

2
j , f∞ is harmonic with

respect to a Laplacian like in Theorem 4.1. Here the choice ofA is arbitrary
so f∞ actually extends to such a harmonic form in the disjoint union of
N copies ofRn. This means thatf∞ lies in a space of dimension at most
N = mq.

We can for anyt choose an ordered orthormal basis ofHq
t and apply this

argument to each element in the basis. SinceHq
t is for any t isomorphic

to the cohomology groupHq, the number of elements in each such basis
equalshq. The forms that we get after applying the limit procedure de-
scribed above must be linearily independent, since any fixed nonzero linear
combination of them tends to a nonzero limit. Hencehq ≤ mq, so the weak
Morse inequalities follow.
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5. L2-ESTIMATES

5.1. Compact manifolds. It follows from the weak Morse inequalities of
the previous section that if a compact manifold has a Morse function with
no critical points of indexq, then the equationdu = f is always solvable for
anyd-closedq-form f . In this section we shall make this statement more
precise by proving the following variant of Theorem 3.5.

Theorem 5.1. Let X be a compactn-dimensional Riemannian manifold
and letφ be a non-degenerate Morse function onX. Let q be an integer
between 1 andn such thatφ has no critical point of indexq. Then, fort
sufficiently large and for anyd-closedq-form f there is a(q − 1)-form u
such thatdu = f and∫

X

|u|2e−tφ ≤ C/t

∫
X

|f |2e−tφ,

whereC is a constant independent oft.

The main step of the proof consist in establishing the next lemma.

Lemma 5.2. Under the hypotheses of Theorem 5.1 there is a constantC,
independent oft, such that for any smoothq-formα, onX∫

X

|α|2 ≤ C/t

∫
X

|d−tα|2 + |δtα|2.

Proof. It follows from (4.1) that∫
X

|d−tα|2+|δtα|2 =

∫
∆tα·α =

∫
|dα|2+|δα|2+t2|dφ|2|α|2+tMφα·α.

Letpj be the critical points ofφ and letBj be small balls in local coordinates
centered at eachpj. Denote byX the union of the ballsBj and letχ be a
cutoff function which is equal to zero outside ofX and equal to 1 near the
pointspj. The integral in the right hand side above can now be decomposed
into two terms,

I :=

∫
χ

(
|dα|2 + |δα|2 + t2|dφ|2|α|2 + tMφα · α

)
,

and a similar integral,II, with χ replaced by1 − χ. For larget (not de-
pending onα) II is evidently positive and dominates a multiple of

t2
∫

(1− χ)|α|2.

To analyse the first term we notice first that there is no loss of generality
in assuming that the metric onX is euclidean with respect to the chosen
coordinates inBj and so is Euclidean in all ofX. Integrating by parts we
find that

I =

∫
χ

(
(α,∆α) + t2|dφ|2|α|2 + tMφα · α

)
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plus an error term that can be estimated by

(5.1)
∫
|dχ||∇α||α|.

(Here∇α is the gradient ofα taken componentwise with respect to the
given coordinates.) But, in Euclidean coordinates the Laplacian∆ on a
form is just the Laplacian taken on each component. Integrating by parts
again we therfore get

I =

∫
χ

(
|∇α|2 + t2|dφ|2|α|2 + tMφα · α

)
plus an error term of the same type as before. The error term (5.1) is smaller
than

ε

∫
|dχ|2|∇α|2 + 1/ε

∫
|α|2.

By a simple, wellknown and useful trick one can choose the cutoff function
χ so that|dχ|2 ≤ Cχ (the trick consist in replacingχ by χ2). Putting all
this together we then get fort large that that∫

X

|d−tα|2 + |δtα|2 ≥

≥ ct2
∫

(1− χ)|α|2 +

∫
χ

(
(1− ε)(|∇α|2 + t2|dφ|2|α|2) + tMφα · α

)
≥

ct2
∫

Uc

|α|2 +

∫
U

(
(1− ε)(|∇α|2 + t2|dφ|2|α|2) + tMφα · α

)
,

where we takeU to be a neighbourhood of the critical points whereχ equals
one. ThenU is a union of neighbourhoodsUj of pj that we can take to be
little cubes as in Lemma 3.4. By lemma 3.4 and the discussion immediately
after we find that∫

Uj

|∇αJ |2 + t2|dφ|2|αJ |2 ≥ (t(1− ε)
∑

|λk| − C)

∫
Uj

|αJ |2,

if αJ is the coefficient of one component ofαwith respect to the coordinates
nearpj. On the other hand

Mφα · α =
∑

(λJ − λJc)|αJ |2 +O(|x||α|).

Hence

(5.2)
∫

Uj

(
(1− ε)(|∇α|2 + t2|dφ|2|α|2) + tMφα · α

)
≥

≥ t

∫
Uj

∑
(λJ − λJc + (1− ε)

∑
|λk|)|αJ |2.

