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LOCALLY FINITE SIMPLE WEIGHT MODULES OVER
TWISTED GENERALIZED WEYL ALGEBRAS

JONAS T. HARTWIG

ABSTRACT. We present methods and explicit formulas for describing simple
weight modules over twisted generalized Weyl algebras. When a certain com-
mutative subalgebra is finitely generated over an algebraically closed field we
obtain a classification of a class of locally finite simple weight modules as those
induced from simple modules over a subalgebra isomorphic to a tensor product
of noncommutative tori. As an application we describe simple weight modules
over the quantized Weyl algebra.

1. INTRODUCTION

Inspired by [10], Bavula defined in [2], [1] the notion of a generalized Weyl algebra
(GWA) which is a class of algebras which include U(s((2)), U,(sl(2)), down-up
algebras, and the Weyl algebra, as examples. In addition to various ring theoretic
properties, the simple modules were also described for some GWAs in [2]. In [6] all
simple and indecomposable weight modules of GWAs of rank (or degree) one were
classified.

Higher rank GWAs were defined in [2] as tensor products of rank one GWAs.
This has some consequences on the side of representations. In [3] the authors
studied indecomposable weight modules over certain higher rank GWAs.

In [8], with the goal to enrich the representation theory in the higher rank case,
the authors defined the twisted generalized Weyl algebras (TGWA). This is a class
of algebras which include all higher rank GWAs (if a certain subring R has no zero
divisors) and also many algebras which can be viewed as twisted tensor products
of rank one GWAs, for example certain Mickelsson step algebras and extended Or-
thogonal Gelfand-Zetlin algebras [7]. Under a technical assumption on the algebra
formulated using a biserial graph, some torsion-free simple weight modules were de-
scribed in [8]. Simple graded weight modules were studied in [7] using an analogue
of the Shapovalov form.

In this paper we describe a more general class of locally finite simple weight
modules over TGWAs using the well-known technique of considering the maxi-
mal graded subalgebra which preserves the weight spaces. It is known that under
quite general assumptions (see Theorem 18 in [5]) any simple weight module over
a TGWA is a unique quotient of a module which is induced from a simple module
over this subalgebra. Our main results are the description of this subalgebra un-
der various assumptions (Theorem 4.5 and Theorem 4.8) and the explicit formulas
(Theorem 5.4) of the associated module of the TGWA. In contrast to [8], we do
not assume that the orbits are torsion-free and we allow the modules to have some
inner breaks, as long as they do not have any so called proper inner breaks (see
Definition 3.7). The weight spaces will not in general be one-dimensional in our
case, which was the case in [8], [7].

Moreover, as an application we classify the simple weight modules without proper
inner breaks over a quantized Weyl algebra of rank two (Theorem 6.14).

2000 Mathematics Subject Classification. Primary 16G99; Secondary 16D60, 81R10, 17B37.
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The paper is organized as follows. In Section 2 the definitions of twisted gen-
eralized Weyl constructions and algebras are given together with some examples.
Weight modules and the subalgebra B(w) are defined.

In Section 3 we first prove some simple facts and then define the class of simple
weight modules with no proper inner breaks. We also show that this class properly
contains all the modules studied in [8].

Section 4 is devoted to the description of the subalgebra B(w). When the ground
field is algebraically closed and a certain subalgebra R is finitely generated, we
show that it is isomorphic to a tensor product of noncommutative tori for which
the finite-dimensional irreducible representations are easy to describe.

In Section 5 we specify a basis and give explicit formulas for the irreducible
quotient of the induced module.

Finally, in Section 6 we consider as an example the quantized Weyl algebra
and determine certain important subsets of Z™ related to B(w) and the support
of modules as solutions to some systems of equations. In the rank two case we
describe all simple weight modules with finite-dimensional weight spaces and no
proper inner breaks.

2. DEFINITIONS

2.1. The TGWC and TGWA. Fix a positive integer n and set n = {1,2,...,n}.
Let K be a field, and let R be a commutative unital K-algebra, o = (01,...,04)
be an n-tuple of pairwise commuting K-automorphisms of R, p = (uij)ijen be a
matrix with entries from K* := K\{0} and ¢ = (¢1,...,t,) be an n-tuple of nonzero
elements from R. The twisted generalized Weyl construction (TGWC) A’ obtained
from the data (R, o, t, ) is the unital K-algebra generated over R by X;,Y;, (i € n)
with the relations

(2.1) Xir = 04(r) X, Yir = o7 ' (r)Y; forr € R,i € n,
(2.2) Y: X; =t;, XY = 0i(ty), for i € n,
(23) X,Y} = p,in;'Xi, for i,j € n,i # j.

From the relations (2.1)—(2.3) follows that A’ carries a Z"-gradation {A}},czn
which is uniquely defined by requiring

deg X; =e;, degY; = —e¢;, degr=0, foriéen,r€R,

where ¢; = (0, ..., i, ..-,0). The twisted generalized Weyl algebra (TGWA) A =
A(R,o,t, 1) of rank n is defined to be A’/I, where I is the sum of all graded
two-sided ideals of A’ intersecting R trivially. Since I is graded, A inherits a Z™-
gradation {4y} ezn from A'.

Note that from relations (2.1)—(2.3) follows the identity

(2.4) XiXjti = X; Xipjio; ' (t:)

which holds for 4, j € n,i # j. Multiplying (2.4) from the left by u;;Y; we obtain
(2.5) Xi(tit; — pijpgio; " (t5)o; " (t:)) =0

for i,j € n,i # j. One can show that the algebra A’, hence A, is nontrivial if one

assumes that ¢;t; = /Jq’jll/jio'i_l(tj)o'j_l(ti) for i,j € m,i # j. Analogous identities
exist for Y;.

2.2. Examples. Some of the first motivating examples of a generalized Weyl alge-
bra (GWA), i.e. a TGWC of rank 1, are U(sl(2)), U,(sl(2)) and of course the Weyl
algbra A;. We refer to [2] for details.

We give some examples of TGWAs of higher rank.
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2.2.1. Quantized Weyl algebras. Let A = (\;;) be an n x n matrix with nonzero
complex entries such that A;; = )\j*il. Let § = (g1, .- -, qn) be an n-tuple of elements
of C\{0,1}. The n:th quantized Weyl algebra AZ* is the C-algebra with generators
zi,Yi, 1 <i < n, and relations

(2.6) TiTj = qiNijT;%i, Yili = Nij¥iYis
(2.7) TiY; = NjilY; Tis T = QGAijYiTs,
i1
(2.8) Tiyi — qiYi%Ti = 1+ Z(Qk - Dyiz;,
k=1

for1 <i<j<n.Let R=C[t,...,t,] be the polynomial algebra in n variables
and o; the C-algebra automorphisms defined by

tj’ .7 < ia
(2.9) oi(t;) = 1+ qiti + Shes (@ — Dtw, j =1,
qitj, 7 >4

One can check that the o; commute. Let p = (1i5)i,jen be defined by pi; = Aj;
and pj; = ¢\ for i < j. Let also o = (01,...,0,) and t = (¢1,...,t,). One can
show that the maximal graded ideal of the TGWC A'(R,o,t, ) is generated by
the elements

XiXj — qidij X; X, ViV — N; VY, 1<i<j<n.
Thus A% is isomorphic to the TGWA A(R, o, t, ) via z; = X;, yi — Yi.

2.2.2. Qi;-CCR. Let (Qi,-)g{j:l be an d x d matrix with complex entries such that
Qij = Qj’z.1 if i # 7 and A4 be the algebra generated by elements a;,a}f, 1 <i < d

and relations
a;ja; — Quaia; =1, ajaj = Qijajay,
a;a; = sz-aja,-, a;‘a; = Qz-ja;-‘a;‘,
where 1 <i,j <dand i # j. Let R = C[t1,...,t4] and define the autormorphisms

ag; of R by O'z'(tj) = tj if 4 75 j and Ui(ti) =1+ Qiitz’. Let MHij = QJ‘,’ for all Z,j
Then A, is isomorphic to the TGWA A(R, (01,-..,05), (t1,--,tn), 1)-

2.2.3. Mickelsson and OGZ algebras. In both the above examples the generators
X; and X; commute up to a multiple of the ground field. This need not be the case
as shown in [7], where it was shown that Mickelsson step algebras and extended
orthogonal Gelfand-Zetlin algebras are TGWAs.

2.3. Weight modules. Let A be a TGWC or a TGWA. Let Max(R) denote the
set of all maximal ideals in R. A module M over A is called a weight module if

M= 6911~1€Ma,x(R)JM'rrw
where
My ={veM|mv=0}

The support, supp(M), of M is the set of all m € Max(R) such that M, # 0.
A weight module is locally finite if all the weight spaces My,, m € supp(M), are
finite-dimensional over the ground field K.

