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POINTWISE A POSTERIORI ERROR ESTIMATES FOR

THE STOKES EQUATIONS IN POLYHEDRAL DOMAINS

ERIK D. SVENSSON AND STIG LARSSON

Abstract. We derive pointwise a posteriori residual-based error es-
timates for finite element solutions to the Stokes equations in polyhe-
dral domains. The estimates relies on the regularity of the of Stokes
equations and provide an upper bound for the pointwise error in the
velocity field on polyhedral domains. Whereas the estimates provide
upper bounds for the pointwise error in the gradient of the velocity
field and the pressure only for a restricted class of polyhedral domains,
convex polyhedral domains in R

2, and polyhedral domains with angles
at edges < 3π/4 in R

3. In the cause of this study we also derive Lq a
posteriori error estimates, generalizing well known L2 estimates.

1. Introduction

Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and consider the Dirichlet
Stokes problem in dimensionless form

(1.1)

−∆u + ∇p = f in Ω,

∇ · u = g in Ω,

u = 0 on ∂Ω,

where u = (u1, . . . , un) is the unknown velocity field, p the unknown pres-
sure, f = (f1, . . . , fn) is an external body force and g is a function pre-
scribing the compressibility of the flow, for incompressible flows g = 0.

The purpose of this paper is to establish residual-based pointwise a
posteriori error estimates for conforming finite element approximations

Date: April 18, 2006.
2000 Mathematics Subject Classification. 65N15, 65N30, 76D07.
Key words and phrases. a posteriori, pointwise error estimates, maximum norm,

Stokes equations.
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2 ERIK D. SVENSSON AND STIG LARSSON

(uh, ph) to the Stokes problem (1.1). Only requiring that the finite el-
ement mesh is regular, allowing adaptively refined meshes, we obtain a
number of error estimates.

(1) For polyhedral domains we derive pointwise error estimates for the
velocity field

‖uh − u‖L∞(Ω) ≤ E1(uh, ph, f, g, Ω, T ).

(2) For convex polyhedral domains in R2, and for polyhedral domains
in R3 with angles at edges < 3π/4 we derive pointwise error esti-
mates for the gradient of the velocity field

‖∇(uh − u)‖L∞(Ω) ≤ E2(uh, ph, f, g, Ω, T )

(3) For polyhedral domain as specified in Item 2 above we derive point-
wise error estimates for the pressure

‖ph − p‖L∞(Ω) ≤ E3(uh, ph, f, g, Ω, T ).

(4) For polyhedral domains and for q ∈ [2n/(n+1), 2n/(n−1)] we also
derive the following Lq-estimate

‖∇(uh − u)‖Lq(Ω) + ‖ph − p‖Lq(Ω) ≤ E4(uh, ph, f, g, Ω, T ).

The right hand sides E1,2,3,4 in the estimates above are functions derived
from the residuals, depending on the finite element solution, the data, the
domain and the triangulation.

The first estimate in Item 1 relies on the fact that, for sufficiently regular
data, the velocity field is Hölder continuous in polyhedral domains. Simi-
larly, the pointwise estimates for the gradient of the velocity field, Item 2,
and the pressure, Item 3, require continuity. This is generally not obtained
in polyhedral domains without imposing extra constraints, convexity for
polyhedral domains in R2 and a minimum inner angle condition, < 3π/4
at edges, for polyhedral domains in R3 [13]. We note that estimating
the gradient of the velocity field is somewhat more involved since ∇uh is
discontinuous at the (n − 1)-faces of the triangulation.

The fourth estimate in Item 4 relies on Lq-regularity estimates stated in
[3] for Lipschitz domains and also in [13] for polyhedral domains. It is a
straightforward generalization of the L2-based estimates in [19].

The techniques used to prove the pointwise error estimate is inspired
by [14], where an a posteriori residual-based pointwise error estimate was
derived for Poisson’s equation in two dimensions, later this analysis was
also done in three dimensions [4]. We remark that the gradient of the
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solution was not considered in these studies. The pointwise a priori error
analysis for the Stokes problem was worked out in two dimensions for con-
vex domains and quasiuniform triangulations [5], and in three dimensions
for polyhedral domains with the similar type of constraints as mentioned
above and for quasiuniform triangulations [10].

1.1. Assumptions and notation. We only consider functions defined on
bounded domains ω ⊆ Ω ⊂ Rn, n = 2, 3, with measure denoted by |ω|, and
where Ω is associated with the Stokes problem (1.1) and the dual problem
(1.4).

Let {ei}
n
i=1 denote the canonical unit vectors, e1 = (1, 0) and e2 = (0, 1)

for n = 2 and e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) for n = 3.
We denote the i:th partial derivative by

Di :=
∂

∂xi

, i = 1, . . . , n,

and the gradient by

∇ := (D1, . . . , Dn),

and the matrix of second order derivatives

∇2 := (DiDj)
n
i,j=1.