Precisely as in the discussion of weak Morse inequalties in the previous
section we write ∑

(λJ − λJc +
∑

|λk|)
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as twice the sum of allλj with j in J andλj positive minus the sum of all
λj with j not in J andλj negative. This expression is always nonnegative
and can be zero only if the multiindexJ consists precisely of allj with λj

negative. Since we have assumed that there are no critical points of indexq
this does not happen at anypj so the expression is strictly positive. Hence∑

(λJ − λJc + (1− ε)
∑

|λk|)

is also positive forε sufficiently small, and the lemma follows.
�

It is now easy to deduce Theorem 5.1. The statement of the theorem is
equivalent to saying that we can solve

d−tu = f

with an estimate ∫
|u|2 ≤ C/t

∫
|f |2

if d−tf = 0 and t is large enough. For this we use the following conse-
quence of Lemma 5.2.

Lemma 5.3. Let f be ad−t closedq-form onX. Under the hypotheses of
Theorem 5.1 there is a constantC such that

|
∫

(f, α)|2 ≤ C/t

∫
|δtα|2

∫
|f |2

for any smoothq-formα onX.

Proof. Decomposeα = α1 + α2 whered−tα1 = 0 andα2 is orthogonal
to the kernel ofd−t. Thenα2 is in particular orthogonal to the range to
d−t soδtα2 = 0. Moreover,d−tα2 = d−tα is smooth, so∆tα2 is smooth.
Henceα2 and therefore alsoα1 are smooth. Hence it suffices to prove the
statement of the lemma forα1, i e we may assume thatd−tα = 0. But then
by Lemma 5.2

|
∫

(f, α)|2 ≤
∫
|α|2

∫
|f |2 ≤ C/t

∫
|δtα|2

∫
|f |2.

�

Now define a linear functional on the space of formsδtα whereα is a
smoothq-form by

L(δtα) =

∫
(f, α).

By the last lemmaL is well defined and has norm less than
√
C/t‖f‖. The

Riesz representation theorem then shows that there is a(q− 1)-form u with
norm less than the norm ofL satisfying∫

(f, α) =

∫
(u, δt).

Thend−tu = f which proves Theorem 5.1.
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5.2. Open manifolds. We next discuss briefly the case of open manifolds.
For the estimates of Lemma 5.2 to work we then need to assume that|dφ|
be bounded from below by a positive constant at infinity. We also need that
the second derivatives be bounded from above. Under these assumptions,
Lemma 5.2 can be proved just as for compact manifolds ifα is of compact
support.

The next step is to generalize Lemma 5.3. It is enough to have the lemma
for formsα of compact support, but a difficulty now arises when we decom-
poseα into α1 andα2 since these forms in general will not have compact
support anymore. To handle this difficulty one assumes that in addition the
metric onX is complete. Under this extra hypothesis one can then prove
that ∫

|α1|2 ≤ C/t

∫
|δtα1|2

by applying Lemma 5.2 toχνα1, whereχν is a sequence of compactly
supported cutoff functions that are equal to 1 on larger and larger compact
sets that eventually cover all ofX. Since the metric is completeχν can be
chosen with gradients uniformly bounded which implies that the error terms
appearing in the approximation ofα by χνα goes to zero. The rest of the
argument runs as before and we obtain a variant of Theorem 5.1 for open
manifolds with complete metrics and nondegenerate Morse functions with
gradients bounded from below at infinity.

Theorem 5.4. LetX be a completen-dimensional manifold and letφ be a
non-degenerate Morse function onX. Assume the gradient ofφ is uniformly
bounded from below at infinity and that the second derivatives ofφ are
bounded from above by|dφ|2 at infinity. Letq be an integer between 1 and
n such thatφ has no critical point of indexq. Then for allt sufficiently large
and for anyd-closed formf of degreeq there is a solution to the equation
du = f satisfying the estimate∫

|u|2e−tφ ≤ C/t

∫
|f |2e−tφ.

Note that any open manifold can be given a complete Riemannian metric.
If the manifold has an exhaustion function,ψ, which is a nondegenerate
Morse function whithout critical points of indexq we can composeψ with
a rapidly increasing functions to obtain another functionφ satisfying the
conditions of the theorem. Theorem 5.4 therefore implies solvability of the
d-equation in such manifolds.

It is also worth noticing that there is no assumption on the boundary
behaviour ofφ explicitly in the assumptions of Theorem 5.4; the assumption
is only on the derivatives ofφ. Therefore the theorem also gives solvability
in cases that are rather unrelated to Morse theory. A case in point is when
M is an arbitrary compact manifold andX = M × (−1, 1). Let t be the
projection fromX to (−1, 1) and letφ be a strictly increasing function oft.
Thenφ has no critical points at all and if we giveX a complete metric and
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make the derivative ofφ sufficiently large at the end points of the interval
(−1, 1), we get solvability of thed-equation for all closed formsf that lie
in the corresponding weightedL2-space. This may look surprising at first
sight since the cohomology ofM is arbitrary, but is explained by the fact
that the completeness of the metric forcesf to tend to zero ast goes to 1 or
-1, sof is homotopic to 0 and therfore exact.