Since the o; are pairwise commuting, the free abelian group Z" acts on R as a
group of K-algebra automorphisms by

(2.10) g(r) =o' 03 ...09"(r)
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for g = (91,...,9n) € Z™ and r € R. Then Z" also acts naturally on Max(R) by
g(m) = {g(r) | r € m}. Note that

(2.11) XiMw C My, (m) and  YiMw C M, -1,

for any m € Max(R). If a € A is homogenous of degree g € Z™, then by using (2.1)
and (2.11) repeatedly one obtains the very useful identities

(2.12) a-r=g(r)-a, r-a=a-(—g)(r),
for r € R and
(213) aMm g Mg(m)

for m € Max(R).

2.4. Subalgebras leaving the weight spaces invariant. Let w C Max(R) be
an orbit under the action of Z™ on Max(R) defined in (2.10). Let

(2.14) L2 =27, = {g € Z" | g(m) = m}

where m is some point in w. Since Z" is abelian, Z, does not depend on the choice
of m from w. Define

(2.15) B(w) = ®yezny-

Since A is Z™-graded and since Z" is a subgroup of Z", B(w) is a subalgebra of A
and R = Ag C B(w). Let m € w and suppose that M is a simple weight A-module
with m € supp(M). Since M is simple we have supp(M) C w. Using (2.13) it
follows that B(w)My, C My, and by definition M, is annihilated by m hence also
by the two-sided ideal (m) in B(w) generated by m. Thus M, is naturally a module
over the algebra

(2.16) Bu := B(w)/(m).

By Proposition 7.2 in [7] (see also Theorem 18 in [5] for a general result), My, is a
simple Bp,-module, and any simple By,-module occurs as a weight space in a simple
weight A-module. Moreover, two simple weight A-modules M, N are isomorphic if
and only if M, and N, are isomorphic as Bp-modules. Therefore we are led to
study the algebra By, and simple modules over it.

3. PRELIMINARIES

3.1. Reduced words. Let L = {X;};c,, U {Y;}icn. By a word (a;Z4,...,2Z;) in
A we will mean an element a in A which is a product of elements from the set L,
together with a fixed tuple (Z1, . .., Z) of elements from L such that a = Z;-.. .- Zj.
When referring to a word we will often write a = Z; ... Zy € A to denote the word
(a;Z41,...,Z) or just write a € A, suppressing the fixed representation of a as a
product of elements from L.

Set X} =Y; and Y;* = X;. For a word a = Z; ... Z}, € A we define

a*=Zf - Zh ... T

In the special case when p;; = pj; for all ¢,7 then by (2.1)-(2.3) there is an
anti-involution x on A’ defined by X =Y;, and r* = r for r € R. Since I* =T
this anti-involution carries over to A.

Definition 3.1. A word Z; ... Z; will be called reduced if
Zi #Z; fori,jek

and
Z; € {XT}TEQ 54 Zj € {XT}’!'EQ V] > .
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For example Y;Y5Y; X3 is reduced whereas Y;Y>X; and Y; X5Y3 are not. The
following Lemma and Corollary explains the importance of the reduced words.

Lemma 3.2. Any word b in A can be written b= a-r =1’ -a, where a is a reduced
word, and r,7" € R.

Proof. If a and r has been found we can take v’ = (dega)(r), according to (2.12).
Thus we concentrate on finding a and r. Let b = Z; ... Z}, be an arbitrary word
in A. We prove the statement by induction on k. If k¥ = 1, then b is necessarily
reduced so take a = b,r = 1. When k > 1, use the induction hypothesis to write

Zl---Zk—l :Y;' ...}/Z'lle...ij -TI,

where 1 < 4y, j, < n and 4, # j, for any u,v. Consider first the case when Z; =Y
for some j € n. Then

Z1Zk = Y;'l ...Y;'IX]'I XJmY} -Uj(’l‘l).

If j, #j forv=1,...,m we are done because using relation (2.3) repeatedly we
obtain,

Z1 Zk = Y;l YtllYJXJl X]m '/LO']'(TI)
for some p € K*. Otherwise, let v € {1,...,m} be maximal such that j, = j.
Then

Z1 Zk = Y;'l ...Y;'IX]'I ...vaY}'va+1 ...ijMO'j(TI) =
= Y'i1 .. .Y;'lle . ..va_lXju_H .. .ijw(tj),uaj(r')

for some p € K* and some w € W. It remains to consider the case Z; = X; for
some j € n. But using that

Yvil ...Y;'lle ...ij = le ...ijYvil Y;I/J/
for some p € K*, it is clear that this case is analogous. |

Corollary 3.3. Each Ay, g € W, is generated as a right (and also as a left)
R-module by the reduced words of degree g.

Lemma 3.4. Suppose x defines an anti-involution on A. Let p be a prime ideal of
R. Let g€ Z™ and let a € A,y. If ba ¢ p for some b€ A_, then a*a ¢ p.

Proof. Since p is prime, and ba € R we have
p # (ba)? = (ba)*ba = a*b*ba = a*a - (— dega)(b*b)
so in particular a*a ¢ p. O

Remark 3.5. If we assume a and b to be words in the formulation of Lemma 3.4,
one can easily show that the statement remains true without the restriction on *
to be an anti-involution.

3.2. Inner breaks and canonical modules. Let A be a TGWC or a TGWA and
let M be a simple weight module over A. In [8] Remark 1 it was noted that the
problem of describing simple weight modules over a TGWC is wild in general. This
is a motivation for restricting attention to some subclass which has nice properties.
In [8] the following definition was made.

Definition 3.6. The support of M has no inner breaks if for all m € supp(M),
t; € m = o;(m) ¢ supp(M), and
oi(t;) € m = o ' (m) ¢ supp(M).

We introduce the following property.
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Definition 3.7. We say that M has no proper inner breaks if for any m € supp(M)
and any word a with aMy, # 0 we have a*a ¢ m.

Observe that whether or not a*a € m for a word a does not depend on the
particular representation of a as a product of generators. Note also that to prove
that a simple weight module M has no proper inner breaks, it is sufficient to find
for any m € supp(M) and any word a with aMy, # 0 a word b € A of degree —dega
such that ba ¢ m because then a*a ¢ m automatically by Remark 3.5. In fact one
can show that a simple weight module M has no proper inner breaks if (and only if)
there exists an m € supp(M) such that for any reduced word a € A with aM, #0
and aM,, C My, there is a word b of degree — dega such that ba ¢ m. However we
will not use this result.

The choice of terminology in Definition 3.7 is motivated by the following propo-
sition.

Proposition 3.8. If M has no inner breaks, then M has no proper inner breaks
either.

Proof. Let m € supp(M) and a = Z;...Zy € A be a word such that aM,, # 0.
Thus Z;... ZyMy #0fori=1,...,k + 1 so (2.13) implies that

(deg Z; . .. Zk)(m) € supp(M).

If M has no inner breaks, it follows that ZZ; ¢ (degZ;y1...Z)(m) for i =
1,...,k. Now using (2.12),

ata=2; . . Z7 .. Th=2}. . 23 .. Z(—deg Zo... Zp) (21 7y) =

k
(3.1) =...=[[(-deg Zis1 ... Z:)(Z; Z:) ¢ m.

Thus M has no proper inner breaks. |

In [8], a simple weight module M was defined to be canonical if for any m,n €
supp(M) there is an automorphism o of R of the form

o=0;'-...-07f, g =+land1<i;<n, forj=1,...,k,
such that o(m) = n and such that for each j =1,...,k,
(3.2) ti; 01 ..o (m) ife; =1, and
(3.3) oi; (ti;) g o7/ f) .ok (m) ife; = —1.

This definition can be reformulated as follows.

Proposition 3.9. M is canonical iff for any m,n € supp(M) there is a word a € A
such that aMy, C My, and a*a ¢ m.

Proof. Suppose M is canonical, and let m,n € supp(M). Let o be as in the def-
inition of canonical module. Define a = Z;...Z; where Z; = X;, if ¢; = 1 and
Z; =Y, otherwise. Using (2.13) we see that aM, C M,. Also, (3.2) and (3.3)
translates into

Z;Z] ¢ (deg Zj+1 e Zk)(m)

for j = 1,...,k. Using the calculation (3.1) and that m is prime we deduce that

a*a ¢ m.

Conversely, given a word a = Z; ... Z € A with aM,, C M, and a*a ¢ m, we
define g; = 1 if Z; = X; and ¢; = —1 otherwise. Then from a*a ¢ m follows that
o =0 -...-0;* satisfies (3.2) and (3.3) by the same reasoning as above. O

Corollary 3.10. If M has no proper inner breaks, then M is canonical.
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Proof. We only need to note that since M is a simple weight module there is for
each m,n € supp(M) a word a such that 0 # aMy, C M,. d

Under the assumptions in [8] any canonical module has no inner breaks (see [§],
Proposition 1). However we have the following example of a TGWA A and a simple
weight module M over A which has no proper inner breaks, and thus is canonical
by Corollary 3.10, but nonetheless has an inner break.

