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L?-ESTIMATES FOR THE d-EQUATION AND WITTEN'S
PROOF OF THE MORSE INEQUALITIES.

BO BERNDTSSON

ABSTRACT. This is an introduction to Witten’s analytic proof of the
Morse inequalities. The text is directed primarily to readers whose main
interest is in complex analysis, and the similarities to Hormandets
estimates for theé)-equation is used as motivation. We also use the
method to provel?-estimates for thel-equation with a weight—*¢
where¢ is a nondegenerate Morse function.

1. INTRODUCTION

The aim of these notes is primarily to give an easy introduction to Wit-
ten’s proof of the Morse inequalities, see [8]. There are already excellent
such accounts ( see e g [5]), and the main particularity with this presentation
is that it emphasises the relation between Witten’s proof and the theory of
L?-estimates for thé-equation. It is thus written with a mind to a reader
whose main interest is in complex analysis, and we shall also take the op-
portunity to state and prove some weighigdestimates for thd-equation
that follow from Witten’s method.

The simplest case of Hormander$-estimates for thé-equation deal
with the equation

ou=f
wheref is ad-closed(0, ¢)-form in a bounded pseudoconvex dom&iin

C™. The theorem says that this equation can be solved with a soluttoat
satisfies the estimate

(1.1) /Q uffe™ < C /Q |f[Pe™?

where(C' is a constant depending only on the diametef)pfind¢ is any
plurisubharmonic function.

This theorem follows from an a priori estimate for a dual problem and the
plurisubharmonicity ofs enters in this dual estimate through the complex
hessian

(80/02;0%) = (djk)
which is positively semidefinite. It is quite clear that this proof can be
adapted to the€-equation (even with some simplifications), and that in that
way one obtaind.?-estimates for thel-equation in convex domains and

with a convex weight function.
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This is however not satisfactory since the condition on a domain for solv-
ability of the d-equation is a purely toplogical one for which convexity is
sufficient but far from necessary. Itis also not clear why the weight function
should be required to be convex. We shall see that the Morse inequalities
give us a clue as to what the “right” condition on the weight function should
be.

Let us first change the setting somewhat andldte a compact mani-
fold. Let ¢ be a smooth function of2. At each critical point oy, i e a
point p such thati¢(p) = 0, the hessian o is a well defined quadratic
form on the tangent space @f If this quadratic form is nondegenerate at
each critical pointg is said to be a nondegenerdterse functionand the
index of a critical point is by definition the number of negative eigenvalues
of the quadratic form. Leir, be the number of critical points of index-
we assume there are only a finite number of critical points (which is auto-
matically fulfilled if (2 is compact). We also lét, be theg:th Betti number
of €2, i e the dimension of the:th de Rham cohomology group with real
coefficients. Recall that the de Rham cohomology group is by definition
the space ofl-closedg-forms modulo the space of exact forms. The Betti
numberb, is thus zero precisely when the equation

(1.2) du = f

is solvable for each closedform f. The weak Morse inequalities now state
that

(1.3) by < my

for eachq. In particular it follows that ifm,, is zero, i e if¢ has no critical
points of indexg, then (1.2) is always solvable. The strong Morse inequali-
ties say that for any

(14) bq — bq_1 + bq_Q... S mg — Mg—1 + mg—o....

Witten’s proof of the Morse inequalities is based on the representation
of a cohomology class by a harmonic form, i e one choses in each coho-
mology class the unique element of minimaPY norm. For this one has
to choose a Riemannian metric, and the main idea in the proof is to per-
turb the L2-norms by introducing a weight factar;®. Here¢ is the Morse
function in question and is a large parameter. For these weighted norms
one derives an identity, similar to but different from, Wt@ersion of the
Kodaira-Nakano-Hormander identity fék In casem, = 0, i e when¢
has no critical points of index the identity shows that there can be no har-
monicg-forms if ¢ is large enough, so the cohomology must vanish, and we
shall see that the identity also leadsib-estimates for solutions to (1.2).

In the general case the identity implies that the harmonic forms muss if
large enough, be very concentrated near the critical points of indéth

at most one harmonic form concentrated near each such critical point. This
leads to the weak Morse inequalities. In general equality does not hold in
these inequalities for the reason that at some critical points there may be
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no corresponding harmonic forms. It turns out however that if instead of
harmonic forms one studies spaces of eigenforms with small eigenvalues -
“low-energy forms”- then there will be exactly one such form concentrated
near each critical point of index The space of low-energy forms also gives

a complex with the same cohomology as the space of all forms, and this is
what eventually leads to the strong Morse inequalities.

