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COMPUTATIONAL CHARACTERIZATION OF FLUID

MIXING IN INCOMPRESSIBLE FLOWS

ERIK D. SVENSSON

Abstract. We propose a computational methodology for character-
izing fluid mixing in incompressible flows. Principal to the characteri-
zation is defining a mixing measure that will resolve the mixing process
both in space and time. We base the mixing measure on rigorous no-
tions, mixing and correlation sequences, known from dynamic system
theory and suggest a suitable approximation. Moreover we consider the
situation when the generating velocity field is not known a priori but
rather from numerical data. Finally we peruse an error analysis con-
sidering the total error with contributions from: (1) the approximation
of the mixing measure, (2) the computation of the mixing measure and
(3) the approximate velocity field. We obtain an upper error bound
for the mixing measure that in principle could be used for rigorous
computational characterization of the mixing process.
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2000 Mathematics Subject Classification: 37A25, 37C50, 76M10

1. Introduction

We face the problem of mixing two miscible fluids on a time scale where
diffusion is negligible. In order to obtain this we will have to displace
the fluids by means of a velocity field that is sufficiently irregular. In
the engineering literature such process is commonly refereed to mixing by

chaotic advection and for further references we refer to the survey articles
[1, 2, 21] or the book [20]. The problem has recently be revived spurred by
the development of micro fluidics see the book [15] for a general reference
and the review articles [14, 19] on mixing in micro fluid systems.
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Considering mixing as a relaxation process going from an unmixed state
to a homogeneous (mixed) state and characterizing this relaxation we will
need a measure that will resolve the mixing process in space and time.
For example: the mixing could be nonuniform in space and we may be
interested in resolving these spatial variations; or a process may be mixing
although at a small rate, too small to be use full in an engineering appli-
cation. There seems to be no consensus on what mixing measure to use.
The mixing measures suggested in the literature varies and are in many
case heuristical cf. [20, 3, 12].

In dynamic system theory mixing has a precise meaning, see for example
[16, 25] or the survey article [24]. Related to mixing in this context is the
correlation sequence which we use as a mixing measure in this work. Since
the correlation sequence in principle is intractable we propose a computable
approximation and analyze the error in this approximation. Moreover we
consider a situation where the velocity field generating the mixing process
is not a priori known in close for but rather from computed data to some
model, e.g., the Stokes equations or possibly the Navier-Stokes equations
or any other fluid model. This aspect is also included in the error analysis
The provided error bound for the mixing measure could in principle be
used for a rigorous computational characterization of the mixing process
so that the error is controlled and made small.

1.1. Assumptions. Let Ω ⊂ Rd for d = 2, 3 be an open set with boundary
∂Ω. We assume that the fluids are contained in Ω and imposed by a
Lipschitz continuous velocity field f : Ω → Rd. Then f generates a flow
[0, t]×Ω ∋ (t, x) 7→ u(t, x) ∈ Rd, describing the motion of a fluid particles
in Ω, as solutions to the system of ordinary differential equations

(1.1) ∂tu(t, x) = f(u(t, x)), t > 0; u(0, x) = x.

We also assume that f is differentiable and that the fluids are incom-
pressible in the sense that

(1.2) ∇ · f(x) = 0 ∀x ∈ Ω.

Let ν be the outward normal to ∂Ω. We assume that ν(x) · f(x) = 0
for a.e. x ∈ ∂Ω, that is, there is no flow through ∂Ω. Imposing some
additional constraints on Ω and f we distinguish two types of flows.

(1) The flow u(t, x) is said to be confined if Ω is bounden.
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Let Γ ⊂ Ω with dim Γ = d − 1 such that ∂Γ ⊂ ∂Ω and Γ + np ∈ Ω for a
scalar p ∈ Rd and any integer n.

(2) The flow u(t, x) is said to be space periodic if f |Γ = f |Γ+np and
ν(x) · f(x) ≤ 0 for a.e. x ∈ Γ.