Example 3.11. Let R = C[t1,t2] and define the C-algebra automorphisms oy and
o2 of R by o;(t;) = —t;j for i, = 1,2. Let p = [93]. Let A’ = A'(R,t,0,p) be
the associated TGWC, where t = (t1,t2),0 = (01,02). Then one can check that
I=(X1Xo+X2X1,Y1Y5+Y5Y1). Let M be a vector space over C with basis {v, w}
and define an A’-module structure on M by letting X; M =Y, M =0 and

Xov = w, Xow =,
Yov = w, Yow = —v.

It is easy to check that the required relations are satisfied and that IM = 0, hence
M becomes an A-module. Let m = (t1,t2 + 1) and n = (¢1,t2 — 1). Then

M=M,®M,, where My, =Cv, M, =Cw

so M is a weight module. Any proper nonzero submodule of M would also be a
weight module by standard results. That no such submodule can exist is easy to
check, so M is simple. One checks that M has no proper inner breaks. But ¢t; € m
and o1 (m) = n € supp(M) so m is an inner break.

4. THE WEIGHT SPACE PRESERVING SUBALGEBRA AND ITS IRREDUCIBLE
REPRESENTATIONS

In this section, let A be a TGWC, m € Max(R) and let w be the Z™-orbit of m.
Recall the set Z" defined in (2.14). Define the following subsets of Z™

(41) Gm={9€2"|a*a¢ mfor some worda € A4,} and Gn=GnNZ™

Let also ¢ : A — A/(m) denote the canonical projection, where (m) is the two-
sided ideal in A generated by m, and let R, = R/m be the residue field of R at
m.

Lemma 4.1. Let g € Gn. Then
(4.2) Pm(Ag) = B - pm(a) = pm(a) - Rm
for any word a € Ay with a*a ¢ m.

Proof. Let b € A, be any element and a € A, a word such that a*a ¢ m, We must
show that there is an r € R such that ¢ (b) = om(r)pm(a). Since a*a ¢ m and m
is maximal, 1 — r;a*a € m for some r; € R. Set r = bria*. Then r € R and

b—ra=">b(1—ria*a) € (m).
The last equality in (4.2) is immediate using (2.12). O
The following result was proved in [8] Lemma 8 for simple weight modules with
so called regular support which in particular means that they have no inner breaks.

It is still true in the more general situation when M has no proper inner breaks.
Recall the ideal I from the definition of a TGW A.

Proposition 4.2. Suppose A is a TGWC. If M is a simple weight A-module with
no proper inner breaks, then IM = 0. Hence M is naturally a module over the
associated TGWA A/I.
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Proof. Since I is graded and M is a weight modules, it is enough to show that
(INAy)My =0 for any g € Z™ and any m € supp(M). Assume that a € I N A,
and av # 0 for some v € My,. Then ayv # 0 for some word a; in a. Since M
has no proper inner breaks, aja; ¢ m so by Lemma 4.1 there is an » € R such
that av = a;rv. Thus 0 # ajairv = ajav which implies that afa € R\{0}. This
contradicts that a € 1. O

We fix now for each g € G a word a, € A, such that ayay ¢ m. For g =0 we
choose a, = 1.

Lemma 4.3. For any g € G, h € G we have

a) (agay)*agay, ¢ m so in particular g — h € Gy and G, is a subgroup of 77,
b) om(Ag)pm(An) = Pm(AgAn) = om(Ag1n),

C) Ag+hMm = Ang.

Proof. a) We have

(4.3) (agap)*agay = anayagay, = anaph(agzay).

Now aja, ¢ m so h(aza,) ¢ h(m) =m. And

m ¥ (azan)’ = aj(anay)an = ajan - (=h)(anay)
so apap ¢ h(m) = m. Since m is maximal the right hand side of (4.3) does not
belong to m. Since deg(aga}) = g —h we obtain g —h € Gy,. If in addition g € G,
then g —h € Z, also since Z, is a group. Thus g — h € G, so Gy, is a subgroup of
A
b) Since ¢, is a homomorphism, the first equality holds. By part a), —h € G,
so by part a) again, (aga* ,)*asa* , ¢ m. Hence by Lemma 4.1, we have

Pm(Agtn) = Ru - pm(aga’ ) C om(AgAn).
The reverse inclusion holds since {Ag}4cz» is a gradation of A.
¢) By part a), g+ h =g — (—h) € Gy. Thus by part b),
Ag+hM = C,Dm(Ag+h)Mm = (pm(AgAh)Mm = AgAhMm - Ath(m) = Ang.

By part a), the same calculation holds if we replace g by g + h and and h by —h,
which gives the opposite inclusion. O

Lemma 4.4. Let g € Z”\ém. Then AgMy = 0 for any simple weight module M
over A with no proper inner breaks.

Proof. Let a € A, be any word. Then a*a € m and hence if M is a simple weight
module over A with no proper inner breaks, aMy, = 0. Since the words generate
Ay as a left R-module, it follows that Aj My, = 0. O

4.1. General case. Recall that (m) denotes the two-sided ideal in A generated
by m. Since (m) is a graded ideal in A, there is an induced Z"-gradation of the
quotient A/(m) and ¢n(4,) = (4/(m)),. Corresponding to the decomposition
Z? into the subset Gy, and its complement are two K-subspaces of the algebra
By = B(w)/(B(w) N (m)) which will be denoted by BY and BY respectively. In
other words, By, = B,(r} )& B,(,? ), where
BY = @ (4/(m)), and BY = P (4/(m)),
9€Gm 9ELI\Gm

By Lemma 4.3a), Gy, is a subgroup of the free abelian group Z", hence is free
abelian itself of rank & < n. Let s1,...,s; denote a basis for G, over Z and let
b; = pm(as;) fori =1,... k. Note also that Ry, is an extension field of K and that
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Z7 acts naturally on R, as a group of K-automorphisms. Let {p;};cs be a basis
for Ry, over K.

Theorem 4.5. a) Bl(,?)Mm = 0 for any simple weight module M over A with no
proper inner breaks, and
(

b) the b; are invertible and as a K -linear space, Bm1 ) has a basis

(4.4) {pibl .. F|jeTandl; €Z for 1 <i <k}
and the following commutation relations hold

(4.5) bid=s;(MNb;, i=1,...,k A€ R,
(4.6) bibj = Aijbibs, 4,5 =1,...,k

for some nonzero A\;; € Rn,.

Proof. a) Let g € Z"\Gn. By Lemma 4.4, AjMy, = 0 and thus pn(A4y)Mn = 0.

b) Since s; € Gm, ¢m(a;,)bi € Rux\{0} and by Lemma 4.3a) with g = 0 and
h = s; we have b;pm(a},) € Rn\{0}. So the b; are invertible. The relation (4.5)
follows from (2.12). Next we prove (4.6). From Lemma 4.3a) and Lemma 4.1 we
have (A, 4s;) = Rumbib;. Switching i and j it follows that (4.6) must hold for
some nonzero A;; € Rn.

Finally we prove that (4.4) is a basis for BY over K. Linear independence is
clear. Let g € G and write g = ), l;s;. By repeated use of Lemma 4.3b) we
obtain that

[41] 0]

Pm (Ay) = ‘Pm(Asgn(ll)sl) < Pm (Asgn(lk)sk)
For [; = 0 the factor should be interpreted as Ry,. By Lemma 4.1,
pr(Ass,) = Rubi
for I > 0 so using (4.5) we get
Pm(Ag) = Rublt .. bk
The proof is finished. O
4.2. Restricted case. In this subsection we will assume that K is algebraically

closed. Moreover we will assume that the K-algebra inclusion K — R, is onto
which is the case when R is finitely generated as a K-algebra by the (weak) Null-

stellensatz. Then Z], acts trivially on R.,. The structure of Bl(n1 ) given in Theorem
4.5 is then simplified in the following way.

Corollary 4.6. Let k = rank Gy, and let b; = ow(as,) for i = 1,...,k where
{51,---,8k} is a Z-basis for Gn,. Then B,(nl) is the K-algebra with invertible gener-
ators by, ..., by and the relation

bib; = Aijbibi, 1<4,j<k.

Using the normal form of a skew-symmetric integral matrix we will now show

that B,(“1 ) can be expressed as a tensor product of noncommutative tori. Consider
the matrix (/\ij)lgi,jgk from (4.6).

Claim 4.7. If B,(n1 ) has a nontrivial irreducible finite-dimensional representation,
then all the A\;; are roots of unity.

Proof. Indeed, let N be a finite-dimensional simple module over B,(n1 ) and let i €
{1,...,k}. Since K is algebraically closed, b; has an eigenvector 0 # v € N with
eigenvalue u, say. Since b; is invertible, u # 0. Let j # i and consider the vector
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bjv. It is also nonzero, since b; is invertible, and it is an eigenvector of b; with
eigenvalue \;ju. Repeating the process, we obtain a sequence

fhs Nijhty Afjphy -
of eigenvalues of b;. Since N is finite-dimensional, they cannot all be pairwise
distinct, and thus A;; is a root of unity. O

For A € K, let T, denote the K-algebra with two invertible generators a and b
satisfying ab = Aba. T (or its C*-analogue) is sometimes referred to as a noncom-
mutative torus.

