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Spatio-temporal statistical modelling of significant wave height

A. Baxevani1∗, S. Caires2 and I. Rychlik3†
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Abstract

In this paper, we construct a homogeneous spatio-temporal model to describe the variability of

significant wave height over small regions of the sea and over short periods of time. Then, the

model is extended to a non-homogeneous one that is valid over larger areas of the sea and for

time periods of up to ten hours. To validate the proposed model, we reconstruct the significant

wave height surface under different scenarios and then compare it to satellite measurements and

the C-ERA-40 field.

Key words: Significant wave height, random surface, satellite data, Gaussian random fields,

stationary.

1 Introduction

Significant wave height, Hs, is traditionally defined as the average of the one third highest

wave heights observed at sea. An alternative definition, valid under the assumption that

the sea is well modelled using Gaussian fields, is that Hs equals four times the standard

deviation of the vertical displacement of the sea surface, and hence H2
s is proportional to

the average wave energy.

∗corresponding author
†Research partially supported by the Gothenburg Stochastic Centre
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Mathematically speaking, Hs is defined assuming stationary sea conditions. However

in reality, the sea conditions change both in time and space and hence Hs may be regarded

as the parameter that describes the evolution in time and space of the local wave energy.

Although Hs is a parameter, it changes in a random way and hence its variability can be

modelled by means of random three dimensional fields. The dimension of the fields may

be reduced to two, if we consider the sea surface at fixed time or even to one if we instead

consider the sea surface at a fixed point.

The properties of the random fields vary with the geographical location and time of

the year. Hence in general, the fields should be non-homogeneous both in time and space.

However, as it was shown in Baxevani et al. (2006), the sea surface may be modelled with

sufficient accuracy by means of homogeneous (isotropic and stationary) Gaussian fields

over restricted regions usually rectangles with sides of about four degrees and during

limited time period.

In this paper, we propose a non-homogeneous Gaussian field that describes the vari-

ability of Hs over large areas and which, when the field is restricted to smaller regions

becomes homogeneous. Within this model, we allow time evolution of up to ten hours.

Longer time periods are not considered here since this would require taking into account

the swell that travels over long distances, and hence a more complicate dependence struc-

ture.

The proposed model is parametric, and the majority of the parameters is estimated

applying the method developed in Baxevani et al. (2006), on satellite altimeter data.

The temporal dynamics though are modelled using buoy measurements and C-ERA-40

reanalysis data.

Models of significant wave height in space and time have the potential to be applied

in various areas. These models may be used in modelling wave loads acting on marine

structures and computing probabilities of risks associated with marine operations; for

example, ship stability, coastal erosion or oil spill motion. Another area of application

is fatigue analysis. The long term fatigue of a ship’s hull depends on the wave climate

along the ship’s routes and on the wave induced response of the ship, see Baxevani and

Rychlik (2006a). Another application is in computing the probability that the maximum

value of a random field exceeds a certain threshold. This is an important problem in
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safety and reliability analysis of structures exposed to environmental loads, see Baxevani

and Rychlik (2006b).

In section 2 we construct a homogeneous spatio-temporal model with a specific co-

variance structure, which is then extended to a non-homogeneous one. In section 3 we

demonstrate how the proposed structure can be used to model the logarithmic values of

the satellite estimates of significant wave height, Hs. Finally in section 4, we apply the

model to data from the TOPEX-Poseidon satellite over an area of the North Atlantic.

The derived model is then validated by reconstructing the significant wave height surface

and comparing it to the satellite measurements and the C-ERA-40 data.

2 Model formulation

In this section we construct a homogeneous spatio-temporal model for a zero-mean Gaussian

three dimensional field, with a specific spatial covariance structure. The model is con-

structed through a recursive formula. Then, the homogeneous model is extended to a

non-homogeneous one that is valid over larger areas and for longer periods of time. In

the latter case, the recursive formula is defined with the help of diffeomorphisms that are

solutions to the general transport equation.

2.1 Homogeneous model

2.1.1 Spatial model

We commence our construction of the model by considering the spatial case first. Fix a

time point t0 ∈ R
+. Then for any point p0 ∈ R

2 denote the region of stationarity around

this point by ηt0(p0) ≡ η(p0) ⊂ R
2. For simplicity of presentation we assume the origin

lies inside the region η(p0). Let X(p), p ∈ η(p0) be a homogeneous, real valued, zero

mean, Gaussian random field with covariance function

r(p) = Cov(X(0), X(p)) = σ2e−
|p|2

2L2 , (1)

where σ2 is the field variance, | · | : R
2 → R denotes the euclidean distance and L is

the so-called correlation length. Here we should notice that although not explicit in the

notation the parameters in (1) may depend on time t0 and location p0. The corresponding
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spectral density (spectrum), is given by

S(ω) = S(ω; σ2, L) =
σ2L2

2π
e−L2 |ω|2

2 , ω = (ω1, ω2) ∈ R
2. (2)

It follows from the theory of Hilbert spaces that the field X(p) has the following spectral

representation

X(p) = lim
∆ω→0

(∆ ω)2

+∞
∑

i,j=−∞

Rij

√

S(ω) cos(ω · p + eij), (3)

where ω = (ω1, ω2),p = (p1, p2) and ” · ” denotes the inner product between two vectors,

i.e., ω · p = ω1p1 + ω2p2. Moreover {Rij} and {eij} are sequences of mutually indepen-

dent random variables distributed as Rayleigh and uniform in [0, 2π), respectively. Also,

{ωi}∞−∞ is a partition of R and ∆ω = ωi+1 − ωi is the constant grid step.