In the case of non compact manifolds, like (domaingRf) it turns out
that similar arguments can be carried through provided that the manifold is
endowed with a Riemannian metric which is complete, and that the Morse
function satisfies appropriate conditions at infinity. We will not discuss the
Morse inequalities themselves for open manifolds, but we will give a variant
of the L2-estimates for the case when solvability of (1.2) is predicted by the
inequalities, i e when the weight function has no critical points of ingdex
| do not know if suchZ?-estimates hold without the completeness assump-
tion, but | believe they don't, since the estimates for noncomplete metrics
seem to imply strong conditions on the boundary behaviour of solutions

This paper is organized as follows. In the next section we give an ex-
tremely simple motivating example. After that we compare the Witten iden-
tity and thed-version of the Hormander identity for 1-forms in domains in
R™. Section 4 is devoted to the proof of the weak Morse inequalities on
compact manifolds , and? estimates for (1.2) on complete Riemannian
manifolds. The final section gives a short account of Witten’s derivation of
the strong Morse inequalties.

The content of these notes was presented at a minicourse in Toulouse in
January -05. | would like to thank the organizers and participants in the
course for creating such a stimulating atmosphere, and for “encouraging”
me to write down the notes of the course. In the course we also discussed the
holomorphic Morse inequalities of Demailly, [4], following the approach of
Berman, [2]. We have not included this part of the course in these notes and
instead refer to the original papers [4], [2] and the survey [1]. It should
however be mentioned that the presentation of Witten’s method in sections
4 and 6 is influenced by the scaling method of [2].

2. A MOTIVATING EXAMPLE IN R

In this section we study weighted estimates fordkhegjuation for 1-forms
on the real line. This amounts to solving what is arguably the simplest of
all differential equations

(2.1) du/dx = f,

with weighted estimates. To simplify even further we shall, insteati’ef
estimates discuss weightéd-estimates of the form

(2.2) [t < [ise,
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wheret is a large positive parameter and the constadbes not depend on
t. For what smooth ( Morse) functionsis it possible to find solutions,
such that this estimate holds?

Let first f be a point mas§, at a pointp. It is clear that if we can solve
this equation with a solution, satisfying an estimate (2.2), then

u = /U(p)f(P)dp

will be a good solution for an arbitrary in L!(e~*). With no loss of
generality we may assume thalp) = 0, so that the right hand side in (2.2)
is just a constant. The general solution to (2.1) is constant fer p and
x > p and has a jump discontinuity of size 1jatTo satisfy (2.2) locally
we separate 4 different cases in the behaviour pflepending on whether
¢ is increasing, decreasing, has a local minimum or a local maximym at

In the first case our estimate will be satisfied locally if we chooge
equal to O to the left op. In the second case we takg, = 0 to the right
of p. If ¢ has a local minimum at both of the two previous alternatives
work, whereas i) has a local maximum at no solution to (2.1) satisfies
(2.2) even locally.

The condition on (a smooth Morse function ) that we arrive at in or-
der to have (2.2) satisfied locally is thus that there be no local maxima, or
equivalently no critical point of index 1. This condition is precisely what is
predicted by the Morse inequalities, and it is easy to see that if it is satisfied
we also have a global weighted estimate.

3. THE d-EQUATION FOR1-FORMS INR"

Let us first recall the fundamental Hérmander identity for compactly sup-
ported(0, 1) forms inC". We let

o = Z O(jdgj
be a smooth compactly supported form, arse a smooth weight function.
The formal adjoint of) in L?(e~?) is

Yo = Z (5]‘()(]‘,

50 = —e%0/0zj(e”%v) = —v; + ¢,v.

where

Then we have

(3.1) /(Z¢j,;ajak+218aj/azk‘z) e¢:/(\19a‘2+|5a’2) e~ ?

In particular, if the complex Hessian ¢fis uniformly bounded from below,
and if 0o = 0 we obtain an estimate

/|a|26_¢§0/|1905|26_¢.
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Roughly speaking, this means that the adjoint ofdhaperator is strongly
injective on the space af-closed forms. Via a functional analysis argu-
ment this leads to the surjectivity of tlheoperator itself, which means that
the 9-equation is solvable with an estimate. We skip over here the compli-
cations in this argument that come from the fact thas only the formal
adjoint, and that we at first only have the inequality for smooth compactly
supported forms. In the case of tAeequation in all ofC” it is relatively
easy to overcome this complication by approximating a general element in
the domain of the adjoint t8 with test forms.

We now state and prove the corresponding identity for real forms. Here
we let

0; = 0/0x;,

¢; = 0,0, (¢,1) be the Hessian af, and denote by

(SCY = —6¢ Z 8j(6_¢aj) = Z(Sjaj = — Zﬁjaj — ¢jaj
the formal adjoint ofl in L?(e~?).

Proposition 3.1. Let« be a smooth compactly supported fornRf. Then

(3.2) / (Z djraioy, + Z |8k04j|2> e ? = / (|(5a|2 + ’da‘Q) e ?