1.2. Considerations. We ask to what extent the mixing process could
be computationally characterized in the sense that computed predictions
are accurate. Suppose we compute a mixing measure, of our choice, that
reflects the amount of mixing in Ω generated by f . Then we also would
like to estimate the error in the computed measure and make it small.
Accurate predictions of this kind is inherently difficult since mixing is only
obtained if f is sufficiently irregular meaning that the flow generated by
f will have to be hyperbolic which loosely involves that the flow have to
have enough contractive and expensive directions, see [16, 25] for a more
precise statement of hyperbolicity. Such systems are dynamically unstable,
sensitive to perturbations, which renders the computation delicate.

In practice we will not know the flow u(t, x) a priori in a closed form
and in order to study the properties of the flow we may instead analyze a
limited number of numerically computed orbits uk(t, xj) for j = 1, 2, . . . , I,
and where k denote the time discretization. Moreover in many situations
we may not even know f a priori in a closed form but it will rather be
defined from a model, for example, a partial differential equation, and
we will have to use approximate data fh for f where h denote the space
discretization. Now let uk(t, x) be a computed orbit to (1.1) with right
hand side f = fh. Then the error

(1.3) e(t, x) := uk(t, x) − u(t, x),

will depend on the discretization-error associated with the numerical method
use to compute uk(t, x) and the error in the velocity field ef := ff − f .
Since (1.1) probably is dynamically unstable we will only be able to com-
pute uk(t, x) with small e(t, x) for a rather small time. However, if the
system is sufficiently hyperbolic we may argue by shadowing, that is, pro-
vided uk(t, x) is computed accurately enough and provided ef is small
enough there is an exact orbit u(t, y) such that ‖uk(t, x)−u(t, y)‖ is small
for t ∈ [0, T ] [7, 8, ?]. The overall idea is to use this kind of argument in
order to control the error in a computed mixing measure.

1.3. Notions form dynamic system theory. Within the realm of dy-
namic system theory mixing has a precise meaning. For a probability
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space (X,M, µ) a measure preserving bijective mapping T : (X,M, µ) →
(X,M, µ) is called mixing if

(1.4) ∀A,B ∈ M µ(A ∩ T nB) → µ(A)µ(B) as n → ∞,

for discrete time systems;

(1.5) ∀A,B ∈ M µ(A ∩ T tB) → µ(A)µ(B) as t → ∞,

for continuous time systems. We remark that T is measure preserving if for
every A,B ∈ M, µ(T−1A) ∈ M and µ(T−1(A)) = µ(A), see for example
[9, 25].

Generally mixing is also defined for measure preserving maps that is
only surjective but then we must replace µ(A ∩ T nB) by µ(T−n(A) ∩ B)
in the definition, and likewise for the time continuous case, [9, 25].

Related to mixing is the decay of correlations between the sets A,B ∈ M
defined by the correlation sequence

(1.6) Cn(A,B) = µ(A ∩ T nB) − µ(A)µ(B)

for discrete time systems;

(1.7) Ct(A,B) = µ(A ∩ T tB) − µ(A)µ(B)

for continuous time systems, see for example [4, 25]. The asymptotic
behavior will indicate whether the mapping is mixing and also on the
rate. The decay may be exponential Cn(A,B) ∼ e−αn or polynomial
Cn(A,B) ∼ n−α for some α > 0 and likewise for Ct(A,B).

1.4. Computability. In practice some of the notions in Section 1.3 are
too general and intractable. We will have to approximate M, which in
our case is a Borel σ-algebra on X = Ω. It seems natural to replace M
by a family of partitions {Uh}h>0 where Uh is the class of finite number
of disjoint sets Ui such that

⋃
i Ui = Ω and where h denote the size of

the largest set in U , that is, h = maxi diam Ui. In principle any type of
partition will suffice although if Ω is a polyhedral domain it is convenient
to let {Uh}h>0 = {Th}h>0 be a family of quasi uniform triangulation, see
for example [11].

