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BILINEAR HANKEL FORMS OF HIGHER WEIGHTS
ON HARDY SPACES

MARCUS SUNDHALL

ABSTRACT. In this paper we study bilinear Hankel forms of higher
weights on Hardy spaces in several dimensions (see [Sul] and [Su2]
for Hankel forms of higher weights on weighted Bergman spaces).
For the case of weight zero we get a full characterization of S,
class Hankel forms, 1 < p < o0, in terms of the membership for
the symbols to be in certain Besov spaces. Also, in this case, if a
Hankel form is bounded, then the symbol satisfies a certain Car-
leson measure criterion. For the case of higher weights, we find
sufficient criteria for Hankel forms to be in class S,, 1 <p < 2.

1. INTRODUCTION

Schatten-von Neumann class Hankel forms of higher weights on
Bergman spaces are characterized in [Sul| and [Su2]. In the same
way, as for the case of Bergman spaces, Hankel forms of higher weights
on a Hardy space are explicit characterizations of irreducible compo-
nents in the tensor product of Hardy spaces under the Mébius group,
see [PZ].

In this paper we use the same notations as in [Sul] and [Su2]. Now,
let OB be the boundary of the unit ball B in C¢. We denote by H3
the bilinear Hankel forms of weight s on the Hardy space H?(OB) if

() Hilh,9) =
[ (8" 50, F@) (1= ) dm(a).

where 7 is the transvectant given by

V(s GO f(2) ©0°kg(z
Tiroe =3 (7)o HgTE s
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and (a)y = a(a+1)---(a + k — 1) is the Pochammer symbol. The
tensor-valued function F' is called the symbol corresponding to the
Hankel form H3.. In fact, this is the limiting case v = d of (7) in [Sul].

In Section 2 we establish the Schatten-von Neumann class criteria
for bilinear Hankel forms of weight zero. In this case we get a full
characterization of S, class Hankel forms, 1 < p < 0o, in terms of the
membership for the symbols in certain Besov spaces. Also a sufficient
criterion for boundedness, in terms of Carleson measures, is presented
there. The main theorems in Section 2 are Theorem 2.5 and Theo-
rem 2.16. In section 3 we study the case of higher weight. Here a
new difficulty appears. The transvectant does not behave in the same
way as for the case of Bergman spaces, see Example 3.5. Therefore
we cannot generalize the techniques used in [Sul] to find boundedness
and compactness criteria, but we establish sufficient criteria for Hankel
forms of nonzero weight to be of class S,, 1 < p < 2, see Theorem 3.9.

Notation. If || - ||; and || - |2 are two equivalent norms on a vector
space X, then we write ||z||; = ||z||2, x € X. Also, for two functions
f and g we write f < g if there is a constant C' > 0, independent of
the variables in questions, such that Cf(z) < g(z).

Acknowledgements. I thank Edgar Tchoundja for many fruitful
discussions on the relationship between symbols and on Carleson mea-
sures.

2. HANKEL FORMS OF WEIGHT ZERO

To find the Schatten-von Neumann class Hankel forms of weight
zero on Hardy spaces we shall rewrite HY in terms of the small Hankel
operators studied in [Z]. The problem then boils down to finding the
relationship between the corresponding symbols.

The Hankel form H in [Z] is given by

2 Ha(f.9) = | Glalf(w)glw) dofw),

oB
where do is the normalized area measure on 0B. By the reproducing
property on the Hardy space H?(0B) we have the following relation-
ship between F' and G.
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Lemma 2.1. Let HY be given by (1) and Hg by (2). Then H% = Hg,
iof and only if

(3) (R + d)aG(w) = ca(d)aF (w),
where cq 1s a normalization constant for dm on B.

Proof. Let f,g € H*(0B). Using the reproducing property of fg and
Fubini-Tonelli’s theorem,

/B F@g(DFG(1 — |2 dm(z)

— [ swigtw) [FOUZ Bt aot).

oB
Hence HY% = Hg if and only if
F(z)(1 = |2)*"

4 G(w) = / dm(z) .
“ W= A=
Apply the radial differentiation R,

(RG)(w)

N Ry FCCLC U e

ow; (1 —(w, z))%+!