Proof. Integrating by parts we get

/]504\2e¢ = —/Z@(e%g)dozz /Z&jajdkaked’—k
:/Z%’k%ake—d’+/Zaj(5k0jake_¢:
:/Z¢jkajake_¢+/Zakajaj04k€_¢.

Formula (3.2) now follows since

Z@kajajak = Z |0k | — |dar|?
O
This identity can be used to obtain solvability of thequation in convex
domains and estimates for the solution with a convex weight function. To
obtain a more general result we shall rewrite the identity.

First replacep by 2¢ and substituteve?® for a. Then we introduce the
twistedd andd operators by

d_ya = e ?d(e’a)

and
Spa = e?3(e ).
Formula (3.2) then says that

(3.3) /Z Gircon + Y le 0k (eay)]” = / [0sa]® + |d_garf?
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The second term in the integrand on the left hand side is

Z(akaj + graj)’ = Z |Oa|* + 22 PrORajory + Z¢i|0‘|2 =
= 10k + ) drdkal + [dgl*| o).

Integrating by parts again, the second term

> drore]

gives a contribution that equals

—/Ad)\a\z.

Summing up we have therefore proved the next proposition.

Proposition 3.2. Under the same hypotheses as in the previous proposition
we have
(3.4)

[ 10l +ldoflaf+2 3 spaon— Aol = [ [5.aP +1d_saf

Proposition 3.2 is a special case of the formula used by Witten in his
proof of the Morse inequalities. To get solvability of teequation from it
we need to choosg so that the left hand side dominates fttfenorm ofa.

Replacep by t¢ wheret is a large parameter. Then the gradient term in
the left hand side of (3.4) grows quadraticallytirwhereas the term that
contain second order derivatives ofgrow only linearly. For large the
(nonnegative) gradient term therefore dominates the two last terms outside
the critical points ofp, so we now need to study more closely the behaviour
of the integrand near the critical points.

Letz = 0 be a critical point ofp. After an orthogonal change of coordi-
nates we may assume that near O

(3.5) d(x) = $(0) + 1/2) " Nja? + O(a).
Then
|d|*(z) = Y " MNa? + Oz
and
2> " g — Aglal’ =) (2); — Mo + O(w),
with A = >~ \;. For the estimates we now need a version of the Heisenberg
uncertainty inequality.

Lemma 3.3. Letu be a smooth function dR™ and let)\;, be real numbers.

Then
/|du\2 + Z)\kxkuzda: > Z | Ak /uzda:

If the left hand side is finite, equality holds if and onlyifs a Gaussian

function
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Proof. We first prove the statement when= 1, and assume to start with
thatu has compact support. Then

o d
/qux :/ O g = —/2a:u’udx.
dx

Multiplying by |A| we find

A [ atde = [oNotude < [ 3 4

and the inequality follows. The same argument workg dndzu lie in L2
and we see that equality can hold only if

—|Azu =o'

which means that = C'e~X1#*/2, This proves the Lemma for = 1.
In higher dimensions the inequality follows from the one-variable case if

we write
jdul* =) " (Opu)?,

and apply the one-variable result in each variable separately. Equality holds
iff v is a Gaussian function in each variable separately, and so is Gaussian.
O

For the applications we need a weaker local form of the lemma.

Lemma 3.4. Leta > 0. Then for eaclkx > 0 there is a finite constant’,
depending only oa anda, such that for any smooth functianon [—a, a]"
we have

/ |du|? + Z/\kxszdx > (1—¢) Z(|/\k| - C) /qux

Proof. Again it it suffices to prove the theorem for= 1. Let y be a smooth
positive function between 0 and 1, which equals 1-en/2, a/2] and has
compact support ifi-a, a|, and apply the previous lemma ta.. We then
get

N [ Pulde < / N2?uy® + (W) + () + 2x xu'udz <

—a —a

< / Nz?u?x? + (1 + €)(u)? + Cu’da.
On the other hand

a

/ (1—X2))\2x2u2dm2)\2/4a2/ w?(1—x%)dw > (])\|—a2)/ w?(1—x?)dw.

—a —a a

Adding this to the previous inequality we get the claim of the lemma.
Il



Now we return to the critical point = 0 and assume that is given by
(3.5) near 0. Replacg by t¢ wheret is a large parameter. Considering the
expression in the left hand side of (3.4) it follows from the previous lemma
that, withA = >~ A,

/ > 10k ? + CldoPlal® + 2t diragar — tASlal* >
[—a,a}"

2/ laa + 3@\ - A+ (11— Y a2,
[_a7a]n

modulo an error term of size
/C|a\2 + £20(a®)[af2 + t0(a)|af.