2.1.2 Temporal model.

Let now X(t) denote the field at time t ∈ R at a fixed position p ∈ ηt0(p0). We assume

that the temporal covariance of the process (one-dimensional field) is given by

r(t; T ) = Cov(X(0), X(t)) = σ2e−
t
2

2T2 −
|t|
2C , (4)

for some parameters T and C that depend on both time t0 and location p0. Moreover the

parameter T is related to the correlation length L through the relation T = L
|v|

, where

v denotes the velocity the field X(p) is drifting with, see Baxevani et al. (2003) for a

discussion on velocities defined on random surfaces that evolve with time. If there are no

dynamics, i.e. if v = 0 or equivalently T = ∞, the covariance (4) simplifies to

r(t;∞) = σ2e−
|t|
2C ,

which is a covariance function of the Ornstein-Uhlenbeck type, i.e. X(t) is a Markov

process. Similarly for the case C = ∞

r(t; T ) = r(−vt) = Cov(X(p), X(p− vt)),

which suggests the time variability is a consequence of the field drifting with constant

velocity v.
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2.1.3 Spatio-temporal model.

Let us now denote by X(p, t) the field at position p and time t with p, t ∈ η(p0). A

spatio-temporal covariance function can be constructed by combining the functions in (1)

and (4);

r(p, t) = Cov(X(0, 0), X(p, t)) = σ2e−
|t|
2C

− |p−vt|2

2L2 = ρ(t)r(p− vt), (5)

where as before v is the velocity the field X(p) is moving with inside the region η(p0),

and ρ(t) = e−
|t|
2C denotes the temporal correlation. Notice that r(p, 0) = r(p) as in (1)

and r(0, t) = r(t; T ) as in (4).

For simulation purposes it is convenient to consider the time evolution of the field

X(p, t) at discrete times t = i dt where dt > 0 is a suitably chosen time lag and provide

with a recursive scheme that allows for sampling. For any t = i dt, i > 0 let

X(p, 0) = X∗
0 (p) and X(p, t) = ρX(p − v dt, t − dt) +

√

1 − ρ2X∗
i (p) (6)

where X∗
i (p) are independent, homogeneous, identically distributed random fields with

the covariance structure given in (1) that can be simulated using formula (3) and ρ denotes

the constant temporal correlation step ρ( dt) = e−
dt

2C .

Remark 1 It is easy to see that the recursive scheme in (6) can be also given in the

following non-recursive form, with t = i dt, dt > 0,

X(p, t) = ρiX∗
0 (p− vt) +

i
∑

k=1

ρi−k
√

1 − ρ2X∗
k(p− v(i − k) dt), (7)

where X(0, 0) = X∗
0 (0).

Consequently

Cov(X(0, 0), X(p, t)) = Cov(X∗
0 (0), ρiX∗

0 (p− vt)) = ρir(p − vt),

and hence we have demonstrated that the field defined in (6) or (7) has the covariance

function given in (5), since ρ(t) = ρi ≡ ρi( dt).

2.2 Non-homogeneous model

The homogeneous field X(p, t) constructed in section 2.1.3, is valid in a relatively small

neighborhood of p0 and t0 denoted by η(p0, t0). (The parameters L and σ2 in (1), depend
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usually on both p0 and t0.) In this section we extend X(p, t) to a non-homogeneous

Gaussian field that is valid in areas that are larger than η(p0, t0).

2.2.1 Spatial model

Fix t0 ∈ R
+,p ∈ R

2 and denote by η̃ an area that contains η(p0, t0), and for p ∈ η̃

, introduce the slowly varying functions L(p) and σ2(p). (By slowly varying we mean

functions that are almost constant inside η(p0, t0).)

Now let X(p) be a zero mean Gaussian field with the following spatial covariance

function

r(p,q) = Cov(X(p), X(q)) =
2σ(p)σ(q)L(p)L(q)

L2(p) + L2(q)
e
− |p−q|2

L2(p)+L2(q) , (8)

for p,q ∈ η̃. Obviously the parameters of the covariance depend also on time t0, although

it is not explicit in the notation. When both points p and q lie in the same region of

stationarity η(p0, t0), the covariance in (8) is close to the covariance in (1), since L(p)

and σ2(p) are assumed to be almost constant on any set η(p0, t0).