_ _d/BF(Z)(l_ 2[4 dm(z)+d/ F(z)(1 - |2)*! dm(z)

(1= (w,2)) 5 (1= (w,z))™

so that

()Gl = | T

(L (w, et 2

Repeating this procedure,
_ F(z)(1 = [z
(et )aG) = @ |

Hence, by the reproducing property on the Bergman space L2(dm),
equation (4) can be reformulated into

(5) (R + d)aG(w) = ca(d)aF (w)

where c,4 is a normalization constant for dm on B. On the other hand,
if F(w) = (R + d)4G(w)/cq(d)q then equation (4) holds by symmetry

dm(z) .
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of (R+a), a > 0, w.r.t. the inner product

lémuﬂi5a—v%*wm@»
]

Remark 2.2. For convenience we denote D = R + 1. Then D is
symmetric w.r.t. the inner product

(e b = / by ()2 (1 = |2) dm(2)
B
where o/ > —1 and hy, hy : B — C are holomorphic.

2.1. Schatten-von Neumann class S, Hankel forms. In this sub-
section we present sufficient and necessary conditions for Hankel forms
of weight zero to be in Schatten-von Neumann class S,, 1 < p < oo,
see Theorem 2.5, and the following lemmas are useful in the proof this
theorem.

Lemma 2.3. Let ay,---ag,by,--- ,bp >0, > —1and 1 < p < oo.
Then

|(R+ak) - (R+a1)flla = [[(R+bg) - (R4 b1) f|la
for all holomorphic f : B — C, where || f|la = || fllr((1=|22)2dm(2))-

Proof. 'This result follows using the same arguments as in the proof of
Theorem 5.3 in [BBJ. O

Lemma 2.4. If a > —1, then
[(R+a+d+1))O0 =1 P, = 1/l

for all holomorphic f : B — C.

Proof. If 8 > 0, then

1 1 1
3 (@0 (7)) O -
and hence the result follows by Theorem 2.19 in [Zhul]. O

Theorem 2.5. The Hankel form HY is of Schatten-von Neumann
class S,, for 1 < p < oo, if and only

1/p
|IF()(1—]|-| ||Lp &) = (/ ‘F — 2% | dL(Z)> < 00.
Also, HY is of trace class Sy if and only if DF € L'(dm).
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Remark 2.6. The measure di(z) = (1 — [2]?)~(¢*t) dm(z) is a Mobius
invariant measure on B.

To prove the theorem we use Theorem 1 in [Z] (see also Theorem C
in [FeldR])).

Theorem 2.7. Let « > —1 and 1 < p < oco. Then the Hankel form
Hg, defined by (2), is of Schatten-von Neumann class S, if and only

if
S @GO A |- Y| < oo

|a|=d+1

Proof of Theorem 2.5. We shall make use of the fact that HS. = Hg if
and only if F and @ satisfies equation (3) which follows by Lemma 2.1.
Then DF(z) = cqD(R+d)sG(%). In view of Theorem 2.7, it is enough
to prove that, for 1 < p < oo,

©) (PO~ Py = [OFO) €= [P
and that, for 1 < p < oo,
@ [(D*EO) (1= ™|
~ Y @GO @ P oy + D 18°G) (0]

|a|=d+1 |a|<d

since then it will follow by Lemma 2.3 that
1ECA = 1) 2oy
~ [|DF) (1 -1 P*
~ [[(PTGE) =1 P oy
D@ GE) @ =1 B)H  fay + D 1(0°G) (0)] -

la|=d+1 al<d

12

Actually, (6) is a direct consequence of Lemma 2.3 and Lemma 2.4,
and (7) is a consequence of Theorem 5.3 in [BB]. O

2.2. Bounded Hankel forms. In this subsection we present a nec-
essary condition for Hankel forms of weight zero to be bounded, see
Theorem 2.16. First we need some preliminaries, which basically can
be found in [Zhul] but is presented here just to make it easier for the
reader. We remark also that equivalence in Lemma 2.12 holds in the
one dimensional case, due to Corollary 15 in [Zhu2].
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Definition 2.8 (See [Zhul]). Let ( € 0B and r > 0 and let

Qr () ={z€B:d(z() <r}

where d(z,() = |1 — (z,¢)|'/? is the non-isotropic metric on dB. A
positive Borel measure p in B is called a Carleson measure if there
exists a constant C' > 0 such that

#((@r(Q))) < Cr*
for all ( € OB and r > 0.