The size h will determine the resolution of the approximation and could
for example be motivated by some physical length scale, that is, form the
Einstein relation we get h ∼ (τD)1/2 where τ is typical time scale and D
is the diffusion constant.
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In order to investigate whether a mapping is mixing we may consider
the correlation sequence Cn(A,B) (or Ct(A,B)) for A,B ∈ Uh and for
some finite n. We will have to evaluating the measure µ(A ∩ T nB) (or
µ(A ∩ T tB)) which is inherently difficult since the mapping probably is
dynamically unstable and even though B may have a simple geometry
T nB will be severely deformed. It is plausible to assume that we only
know T nxj for xj ∈ B and a limited number j = 1, . . . ,M . It then seems
viable to evaluate µ(A ∩ T nB) by a simple Monte Carlo method. We will
discuss this kind of implementation in more detail in the sections below
where the measure is explicitly stated.

1.4.1. Monte Carlo integration. For further reference we now briefly recall
Monte Carlo method, see for example [17]. Consider integrable functions
f and g on A ∈ M such that g ≥ 0 and

∫

A

g(x) dx = 1,

and independent random variables {xj}M
j=1 that is g(x) dx distributed on

A. Then

(1.8)

∫

A

f(x)g(x) dx =
1

M

M∑

j=1

f(xj) + RM(σ),

where RM(σ) is a residual that must be interpreted statistically in the sense

that RM is normal distributed with standard deviation σ/
√

M where

σ2 =

∫

A

f(x)2 dx −
(∫

A

f(x) dx

)2

is the variance. In practice we may estimate this variance by the empirical
variance

σ̂2 =
1

M − 1

M∑

i=1

(xi − x̄)2

where x̄ is the mean of {xj}M
j=1.

In the sequel we will set f = χA, the characteristic function defined by

(1.9) χA(x) =

{
1, if x ∈ A,

0, if x 6∈ A.
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1.5. Error analysis. We compute approximate orbits uk(t, xj) to (1.1)
for t ∈ [0, T ] and xj ∈ B and j = 1, . . . ,M by a continuous finite element
method. This involve partitioning [0, T ] into intervals Ii = [ti−1, ti] for
i = 1, 2, . . . , N such that 0 = t0 < t1 < . . . < tN = T and set ki = ti−1 − ti.
Let Pq(Ii) denote the polynomials of degree less or equal to q on Ii and set

Vq([0, T ]) := {v ∈ C0([0, T ]) : v|Ii
∈ Pq(Ii), for i = 1 . . . N}

which is the finite element space of piecewise continuous polynomials of
degree q.

For q ≥ 1 we now obtain the finite element formulation to (1.1) with f =
fh and approximate velocity field. Find uk ∈ Vq([0, T ])d with uk(t, 0) = x
such that

(1.10)

∫ T

0

(∂tuk − fh(uk)) · v dt = 0 ∀v ∈ Vq−1([0, T ])3,

This is the continuous Galerkin method of order q, referred to as the cG(q)
method in [10, p. 210]. There will be N(q + 1) − 1 nodes in the interval
[0, T ], where the piecewise polynomials are evaluated.

We will now assume that uk(t, x) is computed sufficiently accurate and
that ef is sufficiently small. A precise statement of this could be found
in [10] for general finite element approximations and particularly in the
percent situation in [?]. The condition requiring uk(t, x) to be computed
sufficiently accurate could be translated to uk(t, x) being a pseudo orbit cf.
[16, 22]. We will use this notion in the sequel and in addition, when it is
not explicitly stated, always assume that ef is sufficiently small.

If Ω is sufficiently hyperbolic for (1.1) then every pseudo orbit will be
shadowed by an exact orbit at least for some finite time t ∈ [0, T ], cf.
[8, 7, ?] and the book [22]. This implies that ‖uk(t, x) − u(t, y)‖ could be
made small for t ∈ [0, T ].

Now for every pseudo orbit uk(t, xj) for t ∈ [0, T ] and xj ∈ B, j =

1, . . . ,M , we assume that there is another orbit u(t, yj) where yj ∈ B̃ such
that

(1.11) ‖uk(t, xj) − u(t, yj)‖ ≤ εj,

and we set

(1.12) ε = max
j

εj.
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In order to better characterize B̃ we extend the notation given above and
assume uk(t, x) is a pseudo orbit for all x ∈ B and set

(1.13) B̃ =
⋃

x∈B

B(x, ε),

where B(x, ε) is the ball or radius ε about x.