Next, consider the non-negative bounded real-valued function

S(ω; σ2(p), L(p)) =
σ2(p)L2(p)

2π
e−L2(p)

|ω|2

2 , ω = (ω1, ω2) ∈ R
2, (9)

which obviously depends on the position p. Notice that the function in (9) is only locally

a spectrum, i.e., if η̃ = η(p0, t0), then S(ω; σ2(p), L(p)) coincides with the spectrum in

(2).

Finally, the field X(p, t) also assumes a spectral representation analogous to that in

(3),

X(p, t) = lim
∆ω→0

(∆ ω)2
+∞
∑

i,j=−∞

Rij

√

S(ω; σ2(p), L(p)) cos(ω · p + eij),

where ω = (ω1, ω2),p = (p1, p2) and {Rij} and {eij} are again sequences of independent

random variables that are distributed as Rayleigh and uniform in [0, 2π) respectively.

2.2.2 Spatio-temporal model

In this section we model the time evolution of the non-homogeneous field X(p) during

short periods of time. Let t, s ∈ η̃ ⊃ η(p0, t0) and assume that L(p) and σ2(p) inside η̃

depend only on the location. Moreover, the velocity v the field is moving with inside the
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region η̃ has to be modelled by means of a deterministic field v(p, t). For simplicity of

notation let t0 = 0 and 0 ≤ t ≤ s ≤ 1 which can be achieved by a suitable choice of units.

Then the motion of the field is modelled by means of a flow of diffeomorphisms

φ : R
2 × [0, 1]2 → R

2

that satisfy φ(p, 0, 1) = φ(p), φ(p, s, s) = p, φ(·, t, s) = φ(·, u, s) ◦ φ(·, t, u) and are

the solution to the transport equation

φ(p, t, s) = p +

∫ s

t

v(φ(p, t, u), u)du, t < s. (10)

Clearly p = φ(q, t, s) is the position at time s of the point that at time t was at q. The

point q will be denoted by pts, i.e.

p = φ(pts, t, s), pts = φ−1(p, t, s),

for any t < s.

The field dynamics are modelled by generalising the recursion formula in (6). Let

t0 = 0 and t = i dt, dt > 0. Let also X∗
k(p), k = 0, 1, . . . i, denote independent, zero-

mean, Gaussian fields having the covariance function given in (6) with the parameters

σ2(p), L(p) taking values at t0 = 0. Then, the field X(p, t) is defined as follows

X(p, t) = ρiX∗
0 (p0t) +

i
∑

k=1

ρi−k
√

1 − ρ2X∗
k(put), u = k dt. (11)

Remark 2 At time t0 = 0, the spatial covariance of the field X(p, t) is defined by means

of (8) with certain parameters σ2(p) and L(p). However, at time t these parameters are

different and so is the spatial covariance of X(p, t). Considering this model inside regions

with sides around 4 degrees minimises this difference.

The field X(p, t) defined in (11) has the covariance funcion

Cov(X(p, t), X(q, s)) = ρi+jr(p0t,q0s) +

i
∑

k=1

ρi+j−2k(1 − ρ2)r(put,qus)

= e−
t+s

2C r(p0t,q0s) +

i
∑

k=1

e−
t+s−2u

2C

(

1 − e−
dt

C

)

r(put,qus), (12)

for t = i dt, s = j dt, u = k dt and i ≤ k ≤ j.
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The formula in (12) will be used in the coming sections to reconstruct and predict

values of the logarithms of the significant wave height field. However, when the velocity

field v is not constant the covariance function depends on the discretisation step dt.

Letting dt → 0, the resulting covariance function is a generalisation of the homogeneous

case in (5). Moreover, for small values of dt, 1 − ρ2 ≈ dt/C, and therefore

lim
dt→0

Cov(X(p, t), X(q, s)) = e−
t+s

2C r(p0t,q0s) +
1

C

∫ s

t

e−
t+s−2u

2C r(put,qus) du, (13)

where r denotes the non-homogeneous covariance function in (8).

3 Modelling significant wave height in the North Atlantic

In this section, we demonstrate how we can model the logarithmic values of the satellite

estimates of significant wave height using the structures introduced in section 2.

3.1 Homogeneous field

Let us denote by Y (p, t) the field consisting of the logarithmic values of significant wave

height, Hs, at position p and time t, i.e., Y (p, t) = log(Hs(p, t)). For a fixed point p0,

we take η(p0) to be a small square with side approximately 4 degrees. Then, using the

methodology developed in Baxevani et al. (2006), the mean value of the field Y (p, t),

m(p, t) = m0(p) + m1(p, t) cos(ωt) + m2(p, t) sin(ωt), ω =
2π

365.2

is removed using non-linear regression. Note the time t is measured in days starting from

the 1st of January.