Lemma 2.9 (Theorem 5.4 in [Zhul]). A positive Borel measure p in
B is Carleson if and only if

sup/P(z,w) du(w) < oo,
z€B JB

where

1—[=P)*
P(Z,’LU)ZW, Z,’U)EIB.

Lemma 2.10 (Theorem 5.9 in [Zhul]). A positive Borel measure p
in B is Carleson if and only if there exists a constant C > 0 such that

4 P du(z) < ClLF
for all f € H?*(OB).

Lemma 2.11 (Theorem 50 in [ZhZh]). Let u be a positive Borel mea-
sure in B. Then the following conditions are equivalent

(a) There is a constant C' > 0 such that

/E (RE) () Pdp(z) < Ol [ogon

for all f € H%(OB).
(b) There is a constant C > 0 such that
w(Q:(¢)) < Cr2t?)
forallr >0 and ¢ € OB.
Lemma 2.12. Let o > —1. For any holomorphic function g : B — C,

if dui(2) = g(2)2(1 — |2]?)*dm(z) is a Carleson measure then so is
dpz(z) = |Rg(2)P(1 — |2[*)*+* dm(2).
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Proof. If du, is a Carleson measure then there is a constant C' > 0
such that

/ (1= |2)? duy(z) < 47‘4/ dpn (2) < ACr2(d+2)
QT(C) T'(C)

for all 7 > 0 and ¢ € B, so that (1— |z|?)?du1(z) satisfies the condition
(b) in Lemma 2.11. Hence there is a constant C; > 0 such that

® [ IR0 12 () < Colflaan

for all f € H?(0B). By Theorem 2.16 in [Zhul] (used on fg, assuming,
without loss of generality, that f(0) = 0) and by inequality (8),

(f |f(z)|2du2(z)>l/2
(/B (R(f9))(2) (1 — |2]?)+? dm(z)>1/2 .
(/| Rf)(2)[2(1 = [2[2)? dm(z)>”2

Uﬁ V2 dpu (= )+ammwsammm

for all f € H?(0B) so that dus is Carleson by Lemma, 2.10. O

Definition 2.13 (See [Zhul]). Let BMOA denote the space of func-
tions f € H?(OB) such that

WW“'(”%?Qm>LUW&‘

where, for any ( € 0B and r > 0,
Q) ={€€dB:[1- (O <r},

do(€) < oo,

and
1

fatcn = ey o, 1O O

Lemma 2.14 (Theorem 5.3 in [Zhul]). A function f € H*(OB) be-
longs to BMOA if and only if

sup [ [f(x(C)) — f(2)|*do(C) < oo,

z€B J OB
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where ¢, is the linear fractional map given by (8) in [Sul].

Lemma 2.15. If f is in BMOA, then |f(2)|>dm(z) is a Carleson
measure on B.

Proof. If f is in BMOA, then there is a constant C' > 0 such that

sup / P(zw)| f () — £(0)[2 dim(w)

z€B

< C-sup / P QIQ) ~ SO do(0

z€B

= C-sup 6B|f(90z(é))—f(2“)\2d0(€) < oo,

2€B

by Lemma 2.14. Then | f(w)— f(0)|? dm(w) is Carleson by Lemma 2.9,
so that | f(w)|? dm(w) is Carleson. O

Theorem 2.16. If the Hankel form HY. is bounded then
[F(2) (1 = [2%)*7F dm(z)
1s a Carleson measure on B.

Proof. The classical Hankel form (small Hankel operator) Hg on the
Hardy space H?(OB), as in [Z], is bounded if and only if G € BMOA
and by Theorem 5.14 in [Zhul],

G € BMOA <= |(RG)(2)|*(1 — |2|*) dm(z) is Carleson.

