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LP-BOUNDEDNESS FOR ORTHOGONAL
PROJECTIONS ONTO SPACES OF NEARLY
HOLOMORPHIC FUNCTIONS AND OF
VECTOR-VALUED HOLOMORPHIC FUNCTIONS

MARCUS SUNDHALL

ABSTRACT. In this paper we establish LP-boundedness criteria
for orthogonal projections from L?(du,) onto the discrete parts
in the irreducible decomposition of L?(dus) under the action of
the Mobius group, where duq(z) = (1 — |22)* dm(z), (a > —1),
and dm is the Lebesgue measure on the unit ball B in C?. These
spaces can be realized as kernels of the power D!*! of the invari-
ant Cauchy-Riemann operator D = B(z,2)0 (where B(z,z)™! is
the Bergman metric) and are therefore spaces of nearly holomor-
phic functions in the sense of Shimura. The operators D! are
intertwining operators from these spaces of nearly holomorphic
functions into certain vector-valued Bergman-type spaces of holo-
morphic functions in B. The orthogonal projections onto these
spaces are given by matrix-valued Bergman-type kernels, and we
study their LP-boundedness properties for bounded symmetric do-
mains of type I

1. INTRODUCTION

Let B be the unit ball in C? with the Lebesgue measure dm. Con-
sider the weighted L?-space L?(du,), where duq(z) = (1—|2]?)*dm(z),
(a > —1). The Mdbius group of biholomorphic mappings of B acts on
L?(dj,) as unitary (projective) representations. A weighted Plancherel
formula was established by Peetre, Peng and Zhang in [PPZ] and
Zhang [Z1], giving an explicit decomposition of the representation.
There are continuous and disctrete parts in the decomposition. The
discrete parts can be viewed as images of L?(du,) under certain or-
thogonal projections. These spaces can be realized (see [Z2]) as the
kernels of powers D™'! of the invariant Cauchy-Riemann operator
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D = B(z,2)0, where B(z,z)~! is the Bergman metric) and are there-
fore spaces of nearly holomorphic functions in the sense of Shimura
(see [Sh1] and [Sh2]). Actually, for a certain k the operators D!,
[ =0,1,...,k, are intertwining operators from the spaces of nearly
holomorphic functions onto certain Bergman spaces of vector-valued
holomorphic functions on B (see [PZ] and [EP]). We have the following
diagram

L2(dpe) N C=(B) —2 L? (B,0'CY, dp,) N C> (B, ©'CY)

lPl lpu,l
Adps) -2 L2 (B, ©'CY, dps,)

where P, is the orthogonal projection from L?(du,) onto the discrete
part A?(du,) of nearly holomorphic functions, P, ; (v = a+d+1) is
the orthogonal projection from L%(B, ®'C?, du,) onto its holomorphic
subspace and the L?-norm (invariant under the action of the M&bius
group) is given by

1/2

o = [ (8B )7 1), 52) )

where ®!B(z,2)7! is the action on ®'C? induced by the action of
B(z,2)7! on C%. This can be generalized into the setting of bounded
symmetric domains [Z2].

The main objective of this paper is to establish the LP-boundedness
criteria for the orthogonal projections P, onto the spaces of nearly holo-
morphic functions (Section 2) and also for the related Bergman-type
projections P, ; onto the Bergman spaces of vector-valued holomor-
phic functions (Section 3) for the unit ball in C?; the question makes
also sense for general bounded symmetric domains, and we study the

Bergman-type projections P, ; for bounded symmetric domains of type
L

I/

More concretely, if &« > 2/ —1 then, on one hand, Theorem 2.1 states
that P, is LP-bounded if and only if
a+1 a+1
1 — < p< .
1) a+1-1 P77
On the other hand, Theorem 3.6 states that P,; is LP-bounded if
condition (1) is satisfied.
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To find LP-boundedness criteria for P, we use concrete formulas,
which can be found in [Z1]. In the more general setting of bounded
symmetric domains we do not yet have such formulas. However, the
generalizations of P, ; to bounded symmetric domains of type I is stud-
ied in Section 3. In this section, a sufficient conditions for these pro-
jections to be LP-bounded is presented. Actually, this is a weak gener-
alization of the corresponding result for the case of the unit ball in C¢,
weaker since the Forelli-Rudin type estimate is different in the general
case (see [FK2| and [EZ]). The Bergman-type projections mentioned
above are closely related to vector-valued Bergman-type projections
studied in [Sul]. A weak generalization of the LP-boundedness criteria
for these projections is presented in Section 3.