HereC depends only ol ande and is in particular independent of We
have assumed thatis a Morse function so the critical point is non degen-
erate which means that all the numbgrsare different from 0. Since

(20 = A+ ) I =204 = D ),
AL <0
this expression is strictly greater than 0 except;ifis negative and all the
other)\;s are positive. In particular, if it is negative 0 must be a critical point
of index 1.
Assume this is not the case. Then

2N = A+ (1= M)

is still positive ife is small enough. If we choogsesmall enough and then
large enough all the error terms are absorbed and we conclude that

/ > 10k * + CldoPlal® + 2t dmagar — tASlal* >
[—a,a}"

té/ |r]?
[~a,a]"
for some positive).

Now let ¢ be a nondegenerate Morse functionih and assume more-
over that|d¢| is bounded from below at infinity. Thef has only a finite
number of critical points, and we make the hypothesis that none of the crit-
ical points is of index 1. We also assume thaatisfies the technical con-
dition, (C) that

|D?¢| < Cldg|?,
whereD? stands for any second order derivative, outside of a compact sub-
set. Repeating the argument above for each of the critical points we con-
clude from Proposition 3.2 that

[ 18al? 4 d-ssal? = 5 [ faP
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for any smooth compactly supported 1-form. Substituting back for o
we get equivalently that

/(\52t¢a]2+ daf2)e2% > t5/|a|2e-2f¢.

One can now apply the argument from [6] to obtain the following theorem
on solvability of thed-equation . We do not give the details here since
we come back to this kind of argument for arbitrary complete Riemannian
metrics in the next section.

Theorem 3.5. Let ¢ be a nhondegenerate Morse functionRi whose gra-
dient is bounded from below at infinity. Assumeatisfies the technical
assumption (C) above. Assuméas no critical point of index 1. Then we
can, for anyd-closed 1-formf in R™ and anyt > t, solve the equation

du = f
with a functionu that satisfies the estimate

/u262t¢> < C/t/’f|262t¢.

In particular, if u lies in L?(e=2?) N L (e=2%), then

/(u —uy)?e M0 < C’/t/ |dul?e™ 2

up = /ue2t¢//62t¢.

The last statement is a weakened version of the so called Brascamp-Lieb
inequality ([3]) for non-convex weights. It follows from the first statement
sinceu — wu, is the L2-minimal solution to

d(u — uy) = du.

holds if

4. WEAK MORSE INEQUALITIES
Let at first(2 be a compact differentiable manifold of dimensigrequipped
with a Riemannian metric. We denote by
HY(X,R)
the de Rham cohomology groups &fof ordergq, i e the quotient between
the space ofi-closedg-forms on.X and its subspace of exact forms. The

Riemannian metric induces a norm and a scalar product on the space of
g-forms, that can be expressed in terms of the Hodge *-operator as

(@)= [anss.

We denote by = d* the formal adjoint of thel-operator with respect to
this scalar product, defined by

{da, ) = (a,00),
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for smooth formsa and 5. In classical Hodge theory, see eg [7], one
chooses in each cohomology class the unique representative of miimal
norm. If f is such a representative of minimal norm it follows that the
function

|f + sdaf?

has a minimum fos = 0, which means thaf must be orthogonal to the
space of exact forms, so

of =0,
by the definition of the)-operator. If we introduce the Laplace operator on
forms by

Af =dé+dd,

it therefore follows that a minimal representative musthiaemonic i e
solve Af = 0. From the ellipticity of theA it follows that f is smooth.
Conversely, by Pythagoras’ theorem, any smooth closed form satisfying
0 f = 0 must be a representative of minimal norm of its conomology class.
It is also easy to see thatX f = 0 then

(A, f) = / AP + 1872 = 0

so f must be a closed form of minimal norm in its cohomology class. Sum-
ming up, there is a natural isomorphism between the de Rham cohomology
groups and the space of harmonic formg&( X).

Now let ¢ be a Morse function o’ and consider the weighted norms

aff = [ lape.

The basic idea in Witten’s proof can be described as choosing a representa-
tive of minimal weighted norm for large Such a minimal representative
satisfies the two equations
df =0

and

dorf 1= Oaref = e?05(e” M0 f) = 0.
Heredy; is the formal adjoint ofl with respect to the weighted scalar prod-
uct. Just as in the previous section it is convenient to substjtute fe'?
for f and we then obtain a form that satisfies

5t9 = O

and
d_ig:= e "d(e’g) = 0.
Introducing the perturbed Laplace operator
At = §td7t + d,t(ﬁ,

we see, as in the unweighted case, that this is equivalent to the single equa-
tion

Atg = O
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Just as in classical Hodge theory we therefore get an isomorphism between
the cohomology group& ? and the spaces

{={g9 q¢—form;A,g =0}

Alternatively, we may view this as introducing a new complex with the
coboundary operatal_, and taking a representative of minimal unweighted
norm in each cohomology class of the new complex. (Note dha the
adjoint ofd_, with respect to the unweightdd’-norms.)