2. Mixing in confined incompressible flows

Let u(t, x) be a confined incompressible flow as defined in Section 1.1.
For an open set A ⊆ Ω we define the measure as the volume of A normalized
with the volume of Ω

(2.1) µ(A) = c−1
0

∫

A

dx = c−1
0 |A|.

where

c0 =

∫

Ω

dx = |Ω|,

is the volume of Ω. Then (Ω,M, µ) is a probability space.
Now let T t(·) be defined by the flow u(t, ·). Since u is a flow and f

is incompressible T is bijective and measure preserving, that is, |A| =
|T tA| for every A ∈ M or in other words we say that T t preserve volume.
Hence mixing according to (1.5) and the correlation sequence (1.7) are well
defined in this case.

2.1. Computational characterization. Let uk(t, xj) for t ∈ [0, T ] and
xj ∈ B be pseudo orbits defining the mapping T t

k and approximate M
with a partition Uh as defined in Section 1.4.

In order to approximately compute (1.7) we let {xj}M
j=1 be indepen-

dent random variables uniformly distributed on B. Now {T t
kxj}M

j=1 will be
independent random variables T t

kx dx distributed on T t
kB and we com-

pute |A ∩ T t
kB| by the Monte Carlo method. Set f(x) = χA(x) and

g(x) = |T t
kB|−1 in (1.8) and we obtain

|A ∩ T t
kB| =

∫

T t

k
B

χA(x) dx ≈ |T t
kB|M−1

M∑

j=1

χA(T t
kxj).

It may seem tempting to set |T t
kB| = |B| but since T t

k in general is not
measure preserving we can not do so. Instead we evaluate |T t

kB| by Mote
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Carlo integration and by a change of variables we obtain

|T t
kB| =

∫

T t

k
B

dx =

∫

B

|det(∇T t
kx)| dx ≈ |B|M−1

M∑

j=1

|det(∇T t
kxj)|,

where we note that |det(T t
kx)| = 1 if is T t

k is measure preserving, that is,
if fh is incompressible [6, p. 10].

Hence we define the following approximation to the correlation sequence
(1.7) for A,B ∈ Uh

(2.2) CM
k,t(A,B) = |B|M−2

M∑

i=1

|det(∇T t
kxi)|

M∑

j=1

χA(T t
kxj) − |A||B|

A

A

B

T t
kB

ε

Figure 2.1: (left) A, B ⊂ Ω at t = 0. (right) Intersection A ∩ T t
kB and the

ε-shell inside A.

2.2. Error analysis. As outlined in Section 1.5 we assume that to every
pseudo orbit uk(t, x) there is an exact orbit u(t, y) such that (1.11) is

satisfied and that ε in (1.12) is small. Then for A,B ∈ Uh and B̃ as
defined in (1.13) we argue that

|A ∩ T t
kB| − |A ∩ T tB̃| ≤ ε|∂A ∩ T t

kB| ≤ ε|∂A|
where ε|∂A ∩ T t

kB| is the measure of the points T t
kx ∈ T t

kB such that
dist (T t

kx, ∂A) ≤ ε , Figure 2.1, and in the same way

|B| − |B̃| ≤ ε|∂B|,
and hence we may estimate

∣∣|A ∩ T t
kB| − |A||B| − Ct(A, B̃)

∣∣ ≤ ε
(
|∂A| + |A||∂B|

)
.



9

Now with the estimate above and for A,B ∈ Uh and B̃ as defined in
(1.13) we estimate the error in the approximate correlation sequence (2.2)

(2.3) |CM
k,t(A,B) − Ct(A, B̃)| ≤ ε

(
|∂A| + |A||∂B|

)
+ R,

where R must be interpreted statistically as explained in Section 1.4.1.