Theorem 4.8. Let k = rankGy. If all the A\;j in (4.6) are roots of unity, then
there is a root of unity \, an integer r with 0 < r < |k/2] and positive integers
pi,i=1,...,r with 1 =py|pa|...|p, such that

BY ~ Tyt @ Tows @ - @ Tor ® L

where L is a Laurent polynomial algebra over K in k — 2r variables.

Proof. If k = 1, then B,(,}) ~ K[bl,bfl] and r = 0. If £ > 1, let p be the smallest

positive integer such that )\fj =1 for all 4,j. Using that K is algebraically closed,

we fix a primitive p:th root of unity € € K. Then there are integers 6;; such that
Aij = ghii

and

(4.7) 0ji = —b;.

Equation (4.7) means that © = (6;;) is a k x k skew-symmetric integer matrix.

Next, consider a change of generators of the algebra B,(r} ).

(4.8) by > b} = bt .. plk

Such a change of generators can be done if we are given an invertible k£ x k integer
matrix U = (u;;). The new commutation relations are

1l puil Uik U1 Ujk __
BB, = B BB Lk =

_ \U1iULj UkiUlj
D LD

ULi Uk j UkiUkj 137 __
A e Ak - bsb; =

22 o Opqupitgi ! B!
= g2up,q VPaUpi qujbi

Hence ©' = UTOU. By Theorem IV.1 in [9] there is a U such that ©' has the skew

normal form
0 6o

-6, 0
0 6
-6, 0

where 7 < |k/2] is the rank of ©, the 6; are nonzero integers, 6;|6;+1 and 0 is a
k—2r by k —2r zero matrix. Set A = €1 and p; = ;/6, fori = 1,...,r. The claim
follows. =

The following result, describing simple modules over the tensor product of non-
commutative tori, is more or less well-known, but we provide a proof for conve-
nience.
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Proposition 4.9. Let M be o finite dimensional simple module over
T:=T)\1 ®---®T)\T,

where the \; are roots of unity in K. Then there are simple modules M; over T},
such that, as T-modules,

MM @ ® M,.

Proof. Denote the generators of T, by a; and b;. We will view T, as subalgebras
of T'. Since the elements a;,i = 1,...,r commute and M is finite dimensional and
K is algebraically closed, there is a nonzero common eigenvector w € M of the a;:

(4.9) aw=pw, i=1,...r

where p; € K* because a; is invertible. Let n; be the order of A;. Then b} acts
as a scalar by Schur’s Lemma. By simplicity of M, any element of M has the form
(using the commutation relations and (4.9))

(4.10) S pibdt b w,
JEZ™, 0<j; <n;
where p; € K. This shows that
dimg M <ny-...-ng.

But the terms in (4.10) all belong to different weight spaces with respect to the
commutative subalgebra generated by aq,...,a,:

ai-b{1 ...b,’;*w:)\g"ui-b{l brw, i=1,...,7
and
M pts - Nrpe) # (AP, - M)
if 5,1l € 27,0 < j;l; < m; and j # [. Hence by standard results they must be
linearly independent. Thus

(4.11) dimg M =ny ... n,.
Next, set M; =Ty, - w. Then M; = @' Kb] - w and

Finally, define
VM ®...0 M, = M
by
Yw...0w) =w

and by requiring that 1 is a T-module homomorphism. This is possible since
M; ®...® M, is generated by w ® ... ® w as a T-module. Then 1 is surjective,
since M is simple. Also the dimensions on both sides agree, so v is an isomorphism
of T-modules. |

5. EXPLICIT FORMULAS FOR THE INDUCED MODULES

In this section we show explicitly how one can obtain simple weight modules with
no proper inner breaks over a TGWA (equivalently over a TGWC by Proposition
4.2) from the structure of its weight spaces as B(w)-modules.

Since the B(w)-modules were described in the restricted case in Subsection 4.2,
we obtain in particular a description of all simple weight modules over A with no
proper inner breaks and finite-dimensional weight spaces if R is finitely generated
over an algebraically closed field K.
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5.1. A basis for M. Let {v;};er be a basis for My, over K. By Lemma 4.3a), Gy, is
the union of some cosets in Z"/Grn. Let S C Z™ be a set of representatives of these
cosets. For g € G, choose ry € R such that a;, := rya; satisfies pm(ay)pm(ay) = 1.

Theorem 5.1. The set C = {agv; | g € S,i € I} is a basis for M over K.

Proof. First we show that C is linearly independent over K. Assume that
Z )\giagvi =0.
g5t

Then ), Agia,v; = 0 for each g since the elements belong to different weight spaces.
Hence 0 = a; D oi AgiGgV; = Y, Agiv; for each g. Since v; is a basis over K, all the
Agi must be zero.

Next we prove that C spans M over K. Since M is simple and M, # 0,

M=AMy= Y AMy= > AMn=)» Y AMy=) AMy
gezn 9€Cnm hES g€h+Gm hes
by Lemma 4.4 and Lemma 4.3c). O
Corollary 5.2. supp(M) = {g(m) | g € S} and g(m) # h(m) if g,h € S, g # h.
Corollary 5.3. dim M = |S| - dim My, with natural interpretation of co.

5.2. The action of A.~Our next step is to describe the action of the X;,Y; on the
basis C for M. Let ¢ : Gy — S be the function defined by requiring g — ((g) € G-

Theorem 5.4. Let g € S and let v € My,. Then
Xiayo = ap-bgv if g+ e.i € G,
0 otherwise,
where h = ((g + e;) and
bg,i = (_h)(Xiagalg-‘rei—ha;l) *Ggte;—h
and B
Yiago = a - cgv  if g— e.i € G,
0 otherwise,
where k = ((g — e;) and
Cgi = (_k)()/;'aga_lq—ei—ka;c) *Qg—e;—k-
Remark 5.5. Note that
deg X;a4a, ., paj, = degYiagay .. pap =0

so the action of Z"™ on these elements is well defined. Thus we see that degby ; € G
and degcy; € G, i.e. that by; and ¢, ; belong to B(w). Therefore the action of
these elements on a basis element v; of M, can be determined if we know the
structure of My, as an B(w)-module. In the restricted case this was described in
Subsection 4.2. Expanding the result in the basis {v;} again and acting by ap, or
a, we obtain a linear combination of basis elements from the set C.

Proof. Assume g + e; € Gr. Let h = ((g + ¢;). Then
Xiagv = X040y, o, pGgte,—h0 =
= (Xiagafq-f-ei7ha;1)ahag+ei—hv =
= Gp - (_h‘)(Xiagalg_Fei,ha;l) *Qgte;—hV-

Ifg+e; ¢ G, then Xiagv =0 by Lemma 4.4.
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Assume g — e; € G Let k = ((g — e;). Then
Yiagv = Yiagay . _pGg—c;— kv =
= (Yiagalg—e;—ka;ﬁ)ak%—ei—kv =
= a1 - (—K) (Yiagay_,_al) - Gger 0.
If g — e; ¢ G, then Yia,v = 0 by Lemma 4.4. O

Note that we do not need the technical assumptions in the proof of Theorem 1
in [8] under which the exact formulas for simple weight modules were obtained.

6. APPLICATION TO QUANTIZED WEYL ALGEBRAS

In this final part we will apply the methods developed in the previous sections
to the problem of describing representations of the quantized Weyl algebra, defined
in Section 2.2. As mentioned there, it is naturally a TGWA.

First we find the isotropy group and the set Gy, expressed as solution of systems
of linear equations (see Proposition 6.3 and Proposition 6.4). These sets are directly
related to the structure of the subalgebra B(w) (Theorem 4.5) and the support of
a module (Corollary 5.2).

Then in Section 6.2 we give a complete classification of all locally finite simple
weight modules with no proper inner breaks over a quantized Weyl algebra of rank
two. The parameters ¢; and g¢» are allowed to be any numbers from C\{0,1}.
Example 6.7 shows that the assumption that the modules have no proper inner
breaks is not superfluous.

6.1. The isotropy group and G.. Let R = C[t;,...,t,] and fix m = (t; —
Q1. ytn — ap) € Max(R). Let w be the orbit of m under the action (2.10) of
Z". Set [K], = Y55 q' for k € Z and q € C. Recall the definition (2.9) of the
automorphisms o; of R.

Proposition 6.1. Let (g1,...,9n) € Z™. Then
o' .. o9 (m) =

([91]q1 +af't — a1, (g2 (1 + (@0 — Dan) + ¢ g3t — a2, . ..

5 [95]q; 1+Z » —Day) + ¢ ...q]g-jtj—a],

R 1+Z ) +aq ...qu"tn—an).

Proof. Induction. O

For notational brevity we set 8; = (¢; —1)o; and v; = 1+ 1+ B2+ ...+ B;. We
also set 9 = 1. The numbers ; will play an important role in the next statements.
By a j-break we mean an ideal n € Max(R) such that ¢; € n.

Corollary 6.2. For j =1,...,n we have
ti€of'...ofm(m) = v = ¢ v
Thus w contains a j-break iff v; = q;-“fyj_l for some integer k.