For fixed time t0 the residual field ǫ(p, t0) = Y (p, t0) − m(p, t0) has been shown to

be homogeneous over the area η(p0, t0). Moreover, it has been shown that ǫ(p, t0) can be

considered as a real-valued Gaussian random field that is the sum of three independent

homogeneous zero mean real-valued Gaussian fields:

ǫ(p, t0) =
√

pXl(p, t0) +
√

1 − pXs(p, t0) + Xe(p, t0), (14)

where p ∈ [0, 1] is a mixing parameter that describes the energy contribution by each

one of the fields Xl and Xs. The physical interpretation of the model (14) is that the

logarithmic values of Hs exhibit spatial variability at three different scales: small, medium
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and long. The small-scale variability, denoted by Xe, is interpreted as measuring error

and should be removed using some smoothing filter. The long-scale Xl (which describes

the size of a storm and the propagation of waves), and the medium-scale Xs (which is

some type of correlated noise), are modelled using a special type of covariance function.

For a detailed treatment of the problem see Baxevani et al. (2006). Additionally, we also

assume that each one of the fields Xl, Xs and Xe can be modelled according to sections 2.1

and 2.2.

Combining equations (7) and (14) for constant velocity field v inside η(p0, t0), the

field ǫ(p, t) can be writen for t = i dt, in the following way:

ǫ(p, t) = ρi
[√

pX∗
l,0(p − vt) +

√

1 − pX∗
s,0(p) + X∗

e,0(p)
]

(15)

+

i
∑

k=1

ρi−k
√

1 − ρ2
[√

pX∗
l,k(p− v(t − u)) +

√

1 − pX∗
s,k(p) + X∗

e,k(p)
]

,

where u = k dt and t0 = 0. The fields X∗
l,k(p), X∗

s,k(p) and X∗
e,k(p), k = 0, 1, . . . i, are

independent Gaussian fields with the covariance function in (1) for suitable parameters

L and σ2 taken at time t0. Notice that only the long-scale field Xl is moving with the

velocity v.

3.2 Non-homogeneous field

A natural extension of the field ǫ(p, t), t0 = 0, t = i dt, i > 0 defined in (15), can be

derived combining equations (11) and (14). Exactly as in the homogeneous case, only

the long-scale component is moving with velocity that is the solution to the transport

equation in (10).

ǫ(p, t) = ρi
[√

pX∗
l,0(p0t) +

√

1 − pX∗
s,0(p) + X∗

e,0(p)
]

+
i

∑

k=1

ρi−k
√

1 − ρ2
[√

pX∗
l,k(put) +

√

1 − pX∗
s,k(p) + X∗

e,k(p)
]

,

with u = k dt. For t = i dt, s = j dt, i < j, the covariance function is given by

Cov(ǫ(p, t), ǫ(p, s)) = ρi+j [prl(p0t,q0t) + (1 − p)rs(p,q) + re(p,q)]+

+
i

∑

k=1

ρi+j−2k(1 − ρ2) [prl(put,qus) + (1 − p)rs(p,q) + re(p,q)] =

= pCov(Xl(p, t), X(q, s)) + ρj−i [(1 − p)rs(p,q) + re(p,q)] ,
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where the covariance Cov(Xl(p, t), X(q, s)) is given by formula (12) while the covariances

rs(p,q) and re(p,q) by (8) and the subindices denote the source of variability. Finally,

using formula (13) and letting dt → 0 we obtain the limiting covariance function

lim
dt→0

Cov(ǫ(p, t), ǫ(p, s)) = pe−
t+s

2C rl(p0t,q0s)+

+
p

C

∫ t

0

e−
t+s−2u

2C rl(put,qus) du + e−
s−t

2C [(1 − p)rs(p,q) + re(p,q)] . (16)

4 Model presentation for the North Atlantic

In this section we apply the model presented in section 3, to altimeter data from the

TOPEX-Poseidon satellite over an area of the North Atlantic that extends between 42

and 62 degrees in latitude and -48 to -12 degrees in longitude. The results are presented

for the month of December. The choice of month is arbitrary. For a detailed description

of the data see Baxevani et al. (2006).

4.1 Spatial model

We commence the analysis by defining as areas of stationarity squares with sides of approx-

imately 4 degrees. Then the mean value, m(p, t), is estimated using non-linear regression

over the data set consisting of the logarithm of the first observation from every satellite

passage. The spatial covariance parameters σ2(p, t), p(p, t), σ2
e(p, t), Ll(p, t) and Ls(p, t)

are estimated by applying the method developed in Baxevani et al. (2006). The values

for the different regions are presented in Fig. 1. The parameter Le is arbitrarily taken to

be 5km, i.e., the field Xe is treated as white noise.

4.2 Temporal model

To model the time dynamics we need to estimate the parameters C and T . We expect

them to depend on both time and position but also vary slowly enough so they can be

considered as constants over the region of stationarity and for a period of time that does

not exceed ten hours.

The estimation of the parameter Cl (where the subindex l indicates the long-scale

component field), is essential. It reflects the dynamics of the atmospheric conditions

leading to creation of storms and it cannot be estimated using satellite measurements.
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Figure 1: The model for Y (p, t) for the month of December. The x-axis indicate longi-

tute and the y-axis latitude. (Top-left) - m(p, t); (Top-middle) - σ2(p, t); (Top-right) -

p(p, t). (Bottom-left) - σ2
e(p, t); (Bottom-middle) - Ll(p, t) in degrees; and (Bottom-right)

- Ls(p, t) in degrees. (All the plots are smoothed using a Gaussian kernel with window

20◦ in order to ensure the smoothness of the parameter values. The values close to the

boundary are used in the model unsmoothed.)