6. STRONG MORSE INEQUALITIES.

In this section we again letX be a compact manifold (without bound-
ary). The proof of the weak Morse inequalities in section 3 depended on an
estimate of the dimension of the space of∆t-harmonic forms onX. The
proof of the strong Morse inequalities uses that the same estimate holds for
the larger space oflow energy forms.

Any smooth form onX can be written

α =
∑

αj

where theαj are eigenforms for∆t, i e

∆tαj = Ejαj.

Choose a functionε(t) slowly tending to zero. We shall say thatα is a low
energy form if all the eigenvalues (or energy levels)Ej appearing in the
decomposition above satisfy

Ej ≤ ε(t)t.

If α is a low energy form the identity 4.4 can be replaced by an inequality

(6.1)
∫
|dα|2 + |δα|2 + t2|dφ|2|α|2 + tMφα · α =

=

∫
(∆tα, α) =

∑
‖αj‖2Ej ≤ ε(t)t‖α‖2.

Just as insection 4 it follows from this (as soon as, say,ε(t) ≤ 1) that most
of the mass ofα is concentrated in the union of ballsBj with radiusA/

√
t

around the critical points∫
∪Bj

|α|2 ≥ (1− C

A2
)‖α‖2.

Arguing as in section 4, we see that the dimension of the space of low energy
forms of degreeq does not exceedmq, the number of critical points of index
q. This is because rescaling will give us forms onRn that are combination
of eigenforms of the scaled laplacian with all eigenvalues at mostε(t), so in
the limit we get harmonic forms again.

The point of using low energy forms instead of harmonic forms is that
now we may arrange things so that equality holds in this estimate. To see
this, fix a critical pointpj of indexq and choose local coordinatesx centered
at pj so thatφ = φ(0) + 1/2

∑
λjx

2
j to second order. Letγ be a harmonic

q-form of norm 1 for the weight function1/2
∑
λjx

2
j in Rn. Let χ be a
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cutoff function inRn which is equal to 1 if|x| < 1 and equal to zero if
|x| > 2. Let

γA,t = χ(x
√
t/A)γ.

We then use the (inverse of) the scaling mapFt to define a form

αA,t = F−1
t

∗
(γA,t)

in Bj. Choose finallyA = At tending to infinity. One can then check that

‖∆tαAt,t‖ ≤ tε(t)2‖αAt,t‖
whereε(t) tends to zero. (Notice that by the explicit form ofγ from The-
orem 4.1,γ is dominated bye−cA2

t where the derivative ofχ(x/At) is
nonzero.) ExpandingαAt,t in eigenforms of the∆t-operator, this means
that

(6.2)
∑

E2
j ‖αj‖2 ≤ ε(t)4t2

∑
‖αj‖2.

Finally we letαt be the projection ofαAt,t on eigenforms with eigenvalues
Ej ≤ ε(t)t. From 6.2 we see that

‖αt‖ ≥ (1− ε(t))‖αAt,t‖ ∼ 1

The upshot of this is that for each critical pointpj of index equal toq,
and fort large, we have found a low energy form onX concentrated near
pj. Therfore the dimension of the space of low energy forms is for larget at
least (and, as we know, at most) equal tomq. This is, together with the next
lemma from linear algebra, the crucial step in Witten’s proof of the strong
Morse inequalities

Lemma 6.1. Let
0

d→ E0 d→ E1 d→ ...Eq d→ ..

be a complex of finite dimensional vector spaces, and letHq be the corre-
sponding cohomology groups. Leteq be the dimension ofEq and lethq be
the dimension ofHq. Then, for anyq ≥ 0,

hq − hq−1 + hq−2... ≤ eq − eq−1 + eq−2...

Proof. LetZq be the kernel ofd as a map fromEq, and letzq be the dimen-
sion ofZq. Then, since the dimension ofEq−1/Zq−1 = eq−1 − zq−1 is the
dimension of the range ofd in Eq,

hq = zq − (eq−1 − zq−1).

Hence

hq − hq−1 + hq−2... = zq − eq−1 + eq−2 − .. ≤ eq − eq−1 + eq−2...

�

We shall apply the lemma withd = d−t andEq = Eq(t), the space of
low energy forms. Sinced−t commutes with∆t, d−t mapsEq to Eq+1, so
we do get a complex. Moreoverd−t maps the orthogonal complement of
Eq into the orthogonal complement ofEq+1 so the orthogonal complements
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also give a complex. This latter complex is exact, since elements there in
particular are orthogonal to harmonic forms. Therefore the complexEq

defines the same cohomology as the fulld−t-complex. Since noweq = mq,
the number of critical points of indexq, Lemma 6.2 gives that

hq − hq−1 + hq−2... ≤ mq −mq−1 +mq−2...

so the proof of the strong Morse inequalities is complete.
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