Proof. By Proposition 6.1,
t; € of' ...09"(m)
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iff
j—1
[gj]Qj (1 + Z(qr - 1)0[,.) = ;.
r=1

Multiply both sides with ¢g; — 1 to get
(@ —DA+p1 4. +Bi1) =B

The next Proposition describes the isotropy subgroup Z defined in (2.14).
Proposition 6.3. We have
(6.1) Zh={g€Z"| (¢ ...q) =)y =0Vj=1,...,n}.
Proof. From Proposition 6.1, ¢{" ...0% (m) = m iff
a1 = [g1]g, +qf on

a2 = [g2)g. (1+ (q1 — Deva) + ¢{*¢52 s

on = [gnlgn (L+ (@1 — Vo + ...+ (g1 — Do) +¢f* ... an
Multiply the i:th equation by ¢; — 1. Then the system can be written
Br=gq' —1+¢{'b
B2 =(a3* —1)(1 + B1) + ¢i" @3° B>

Bn=(g2 = 1)A+B1+...4 Bn1)+aq" ...¢%"Bn

or equivalently

1+ 6 =q" (14 )
1+ 61+ B=¢7(1+ 1)+ ¢ 63 P2

14814 ... +B8n=q7A+b81+ ...+ Bn1)+4q]" ... ¢2 Bn

Now for ¢ from 1 to n — 1, replace the expression 1 + 51 + ... + 3; in the right
hand side of the i 4 1:th equation by the right hand side of the i:th equation. After
simplification, the claim follows. a

Note that it follows from (6.1) that the subgroup
_ n 9 __ R
(6.2) Q={geZ"|q’ =1forj=1,...,n}

of Z™ is always contained in Z for any orbit w. Moreover Z = @ if w (viewed as
a subset of C") does not intersect the union of the hyperplanes in C* defined by
the equations 1+ (g1 — )z1 + ...+ (¢ —1)z; =0 (1 < j < m).

Another case of interest is when for any j, ¢f* ...qjg." = 1 implies g1 = ... =
g; = 0. If for instance the g; are pairwise distinct prime numbers this hold. Then

Z! = {0} unless 1+ 1 +...+ 3; =0 for all j, i.e. unless w contains the point
Ng = (tl - (1 — ql)il,tz, .. ,tn).
So in this very special case we have w = {ng} and Z7" = Z".

We now turn to the set Gy, defined in (4.1) which can here be described explicitly
in terms of m in the following way.
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Proposition 6.4.

Gm:ég) x...x(;“,(g),
where
GO =(k>0|7 #qv-1Vi=0,1,... . k—1}U
U{k<0|7j7$qj-7j,1 Vi=-1,-2,...,k}.

Proof. From the relations of the algebra follows that the subspace spanned by the
words in A, is one-dimensional. Thus g € Gy, iff

(6.3) Z79n L Z7Z8 . 79 ¢ m

where ZF = X* if k > 0 and ZF = Y% if k < 0. Since 03(;) = ¢, for j < i, (6.3)
is equivalent to

ZZm 78 27070 ¢ m.
Since m is prime, this holds iff Z]-_ng Zj-” ¢ m for each j. If g; = O this is true. If
g; > 0 we have

Z7979 =YPXY =YITIXE T o T () = L = to () ..o YT (),

while if g; <0
~9i 79 _ vy 9y 9 _ y 9i—ly—9i—1 _—g;j _ _ —9;
ng Z]? _ng Y; v _ng Y; v ajg (t;) =...=0;t;)...0; 7 (t;).
Since m is prime, g € Gy, iff for all j =1,...,n
t; ¢U§-(m), i=0,...,9; —1if g; >0,
and
tj¢oi(m), i=-1,-2...,g;if g; <O.
The claim now follows from Corollary 6.2. O
Corollary 6.5. If {1,a1,az,...,an} is linearly independent over Q(q1,-- -, qn),
then Gy = Z™.

6.2. Description of simple weight modules over rank two algebras. Assume
from now on that A is a quantized Weyl algebra of rank two. In this section we
will obtain a list of all locally finite simple weight A-modules with no proper inner
breaks.

We consider first some families of ideals in Max(R). Define for A € C,

nl = (- (1= N1 -a) - A1 -e) ),
n) = (= (1= q1) Lt = A),
(

and set ng = nol) = n((]2). The following lemma will be useful.

Lemma 6.6. For A\ € C and integers k,l we have

(6.4) ofob(ny)) =nj .,
k(2 _ (2
(6.5) oroy(ny’) = n}\ql—qu_z-

Proof. Follows from Proposition 6.1 or by direct calculation using the definition
(2.9) of the o;. |

The following example shows the existence of locally finite simple weight modules
M over A which have some proper inner breaks.
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Example 6.7. Assume that ¢; A12 is a root of unity of order r. Let M be a vector
space of dimension r and let {vg,v1,...,v,_1} be a basis for M. Define an action
of A on M as follows.

Vg1, k<r—1 _
Xiop =4 "t Xovg, = (g1 h12) Fuy,
Vo, k=r—1

1—q) top_1, k>0
Yl’Uk:{( @) vi-r, k> Yovp =0

(1 _ql)ilv‘l‘—la k=0

It is easy to check that (2.6)—(2.8) hold so this defines a module over A. It is
immediate that M = M,, where m = ny = (t; — (1 — q1)71,t2) so M is a weight
module and M is simple by standard arguments. However, recalling Definition 3.7,
M has some proper inner breaks in the sense that m € supp(M), Xo My, # 0 but
Yo Xo My = 0.

We will describe the isotropy groups of the different ideals in Max(R). Let K7 and
K, denote the kernels of the group homomorphisms from Z x Z to the multiplicative
group C\{0} which map (k,1) to ¢¥ and ¢f ¢} respectively. Then Q = K;NK> where
@ was defined in (6.2). For m € Max(R), recall that Z2 = {g € Z? | g(m) = m}.
The following corollary describes the isotropy group Z2 of any m € Max(R).

Corollary 6.8. Let A € C\{0} and n € Max(R)\{n{ | p € C,i = 1,2}. Then we
have the following equalities in the lattice of subgroups of Z.2.

Z%, = Z°

TN

224 = Ki 2 = Ko
2 = Q

Proof. The family of ideals {ng\l) | A € C} are precisely those for which v, = 0.

And {nE\Q) | A € C} are exactly those such that v; = 0. Thus the claim follows from
Proposition 6.3. |

Let M be a simple weight A-module with no proper inner breaks and finite
dimensional weight spaces, m = (t; — a;,t2 — @) € supp M and let w be the orbit
of m. We consider four main cases separately: m = ng, m = ng\l) for some X # 0,
m= nf\z) for some A # 0 and m ¢ {n,(f) | w € C,i =1,2}. Some of these cases will
contain subcases. In each case we will proceed along the following steps, which also
illustrate the procedure for a general TGWA.

(1) Find the sets Z{, and G using Corollary 6.8 and Proposition 6.4. Write
down G = ZyuN G and choose a basis {s1,...,s;} for Gy, over Z.

(2) For each g € G, choose a word a, of degree g such that aja, ¢ m.

(3) Using Corollary 4.6, describe B,(“1 ) and the finite-dimensional simple Bfnl )

module M.

(4) Choose a set of representatives S for G /Gm. By Theorem 5.1 we know
then a basis C for M.

(5) Calculate the action of X;, Y; on the basis using either relations (2.6)—(2.8)
or Theorem 5.4.
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We will use the following notation: ZFf = X¥ if k > 0 and Z§ = Yj_k if £ <0.
Note that the k in Z Jk should only be regarded as an upper index, not as a power.
The choice of a,4 in step two above is more or less irrelevant for a quantized Weyl
algebra because each A, is one-dimensional. Therefore we will always choose a, =
Z9 Z§? where g = (91, 92).

6.3. The case m = ng. Here a; = (1 —q1)7!, as = 0 so that y; = 72 = 0.

By Corollary 6.8 we have Z2% = Z? and from Proposition 6.4 one obtains that
Gm = Z x {0}. Thus Gn = Z x {0} = Z - s1 with s1 = (1,0). Since Gy, has

rank one, Corollary 4.6 implies that B,(n1 ) is isomorphic to the Laurent polynomial

algebra C[T,T~1] in one variable. Therefore M,, is one-dimensional, say M, = Cvg
and by = o (Z1) = pm(X1), hence X1, acts in My, as some nonzero scalar p. And
Yivo = p~ ' YiX1ve = p~' (1 — q1) .
Here S = {(0,0)} and C = {wo} is a basis for M with the following action:
(6.6) X1v9 = puo, Xovg =0,
Yivo = p~ (1 = q1) "o, Yovo = 0.

That ZF' v = 0 follows from Theorem 5.4 since (0,+1) ¢ G-

6.4. The case m = nf\l), A#0. Hereay = (1= M) (1—¢q1) Pand ag = A(1—¢q) 7!
so 71 = A and 2 = 0. By Proposition 6.4, é,(,?) =Z and

GV ={k>0|A£¢ Vi=0,1,....k—1}U{k<0|X#q Vi=—1,-2,...,k}.