Data from other sources have to be used since the temporal resolution of the satellite data

is not of the right order. Buoys have the right temporal resolution but unfortunatelly are

usually located along the coast. Hence, we additionally assume the temporal correlation

along the coast is the same as in the middle of the ocean and use buoy data to estimate

the parameters Cl and Tl. In table 1 we present the results from 20 NOOA deep water

buoys and in Fig. 3 (Left), we fit the temporal covariance to data from the buoy 46003.

The study of the temporal correlation of the buoy data reveals that although the

parameter Cl does not depend on time it varies significantly with location. At present we

arbitrarily assign to Cl the value 35 hours, however there are indications that it can be

smaller especially when we depart from the coastal areas. In practice we are interested

in the time correlation for t > 0.33 hours (t0 = 0) since at a fixed location we usually

assume the sea conditions to be homogeneous during a period of about 20 min. Although

the satellite data indicate that for t > 0.33 hours, the fields Xs(·, t0) and Xs(·, t0 + t) are
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practically independent, in the case we are interested in time correlation at shorter time

lags the parameters Cs and Ce should also be estimated. The magnitude of Cs and Ce is

of the order of a few minutes and seconds and here is arbitrarily assigned to be 2 minutes

and 7 seconds respectively.

What remains to be estimated is the velocity field v. Estimation of the parameter Tl

(Tl = Cl

|v|
), although provides with information on the speed of the wave propagation does

not give any insight on its direction. Therefore, since it is well known that the direction

of wave propagation depends on the wind direction history, the variability of v should

be modelled as a random field. However, we may assume that v varies so slowly inside

η(p0, t0) for a time period less than 10 hours that can be additionally assumed to be

constant. We then let v equal its mean value which is a function of both space and time,

(p0, t0) and the diffeomorphism in (10), simplifies to

φ(p, t, s) ≈ p + v(p)(s − t).

Furthermore, since in 10 hours the distance between two points cannot exceed 3 degrees,

the points p0t,put, 0 ≤ u ≤ t lie inside the same stationarity region η(p0, t0). Con-

sequently, v(put) = v(p), ∀ 0 ≤ u ≤ t, and hence put = p − v(p)(t − u). Therefore,

combining formulas (8) and (16) we obtain

lim
dt→0

Cov(ǫ(p, t), ǫ(q, s)) = pe−
t+s

2C

2σ(p0t)σ(q0s)L(p0t)L(q0s)

L2(p0t) + L2(q0s)
e−

|p−q|2

2C +

p

C

2σ(p)σ(q)L(p)L(q)

L2(p) + L2(q)

∫ t

0

e−
t+s−2u

2C e
−

|p−v(p)(t−u)−q+v(q)(s−u)|2

L2(p)+L2(q) du

+ e−
s−t

2C [(1 − p)rs(p,q) + re(p,q)] . (17)

The covariance function in (17) for p = p0 and q ∈ η̃ and t = s = t0 = 0 can be seen in

Fig. 2 (Left), and for t = 0 and s = 10 hours in Fig. 2 (Right).

In the following examples the mean value of v is estimated using the ERA-40 data,

a description of which can be found in section 6 and its variability with location can be

seen in Fig. 3 (Right). Obviously the dependence between v(p, t) and ǫ(p, t) has to be

further investigated, but this lies outside the scope of this paper.
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Figure 2: (Left) - The covariance in (17) between the region and the central point at time

t = 0. (Right) - The covariance between the central point and the region 10 hours later.

4.3 Model Validation

The proposed spatial model has been locally validated for the North Atlantic, see Baxevani

et al. (2006). What remains is to validate the temporal component and the global spatial

model. To do so, we reconstruct the Hs surface in the region [−48,−12]× [42, 62] on the

17th of December 1996 at 12:00, using measurements from satellite passages that took

place between 10:00 and 20:00 that day, under different scenarios and then compare it

to satellite measurements and the C-ERA-40 field. The positions and times of the 893

recorded satellite measurements can be found in Fig. 4 (Top-left). The longest passage

took place at 11:24 with orientation from SW to NE and consisted of 43 not equally

spaced measurements. We start by reviewing some facts about Gaussian fields.

4.3.1 Surface reconstruction

In this section we discuss the reconstruction of the unknown Hs surface. We may think

of it as a random field with a certain distribution conditionally on the Hs measurements

along the satellite tracks.

Let us denote by ǫ(p, t) the unknown zero-mean surface consisting of the logarithmic

values of Hs with covariance function Cov(ǫ(p, t), ǫ(q, s)) given in (17). Assume we want

to reconstruct the surface at position p0 and time t0. Let us also denote by (pi, ti), i =

1, . . . , K, the coordinates of the satellite measurements that fall inside η̃. (Obviously K

13
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Figure 3: (Left) - Fit of the covariance function in (4) to data from buoy 46003. (Right)

- The average velocity field v.

depends on both p0 and t0.)

