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Abstract

Let  be the standard Gauss measure onRn, let �(t) =
R t
�1 exp(�s

2=2)ds=
p
2�;

�1 � t � 1; and let m � 2 be an integer. Given m positive real numbers
�1; :::; �m this paper gives a necessary and su¢ cient condition such that the in-
equality ��1((�1A1+ :::+�mAm)) � �1��1((A1))+ :::+�m��1((Am)) is
true for all Borel sets A1; :::; Am in Rn of positive -measure or all convex Borel
sets A1; :::; Am in Rn of positive -measure; respectively. In particular, the pa-
per exhibits inequalities of the Brunn-Minkowski type for  which are true for all
convex sets but not for all measurable sets.

1 Introduction

The main purpose of this paper is to study inequalities of the Brunn-Minkowski
type for Gaussian measures when the number of sets involved is more than
two. Besides, we will show that an inequality of the Brunn-Minkowski type
for Gaussian measures, valid for all convex sets, in general, will not be true
for all measurable sets. First, however, we will introduce more precise de�n-
itions.
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Let  be the standard Gaussian measure on Rn; that is

d(x) = e�jxj
2=2 dxp

2�
n

where

j x j=

vuut nX
1

x2k if x = (x1; :::; xn) 2 Rn

and let

�(t) =

Z t

�1
e�s

2=2 dsp
2�
; �1 � t � 1:

Moreover, if A1; :::; Am are subsets of Rn and (�1; :::; �m) 2 Rm; the linear
combination �1A1 + :::+ �mAm of the sets A1; :::; Am equals

fy; y = �1x1 + :::+ �mxm where xi 2 Ai; i = 1; :::;mg :

Recall from the theory of analytic sets that a linear combination of Borel
subsets of Rn is universally Borel measurable, that is �-measurable with
respect to every �nite positive Borel measure on Rn: Below B(Rn) stands
for the Borel �eld of Rn and R+ means the open interval ]0;1[ :
Now suppose m � 2 is a �xed integer and denote by Sm the set of all

� = (�1; :::; �m) 2 Rm
+ such that

��1((�1A1 + :::+ �mAm)) � �1��1((A1)) + :::+ �m��1((Am)) (1.1)

where A1; :::; Am 2 B(Rn): Here, if t1; :::; tm 2 [�1;1] ; the sum �m1 ti is
de�ned to be equal to �1 if some of the ti = �1 and in other cases has its
usual meaning.
The main concern in this paper is to �nd an explicit form of the set Sm: In

the special case m = 2 the above problem was recently solved by the author
who proved that

S2 =
�
� 2 R2

+; �1 + �2 � 1 and j �1 � �2 j� 1
	

(1.2)

(see [3]). By applying this result we will show that

Sm =
(
� 2 Rm

+ ;

mX
1

�i � max(1;�1 + 2 max
1�i�m

�i)

)
: (1.3)
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Given (�1; :::; �m) 2 Rm
+ , clearly equality occurs in (1.1) if A1; :::; Am are

parallel a¢ ne half-spaces and if, in addition, �1+ :::+�m = 1 equality occurs
in (1.1) if A1; :::; Am are equal and convex.
We will also consider the inequality (1.1) restricted to convex Borel sets.

To be more precise let m be as above and denote by Cm the set of all � =
(�1; :::; �m) 2 Rm

+ such that the inequality (1.1) holds for arbitrary convex
sets A1; :::; Am 2 B(Rn): Clearly, Sm � Cm: Moreover, it will be proved that

Cm =
(
� 2 Rm

+ ;
mX
1

�i � 1
)
: (1.4)

In particular, from (1.3) and (1.4), Sm 6= Cm and consequently Sm is a
proper subset of Cm: From this we conclude that an inequality of the Brunn-
Minkowski type for  valid for all convex sets, in general, will not extend to
all measurable sets. As far as we know a similar phenomenon has never been
reported on before.
Note that the relations (1.3) and (1.4) show that the sets Sm and Cm

are independent of n. In Section 4 we will point out that all the results
in Sections 2 and 3 extend to centred Gaussian measures on real, separable
Fréchet spaces. Thus, in particular, the results apply to Wiener measure, the
probability law of Brownian motion.
Finally, in this section let us repeat more on the history of the problems

we face here. Ehrhard [4] proved in 1983 that
�
� 2 R2

+; �1 + �2 = 1
	
� C2

and in 1996 the Ehrhard result was generalized by Lata÷a [5] who established
(1.1) whenm = 2 and one of the Borel setsA1 andA2 is convex. In particular,
this result has the isoperimetric inequality in Gauss space, independently due
to Sudakov and Tsirelson [7] and the author [1] as an immediate corollary.
Moreover, in 2003 the author [2] proved that