Acknowledgements. I thank Henrik Seppéanen for many illuminat-
ing discussions on bounded symmetric domains.

2. THE PROJECTION OPERATORS ONTO NEARLY HOLOMORPHIC
FUNCTIONS

2.1. The action of the Mobius group. Let B be the unit ball in
C?, and let G = Aut(B) be the group of holomorphic bijections on
B with holomorphic inverse. An element g € G, g(z) = 0, can be
decomposed as ¢ = Uy, where U : C¢ — C? is a unitary map and
¢, is a linear fractional map, taking 0 to z, see [Ru]. The complex
Jacobian J,_ (w) is given in [Sul] by

|22/
Jou ) = (-1

where (-, -) is the scalar product on C¢. Since G acts transitively on
B, see [Ru], we get J,(w) for any g € G in this way. Hence, we can
define an action 7, of G on L?(du,) by

(2) (m(9) ) (w) = fg™ (w)) - Ty-1 (w) /),

where v = a+d+ 1 and where we use the same convention as in [Sul]
concerning the ambiguity of the definition of power. Then 7, is a
unitary projective representation of G.
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2.3. An LP-boundedness criterion. The orthogonal projection op-
erators from L?(du,) onto the discrete parts of the irreducible decom-
position under the action (2) of L?(du,) are given explicitly in [Z1] by
P,forl=0,1,--- ,k=[(ae+1)/2] (o is not an odd integer), where

3)  Pf) = (. K- / F ) Kz, ) dpte ()
and
Ki(z,w) =¢ 1

1- (z, w))a+diL X

: l—a—l)(l) = w Y
> E (1 (1—\z\2)(1—\w|2>)’

=0

where ¢; is a normalization constant and (a), = a(a+1) - -- (a+n—1) is
the Pochammer symbol. In the next theorem we present necessary and
sufficient conditions on 1 < p < oo to make the projection operators
P, bounded on LP(d,).

Theorem 2.1. Ifl € {0,1,2,---  k}, k =[(a+1)/2] (« is not an odd
integer), then the orthogonal projection operator P;, defined in (3), is
bounded on LP(du,) if and only if
a+1 << a+1
at+1-1 P57
when 1 #0 and 1 < p < oo when | = 0.

Proof. The case | = 0 is classical (see for instance Theorem 2.11
in [Zhu]). Assume now [ # 0. We can write the reproducing ker-
nel K; as

Kl(za w) = hl—l(zv ’U)) + Cl,Tl(Z, ’UJ)

where

Ti(z,w) = (1= [z~ 1 = w71 — (w, 2))* |

(1 = (2, w))e ttatl

First we observe that there is a constant C > 0 such that

(1 —[*) "0 = Jw)
|Ki(z,w)| < C - 11— (2, w)|eti+d-2 =C - Ti(z,w).
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Hence,

Pf(2)| < C / Ty(2, w)| f (w)| dpa(w).

We claim that there are real numbers M > 0 and ¢ such that the
inequalities

(4) /BTz(ZW)(l — |2 )" dpa(z) < M(1 — [w]?)P*
and
(5) /IBETI(Z’ w)(1 = [w[*)" dpa(w) < M(1 — [2]*)*

hold for ¢ with 1/q + 1/p = 1. If the claim is true then P, is bounded
on LP(due), by Schur’s test (see [HKZ]). By the same arguments as
in the proof of Theorem 7.2 in [Sul] it follows that the claim is true if

a—+1 < <a+1
at1—1 P71

Now we consider the cases when 1 < p < (a+ 1)/(a+1—1) or
(a+ 1)/l < p < oco. Actually, for duality reasons we need only to
consider the case when (o + 1)/l < p < co. Let € > 0 and define x.
to be the characteristic function on B, = {z € C?: |z| < ¢}. Ifa is a
positive real number, then