We shall now derive an integral identity for the expression

/(AtOZ,OC> = / ‘(StCY|2 + ’d,tOéP

that generalizes formula (3.4). For this we expand the opefgtor powers

of ¢ at a pointp in X. We may take local coordinates, nearp, such that
z(p) = 0 and the Riemannian metric oXi is euclidean to first order at

This means that the metric is given in terms of the coordinates by a matrix
(g:;(x)) that is the identity matrix whem = 0 and satisfieslg;; = 0 at

x = 0. Letw; denote the operator (on forms) of interior multiplication with
the formdz;, and letw} be the dual operator of exterior multiplication with
dx;. Denotingd;¢ = ¢; we get

dy=d+1tY ¢! =d+tdpA

and
Sr=0+1Y  djwj =0+ t(dpn)".
Moreover
d= ijaj
and

0= —Zﬁjwj.

From the definition of the perturbed Laplacian we get at 0

(4.1) Ay = A+ £2|do|* + tM,.
Here
(4.2) My = djlws, wil,

with [w,wy] = wiwy — wrw; In the computations one uses thatrat= 0
the operator®); andw;, commute and that
ijz + w};wj = 5jk-

The expression for the operatdf,, holds under the assumption that the

coordinates are chosen so that the metric equals the euclidean metric to first

order, but)/, nevertheless of course defines a global zeroth order operator.
Integrating (4.1) we get

/ld_tOé|2 + |5t04|2 =
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= (Ao, ) = /Aa o+ t2do*|al? + tMy(a) - o

The same relation holds even ¥ is not compact provided that has
compact support. We shall now use this formula to determine allhe
harmonic forms inR™ in the model case whep = 1/23 \;27. In the
computations we write with multiindex notation

o= Z aydx g,
Ar=) N,
J
and we will need an explicit formula fav/,« - o that follows from (4.2):

(4.3) Mgor-a = (Aj = As)

Theorem 4.1.Let = 1/23 Az where all\; are different from 0 and
let A; be the corresponding laplace operator. kebe ag-form in L?(R")
that satisfies

CKJ’Q.

AtOé =0.

If the number of negativg, is not equal tag, thena = 0. If the number of
negative); is equal tog and, say, the firsg \; are negative, then

o= C’e*l/zzp‘f‘x?dxl A ...dxg,
for some constant'.

Proof. Let x be a smooth function with compact support in the ball with
radius 2 which equals 1 in the ball with radius 1. Let

xr = x(-/R)".
Then by (4.1)
0= (A, xra) =
= /XR(Aa ca -t Z Nzdlof? + tMya - ).

Since, inR"™ with the euclidean metric

/Aa~aXR:/Z!akOéJ\2XR

up to an error which is

[ olaxalial(Y iouas.

we get, by the formula foh/,, that

0= /Z |6kOéJ|2 + tQ Z )\j$?|0&]|2 + Z()\J — /\Jc)

CYJ|2
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modulo the same error. Singéyr|> < Cxr/R? the error term vanishes as
R tends to infinity. Apply Lemma 3.3 te = «; for eachJ. We then get

0= [ 300 = A+ S Dl

The coefficient of eachy;|*> equals twice the sum of all positive with j
in J, minus the sum of all negativg; with j outside ofJ. This number is
always nonnegative and equals 0 only when there are precisedgative
eigenvalues, all of them lying id. If « is not identically equal to O the
number of negative eigenvalues, i e the index of the critical point 0, must
therefore equaj anda = «ydx ;. Finally J must consist of all the indices
corresponding to negativie. Moreover, equality must hold in (3.3), 8g
is a Gaussian function of the type claimed.

O

Actually, the only consequence of Theorem 4.1 that we will need is that
the dimension of the solution space is 1.

We now turn to the proof of the weak Morse inequalities. Assunea
g-form on X such thatA;« = 0. It follows from (4.1) that

@8 [ 1ol ol + Pldslaf + a0 =0

SO

(4.5) t2/\dd)\2]a]2 < —t/M¢a-a < Ct/|a!2.

Let p be a critical point of¢p and choose coordinates centerec atith
respect to which the metric is Euclidean to first order anuas the local
form (3.5). Thend$|> > c|z|* nearp. Letpy, ..px be the critical points
of ¢ and letB; be balls in coordinates centeredpatwith radiusA/v/t. It
follows that, ift is large enough,

t2/ |do|?|al* > CAQt/ laf?.
(UB;)° (UBj)°
Hence, by (4.5),

SO

(4.6) | taPz0-5 [lar

This means that if is large we can choosé so large that at least half of the
mass ofa is concentrated in the union of thg;s, i e very near the critical
points.