3. Mixing in periodic channel flows

Let u(t, x) be a space periodic incompressible flow as defined in Section
1.1. For an open set A ⊆ Γ we define the measure as the flow through A
normalized with the flow trough Γ

(3.1) µ(A) = c−1
0

∫

A

f · ν dx,

where

c0 =

∫

Γ

f · ν dx,

is the total flow through Γ. Then (Γ,M, µ) is a probability space.
Now for u(0, x) ∈ Γ let t be such that u(t, x) ∈ Γ + p and let T : Γ → Γ

be the mapping defined by T := u(t, x)− p. We note that since u is a flow
and f is incompressible T is bijective and measure preserving. Iterating
T n(x) = T ◦T n−1(x) with T 0(x) = x we obtain the Poincaré map for which
mixing according to (1.4) and the correlation sequence (1.6) are well posed
in this case.

3.1. Computational characterization. We need define an approximate
measure based on the fh instead of f . For an open set A ⊆ Γ set

(3.2) µh(A) = c−1

h0

∫

A

fh · ν dx,

where

ch0 =

∫

Γ

fh · ν dx.

Let uk(t, xj) for t ∈ [0, T ] and xj ∈ B be pseudo orbits defining the
mapping T n

k and approximate M with a partition Uh of Γ as defined in
Section 1.4.

In order to approximately compute (1.6) we let {xj}M
j=1 be independent

random variables fh(x) · ν dx distributed on B. Now {T n
k xj}M

j=1 will be
independent random variables fh(T

n
k x) · ν dx distributed on T n

k B and we
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compute µh(A∩T n
k B) by the Monte Carlo method. Set f(x) = χA(x) and

g(x) = µh(T
n
k B)−1 in (1.8) and we obtain

µh(A ∩ T n
k B) =

∫

T n

k
B

χA(x)fh · ν dx ≈ µh(T
n
k B)M−1

M∑

j=1

χA(T n
k xj).

Since T n
k in general is not µh measure preserving we can not set µh(T

n
k B) =

µh(B). Instead we evaluate µh(T
n
k B) by mote carlo integration and by a

change of variables we obtain

∫

T n

k
B

fh · ν dx =

∫

B

fh · ν|det(∇T n
k x)| dx ≈ µh(B)M−1

M∑

j=1

|det(∇T n
k xj)|,

where we note that |det(T n
k x)| = 1 if fh is incompressible [6, p. 10].

Hence we define the following approximation to the correlation sequence
(1.7) for A,B ∈ Uh

(3.3)

CM
k,n(A,B) = µh(B)M−2

M∑

i=1

|det(∇T n
k xi)|

M∑

j=1

χA(T n
k xj) − µh(A)µh(B)

3.2. Error analysis. As outlined in Section 1.5 we assume that to every
pseudo orbit uk(t, x) there is an exact orbit u(t, y) such that (1.11) is

satisfied and that ε in (1.12) is small. Then for A,B ∈ Uh and B̃ as
defined in (1.13) we argue in the same way as we did in Section 2.2 and
obtain

|µ(A ∩ T n
k B) − µ(A)µ(B) − Cn(A, B̃)| ≤ ε

(
µ(∂A) + µ(A)µ(∂B)

)
.

In order to make the connection to the approximate correlation function
(3.3) we first note that for any A ∈ Uh

|µh(A) − µ(A)| =

∫

A

(fh − f) · ν dx ≤ |A|ef ,

and thus we arrive at the following estimate. For A,B ∈ Uh and B̃ as
defined in (1.13)

(3.4) |CM
k,n(A,B) − Cn(A,B)| ≤ ε

(
µ(∂A) + µ(A)µ(∂B)

)
+ Cef + R,

where the constant C = C(A,B) and where R must be interpreted statis-
tically as explained in Section 1.4.1.
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4. Numerical experiments

We only consider two examples of space periodic flows.
Inspired by [23] where laminar fluid mixing was experimentally stud-

ied in small channels we set up the following model. Let Ω ⊂ R3, be a
polyhedral domain with periodic boundaries ΓA and ΓB, see Figures 4.1
and 4.2, and consider the Dirichlet Stokes problem with periodic boundary
conditions in dimensionless form

(4.1)

−∆U + ∇P = 0 in Ω,

∇ · U = 0 in Ω,

U = 0 on ∂Ω \ (ΓA ∪ ΓB),

U |ΓA
= U |ΓB

,

P |ΓA
= P |ΓB

+ RP ,

where U = (U1, U2, U3) is the unknown velocity field, P the unknown
pressure and RP is a constant modelling the pressure drop.