(= =3 Gt

k=0

By binomial expansion and orthogonality,

/ (1 (1<_<u)])<fzg)-id+1 (1 = [w[*)* 7 dm(w)
i <) —]+d+1 / (2, w)[% (1 = |w[2)2 7 dm(w)

=0

forall 7 =0,1,2,---,1. Clearly we can find a constant D; such that

(6) (X, i1 (5 2))al < Dy(1 = [2[3) 71
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Also,

(M) Kxe; Ta(+ 2))al =

(1=|2[2) /Be(l_‘w|2)aldm(w) (1 _ i <i) (a—1 -;d-i— 1); 821') '

i=1

Thus by (6) and (7), if we choose ¢ to be small enough and K < 1
large enough, there is a positive constant C; such that

e Ki( 2))al > (e o2 2)al = |(xer it (4 2))al > Col1 = [22)
if K < |z|] < 1. Hence,

8 e Ki(+, 2))al? dua(z) > C7 1— [z Pldm(z
()/B|<x (2 2))al? dptal2) /MKI( 2%)*Pldim(2)

and the integral on the right side of the inequality (8) is infinite if
p> (a+1)/I. O

3. BERGMAN SPACES OF VECTOR-VALUED HOLOMORPHIC
FUNCTIONS

3.1. Bounded symmetric domains of type I. Let D be a type I
bounded symmetric domain, i.e., D = {Z € M, ,(C) : ZZ* < I,}
and let dm(Z) be the Lebesgue measure on D. By Theorem 4.3.1
in [H], the Bergman kernel k(Z, W) is up to a constant h(Z, W)~ (m+n)
where h(Z, W) =det(I — ZW*). If g : D — D is biholomorphic then,
by Theorem 2.10 in [FK1],

9)  k(Z, W) =det(dg(2)) - k(9(2), g(W)) - det(dg(W))

where dg(Z) : T, (D) — Ty (D) is the differential map.
The Bergman operator defined for Z, W € D is given in [L] by

B(Z, W)X = (I — ZW"X(I — W*Z)
for matrices X € M;;, m(C). By Lemma 2.11 in [L],

(10) B(9(Z),g(W)) = dg(Z)B(Z,W)dg(W)* .
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3.2. Values in tensor products of a tangent space. Consider
the measure du,(Z) = h(Z, Z)*dm(Z) for o > 2s — 1 and the corre-
sponding L?-space L?(D,®*V, du,) where V. = M,, ,,(C) (so that we
can identify a tangent space on D with V) and ®*V is the induced
symmetric tensor product for s copies of V' where s is a nonnegative
integer. The functions in L?(D, ®*V, du,) are tensor-valued and the
L?-norm is given by

1/2
1 lls = ( [ (@ B(z.2) 1(2).5(2) dua(Z))

where (X,Y) = tr(XY™). The reproducing kernel is up to a constant
(11) K, (Z,W)=hZ W)™ ®° B(Z,W)

where v = a+ m + n. This can be proved by using the transforma-
tion properties (9) and (10) of h(Z, W) and B(Z, W) respectively (see
e.g. [Sul] for the case of the unit ball and [DZ] for similar results).

Lemma 3.1. Let s be a nonnegative integer. Then there is a constant
Cs > 0 such that

|l©* (B(2,2)7/°B(2.W)BW.W)~"*) X||
h(Z, W) >
h(Z, Z)sh(W, W)

<G X

for all X € Mp,m(C)°.

Proof. The case s = 0 is trivial, so first we prove the case s = 1. It is
clear for W = 0 since

1B(Z,2)" X || < C- 12, 2)7" - || X]].