Now, HY% = Hg if and only if the equation (3) holds. Hence, if H}, is
bounded, then |(RG)(2)|%(1 — |z|?) dm(z) is a Carleson measure and,
since G is in BMOA, then |[((R+d)G)(2)|*(1—|2|?) dm(z) is a Carleson
measure by Lemma 2.15. Using Lemma 2.12,

(R(R+d)G)(2)]*(1 — |2[*)**™' is Carleson,

and hence |((R+d+1)(R+d)G)(2)|]*(1 — |2|*)*?~ dm(z) is Carleson.
Repeating this procedure we get that

(R4 d)qG)(2)2(1 — |2|*)?**"t dm(z) is Carleson.

By equation (3), the proof is complete. O
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3. THE CASE s =1,2,3,---

In this section we study the class S, properties, 1 < p < 2, for
the case s > 1. Denote by Hﬁ,s the space of holomorphic functions
F :B — ©°V' such that || F||4s, < 0o where

m(z 1/p
nﬂmw=(AQWHQJMVLF@V”G—vmwa£ﬁ%%g) |

This space is a well-defined Banach space if 1 < p < 0o. Also, denote
by Mg, the space of holomorphic functions such that

=sup ||(1 - |2[*)* ®* B(z,2)Y?F(z (2)]| <
2€B

3.1. Results about H?  for v > d. In [Sul] and in [Su2] there are
several results about er for s =0,1,2,--- and v > d. Now, if we
consider s =1,2,---, i.e., s # 0, then we can use the same arguments
as in [Sul] and [Su2] to generahze results about H?  for v > d to
v > d, where 1 < p < oo. Hence, the results below will be stated
without proofs. The reader is referred to [Sul] and [Su2] for more
details.

Lemma 3.1. Let v > d and let s be a positive integer. Then the

reproducing kernel of 7'[,,5 s, up to a nonzero constant c, given by

Ko, 2) = (1= {1, 2)) & Bl(w, )"
Namely, for any v € ®°V' and any F € H?
(F)0) = elF, Kuule2)ohues

= ¢ [ (8B @ w) (), Ko, o) (1 fol?) difw).

Let H,, ; be the space of holomorphic functions F': B — ®*V"’ such
that the corresponding bilinear Hankel form on H?(0B) ® H 2(8]}1%)
defined by (1), is of Hilbert-Schmidt class S,. The norm on H,,  is
given by [|F|l, s = [|HElls,-

V,87

Theorem 3.2. Let v > d and let s be a nonnegative integer. Then
there is a constant C, s such that

o
||F||u,s - CVaS
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Theorem 3.3. Let v > d and let s be a positive integer. If 1 < p < 2,
then

HE = My Ho )20 1/p)) -

Theorem 3.4. Let v > d and let s be a positive integer. Then F €
Hy, if and only if there is a function a € I'(B, ©*V') with support in
{#}21 CB, a; = a(z), with 772 [laj]| < oo such that

(9) Z (1= |z ) K g,(w, zj) ®° B'(z, Zj)l/Zaj :
j=1

3.2. The transvectant. If we were able to prove that 75(f, g) € ’H}i,s,
for positive s, that is generalize the analogous result for the case of
Bergman spaces (see Lemma 2.7 in [Su2]), then boundedness proper-
ties and compactness properties would follow in the same way as for
the case of Bergman spaces, see [Sul]. But, unfortunately, we can find

f+g9 € H?(0B) such that || T;(f, ¢)la,s1 = oo-

Example 3.5. This example is based on the proof of Theorem II
in [Ru]. First consider the case when s =1 and d = 1. Let

=1
:ZEZQIC and g¢(z)=1.
k=1

Then f,g € H?(OD) and since the series f(z) is lacunary then

it = / ()| dm(z) =

This is a consequence of a result about lacunary series by Zygmund,
see [Ru]. Namely, if ngy1/np > A for some A > 1, and if h(z) =
D pe cr2™ satisfies

I7:(f, 9)

1
/ W (re?)| dr < oo
0

for some 6, then Y, |cx| < oo.
In the general case, d > 1 and s = 1,2,---, we just change f into

RPN
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and still let g(z) = 1. Then

T olaes = [ a2 = o) 2L ) dmie
s—1 af
> [a= k|52 ) dmie).