θ

w

h

αh βℓ

ℓ

ΓA ΓB

C

xy
z

flow

Figure 4.1: Three juxtaposed Ridge Domains. The shaded planes ΓA and
ΓB are periodic boundaries. We choose the following values for the parameters:
ℓ = w = 1, h = 0.3, θ = 45◦, α = 2/3, β = 0.5, and the length of the unit cell is
= 1.

From [5] and [18] we know that U ∈ W 2,4/3(Ω)3 ∩ W 1,3
0 and thus U is

continuous although not Lipschitz continuous. There will be singularities
in ∇U and P along the edges and vertices of Ω. However, if we let Ω′ ⊂
Ω such that dist(Ω′, ∂Ω) is not too small, then we may argue that U is
Lipschitz continuous in Ω′ by an interior estimate as in for example [13,
Theorem 4.2, p. 209]. Thus when we compute orbits using f = U (or in
practice f = Uh) in (1.1) we only consider orbits that are not too close to
∂Ω.
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θ

w

h

αh βℓ

ℓ

p

ΓA ΓB

xy
z

flow

Figure 4.2: Three juxtaposed Herringbone Domains. The shaded planes
ΓA and ΓB are periodic boundaries. We choose the following values for the
parameters: ℓ = 2/3, w = 1, h = 1/5, θ = 45◦, α = 2/3, β = 9/16, p = 2/3, and
the length of the unit cell is = 14/9.

We refer to the domains in Figures 4.1 and 4.2 as the Ridge Domain
and the Herringbone Domain respectively, the names are quoted from [23].
Accurate solutions to (4.1) in the two domains are computed by a finite
element method, Hood-Taylor P2P1 on fine triangulations. We illustrate
the solutions in Figure 4.3 and 4.4.

a

y

z

0 1
0

0.5

b

y
z

U
x

0

1

0

0.5

0

1

Figure 4.3: Velocity field for (4.1) solved in the Ridge Domain, Figure 4.1, at
x = 0.0. (a) The y and z components of the velocity field. (b) The x component
of the velocity field.

4.1. Decay of correlations and Poincaré sections. We identified ΓA

and ΓB which are equal boundaries in (4.1) with Γ as defined in Section 1.1.
Since Γ is a polygon we choose to partition it into a regular triangulation
T .
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a

y

z

0 1
0

0.3

b

y
z

U
x

0

1

0

0.3

0
1

Figure 4.4: Velocity field for (4.1) solved in the Herringbone Domain, Figure
4.2, at x = 0.0. (a) The y and z components of the velocity field. (b) The x
component of the velocity field.

In order to examine the approximate correlation sequence (3.3) we choose
one B ∈ TS and three A = Ai ∈ Ti, i = 0, 1, 2 such that A2 ⊂ A1 ⊂ A2 and
where T1,2 are defined by uniformly refining T0 = T two or four times, thus
diam A0 > diam A1 > diam A2. In this case TS is part of the triangulation
use to solve (4.1) and hence is not commensurate with T , which is just a
coincidence and not important for the conclusions. We illustrate T0 and
Ai and B in Figures 4.5 and 4.6 and the triangles Ai and B are explicitly
specified in Tables 4.1 and 4.2.

We may think of this numerical experiment as modelling a mixing process
where one fluid flowing through B is suppose to mix with another fluid flow-
ing through Γ \ B. The approximate correlation sequence will reflect the
amount of mixing in Ai as a function of number of iterates n and diam Ai

will reflect the length scale on which we resolve the mixing process, cf., the
discussion in Section 1.4.

As outlined in Section 3.1 we let xj ∈ B for j = 1, . . . ,M be Uh dx dis-
tributed random variables for a relatively large number M = 80964 for the
Ridge Domain and M = 73445 for the Herringbone Domain. We compute
orbits to (1.1) for these initial data points using the simple cG(1) method
described in Section 1.5, with f = Uh where Uh now is the computed so-
lution to (4.1) . The time steps ki for i = 1, 2, . . . , N is chosen adaptively
so that the local residual is less than a relatively small tolerance, for more
details see [10].