Let F; be the scaling map iR"

Fy(z) = z/Vt.
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For eachy between 1 andV we restricta to B; and let
Qj = Ft*(a|Bj)>

so«; is a form in the Euclidean ball with radiu$. Moreover,q; is har-
monic for the operatod; in R™ defined by the weight function

di(x) = t(p(x/VE) — 9(0)),

(the constant term op plays no role in the computation df;) and the
Riemannian metric

tF;(ds?) =: ds? = Zgij(x/\ﬁ)dxidxj.
Finally, we normalize by putting

f = a2

to get a form whose norm with respectde; equals the norm of in B;.
Let U, be the map

Varla) = f = (fr,-fn).

ThusV¥ 4, maps forms onX that are harmonic with respect 1o, to forms
on a disjoint union ofV balls of radiusA in R™ that are harmonic with re-
spect to the corresponding operator defined by the weighihd the metric
ds?. By (4.6),V 4, is almost an isometry ifi is sufficiently large, hence in
particular injective.

Now take for any large an elementiy in 1/ of norm 1, letf, =
U, ¢(a) and lett tend to infinity. Since the norms gf,) are uniformly
bounded, we take a subsequence that converges weakly to glimBy
an identity of the form (4.4) on the union of the ballsk¥ we have a
control of the first order derivatives ¢f;), so by the Rellich lemma we even
have strong convergence on every compact part. Therefore the limit form
is nonzero. Moreover, sinegs? tends to the euclidean metric agends to
infinity, and ¢, tends to a quadratic forry2 ) Ajazg, foo 1S harmonic with
respect to a Laplacian like in Theorem 4.1. Here the choicgisfarbitrary
SO f,, actually extends to such a harmonic form in the disjoint union of
N copies ofR". This means thaf,, lies in a space of dimension at most
N =m,.

We can for any choose an ordered orthormal basigffand apply this
argument to each element in the basis. Sikhgeis for any¢ isomorphic
to the cohomology groug/?, the number of elements in each such basis
equalsh?. The forms that we get after applying the limit procedure de-
scribed above must be linearily independent, since any fixed nonzero linear
combination of them tends to a nonzero limit. Hehée< m,, so the weak
Morse inequalities follow.
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5. L%-ESTIMATES

5.1. Compact manifolds. It follows from the weak Morse inequalities of
the previous section that if a compact manifold has a Morse function with
no critical points of index, then the equatiodu = f is always solvable for
any d-closedg-form f. In this section we shall make this statement more
precise by proving the following variant of Theorem 3.5.

Theorem 5.1. Let X be a compact:-dimensional Riemannian manifold
and lety be a non-degenerate Morse function &n Letg be an integer
between 1 ana such thaty has no critical point of index. Then, fort
sufficiently large and for any-closedq-form f there is a(q — 1)-formu
such thatdu = f and

[ pee <cp [ ape
X X

where(C' is a constant independent of
The main step of the proof consist in establishing the next lemma.

Lemma 5.2. Under the hypotheses of Theorem 5.1 there is a constant
independent of, such that for any smootzform «, on X

/ ‘04‘2 S C/t/ |d,t06‘2 + ’(StOélz.
X X

Proof. It follows from (4.1) that
/ a2+ [ :/Ata-cz:/|da|2+|5oz\2+t2|d¢|2]a]2+tM¢a-a.
X

Letp; be the critical points of and let5; be small balls in local coordinates
centered at each,. Denote byX the union of the ball€3; and lety be a
cutoff function which is equal to zero outside &fand equal to 1 near the
pointsp,. The integral in the right hand side above can now be decomposed
into two terms,

= / ¥ (Jdaf? + [5a]? + £2]doPlaf? + tMa - a)

and a similar integral/ I, with y replaced byl — . For larget (not de-
pending ony) I1 is evidently positive and dominates a multiple of

e [(1=laf

To analyse the first term we notice first that there is no loss of generality
in assuming that the metric oN is euclidean with respect to the chosen
coordinates inB; and so is Euclidean in all oK. Integrating by parts we
find that

I= /X (o, Aa) + ?|do?|af” + tMya - )
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plus an error term that can be estimated by

(5.1) / dx||Valjal.

(Here Va is the gradient oix taken componentwise with respect to the
given coordinates.) But, in Euclidean coordinates the Lapladiaon a
form is just the Laplacian taken on each component. Integrating by parts
again we therfore get

I = /x (IVal? + |do|*|al* + tMya - )

plus an error term of the same type as before. The error term (5.1) is smaller

than
e/]dx|2|VOz]2+1/e/\a\2.