�
� 2 R2

+; �1 + �2 = 1
	
� S2

and, as already mentioned above, the description of the class S2 given by
(1.2) goes back to my forth-coming paper [3] :

2 Characterization of Sm and Cm

Theorem 2.1

Cm =
(
� 2 R2

+;

mX
1

�i � 1
)
:
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The proof of Theorem 2.1 is based on the following

Lemma 2.1 (
� 2 Rm

+ ;
mX
1

�i = 1

)
� Sm:

PROOF It follows from (1.2) that Lemma 2.1 holds for m = 2: If m � 3
and � 2 Rm

+ satis�es �1 + :::+ �m = 1; then

��1((�1A1 + :::+ �mAm))

= ��1((�(
�1
�
A1 + :::+

�m�1
�
Am�1) + �mAm))

where � = �1 + :::+ �m�1: Now (�; �m) 2 S2 and we get

��1((�1A1 + :::+ �mAm))

� ���1((�1
�
A1 + :::+

�m�1
�
Am�1)) + �m�

�1((Am))

and the proof of Lemma 2.1 can be completed by induction on m:

PROOF OF THEOREM 2.1 We �rst prove that(
� 2 R2

+;

mX
1

�i � 1
)
� Cm:

To this end let � 2 Rm
+ be such that � =def �1 + :::+ �m � 1. Futhermore,

suppose A1; :::; Am 2 B(Rn) are convex and de�ne

C =
�1
�
A1 + :::+

�m
�
Am

so that
��1((�1A1 + :::+ �mAm)) = �

�1((�C)):
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Now since C is convex an inequality by Sudakov and Tsirelson [7] states that

��1((�C)) � ���1((C))

(note that this inequality follows from the relations (�=2)C + (�=2)C = �C
and (�=2; �=2) 2 S2; see [3]). Hence

��1((�1A1 + :::+ �mAm)) � ���1((
�1
�
A1 + :::+

�m
�
Am))

and by Lemma 2.1 the member in the right-hand side does not fall below

�1�
�1((A1)) + :::+ �m�

�1((Am)):

Accordingly from this � 2 Cm:
Next we claim that

Cm �
(
� 2 Rm

+ ;
mX
1

�i � 1
)
:

To see this, let C 2 B(Rn) be a convex symmetric set such that 0 < (C) < 1
2
:

Then, if � 2 Cm,

�1C + :::+ �mC = (�1 + :::+ �m)C

and we get

��1(((�1 + ::::+ �m)C)) � �1��1((C)) + :::+ �m��1((C)):

Here, if �1 + :::+ �m < 1 it follows that

��1((C)) � (�1 + :::+ �m)��1((C))

or
0 � (�1 + :::+ �m � 1)��1((C))

which is a contradiction. This proves Theorem 2.1.

Theorem 2.2

Sm =
(
� 2 Rm

+ ;

mX
i=1

�i � max(1;�1 + 2 max
1�i�m

�i)

)
:
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The proof of Theorem 2.2 is based on two lemmas.

Lemma 2.2 For any I � f1; :::;mg the set

PI =
(
� 2 Rm

+ ;

mX
1

�i � 1 and j
X
I

�i �
X
Ic

�i j� 1
)

is contained in Sm:

PROOF If I = � or f1; :::;mg ; Lemma 2.1 shows that PI � Sm: Therefore
assume I is a non-empty proper subset of f1; :::;mg and set �0 = �I�i and
�1 = �Ic�i. Now since �0; �1 > 0;

��1((�1A1 + :::+ �mAm))

= ��1((�0
X
I

�i
�0
Ai + �1

X
Ic

�i
�1
Ai))

and the description of S2 given in (1.2) implies that

��1((�1A1 + :::+ �mAm))

� �0��1((
X
I

�i
�0
Ai)) + �1�

�1((
X
Ic

�i
�1
Ai)):

Here by Lemma 2.1 the last expression does not fall below

�0
X
I

�i
�0
��1((Ai)) + �1

X
Ic

�i
�1
��1((Ai))

= �1�
�1((A1)) + :::+ �m�

�1((Am))

which proves Lemma 2.2.