We consider four subcases according to whether w contains a 1-break or not and
whether ¢; is a root of unity or not.

6.4.1. The case m = ng\l), A # 0, w contains a 1-break and q1 is a root of unity. By
Corollary 6.2 X\ = ¢¥ for some k € Z. Let o, be the order of ¢;. Then Z: =K, =
(01Z) x Z. We can further assume that k € {0,1,...,01 — 1}.

Note that XFM,, # 0 because deg Xf = (k,0) € G so YFXF ¢ m. Hence
of(m) € supp(M). By Lemma 6.6, oF(m) = ngi)q_k = ngl). We can thus change

141
notation and let m = ng). Then by Proposition 6.4 we have
Gn={0,-1,-2,...,—0, +1} x Z.

And G = G NZ2 = {0} x Z. By Corollary 4.6, BY is a Laurent polynomial
algebra in one variable. Thus M, is one dimensional with a basis vector, say vg.
X5 acts by some nonzero scalar p on vy and Y2 Xovg = (1 — g2) 'vg. X7 and Y
act as zero on My, by Lemma 4.4 because their degrees (1,0) and (—o1,0) does not
belong to G.

As a set of representatives for e /G we choose

S= {(070)7 (_170)) (_270)7 ) (_01 + 170)}
By Corollary 5.2 we obtain that
supp(M) = {n§1)7n((;—)17 .- ,ng?alJrl .

By 5.1, the set
C={v;:=Yv|j=0,1,...,00 — 1}
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is a basis for M. The following picture shows the support of the module and how
the X; act on it. Since the Y; just act in the opposite direction of the X; we do not
draw their arrows.

Xz Xz Xz X2 X2
O ——>0 —>0 .- e ——>0
X1 X1 X1

Using Lemma 6.6,
Xiv; = X1Y{vo = Y of (t1)vo = [jlg 051
and from relations (2.6)—(2.8) follow that
X20j = g M, Y] Xav0 = pXaq]v;,

You; = X, Y Vaug = (1= g2) ™' p™ " N, 0.

Thus the action on the basis {vg, ..., 05,1} is

Xqv 07 J= 0,
1V = . i
’ [lavi-1, 0<j<or—1,

vj+1, 0<j<or—1,
6.7 Yiv; =<’
(67) v {m j=o—1,

XQUj = pA‘{Qq{vJ‘J

Yav; = (1 — o) ' p ' Myv;.

6.4.2. The case m = ng\l), A # 0, w contains a 1-break and g1 is not a root of unity.
Now there is a unique integer k € Z such that A\ = ¢f. If k¥ > 0, then G’.(&) is the
set of all integers < k while if ¥ < 0, then c::,(,}) is all integers > k + 1.

If k >0, XfMy # 0 because (k,0) € G so YFXF ¢ m. Therefore of (m) =
ng) € supp(M). We change notation and let m = ngl). Then G = {-..,—2,-1,0}
and G = {0} x Z. We choose S = {(4,0) | i < 0}. Y2X5 = (1 —q2)"! on My
S0 My, = Cug, for a basis vector vg, and Xsvg = pug for some p € C*. The set
C = {v; == Y/uy | j < 0} is a basis for M and we have the following picture of
supp(M).

Xo Xo Xo
O x )

...... O ——> 0 ——> 0

One easily obtains the following action on the basis {v; | j < 0}:

X1vj = {07 J -9
[lgivj—1, 32>1,
(6.8) Yivj = vj1,
Xov; = pX,q]vj,
Ya0; = (1= g2) ™' p™" M, v;.
Th%)case k < 0 is analogous and yields a lowest weight representation with
=n

m=mn . as its lowest weight. A basis for M is then
1

C = {vj == Xjvy | j > 0},
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where My, = Cvg and the action is given by
X1vj = vj1,
(ilavi—1, >0,
Xovj = (q1h12) ™ puj,
You; = M,(1 = g2) 7 p Mo

6.4.3. The casem = ng\l), A # 0, w contains no 1-break and q1 is a root of unity. By

Corollary 6.2, X # ¢} for all k € Z. So by Proposition 6.4, G = Z2. G = (01Z)XZ
and we can choose S = {0,1,...,01 — 1} x {0}. From

X101X2 = (ql)\12)01X2Xf1 == )\féXQXfl

and Corollary 4.6 follows that B,(m1 )~ T/\«{é. It can only have finite-dimensional

irreducible representations if A\J3 is a root of unity. Assuming this, any such rep-
p 12 g

resentation is r-dimensional, where 7 is the order of A73, and is parametrized by
C* x C* 5 (p, p) with basis

M., = Span{v; := ngo |i=0,1,...,r =1},
where X{*vg = pvg and relations
X7oj = Ay puj,

1, 0<j<r-—1,
XQUjZ{U]+1 .:J "
pvo, j=r—1

Therefore by Theorem 5.1,
M = Span{w;; = X{v; |0<i<01,0<j <7}

Using the commutation relations and the formulas in Lemma 6.6 we can write down
the action as follows.

w , 0<i<o —1,
Xlwzg = ;+1’J __ 1
ALy pwo,j, t=o01—1,
Yiw;; = (1- )‘)(1'_ ‘Il)_l)‘l_zmjp_lwm—l,j: i =0,
N (1= )(A = q1) twizay, 0<i<or—1,
(610) TN 0<j<r—1
Wi i41, < r—1,
Xow;j = ql_i)\?l Z’J.H . ’
Gy Ay pwip, j=r1-—1,

Yow;; = 12”_1)‘(1 — @) 'wip1, j=0,
1AL = g2) " Mwi o, 0<j<r-1

The action can be illustrated in the following way.

X2 X2 Xg X2 X2
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6.4.4. The casem = nf\l), A # 0, w contains no 1-break and q, is not a root of unity.
By Corollary 6.2, X # ¢f for all k € Z. Now Z2 = {0} x Z 50 Gy = {0} X Z. My, is
one-dimensional with basis vg, say, and Xs = p on M, while Yo X5 = A(1—¢q2)~! # 0
on My,. We choose S =Z x {0}. Then a basis for M is
C = {vj :=XJv | j >0} U {vj := Yy wg | j <03,

where we determine (; by requiring that X,v; = v;q; for all j. Explicitly we have
for j <0,

¢ = ' (1- Q1)_j

A=A A= AT (L= )
Using the commutation relations and the formulas in Lemma 6.6 we get the action
on M = Span{v; | j € Z}.

(6.11) X1vj = vj1, Xavj = a7 A5 pvj,
1— )\q;j-f-l
1-q

Yiv; Uj-1, Yau; = MoA(1 = g2) 7' p My,

and a corresponding diagram

6.5. The case m = ng‘z)’ A # 0. Here vy = 0 while 2 = A(¢g2 — 1). By Corollary
6.2, w does not contain any breaks. We have Gy, = Z2 and Gy, = Z2, = K.
We will need some lemmas in order to proceed.

Lemma 6.9. For k,l € Z we have

(6.12) 247y = ¢ My 23 2,

where | = max{0,1}.

Proof. Relations (2.6)—(2.8) can be rewritten in the more compact form
2875 = " MY ZLZE, k= £,

where d;1 is the Kronecker symbol. After repeated application of this, (6.12) fol-
lows. |

By Lemma 6.6 we have for k,[ € Z,

(6.13) ofob(t1) =(1—q)~" mod m,
(6.14) obal(ts) = Mfgl, mod m.

Lemma 6.10. Let k,l € Z and let m = min{|k|, |l|}. Then, as operators on My,
we have

zZH, kl >0,

(1 - ql)—mzf+l7 kl < 07

Zh+l kl>0
kol _ )2 > -
(6.16) ZyZy = {)\mqél21+(sgﬂl)m)m/225+l, kl < 0.

(6.15) ATARS {
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Proof. Direct calculation using (6.13) and (6.14). For example if £ > 0 and I < 0
we have
7575 = XEV5 = XE Y oa (1) Yy =
= X5, oy () = XEY g = =
=5 Agy ! ...Aq;lf(mfl)zg“ =
= )\mq;lm*m(mfl)ﬁzécﬂ‘

O
Lemma 6.11. Let k,l € Z and let m = min{|k|, |l|}. Then, as operators on My,
(6.17) VAVAREWAVAS
and
(6.18) 7578 = c(k,1)ZL Z¥,
where
(6.19) c(k,1) = {;ék—l)m—(sgnk—sgnl)m2/27 Z i 87
Proof. Follows directly from Lemma 6.10. |

Lemma 6.12. Let g = (g1,92) € Z> = G, and set 1y = om(ajay)™" where or is
the projection R — R/m = K. Then

(6.20) r = (1= qn) ol (x g7/
and (ay) ' =rgat =ryZ, Z ¥ as operators on M.
Proof. We have
agay = (2" Z3*)" 2" 23" = Z, * Zy " Y 257 = 27 20 2y P 75,
by Lemma 6.9. Thus by Lemma 6.10,

pm(agag) = (1— g7l \loalgfl 2ot oxlle=l/2

which proves the formula. The last statement is immediate. |

We consider the three subcases corresponding to the rank of the free abelian
group Kj.