The satellite measurements form a column vector ǫ = [ǫi]
K
i=1, with ǫi = log(hs(pi, ti))−

m(pi, ti), zero mean and covariance matrix Σ = [σ2
ij ]

K
i,j=1, with entries σ2

ij = Cov(ǫ(pi, ti), ǫ(pj, tj)),

i, j = 1, . . . , K. Furthermore, let us denote by C the row vector of cross-covariances with

entries ci = Cov(ǫ(p0, t0), ǫ(pi, ti)), i = 1, . . . , K. The field ǫ(p0, t0) conditionally on the

vector ǫ is a Gaussian variable with mean ǫ̂ and variance σ̂2 given by

ǫ̂(p0, t0) = CΣ−1
ǫ, σ̂2(p0, t0) = σ2(p0, t0) + σ2

e −CΣ−1CT , (18)

where CT denotes the transpose of the matrix C.

Hence the optimal prediction of the significant wave height value Ĥs(p0, t0), and an

approximately 99% prediction interval Î are given by

Ĥs(p0, t0) = em(p0,t0)+ǫ̂, Î =
[

Ĥse
−1.96σ̂, Ĥse

1.96σ̂
]

, (19)

where m(p0, t0) is the value of the deterministic mean value field at (p0, t0). The surface

at (p0, t0) should be approximated using only the mean value m(p0, t0) if there are no

satellite observations in η̃. Notice that the probability coverage 0.99 is exact under the

assumption the model is correct, and the width of the prediction interval is considerably

wider if the uncertainty of the parameters is also taken into account.
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4.3.2 Validation of the model using satellite measurements of Hs.

As our initial analysis, we decided to use 19 of the satellite measurements at 11:24, in

order to predict the significant wave height values at 24 future locations and inside a time

span of 8 hours.

The predictor ǫ̂(p0, t0) and its variance σ̂2(p0, t0) are given by (18). An estimate of the

field ǫ at each point (p0, t0) and a 99% confidence interval of the significant wave height

are given by (19).

In Fig. 4 (Bottom-left), ”*” indicates the 19 satellite measurements that were used in

the analysis. The predicted 24 values are marked by ”.” and should be compared to the

satellite measurements at the same locations indicated by the irregular line. The 99%

prediction band is indicated by the thicker lines.

Notice that the width of the prediction band, about 5 meters, can be contributed

to a few factors. Namely to the uncertainty of the model parameters, the time elapsed

between the two groups of measurements and the distance between the locations of the

measurements and the predictions.

4.4 Model validation using the C-ERA-40 Hs field

In this section we compare the Hs surface given by C-ERA-40 data field at 12:00 on

the 17th of December 1996 with the surface predicted using first 19 and then all 43

satellite measurements of section 4.3.2. We consider three types of analysis: Validation of

the C-ERA-40 field by means of satellite measurements that are close in time and space;

consistency checks of the proposed model by means of predictions when the measurements

and the predicted values are further apart and finally prediction in time and space in large

areas.

4.4.1 Close in time prediction - comparison with C-ERA-40 data

In this section we compare the Hs values predicted in section 4.3.2, to the C-ERA-40 Hs

values.

The 19 satellite measurements used in the analysis of section 4.3.2, were chosen so that

the locations and the times of the measurements are close enough to the locations and
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times of the available C-ERA-40 data. Indeed, the satellite passage took place at 11:24

while the C-ERA-40 data were given at 12:00. Additionally, the distance between the

locations of the satellite measurements and the correspnding C-ERA-40 grid points are

less that 80 km. Since both the C-ERA-40 and the satellite provide with measurements

of the same Hs field and the positions and times of the measurements are quite close, one

should expect that the two sources give comparable results.

In Fig. 5, the satellite measurements are marked by ’*’, the C-ERA-40 values by ’+’,

the predicted values by ”.” and the irregular lines indicate the 99% confidence intervals.

The C-ERA-40 Hs values with the exception of one location appear to be systematically

higher than the satellite measurements. The question that arises is if the differences

between these two data sets are due to the random character of the Hs field or the two

data sets are significantly different. We turn to this problem next.

We start by predicting the Hs values at the locations of the C-ERA-40 data using

only the first 19 measurements and the model presented in section (3). The comparison

of the two data sets can be found in Fig. 5 (Left). With the exception of two locations

the C-ERA-40 data fall inside the 99% confidence interval.

In Fig. 5 (Right), the Hs values were predicted using all 43 satellite measurements.

The last 24 measurements were recorded about 9 hours after the first group of 19 measure-

ments. So, we are also interested in checking if we can satisfactory predict the Hs surface

using satellite measurements that are close in space but far apart in time. Remember

that buoy data indicate the correlation between measurements at the same location and

10 hours apart is about 0.8. The two sets of predictions are very close to each other and

we claim that at least these particular C-ERA-40 values agree well with the measured Hs

values and the differences are due to parameter uncertainty and possible model error.