Lemma 2.3 �
� 2 Rm

+ ; � = (t; t; :::; t) and t �
1

m

�
� Sm:
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PROOF Let d denote the integer part of m=2: If 1=m � t � 1 the m-tuple
(t; :::; t) 2 Pf1;:::;dg and (t; :::; t) � Sm by Lemma 2.2. In addition, if t � 1;
then

��1((tA1 + :::+ tAm)) = �
�1((t(A1 + :::+ Am�1) + tAm))

� t��1((A1 + :::+ Am�1)) + t��1((Am))
due to (1.2) and by induction on m it follows that (t; :::; t) 2 Sm: This proves
Lemma 2.3.

PROOF OF THEOREM 2.2 The relation (1.2) shows that Theorem 2.2 is
true if m = 2 and there is no loss of generality in assuming that m � 3:
We �rst prove that

Sm �
(
� 2 Rm

+ ;
mX
i=1

�i � max(1;�1 + 2 max
1�i�m

�i)

)
:

To this end let � 2 Sm and �rst assume

�m � �1 � :::� �m�1 > 1:

Then, if C is as in the proof of Theorem 2.1,

Rn n C � �1C + :::+ �m�1C + �m(Rn n C)

and we get

��1((Rn n C)) � (�1 + :::+ �m�1)��1((C)) + �m��1((Rn n C))

or
���1((C)) � (�1 + :::+ �m�1)��1((C))� �m��1((C))

since ��1(1� y) = ���1(y) for all 0 < y < 1: Thus

0 > (�1 + :::+ �m�1 � �m + 1)��1((C))

which is a contradiction and we conclude that �m � �1 � :::� �m�1 � 1: In
a similar way it follows that

�k �
X

i2f1;:::;k�1;k+1;:::;mg

�i � 1 if k = 1; :::;m� 1
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and we get

mX
i=1

�i � �1 + 2 max
1�i�m

�i:

Finally since Sm � Cm Theorem 2.1 implies that

mX
i=1

�i � max(1;�1 + 2 max
1�i�m

�i) : (2.1)

We next show that(
� 2 Rm

+ ;
mX
i=1

�i � max(1;�1 + 2 max
1�i�m

�i)

)
� Sm:

Therefore suppose � 2 Rm
+ satis�es (2.1) so that, in particular,

�k �
X

i2f1;:::;k�1;k+1;:::;mg

�i � 1 if k = 1; :::;m:

Now, if X
i2f1;:::;k�1;k+1;:::;mg

�i � �k � 1

for some k 2 f1; :::;mg Lemma 2.2 proves that � 2 Sm. On the other hand
if X

i2f1;:::;k�1;k+1;:::;mg

�i � �k > 1

for every k 2 f1; :::;mg we proceed as follows. Since (�i)mi=1 2 Sm if and only
if (��(i))mi=1 2 Sm for a suitable permutation � : f1; :::;mg ! f1; :::;mg it
can be assumed that

�1 � �2 � ::: � �m
and, hence,

m�1X
1

�i > 1 + �m

and
m�1X
1

�i
�m

> 1: (2.2)
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Next we claim there exists a subset I of f1; :::;m� 1g such that

j
X
I

�i �
X

f1;:::;m�1gnI

�i j� �m:

In fact, if m is odd

0 � (�2 � �1) + (�4 � �3) + :::+ (�m�1 � �m�2) � �m

and we get

j �2 + �4 + :::+ �m�1 � �1 � �3:::� �m�2 j� �m:

On the other hand if m is even

0 � �m�1 � (�2 � �1)� (�4 � �3)� :::(�m�2 � �m�3) � �m

and we get

j �1 + �3 + :::+ �m�1 � �2 � �4 � :::� �m�2 j� �m:

Consequently, for each positive integer m � 3 there exists a subset I of
f1; :::;m� 1g such that

j
X
I

�i
�m

�
X

f1;:::;m�1gnI

�i
�m

j� 1: (2.3)

Now let A1; :::; Am 2 B(Rn): Using the inequality (2.1) we get �m � 1=m
and Lemma 2.3 yields

��1((�1A1 + :::�mAm)

= ��1((�m(
�1
�m
A1 + :::+

�m�1
�m

Am�1) + �mAm))

� �m��1((
�1
�m
A1 + :::+

�m�1
�m

Am�1)) + �m�
�1((Am)):

We now use (2.2), (2.3), and Lemma 2.2 to obtain

��1((
�1
�m
A1 + :::+

�m�1
�m

Am�1))

� �1
�m
��1((A1)) + :::+

�m�1
�m

��1((Am�1))
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and the inequality (1.1) follows at once. This completes the proof of Theorem
2.2.