6.5.1. The casem =1\, X # 0,rank K> = 0. G = K = {0} so BY}) = R which is
commutative, hence M, = Cu, for some vg, and S = Z2. Thus C = {a,v | g € Z?}
is a basis for M and using Lemma 6.10 and Lemma 6.9 we obtain that the action
of X; is given by

Xlag'UO — Qgte, V0, N 2 07
(6 21) (1 - ql)_lag-i-elUOa g1 < 07

Xaagvo = {(ql)\IZ):glay-tezv(h g2 >0,
(@1 M2) 79 Mgy P agte,vo, g2 < 0.

The action of Y; on the basis is deduced uniquely from

6.22) Y1 Xia400 = (1 — 1) 'ayvo,

Y2 Xapa,v0 = Ag; 7 gy P aguo,

which hold by (6.13) and (6.14).
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.:. e

el——eoe<—0o¢o

Jl/
/ﬂ/

\;

FIGURE 1. Example of a weight diagram for M when m = n(z)
A # 0 and rank Ky = 1. Here a = 4, b = —2. The action of X1 is
indicated by — arrows, while = arrows are used for X5.

6.5.2. The case m = nf\2), A # 0,rank Ky = 1. Let (a,b) be a basis element. Since
G = K» which is of rank one, B ~ C[T,T~'] by Corollary 4.6 so My, is one-
dimensional. As before we let My, = Cvg. Then Z{Z5vy = pvg for some p € C*.
We assume a # 0. The case b # 0 can be treated similarly. By changing basis,

we can assume that @ > 0. Choose S = {0,1,...,a — 1} x Z. The corresponding
basis for M is

C={wy:=X{Zvy |0<i<a—1,j €L}
We now aim to apply Theorem 5.4. If 0 <4 < a — 1 then clearly X jw;; = wit1,5-
And

Xlwafl’j = XfZ%UO € CZ%_I)’UO = (Cwo,j,b.
We want to compute the coeflicient of wg j_p. Similarly to the proof of Theorem
5.4 we have, using Lemma 6.12, Lemma 6.9 and (6.16),

Xiwe—1 g = Zl Z2U0 (Zl 2r(a b)Z bZ )ZfZgUO =
= 1) (@M2) a¢ NS 23 250 28 27 pog =

= OGN pCwo g,

where

L 1, b<0
O | Aminte gt mintg ) min{i 0}z -y g,

Using Lemma 6.9 one easily get the action of X, on the basis. We conclude that

{wﬁl,j’ O<i<a-1,
1Wi5 = _1 (b—1)/2 a(j+—b) ya(j—b) ;

AL 16l g2ty Ay’ pCowg iy, i=a—1,
(6.23) ( as )lgy 12 PLoWo,j—b

sz” _ ‘h_i)‘glwi,j+la .7 Z 07
ij — —ivi i .

! @ A Agwi 1, J<O.
The action of the Y; is uniquely determined by

YiXivij = (1 — ) v,
(6.24) L
Y2 Xovij = Mgy gy " vij,

which hold by (6.13)—(6.14). See Figure 1 for a visual representation.
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6.5.3. The case m = nf\2),/\ # 0,rank Ky = 2. Let sy = a = (a1,a3), s2 = b =
(b1,b2) be a basis for G, = K3 over Z. We can assume that a;,b; > 0 and that
di= a0l >0.

By Corollary 4.6, B,(n1 ) ~ T, for some v which we will now determine. Using
Lemma 6.9 and Lemma 6.11 we have, as operators on My,

I 2R ZP 2 = g TN e, ba) 20 20 2 257 =
— g PTG o0y, by) 20 207 27 25,
We conclude that B,(n1 ) ~ T, where
(6.25) v= /\‘112111“5_”1@0(@, bs).

The function ¢ was defined in (6.19), d = a;bs — bias and k := max{0, k} for k € Z.
For M, to be finite-dimensional it is thus necessary that this v is a root of unity.
Assume this and let r denote its order. Then dim M, = r. Let

(626) {’U(], Viyeon ,'l)r_l}
be a basis such that
(6.27) ZPZ5v; = vl puj,
; 0<y -1
(6.28) 2y 230, = {U]“’ S
Mo, J=r—= ]-7

where p, u € C*.

The next step is to determine a set S C G = Z2 of representatives for the set
of cosets G /Gm = 7%/ K, which makes it possible to write down the action of the
algebra later. We proceed as follows.

Recall that Ko = Z - (a1, a2) ®Z - (b1, bs). Let d; be the smallest positive integer
such that (di,0) € K. We claim that dy = d/ GCD(as, b2). Indeed d; must be of
the form ka; +1by where k,l € Z and ka2 +1by = 0 with GCD(k,!) = 1. For such k, 1,
k|ba, llaz and ba/k = —aa/l =: p > 0. Then GCD(az/p,b2/p) = 1 which implies
that GCD(az,b2) = p. Thus di = kay + Iby = (baa; — azb1)/p = d/ GCD(az, be) as
claimed.

Next, let do denote the smallest positive integer such that some Ks-translation
of (0,dz) lies on the z-axis, i.e. such that

((O,dz) + Kz) NZ x {0} ;é 0.
Such an integer exists because if we write GCD(as, by) = kas + lbs, then
(0, kas + le) — k(al, a2) — l(bl, bg) = (—ka1 — lbl, 0)

On the other hand if (0,ds2) + ka + b € Z x {0}, i.e. if do = kas + lb, then
GCD(az, b2)|d2. Therefore do = GCD(ag, by).

We also see that for any point in Z? of the form (x,ds) there is a g € K such
that (z,dy) + g € Z x {0}. Also, (d1,0) € K, so for any point of the form (d;,y)
there is a g € Ky (namely (—dj,0)) such that (di,y) + g € {0} x Z.

Suppose now that for some &, € Z,

k(al,a2)+l(b1,b2) €K2ﬂ{0,1,...,d1 —1} X {0,1,...,d2—1}.

Then we would have (0, kaz+1bs) — (ka+1b) € Z x {0} and kas+1by € {0,1,...,ds—
1} which contradicts the minimality of da unless kas + b, = 0. But in this case
(kar + 1b1,0) € K5 which contradicts the minimality of d; unless ka; + lby = 0.
Hence Ko N {0,1,...,d1 — 1} x {0,1,...,d> — 1} = {(0,0)}. We have shown that

S:={0,1,...,dy —1} x {0,1,...,dy — 1}
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FIGURE 2. An example of the action on supp(M) when m = nf\z),

A # 0 and rank K» = 2. Here a = (2,-2), b = (3,2),dy = 5,ds =
2 and s = 2. The = arrows indicate the action of X; and the —
arrows show the action of X5.

is a set of representatives for Z2/K,. In particular we get from Corollary 5.3 that
dim M is finite and

dlmM/ dim M, = |S| = d1d2 = albg - blag.
We fix now integers a’, bl such that
(629) dz = GCD(U/Q,bQ) = GIZG/Q + bl2b2

and such that —aba; — byb € {0,1,...,d1 — 1}. This can be done because for any
p € Z, (ay,by) := (ah + pba/da, bl — pas/d») also satisfies ayas + bhbs = do but now

—aya; — byby = —(ay + pba/dy)ar — (by — pas/da)by = —ahay — byby — pd;.
We set
(6.30) s = —ahay — byb,.
Let (i,j) € S. We have the following reductions in Z?2 modulo Kj.

i +1,5), 0<i<d —1,
(1,0)+(z',j)={(’+ )y osi<d

(Oaj)a i:dl_]-a

(17.7_*_1): 05j<d2_17
(0,1)+(l,]): (i+370): j:d2_17i+55d1_17

(i+3—d1,0), j=do—1,7+s>d; — 1.

From this we can understand how the X; act on the support of M, see Figure 2 for
an example. By Theorem 5.1 the set

C:{wijk :ZXfngk|0Si<d1,0§j<d2,0§k‘<7‘}

is a basis for M where vy, is the basis (6.26) for My,.
If 0 <i < dy —1 we clearly have Xyw;j5 = wit1,5,5- Suppose i = dy — 1. Then
by Lemma 6.9,
Xiwijp = X Xgoy, = ¢ XX Py
Thus we must express X in terms of Z* Z2> and Z2* Z5>. Since (dy,0) = by /dra—
az/dab we have

(6.31) (25 252)P21 % (2 Zh2)~el% = o X
as operators on My, for some constant C; ! which we must calculate.