Now, let g be a biholomorphic map on D such that g(0) = W and
g~! = g¢. On one hand,

IB(g7'(2),97(2))""?X|| < C - h(g™"(2),g7"(2)) | X]|
On the other hand, by (9),
Wy~ (2),971(2)) = h(9(2),9(2)) =

Hence

hW,W)h(Z, Z)
(2, W)[?

|h(Z, W)|*

(12) [1Blg '(2).9 1 (2) V"X < C- g

dRYE
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Let Y = dg(0)*B(W,W)~'/2X. Then we can replace X by Y in the
inequality (12). Also [|[Y|| = [|X]|, so if we let Zy = g '(Z) then
by (10),
|B(Z,2)""*B(2,W)B(W, W) 2X "

= |B(z 2)"2dg(Z)Y ||

= tr(B(Z, Z2)*dg(Z,)YY*dg(Zy)*B(Z, Z)~"/?)

= tr(dg(Z)*B(Z,2)""dg(Zo)YY™)

= ftr (B(Zo,Zo)_lyy*)

WMz, W2\’
< C*. h(Z, X2
< (i mmar) 1

Hence, the lemma is proved for the case s = 1. Now, consider the case
where s = 2,3, ... and let

Azw = B(Z,2)*B(Z,W)B(W, W)~/

and
Lo Izwr
’ h(Z, Z)h(W, W)
We have proved that

Ay wAzw < C I

so that
(@ Azw)" @ Azw =®° (AL wAzw) < C¥t3y & 1
which proves the lemma. O
As a special case we get the following lemma.

Lemma 3.2. If D = B, then for any nonnegative integer s, there is
a constant Cy > 0 such that

11— (z,w)|**
(1= [z)2)*(1 = |w[?)®

|®* (B(z,2)""*B(z,w) B(w,w)"?) z|| < C; ]|

for all z € @°V.

As a special case of Theorem 4.1 in [FK2] we have the following
lemma.



PROJECTIONS ONTO NEARLY HOLOMORPHIC FUNCTIONS 9

Lemma 3.3. Let  —1 > a > —1. Then there is a constant C > 0
such that

| i e m(2) < € h W)

Remark 3.4. There is an orthogonal projection P, 5, from the Hilbert
space L?(D, ®*V, due) into its holomorphic subspace, such that for any
f € L*(D,®°V,du,) and any X € ®*V we have that

(13) (Psf(2), X)
= c/D<®SB(W, W) F (W), K, ,(W, 2)X) dpa(W).

Theorem 3.5. Let o > 2s and let P, be the orthogonal projection
operator, where v =a +m+n. If

o+2 <p< o+ 2
atli—s PSsr1
then P, is bounded on LP(D,®°V,dp,).

Proof. The formula (13) can be rewritten as

f@ﬂm=wljgﬁmzrw3wmwrvmnwawy

Let
hZ,Z)"*h(W,W)~*
|h(Z,W)|v—2s

By the equality K, (W, Z)* = K, ;(Z,W) and Lemma 3.1 it follows
that

T(Z,W) =

|®°B(Z,2)"'*P,,f(Z)||
<C [ T(2.W) & BOV.W) 2 EW) | dua(IV).

Now by Lemma 3.3, using the same techniques as in the proof of
Theorem 7.2 in [Sul], it follows that there exists a real number ¢ and
a constant M > 0 such that

/ T(Z,W)h(Z, 2P+ dm(Z) < M - h(W, W)
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and
/ T(Z, WYh(W, W)+ dm(W) < M - h(Z, Z)"
D

where 1/p + 1/q = 1. Namely, there exists such ¢ if p and « satisfies
the condition
a+2 <p< a+2
a+rl-s PS5yt

So, with this condition for p and « it follows by Schur’s test that

/D |©°B(2,2)" P f(2)| dpa(2)
<¢C /D @ BOW, W)~ f(W)|” dpa(W) .

0

Theorem 3.6. Let o > 25s—1 and let P, ; be the orthogonal projection
wherev=a+d+1, i.e. D=B. If s #0 and

a+1 < <a+1
a+1l-—s p s

then P, s is bounded on LP(B, ®°V,du,). If s =0, then P, 5 is bounded
on LP(B,®°V,du,) for any 1 < p < oo.