Note that the prediction intervals are quite wide (about one meter), even for pre-

dictions that are made in nearby locations and only 40 minutes ahead. Moreover, the

assumption the field is log-normal, results into wider prediction intervals for high pre-

dicted values.
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4.4.2 Prediction of Hs in large regions

We turn now to the prediction of the Hs surface at all 350 grid points of the ERA-40

field at 12:00 on the 17th of December 1996. The predictors Ĥs(p, t) are based on the

43 satellite measurements analyzed in section 4.3.2. The positions pi, i = 1, . . . , 43, of

the measurements are marked as dots on Fig. 6. The times ti can be found in Fig. 4

(Top-left). Among the 350 grid points only 19 of them have satellite measurements that

are at distance less than 80 kilometers and less than 30 minutes before 12:00. Here we

would like to remind that even at that case the prediction interval was between one and

two meters wide. The values of Hs at the remaining 331 locations are much harder to

predict.

The prediction is based on the spatio-temporal model with space parameters presented

in Fig. 1 and time correlation length Cl = 35 hours. To predict the value Ĥs(p, t) at

position p and time t, we use satellite measurements that fall inside a discus of radius

about 9 degrees, or equivalently 1000 km and times |ti − t| < 10 hours.

As it has been already observed, the C-ERA-40 Hs values at the selected 19 grid

points are generally higher than the Hs satellite measurements and in three locations the

difference is slightly above the upper 99% prediction interval. In Fig. 6, the contour lines

of the difference between the C-ERA-40 data and the Ĥs(p, t) are given. One can see the

biggest difference, of the order of 4 meters, appears in a region close to Greenland where

modelling is more difficult. (There is a region where no ERA-40 data are given and hence

prediction is not possible.) In general, the agreement between the C-ERA-40 data and

the predictions is very good.

Finally, in Fig. 7 (Left), the predicted surface can be seen together with the satelletite

measuremets that were used in the computation. In Fig. 7 (Right) we present the upper

bound of the prediction interval, i.e. the surface in Fig. 7 (Left) is multiplied by a factor

e1.96·σ. Also notice, that the prediction intervals are computed for individual locations

and hence the probability the true surface (assuming the model is correct) exceeds the

prediction intervals at some point in the region is much higher than 0.01, which is the

probability that this happens at one fixed location.

Finally, we conclude that the agreement between the C-ERA-40 field and the predicted

field based on the model and the 43 satellite measurements is acceptable. The uncertainty
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of the predictions is illustrated in Fig. 7 (Right), where the factor needed to multiply with

the predicted value in order to get the upper prediction interval is given. In the regions

were no observations are available the factor is as high as 2.2.
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6 Appendix

In this study we use data of three different kinds: altimeter, buoy and reanalysis data.

6.1 Altimeter

The TOPEX/Poseidon along track altimeter measurements of significant wave height,

Hs, were taken at discrete locations along one-dimensional tracks over the oceans, at

different times from October 1992 until January 1999. The data were obtained from

the Southampton Oceanography Centre (SOC) (GAPS interface1), The TOPEX wave

height observations for 1997 to 1999, (cycles 170-253) have drifted; the drift was corrected

according to Challenor and Cotton (1999) and Caires and Sterl (2003) using a functional

relationship model, Hbuoy
s = 1.05H topex

s − 0.07.

6.2 Buoy

For years, buoy observations were considered as the most reliable existing wave observa-

tions. Unfortunatelly they are limited to locations usually along the coast and mainly

in the Northern hemisphere and are available only at a small number of locations before

1978. From 1978 and onwards, buoy observations from the American National Data Buoy

Center (NDBC-NOAA), from locations off the coast of North America became available.

In this work, we have used the NDBC-NOAA deep water buoy data from 20 locations,

see Fig. 6.2.

1http://www.soc.soton.ac.uk/ALTIMETER/
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Buoy n H̄s m0 m1 m2 σ2 p Cl Tl