By Theorem 2.17 in [Zhul] there is a constant C' > 0 such that
1 |0°F of
1— 2\s—1 >
Ja-rr R e ame > [ |76

and the right hand side of the inequality above is infinite, as we can
see in the initial case (s =1, d = 1).

dm(z)

But, what we can prove is the following Lemma.

Lemma 3.6. Let s be a nonnegative integer and let € > 0. Then there
1s a constant C; > 0 such that

/B |®°B"(z,2) *To(f,9)(2)|| (1 = |2*)* "dm(z) < Ce - | fll - gl

Proof. Tt follows by exactly the same arguments as in the proof of
Theorem 4.1 in [Sul] that

k ot k k dm(z) ) ,
(10) (/ (8B (5,200 1(:), 041 () |\>> < Cusellfll

This will be enough since 7;(f,g) is a linear combination of terms
O f(2) ® 9° *g(z) and by Holder’s inequality

H@SBt(', )I/Qakf() ® 857kg(-)||L1((1—\z\2)—1dm) < Cd,s : ”.f”H2 ) ||g||H2
if £ # 0 and for £ = 0 it follows that

[ llet B2 229" 2) | (1= 2" )

Cas - 1 f a2 - (/B 19(2)|2(1 = |2[*)*7} dm(z)) 12

< G- Nfllee - Mgl -

IN

N
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3.3. Class S, Hankel forms for 1 <p < 2.

Theorem 3.7. Let s be a positive integer. If F € 'Hé,s then the
corresponding Hankel form Hj, is of class S;.

Proof. Let F € H,. Then, by Theorem 3.4 we can write

= ZFj(w)

where Fj(w) = (1 — |2;})?Ky(w, z;) ®° B'(z;,2;)*?a;. As a conse-
quence of Lemma 7.1 in [Sul],

(1) | = sup || &° B'(w,w)'?Fy(w)|| < 2°(1 = |2[*) |lay]| -
By Lemma 3.6 and (11) it then follows that
[ & B w7, 9w, Exw)] (0 P dim(w)

IE I [ 6B (. w) (5, g) )| 1 = fol?)** dimu)

IN

< Ca- (1= llagll - [1£llm2 - gl < o0
Hence, by the reproducing property,
Hy,(f,9) = (To(f,9)(2), (1 = |2[*)* ©° B'(z,2)"/%q;) .

The bilinear form (f, g) = 7T5(f, g)(#;) is a sum of finitely many rank
one forms where the number of summands M, only depends on s. We
see this by writing f(z;) = ¢(f, K, ) s>, where K (w) = (1—(w, 2;)) %,
so that

0 F f(z)) ® 0Fg(z;) = (f,0°F K, ) > ® (g, F K., )
Hence

1HEllsi < vV Ms - [[Hg s,

for all j =1,2,--- so by Theorem 3.2 it follows that
[HElls, < Z 1HE llse < VM, =Y 1 HE lls, = C - Y |1 Fillagz
j=1 j=1

and

1B, = ¢ llagl?
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by the reproducing property. Thus

o0
|Hrlls, < C"- ) llagl| < oo

j=1
This completes the proof. 0
Corollary 3.8. The map I : 7-[(1175 — Sy, ['(F) = H}, is bounded.

Proof. This follows immediately from the last inequality in the proof
of the theorem above and from the fact that ||F| 41 is equivalent to

(12)  [|Flnc = inf { S llajll : {a;}22, defines F by (9)} .
7j=1

We need to prove that ||F'||4s,1 is equivalent to ||F||ins. If we let B be
the Banach space of holomorphic F' : B — ®*V’ such that || F|[ins < 00,
then the bijection I : #jy, — B, F = F, is bounded. Hence, by the

Open Mapping Theorem [ : B — 7-[(1175 is also bounded, and thus we
get equivalent norms. O

Theorem 3.9. Let s be a positive integer and let 1 < p < 2. Then
I':Hy, — S, [(F) = Hy, is bounded.

Proof. By Corollary 3.8 and by Theorem 3.2 it follows that I" : ’Hfi,s —
S; is bounded for 7 = 1,2 respectively. Then the theorem follows by
interpolation and Theorem 3.3. O
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