By a simple, wellknown and useful trick one can choose the cutoff function
x so that|dx|*> < Cx (the trick consist in replacing by x?). Putting all
this together we then get fodarge that that

[ ldial + il =
X
>t [(1=0laP+ [ (L= OVal + #ldoPlaf) + thya - ) =

ct? |0z|2 +/ ((1 — E)(|Voz|2 + t2|d¢|2|a|2) + tMyo - oz) ,
Ue U

where we také/ to be a neighbourhood of the critical points wherequals

one. ThenU is a union of neighbourhoods; of p, that we can take to be
little cubes as in Lemma 3.4. By lemma 3.4 and the discussion immediately
after we find that

[ 1Vl + £1das = (60 -9 Sl =€) [ Jauf?,
U; Uj

if .y is the coefficient of one component@ivith respect to the coordinates
nearp;. On the other hand

Moo -a =Y (A; = Ase)las* + O(lz]|o).

Hence

(5.2) /U (1= O)(IVal + 2ldéPlaP) + tMya - a) >

> t/U‘Z(AJ—AJﬁ(1—6)Zyxk|)|aj\2.

Precisely as in the discussion of weak Morse inequalties in the previous

section we write
> g = A+ )
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as twice the sum of alA; with j in J and); positive minus the sum of all

A; with 7 notin J and\; negative. This expression is always nonnegative
and can be zero only if the multiindekconsists precisely of all with );
negative. Since we have assumed that there are no critical points ofgndex
this does not happen at apyso the expression is strictly positive. Hence

ZO‘J — A+ (1—¢) Z |Ak])

is also positive foe sufficiently small, and the lemma follows.
O

It is now easy to deduce Theorem 5.1. The statement of the theorem is
equivalent to saying that we can solve

d_tu = f

Jrur<co [ire

if d_,f = 0 andt is large enough. For this we use the following conse-
guence of Lemma 5.2.

with an estimate

Lemma 5.3. Let f be ad_; closedg-form onX. Under the hypotheses of
Theorem 5.1 there is a constaftitsuch that

| [tror <ort [oap [ 112

for any smoothy-forma on X.

Proof. Decomposex = a; + a whered_;a; = 0 anday is orthogonal
to the kernel ofd_;. Thenas is in particular orthogonal to the range to
d_; S0d,00 = 0. Moreover,d_,as = d_;a IS sSmooth, sa\,«s IS sSmooth.
Hencea, and therefore alsa; are smooth. Hence it suffices to prove the
statement of the lemma far;, i e we may assume thdt ;o = 0. But then
by Lemma 5.2

[tror < [1ap [1p < f1aar [1s2
]

Now define a linear functional on the space of foréns wherea is a
smoothg-form by

L(6) = /(f, Q).

By the last lemmad. is well defined and has norm less thgfC'/t|| f||. The
Riesz representation theorem then shows that thergjis-a)-form u with
norm less than the norm @f satisfying

Jtrar= [wa.

Thend_,u = f which proves Theorem 5.1.
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5.2. Open manifolds. We next discuss briefly the case of open manifolds.
For the estimates of Lemma 5.2 to work we then need to assumglthat

be bounded from below by a positive constant at infinity. We also need that
the second derivatives be bounded from above. Under these assumptions,
Lemma 5.2 can be proved just as for compact manifoldsig of compact
support.

The next step is to generalize Lemma 5.3. Itis enough to have the lemma
for formsa of compact support, but a difficulty now arises when we decom-
pose« into «; anday since these forms in general will not have compact
support anymore. To handle this difficulty one assumes that in addition the
metric on X is complete Under this extra hypothesis one can then prove

that
[laik < crt [ laap

by applying Lemma 5.2 toe, 1, wherey, is a sequence of compactly
supported cutoff functions that are equal to 1 on larger and larger compact
sets that eventually cover all &f. Since the metric is completg, can be
chosen with gradients uniformly bounded which implies that the error terms
appearing in the approximation efby x,« goes to zero. The rest of the
argument runs as before and we obtain a variant of Theorem 5.1 for open
manifolds with complete metrics and nondegenerate Morse functions with
gradients bounded from below at infinity.

Theorem 5.4.Let X be a complete-dimensional manifold and let be a
non-degenerate Morse function &h Assume the gradient gfis uniformly
bounded from below at infinity and that the second derivatives afe
bounded from above hyi¢|? at infinity. Letg be an integer between 1 and
n such thaip has no critical point of indey. Then for all¢ sufficiently large
and for anyd-closed formf of degreeg there is a solution to the equation
du = f satisfying the estimate

/!u\zetd’ < C/t/]f]26t¢.

Note that any open manifold can be given a complete Riemannian metric.
If the manifold has an exhaustion function, which is a nhondegenerate
Morse function whithout critical points of indexwe can compose with
a rapidly increasing functions to obtain another functipsatisfying the
conditions of the theorem. Theorem 5.4 therefore implies solvability of the
d-equation in such manifolds.