32302 61084 2.2 0.737 -0.056 -0.123 0.0597 0.9574 116.3 26.7

41001 125580 2.0 0.575 0.144 0.309 0.2042 0.9990 42.0 19.6

41002 92769 1.8 0.489 0.104 0.277 0.1834 0.9988 41.3 21.3

41006 84734 1.7 0.396 0.068 0.323 0.1700 0.9963 51.0 25.0

41010 88333 1.6 0.321 0.051 0.306 0.1811 0.9955 60.2 26.7

42001 135927 1.1 -0.104 0.141 0.413 0.3413 0.9989 48.5 25.0

42002 160398 1.2 0.021 0.152 0.332 0.2995 0.9996 43.1 22.4

42003 145379 1.1 -0.118 0.139 0.410 0.3159 0.9998 36.2 25.0

44004 139634 2.0 0.528 0.137 0.370 0.2485 1.0023 33.8 16.2

46001 166388 2.7 0.879 0.018 0.418 0.1792 0.9994 32.6 17.7

46002 144449 2.7 0.889 0.107 0.372 0.1436 0.9932 43.9 25.0

46003 136120 3.0 0.999 0.056 0.418 0.1614 0.9974 30.9 18.3

46004 63617 2.9 0.960 0.134 0.454 0.1693 0.9982 31.8 23.6

46005 151355 2.7 0.891 0.107 0.441 0.1541 0.9952 32.7 22.4

46006 138596 2.8 0.889 0.162 0.475 0.1514 0.9931 44.6 25.0

46059 42620 2.8 0.916 0.101 0.329 0.1312 0.9896 57.5 23.6

51001 120231 2.5 0.847 0.097 0.247 0.0752 0.9818 45.0 21.3

51002 107611 2.4 0.842 0.070 0.137 0.0581 0.9742 54.3 31.6

51003 109531 2.2 0.778 0.091 0.186 0.0557 0.9724 35.0 23.6

51004 108087 2.4 0.854 0.060 0.139 0.0487 0.9673 56.2 28.7

Table 1: Time correlation for 20 NOAA deep water

buoys. m(p0, t) = m0 + m1 cos(ωt) + m2 sin(ωt), is the

seasonally varying mean, with phase ω = 2π
365.2

and time

measure in days starting from the 1st of January.

6.3 Reanalysis

Recently, a wave reanalysis data set on a global 1.5 × 1.5 latitude/longitude grid cov-

ering the period of 1957 to 2001 has been made available - the ERA-40 dataset. This

20



reanalysis was carried out by the European Centre for Medium-Range Weather Forecasts

(ECMWF), using its Integrated Forecasting System, a coupled atmosphere-wave model

with variational data assimilation. A distinguishing feature of ECMWF’s model is its

coupling, through the wave height dependent Charnock parameter (see Janssen et al.,

2002), to a third generation wave model, the well-known WAM (Komen et al., 1994),

which makes wave data a natural output of ERA-40. A large subset of the complete

ERA-40 data set, including Hs, can be freely downloaded and used for scientific purposes

from the website http://data.ecmwf.int/data/.

The results of ERA-40 have been extensively validated against observations (Caires

and Sterl, 2005) and other reanalysis data sets (Caires et al., 2004). These studies con-

cluded that the ERA-40 data set, although severely underestimating high sea states,

compares better with the observations in terms of root mean square error and scatter

index than other available datasets. Besides the underestimation of high percentiles, the

ERA-40 data set has another limitation that seriously discourages its use in direct studies

of climate variability and trends: the existence of inhomogeneities in time due to the

assimilation of different altimeter Hs data sets in the ERA-40 computations. These two

limitations in the ERA-40 Hs data set motivated their correction by Caires and Sterl

(2005). These authors corrected the data using a nonparametric regression method, the

main idea of which was to estimate the expected error between ERA-40 Hs and ”true”Hs

conditional on past (up to 12 hours) and present values of the former, using data from

locations at which both ERA-40 and Topex measurements were simultaneously available,

and then to use this conditional expected value to correct the whole ERA-40 data. The

result was a new 45-year global 6-hourly dataset - the C-ERA-40 dataset. Comparisons of

the C-ERA-40 data with measurements from in-situ buoy and global altimeter data show

clear improvements in both bias, scatter and percentiles in the whole range of values and

the removal of the inhomogeneities present in the ERA-40 dataset. This data set can also

be freely obtained for scientific purposes from the authors.

21



−50 −40 −30 −20 −10
42

44

46

48

50

52

54

56

58

60

62

11:24

13:23

19:20

17:21

−45 −40 −35 −30 −25 −20 −15 −10
40

45

50

55

60

65

0 200 400 600 800

2

4

6

8

10

H
s[m

]

Figure 4: (Top-left) - Locations of the satellite measurements between 10:00 and 20:00 on

17th December 1996, the thick black dots mark the 19 locations used to predict the future

values of Hs. Times of the passages are given in the boxes. (Top-right) - The locations of

the ERA-40 Hs values (rings) and satellite measurements (dots). (Bottom-left) - Satellite

measurements are the irregular line, stars for the 19 values used to predict the future

observations of Hs, the 24 predicted values are black dots and the wide lines are the 99%

prediction bands. The velocity v is given in Fig. 3 (Right).
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Figure 5: (Left) - Values of ERA-40 Hs at 12:00 (’+’); satellite measurements of Hs about

40 minutes earlier (stars); predictions Ĥs at 12:00 at the locations of C-ERA-40 using the

19 satellite observations (dots), black solid lines the 99% prediction bands. (Right) - Same

as in the (Left) plot with Ĥs computed using 43 satellite measurements.
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Figure 6: Difference between the C-ERA-40 data and predictions of Hs in the region at

12:00 based on 43 satellite measurements at locations marked by dots. The model has

the time correlation length Cl = 35 hours and the velocity field in Fig. 2 (Right).
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Figure 7: (Left) - The predicted surface with satellite measurements marked as stars.

(Right) - The upper prediction interval Ĥs exp(1.96 · σ).
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Figure 8: Buoy codes and locations.
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