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1. INTRODUCTION

The isoperimetric inequality states that all closed curves in the plane of
lengthL enclosing an areaA satisfyA ≤ L2/(4π), with equality only for
the circle. It is relatively easy to prove by variational techniques that a curve
of given length enclosing a maximal area must be a circle and historically
the main obstacle to a complete proof of the inequality was the existence of
a maximizer. For a modern overview of the isoperimetric theorem and its
history, we refer to e.g. Ref. [1].

In more recent times, several shorter and less complicated proofs of the
isoperimetric inequality have been published, both geometric [2] and ana-
lytic [3]. In this note we add to this collection and give another simple proof
of the isoperimetric inequality, based on a polygon area theorem, which we
will state and prove below. One main point of the proof is that it uses only
the existence of a maximizer in a finite dimensional situation.

2. THE POLYGON AREA THEOREM

The polygon area theorem states that a closed polygon withn sides of
given length has maximal area only when the polygon is inscribed in a cir-
cle. We shall give a proof of this theorem using induction. The induction
step in the proof is very simple if we accept as obvious the fact that a max-
imizing polygon is necessarily convex. We have, however, not found any
direct argument why this must be so (except that its “obvious”...). There-
fore we shall state the theorem in a slightly more involved way, using areas
counted with multiplicity.

We give all the line segments an orientation and consider only polygonal
paths,γ, such that the orientations of the line segments that make up the
path are consistent. The curveγ is then also oriented. We now define the
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functional to be maximized

Aγ =

∫
γ

xdy.

If γ is a positively oriented simple curve it follows of course from Stokes
theorem thatAγ equals the area enclosed byγ. The theorem we have in
mind can now be stated as follows.

Theorem 2.1. Let γ be a closed oriented curve composed of given line
segmentsl1, . . . lN , and assume thatγ maximizes the functionalAγ among
all such curves. Thenγ is simple, convex, positively oriented and has all its
vertices on one circle.

Proof. We argue by induction, first assuming as known the caseN = 4 .
(Note that whenN = 3, there is nothing to prove.) Letγ be a polygonal
curve as above, and consider two adjacent line segments inγ, for simplicity
denotedl1 andl2, with l1 preceedingl2. Let the starting point ofl1 bea and
the end point ofl2 b. Finally, we denote byα the angle between the vectors
l1 andl2 (in that order). We first claim that0 < α < π. To see this, form
another pathγ′ by replacingl1 and l2 in γ by their reflections in the line
segment[a, b]. Then

Aγ′ = Aγ +

∫
P

xdy,

whereP is a parallellogram formed byl1, l2 and their reflections in[a, b].
It is easy to verify that ifα were negative, then the last integral would be
greater than 0, contradicting the maximality ofγ. Thus all angles ofγ are
positive, which means that we turn to the left as we move along the curve,
in the sense of the orientation. This also almost implies that the curve is
convex, except that we do not yet know thatγ is simple.

Next we consider the polygonγ′′ obtained fromγ by replacingl1 andl2
by the single oriented line segment[a, b]. The polygonγ′′ then consists of
N − 1 line segments. Moreover

Aγ = A′′
γ +

∫
T

xdy,

whereT is a triangle formed byl1, l2 and [a, b]. Since the last integral is
a fixed number,γ′′ must give the maximal area among all other polygons
formed using the same line segments. Therefore, by induction,γ′′ is simple
and convex. Since by the aboveα is nonnegative it follows thatγ′′ andl1∪l2
lie on different sides of the line througha andb, soγ is also a simple curve.
As noted above, this implies thatγ is also convex. Moreover, by induction,
all the vertices ofγ′′ lie on one circle.

Similarily, any other subset of all but one of the vertices ofγ lie on one
circle. If N > 4, any two circles arising in this way have at least three
points in common, and hence must be equal. Thus, all the vertices ofγ lie
on one single circle.
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For completeness we also prove Theorem 2.1 forN = 4 (this is known
as Brahmagupta’s theorem). We use the notation above. Letl3 andl4 be the
remaining two line segments, which must lie on the other side of[a, b], and
let β be the angle betweenl3 andl4. We have

2Aγ = |l1||l2| sin α + |l3||l4| sin β.

This quantity must be maximal subject to the side condition|a− b|2 =

|l1|2 + |l2|2 − 2|l1||l2| cos α = |l3|2 + |l4|2 − 2|l3||l4| cos β,

whereα andβ are variable.
It follows from Lagrange’s theorem that the vectors(cos α, cos β) and

(sin α,− sin β) are parallell. Hence

sin α cos β + cos α sin β = sin(α + β) = 0

soα + β = π, which, by elementary geometry, is exactly the condition that
all the vertices lie on one circle.

�

3. THE ISOPERIMETRIC INEQUALITY

With this theorem, the isoperimetric inequality can be proven in a straight-
forward manner. Consider a closed curveC with lengthL and areaA. Ap-
proximateC with a polygonp with very short elements, so that the length
and area ofp, Lp andAp, are very close to the length and area ofC. The
polygonp∗ which has the same sides asp, but maximum area, is according
to the polygon area theorem inscribed in a circle so its areaAp∗ is close to
that of the circle, i.e.Ap∗ ≈ L2

p/4π. We thus have:

(3.1) A ≈ Ap < Ap∗ ≈
L2

p∗

4π
≈ L2

4π
which is the isoperimetric inequality.
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