It is also worth noticing that there is no assumption on the boundary
behaviour oty explicitly in the assumptions of Theorem 5.4; the assumption
is only on the derivatives af. Therefore the theorem also gives solvability
in cases that are rather unrelated to Morse theory. A case in point is when
M is an arbitrary compact manifold and = M x (—1,1). Lett be the
projection fromX to (—1, 1) and let¢ be a strictly increasing function of
Theng¢ has no critical points at all and if we giv€ a complete metric and
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make the derivative o sufficiently large at the end points of the interval
(—1,1), we get solvability of thel-equation for all closed formg that lie

in the corresponding weightel?-space. This may look surprising at first
sight since the cohomology @f is arbitrary, but is explained by the fact
that the completeness of the metric forget® tend to zero asgoes to 1 or
-1, sof is homotopic to 0 and therfore exact.

6. STRONG MORSE INEQUALITIES

In this section we again leX be a compact manifold (without bound-
ary). The proof of the weak Morse inequalities in section 3 depended on an
estimate of the dimension of the spacefgfharmonic forms onX. The
proof of the strong Morse inequalities uses that the same estimate holds for
the larger space dbw energy forms

Any smooth form onX can be written

o = Z Oéj
where thex; are eigenforms fo,, i e
Avoj = Eja.
Choose a function(t) slowly tending to zero. We shall say thais a low

energy form if all the eigenvalues (or energy levels) appearing in the
decomposition above satisfy

Ej S E(t)t
If «is a low energy form the identity 4.4 can be replaced by an inequality

(6.1) /|da\2+ |6a® + 2|doP|a)? + tMya - a =

_ / (A, 0) = Y lloy |2y < e(ttfal.

Just as insection 4 it follows from this (as soon as, @y, < 1) that most
of the mass otv is concentrated in the union of ball with radiusA/\/E
around the critical points

C
|tk = 0=l
U .

J
Arguing as in section 4, we see that the dimension of the space of low energy
forms of degreg does not exceenat,, the number of critical points of index
q. This is because rescaling will give us formsRh that are combination
of eigenforms of the scaled laplacian with all eigenvalues at ajostso in
the limit we get harmonic forms again.

The point of using low energy forms instead of harmonic forms is that
now we may arrange things so that equality holds in this estimate. To see
this, fix a critical pointp; of indexq and choose local coordinategentered
atp; so thatp = ¢(0) 4+ 1/2 " \;27 to second order. Let be a harmonic
g-form of norm 1 for the weight function /2" \;2% in R". Let x be a
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cutoff function inR™ which is equal to 1 ifiz] < 1 and equal to zero if
|z| > 2. Let

Yar = x(zVt/A)y.
We then use the (inverse of) the scaling nfappo define a form
QA = Ft_l*('YA,t)
in B;. Choose finallyd = A, tending to infinity. One can then check that
[Awea o]l < te(t)?[leva,l]

wheree(t) tends to zero. (Notice that by the explicit formpffrom The-
orem 4.1,~ is dominated bye—“4i where the derivative of(z/4,) is
nonzero.) Expanding., . in eigenforms of theA,-operator, this means
that

(6.2) DBl < e ) llayll.

Finally we leta, be the projection ofv4, , on eigenforms with eigenvalues
E; < €(t)t. From 6.2 we see that

lew]l = (1 = (@) la, el ~ 1

The upshot of this is that for each critical pomt of index equal tog,
and fort large, we have found a low energy form aéhconcentrated near
p,. Therfore the dimension of the space of low energy forms is for lagge
least (and, as we know, at most) equabtp This is, together with the next
lemma from linear algebra, the crucial step in Witten’s proof of the strong
Morse inequalities

Lemma 6.1. Let
0L pt b gt gl
be a complex of finite dimensional vector spaces, and/febe the corre-

sponding cohomology groups. Lgtbe the dimension af, and leth, be
the dimension of/¢. Then, for any; > 0,

hq — hq,1 + hq,Q... < €qg — €g—1 + €qg—2---

Proof. Let Z¢ be the kernel ofl as a map front’?, and letz, be the dimen-
sion of Z,. Then, since the dimension &' /Z% ! = ¢, | — 2,4 is the
dimension of the range afin £9,
hg = zg — (€g-1 — Z-1).
Hence
hq — hq—l + hq_g... = Z2q — €g—1 + €g—2 — - S €q — €g—1 + €q—2---
O

We shall apply the lemma with = d_, and £ = E(t), the space of

low energy forms. Sincé_, commutes withA,, d_, mapsE? to £, so

we do get a complex. Moreover ; maps the orthogonal complement of
E?into the orthogonal complement &f ! so the orthogonal complements
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also give a complex. This latter complex is exact, since elements there in
particular are orthogonal to harmonic forms. Therefore the comptex
defines the same cohomology as the full-complex. Since now, = m,,

the number of critical points of index Lemma 6.2 gives that

hq — hq,1 + hq,Q... S Mg — Mg—1 + mg—2...

so the proof of the strong Morse inequalities is complete.
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