As a consequence of Lemma 2.2 let us point out the following

Corollary 1.1(
� 2 Rm

+ ;

mX
1

�i � 1 and
mX
1

�2i � 1
)
� Sm:

PROOF Suppose � 2 Rm
+ ; �1 + :::+ �m � 1; and �21 + :::+ �2m � 1. If

� =2
[

I�f1;:::;mg

PI

that is

j
mX
1

"i�i j> 1 a.s.

where ("i)mi=1 denotes a sequence of independent random variables such that

P ["i = �1] = P ["i = 1] ; i = 1; :::;m

the Jensen inequality forcesvuut mX
1

�2i � E
"
j
mX
1

"i�i j
#
> 1:

From this contradiction we conclude that � 2
[

I�f1;:::;mg

PI and Lemma 2.2

implies that � 2 Sm; which proves Corollary 1.1.

3 Other descriptions of the classes Sm and Cm
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In this section FSm denotes the set of all � = (�1; :::; �m) 2 Rm
+ such that

the inequality

��1(

Z
Rn

f0d) � �1��1(
Z
Rn

f1d) + ::::+ �m�
�1(

Z
Rn

fmd) (3.1)

is valid for all Borel functions fk : Rn ! [0; 1] ; k = 0; 1; :::;m; satisfying the
inequality

��1(f0(�1x1 + :::+ �mxm)) � �1��1(f1(x1)) + :::+ �m��1(fm(xm)) (3.2)

for all x1; :::; xm 2 Rn:

Theorem 3.1
Sm = FSm:

PROOF We �rst prove that

Sm � FSm

Therefore let � 2 Sm; let fk : Rn ! [0; 1] ; k = 0; 1; :::m; be Borel functions
such that (3.2) holds for all x1; :::; xm 2 Rn; and as in the Lata÷a paper [6]
de�ne

Bk =
�
(x; t) 2 Rn �R; t � ��1(fk(x)

	
; k = 0; 1; :::;m:

Then
B0 � �1B1 + :::+ �mBm

and as

( � 1)(Bk) =
Z
Rn

fkd; k = 0; 1; :::;m

it follows that � 2 FSm: Here note that the class Sm is independent of n:
We next claim that

FSm � Sm:

To see this let � 2 FSm; let A1; :::; Am � E be compact and de�ne A0 =
�1A1 + ::: + �mAm and fk = 1Ak ; k = 0; 1; :::;m: Then (3.2) is true and as
� 2 FSm; (3.1) is true which implies (1.1). Since any �nite positive measure
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onRn is inner regular with respect to compact sets it is obvious that � 2 Sm:
Summing up we have proved Theorem 3.1.

Next let FCm denote the set of all � = (�1; :::; �m) 2 Rm
+ such that the

inequality (3.1) is valid for all Borel functions fk : Rn ! [0; 1] ; k = 0; 1; :::;m;
satisfying (3.2) and such that the functions ��1(fk); k = 0; 1; :::;m; are
concave. Here we say that a function g : Rn ! [�1;1] is concave if the set
f(x; t) 2 Rn �R; t � g(x)g is convex.
The proof of the following theorem is very similar to the proof of Theorem

3.1 and will not be included here.

Theorem 3.1
Cm = FCm:

4 Extension to in�nite dimension

ABorel probability measure � on a real, locally convex Hausdor¤vector space
E is said to be a centred Gaussian measure if the image measure ���1 is a
centred Gaussian measure on the real line for each bounded linear functional
� in E: For simplicity, we here restrict ourselves to a centred, non-degenerate
Gaussian measure  on a real, separable Fréchet space F . To say that  is
non-degenerate means that  is not the Dirac measure at the origin. Recall
that a �nite positive Borel measure � on F is inner regular with respect to
compact sets and moreover, if A is a convex Borel subset of F there are
compact sets Kn; n 2 N; such that K1 � K2 � :::; [10 Kn is convex, and
An[10 Kn a �-null set. Note also that the theory of analytic sets implies that
a linear combination of Borel subsets of F is universally Borel measurable.
We de�ne the classes Sm; Cm; FSm; and FCm as above with Rn replaced

by F and where  now stands for a centred, non-degenerate Gaussian measure
on F: The paper [3] shows that (1.2) still holds and it is obvious that the
results in Sections 2 and 3 extend to this more general situation. Note here
that the Sudakov and Tsirelson inequality, which is important in the proof
of Theorem 2.1, extends to convex (universally) Borel measurable sets on F
(see [3]). The details are omitted here.
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