We remark that a complete characterization of the correlation sequence
(1.6) involves examining all combinations of A,B ∈ Th. Such general
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Figure 4.5: Partition of Γ for the Ridge Domain in terms of a triangulation
T0. Shaded triangles illustrates B and Ai, i = 1, 2, 3, where A2,3 are defined by
refining A1 two or four times picking the central triangle.

Table 4.1: Ai and B for the Ridge Domain where a0, a1 and a2 denote the
(x, y)-coordinates of vertices.

a0 a1 a2

B (0.499997, 0.474672) (0.499994, 0.449343) (0.515248, 0.458255)
A0 (0.381751, 0.344022) (0.250000, 0.500000) (0.166667, 0.320676)
A1 (0.262104, 0.416175) (0.241271, 0.371343) (0.295042, 0.377180)
A2 (0.259922, 0.384010) (0.273365, 0.385470) (0.265131, 0.395218)

analysis would be computationally challenging since the amount of work
will grow quadratically in the number of triangles in Th. A general char-
acterization of this kind is beyond the scoop of this work.

Instead of the complete characterization of the correlation sequence we
may plot the Poincaré sections for orbits starting in B see Figures 4.7
and 4.8. This will give qualitative information of the mixing in the entire
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Figure 4.6: Partition of Γ for the Herringbone Domain in terms of a trian-
gulation T0. Shaded triangles illustrates B and Ai, i = 1, 2, 3, where A2,3 are
defined by refining A1 two or four times picking the central triangle.

Table 4.2: Ai and B for the Herringbone Domain where a0, a1 and a2 denote
the (x, y)-coordinates of vertices.

a0 a1 a2

B (0.502007, 0.510363) (0.495657, 0.295325) (0.510363, 0.295325)
A0 (0.209104, 0.333333) (0.127166, 0.235331) (0.264605, 0.224165)
A1 (0.182010, 0.257040) (0.216370, 0.254248) (0.202495, 0.281541)
A2 (0.204311, 0.261769) (0.200842, 0.268592) (0.195721, 0.262467)

domain Γ and from such plots we may readily identify regions with either
poor or good mixing.

Figure 4.7: Poincaré sections for the flow on the Ridge Domain. 80964 orbits
stating in B are included in the data.
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Figure 4.8: Poincaré sections for the flow on the Herringbone Domain. 73445
orbits stating in B are included in the data.

Finally, we plot the correlation sequence in Figure 4.9 and normalized
the data in the following way,

(4.2) ĈN
k,n =

∣∣∣∣∣
CN

k,n

µ(A)µ(B)

∣∣∣∣∣.

4.2. Discussion. We stress that the treatment of the examples in this
Section are not meant to be exhaustive in characterizing the mixing prop-
erties of Ridge Domain and Herringbone Domain. We rather meant to
indicate how the proposed mixing measure work in practice. The over all
impression form the Poincaré mapping, Figures 4.7 and 4.8, are still in
qualitative agreement with the experiments [23]. However the correlation
sequences in Figure 4.9 are not obviously interpreted, the simulations must
for example be run over larger time intervals in order to see whether the
decay rate is exponential or potential. Although increase the resolution,
decreasing the size of Ai, we can see a clear difference between the Ridge
Domain and the Herringbone Domain as when the correlation sequences
start to decay.

5. Conclusions

We have outlines a methodology for computationally characterizing fluid
mixing in incompressible flows. This methodology could in principle be
used for rigorous computational characterization of fluid mixing in the
sense that error in the mixing measure is controlled and made small. We
have not attempt to to achieve this during the cause of this work.

However we remark that in order to obtain such result we will have
to control all sort of errors: the error in the velocity field ef = fh − f ,
discretization error associated with the numerical method use to compute
uk(t, x), and the error approximating the mixing measure. Of these the
most difficult to control is the error in the computed velocity field ef .
This type of error control is vital research field and is rather involved to
implement.



17

Ridge with A1

n

Ĉ
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Figure 4.9: The correlation sequence for the Ridge Domain and Herringbone
Domain and differen Ai.
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