Lemma 6.13. The constant Cy defined in (6.31) is given by
(632) 01_1 — T,a—bz/d2 (ql_ala_2)‘1_2a1a2)%(%_l)/2 . ,,.;;2/‘12((11—515/\1—217152)% %"‘1)/2_

biazazba/d3 \b1a3ba/d3 1 /
0 A12 T(o,7b2a2/d2)c1;
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where the vy, g € Z? are given by (6.20),

o = (1 _ ql)—min{|a1b2/dz\7\b1az/dz\}, asby > 0,
! ]-7 a2b2 S 07

k = max{0, k} for k € Z and do = GCD(az, b).
Proof. If by > 0 for example, we have by Lemma 6.9

a1 r7az\ba/ds __ _—ai1a2y—ai1a2 —ai1a2 y —@102\2
(21123 )2/ *=q A2 (g AL ?)” -

—a1az y—aia2\ba/do—1 a1b2/d2 a2b2/d2 _
(g A2 %) / Zy Zy =

by [ by
_ (. —a1a3 y—aia2\ g2 (g% —1)/2 ai1ba/ds ra2bs/do
= (¢ Arp 14%) 82t a2 Z Z,

When by < 0 we get a similar calculation where r, ba/d2 appears by Lemma 6.12.

(2% Z52)=a2/d> can analogously be expressed as a multiple of Zl_b“”/d2 Zz_bz‘”/dz.

We then commute Z; 2b2/d2 ynq zZy braz/ds using Lemma 6.9. As a last step we use

Lemma 6.10 and obtain two more factors. O

We conclude that
Wit1,5,k> 1 <d; —1,
X Wijk = ; ; " !
1Wijk {q{dl A,{g2clyb2/d2kl pbz/dQMkle,j,kll’7 i=d; —1.
Here
6.33 k—as/dy =1k, + k' with0<Ek! <r.
1 1 1

Next we turn to the description of how X acts on the basis C. If 0 < j <d» —1
we have Xow;jr = ¢; ‘Ay Wi j+1,6 by Lemma 6.9. Suppose j = d> — 1. Then, as in
the first step of the proof of Theorem 5.4,

(6.34) Xowijk = i Ay X1 X520k = a7 Ny X1 (X5 7(_s.a0) Zo 2 Z)(Z1° Z57 Y0k
By (6.16) and (6.20),
(6:35) X1 (_sa)Zs P2} = T a0 ) Zi =
= (1—q) (g™ RO BT g =
=(1-q1)*(Ng) =2}

We must express Z; °Z32 in the generators of the algebra BY in order to calculate
its action on wvy.

(6.36) (21" 25°) (21 2y°)" = C, ' 2,° 23",

for some Cy € C* since the degree on both sides are equal by (6.29) and (6.30).
Similarly to the proof of Lemma 6.13,

6.37) Oyl = T;Té(q;alﬁ)\;;uaz)aé(a;—l)/Q _T;T’Q(q;blﬁ/\ﬁbm)b;(b;—1)/2_

7b1b' azal \ — ! !
q 23202 3 blbzagaQCéCé/’

and

Cl = 17 a"IZbI2 2 07
2= 1- ql)—min{|a1a'2\,\b1b’2|}7 abbl, < 0,

C” _ {1, (120/2()2()'2 2 0,

I (1—2bobs, bab’ Nm'/2
AT qé 2by+(sgn b2by)m')m' / 7 a2a/2b2b/2 <0,
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FiGURE 3. Weight diagram when m = nE\Q), A #0, rank Ko = 2
and q1 = q2-

where m' = min{|aza}|, |b2b4|}. Furthermore, letting

(6.38) by +k=rkh+ky, where0<ki<r
we have by (6.27)—(6.28),
(6.39) (292 252)°2(Z3 23 )Pavy, = w23 s oy

If i + s < dy — 1 we can now write down the action of X» on w;j; by combining
(6.34)-(6.37), (6.39) to get a multiple of w;y,0xy. However if i +5 > d; — 1, we
must reduce further because then (i + 5,0) ¢ S. Let

(6.40) ky —as/d> =rki + k3, where 0 < ki <.
Then by the calculations for the action of X' on My,
Xtopy = X{Homh X o, = ClHkISVk%,b2/d2pb2/d2wz’+sfd1,o,kg-
Summing up, M has a basis
{wijr |0<i<d1,0<7<dy,0<k <}
and X7, X5 act on this basis as follows.
(6.41)
Wit1,j 1<d —1
Xjwije = {q{zjll)éécz’clng/dgk’l’pbg/dglu/k'lwo,j’klll7 i i di _ 1?
Xowijr = (q1h2) ™"
(Wi j1.k,
if0<j<dy—1,
(1- fh)s()\zlh)_dZC2Va’2kgpa’2,ukl2wi+s,o,k'2';
ifj=do—landi+s<d; —1,
(1 — q1)*(N2qa) %2 Cyutakz thsba/dz pastba/da kot C1Wits—dy,0,kY
ifj=dy—1landi+s>d —1,

\

where C} is given by (6.32), Cy by (6.37) and v by (6.25). The parameters p and u
comes from the action (6.27), (6.28) of BY on M,, and k;, k' are defined in (6.33),
(6.38) and (6.40).

The action of the Y; is uniquely determined by
(6.42) YiXiwijr = (1 _'Qi)._lwz'jka
Yo Xowijn = Ay g5 wijk-

We remark that the case ¢ = g2 corresponds to a = (a1,a2) = (1,—1). Then
dy=1,dy =d = |by +b2| and s = 1. X; and X5 will act on the support in the
same direction, cyclically as in Figure 3. The explicit action can be deduced from
the above more general case noting that here k§ = k, k5 = 0 and

Bk — 0, k<r-1, B K k, k<r-—1,
LU, k=11, TR0, k=r—1.
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6.6. The case m ¢ {nff) | u € C,i = 1,2}. This is the generic case. We have
Z% = @ by Corollary 6.8. Our statements here generalize without any problem to
the case of arbitrary rank.

Assume first that the g; are roots of unity of orders o; (i = 1,2) and that w does
not contain any 1-breaks or 2-breaks. Then by Corollary 6.2 and Proposition 6.4
we have G, = Z2 Thus Gy, = (017Z) x (037Z). Moreover,

01 02 __ \0102 02 01
Xl X2 _AIZ X2 Xl

so Bl(n1 ) ~ Tyezez by Corollary 4.6. This algebra has only finite dimensional rep-
resentations if A{3°? is a root of unity. Assuming this, let r be the order of A7
Then there are p, u € C* and M, has a basis vg,v1,...,v,_1 such that

01 __ \t0o102
X'y = A9 P pv;

; 0<1 -1
X;l’l}i: UH—I ___Z <p
pvg t=p-—1

Choose S = {0,1,...,01 =1} x{0,1,...,02 — 1}. The corresponding basis for M is
C = {wijr = XiX3v, |0< i< 01,0 < j <02,0 <k <r}. The following formulas
are easily deduced using (2.6)—(2.8).

Ky = {“’;j(zg,;ig) k<or-1,
Ala pwojk, k=o01-1,

(6.43) Wi 41, <oz —1,
Xowgjr, = (@1 ha2) ™ - Qwigp1, =0y —1i<r—1,

HW;00, l:02—1,1:=T‘—]..
The action of Y7, Ys is determined by

Vi Xiwiik = q7 a1 — [i]g, Wik,
(6.44) 1-A1Wej 1_1(_§ []111). ij
Yo Xowijr = g1 ‘g5 7 (a2 — [Jlgo (1 + (@1 — V)an))wiji.

In all other cases one can show using the same argument that dim M, = 1 for all
n € supp(M) and that M can be realized in a vector space with basis {wi; }(; jer,
where I = I; x I, is one of the following sets

Ng, xNg,, Ny xZ* Z*xNg, ZxZ,
ZEXZ, Tx7* Z*Ex7* 7FxZT,

where Ny = {0,1,...,d =1}, Z* = {k € Z | £ k > 0} and d; is the order of ¢; if
finite. The action of the generators is given by the following formulas.

wi+17']'7 (Z+17.7)€I7
Xlwij = p)‘ilé]wo,ja (Z + ]-7.7) ¢ Ia L = Ndl and oy 75 [i]!h)
0, otherwise,
(645) Wi, j+15 (’&,J + 1) € I,

/J/I,Ui,(], (7/;] + 1) ¢ I, I2 = Ndz
and as 7 [jlg, (1 + (@1 — 1an),
0, otherwise,

Xow;; = (g1 Ai2) ™" -
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Yiwij = g5 (o = [i — 1]g,)-

wz'fl,ja (i—l,j)EI,
(p)‘g])_lwdlfl,ja (i - laj) ¢ LnL= Ndl and a; 76 [z - 1]417
0, otherwise,

(6.46)  Yowi; = Ay " (a2 = [ = o (1 + (@1 — Dew))-

Wi 11, (G, j+1)€l,
N_lwi,dQ—l, (’l,] + 1) ¢ I,I; =N,
and oz # [j — g (1 + (g1 — Do),
0, otherwise.
Thus we have proved the following result.

Theorem 6.14. Let A be a quantized Weyl algebra of rank two with arbitrary
parameters qi1,q2 € C\{0,1}. Then any simple weight A-module with no proper
inner breaks is isomorphic to one of the modules defined by formulas (6.6), (6.7),

(6.
(6.

to

8), (6.9), (6.10), (6.11), (6.21-6.22), (6.25-6.24), (6.41-6.42), (6.43-6.44) or
45-6.46).
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