Proof. The case s = 0 is classical (see for instance Theorem 2.11
in [Zhu]). Assume now s # 0. By similar arguments as in the proof of
Theorem 3.5, using Lemma 3.2, we get that

Bz, 2) P ()] < € [ Tew) |00 Blw,w) 21 w)] dia)

where

(L= l2) (1 — [w]’)~*

T = G

Again, following the proof of Theorem 3.5, using Proposition 1.4.10
in [Ru] instead of Lemma 3.3, we get the desired result. O
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3.3. Values in tensor products of a cotangent space. Once we
have studied the LP-boundedness for Bergman-type projections onto
Bergman spaces with functions with values in symmetric tensor prod-
ucts of a tangent space, it is natural to do so even for the case of
cotangent space. These Bergman-type projections are closely related
to the Bergman-type projections studied in [Sul] and [Su2].

Let D be the type I bounded symmetric domain given in the previ-
ous subsection. Most notation are the same as in the previous subsec-
tion, only @ > —1 and L?*(D, ®*V, dp,) is replaced by L?(D, ®°V", dj,)
with norm

11z = ( [ (82,212 1(2)) dua(2)) "

where B(Z, Z)" is the dual action of B(Z, Z) acting on the dual space
V'. Also B(Z,Z)" may be identified with B*(Z, Z) where

BYZ, W)X = (I — ZW*)!X(I — W*Z)!

for matrices X € My, »n(C) and where ¢ is the transpose of a matrix.
The reproducing kernel for L?(D, ®*V", du,) is given, up to a nonzero
constant, by

K, (ZW)=hZ,W) " ®" B(Z,W)"

where again v = a+m+n. The orthogonal projection P,  in question
from L?(D,®*V’, du,) onto its holomorphic subspace, is defined in the
following way. For any f € L?(D,®*V’',du,) and any X € @V’ we
have that

(14) (PL,f(2),X)
= ¢ [ (@ B, KL, (W, 2)X) daW).

Hence, if we can find a result similar to Lemma 3.1 then we can use
the same arguments as in the proof of Theorem 3.5 to find criteria for
the projections P}, to be bounded on LP(D, ®°*V’, du,).

Lemma 3.7. Let s be a nonnegative integer. Then
|@* (BY(Z,2)'?B" (2, W) 'B' (W, W)'?) X|| < || X]|
for all X € My, (C)°.
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Proof. By the definition of the Bergman operator it follows that
(15) |B'(2, 2)' 7 X]| < |IX]|

Actually, if D is not the unit ball in C? then we can find Z € D
such that B*(Z,Z)X = X for all X € M,,,(C) and therefore (15) is
actually the best estimate we can get in the general case. Now, given
W € D, choose g as in the proof of Lemma 3.1. Then

1B (20, Z0)' 2 X]| < |IX]I,
if g(Zy) = Z. Since
(dg(Z0)") ™" : Ty (D) — T(D)'
is an isometry then
| B2, 22 (dg(z0)") ™ x| < 1))
Hence
|B"(Z, 2)"*B"(Z,W)"'B"(W, W)X |
= B2 2" (dg(20)) " v | < WY

where Y = ((dg(0)*))*B{(W,W)Y2X. Also, ||Y|| = ||X]|| which
follows in the same way as in the proof of Lemma 3.1. Thus, the

lemma is proved for the case when s =1 and the proof of the general
case is done in exactly the same way as in the proof of Lemma 3.1. [

As we could see in the proof of the lemma above we need to treat the
particular case D = B separately. The following lemma can be proved
by using the same techniques as in the proof of Lemma 3.1 and in
Lemma 3.7. However, the same result can also be found in [Sul].

Lemma 3.8 (Lemma 7.1 in [Sul]). If D = B, then for any nonnegative
integer s, there is a constant Cs > 0 such that
||®S (B'(z, 2)12 B (z,w) " Bt (w, w)l/Q) xH
(1= [2[)*2(1 = Jw[?)*?
11— (2, w)|*

<G ]l

for all x € V"',

Now we can get the desired boundedness condition. This result is
a weaker generalization of Theorem 7.2 in [Sul].
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Theorem 3.9. Let a > 0 and let P, be the orthogonal projection
operator, where v = o +m +n. If

o+ 2

a+1

then P, . is bounded on LP(D,®*V', du,).

V,8

<p<a+2,

Proof. The result follows by exactly the same arguments as we used
to prove Theorem 3.5. O
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