We use standard notation for spaces of smooth functions, for exam-
ple, Cm(ω), C∞

0 (ω) and Cm,γ(ω), and for Lebesgue and Sobolev spaces,

Lq(ω) = W 0,q(ω), W k,q(ω) and W k,q
0 (ω), see for example [1]. For u ∈ Lq(ω)

or u ∈ W k,q(ω) we use the following notation for the norm

‖u‖Lq(ω) = ‖u‖q,ω and ‖u‖W q,k(ω) = ‖u‖q,k,ω,

and likewise for the corresponding seminorms |u|q,k,ω.
When q = 2 Lq(ω) = L2(ω) becomes a Hilbert space and we denote the

scalar product by

(u, v)ω :=

∫

ω

uv dx.

For u ∈ W 1,q
0 (ω) or for u ∈ W 1,q(ω) with

∫

ω0

u dx = 0 for some non

empty ω0 ⊂ ω, the norm is equivalent to the seminorm, ‖u‖1,q,ω ≈ |u|1,q,ω,
see for example [18, Lemma 1.1.1–2, pp. 43–44]. We will use this equiva-
lence without further notice throughout this work.
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We denote the dual exponent to q by q′ = q/(q − 1) and the dual space

to W k,q
0 (ω) by W−k,q′(ω) with the dual norm

(1.2) ‖u‖−k,q′,ω := sup
ϕ∈C∞

0
(ω)

|〈u, ϕ〉|

‖ϕ‖k,q,ω

,

where 〈·, ·〉 denotes the duality pairing.
Generally, for a vector space V we denote its dual space by V ′ with dual

norm

‖u‖V ′ := sup
ϕ∈V

|〈u, ϕ〉|

‖ϕ‖V

,

for example, W k,q
0 (ω)′ := W−k,q′(ω).

When ω = Ω we sometimes write Lq instead of Lq(Ω) and ‖·‖q instead
of ‖·‖q,Ω and likewise for Sobolev spaces and their norms and the L2 scalar
product.

We use the quotient space W k,q/R with the norm

‖v‖W k,q/R := inf
c∈R

‖v + c‖k,q.

For vector fields

Ω ∋ x 7→ u(x) = (u1(x), . . . , un(x)) ∈ Rn

we set

∇u := (Diuj)
n
i,j=1,

∇2u := (DiDjuk)
n
i,j,k=1,

and for u = (u1, . . . , un) ∈ W k,q(Ω)n we use the Sobolev (Lebesgue) norm

‖u‖k,q :=

(

n
∑

i=1

‖ui‖
q
k,q

)1/q

,

and the corresponding seminorms, the maximum norms

‖u‖∞ := max
i

‖ui‖∞,

‖∇u‖∞ := max
i,j

‖Diuj‖∞,

and the scalar product

(u, v) =
n
∑

i=1

(ui, vi).
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We also use the product spaces W1,q := W 1,q
0 (Ω)n × Lq(Ω)/R with the

norm

‖(u, p)‖W1,q := ‖u‖1,q + ‖p‖Lq/R,

and W2,q := (W 2,q(Ω)n × W 1,q(Ω)) ∩ W1,s where s = nq/(n − q), see
Theorem 1.3, with the norm

‖(u, p)‖W2,q := ‖u‖2,q + ‖p‖W 1,q/R.

Finally, throughout this work we use C or Ci, i = 1, 2, . . ., to denote
various constants, not necessarily with the same value from time to time.

1.2. Weak formulation. We follow the standard notation, cf. [11, 19],
and define the bilinear form

L((u, p), (φ, λ)) := a(u, φ) + b(φ, p) − b(u, λ),

for test functions (φ, λ) and where

a(u, φ) :=

∫

Ω

n
∑

i,j=1

∂ui

∂xj

∂φi

∂xj

dx and b(φ, p) := −

∫

Ω

(∇ · φ)p dx.

For data f ∈ W−1,q and g ∈ Lq such that
∫

Ω
g dx = 0 and for 2n/(n +

1) < q < 2n/(n− 1) there is a unique weak solution to (1.1), see Theorem
1.1 for a more precise statement. The weak formulation of (1.1) now reads.
Find (u, p) ∈ W1,q(Ω) such that

(1.3) L((u, p), (φ, λ)) = 〈f, φ〉 + (g, λ) ∀(φ, λ) ∈ W1,q′(Ω),

where 〈·, ·〉 denotes the appropriate duality pairing.
The dual problem to (1.1) is

(1.4)

−∆ũ −∇p̃ = f̃ in Ω,

−∇ · ũ = g̃ in Ω,

ũ = 0 on ∂Ω,

where f̃ ∈ W−1,q′ and g̃ ∈ Lq′ such that
∫

Ω
g̃ dx = 0 and for 2n/(n +

1) < q′ < 2n/(n − 1). The corresponding weak formulation is. Find
(ũ, p̃) ∈ W1,q′(Ω) such that

(1.5) L((φ, λ), (ũ, p̃)) = 〈φ, f̃〉 + (λ, g̃) ∀(φ, λ) ∈ W1,q(Ω).



6 ERIK D. SVENSSON AND STIG LARSSON

1.3. Existence and regularity in non-smooth domains. For any do-
main Ω ⊂ Rn, n = 2, 3, and data f ∈ W−1,2(Ω)n and g ∈ L2(Ω) such
that

∫

Ω
g dx = 0, it is well known that there exists a unique weak solu-

tion (u, p) ∈ W 1,2
0 (Ω)n × L2(Ω)/R to (1.1), see for example [18, Chaper

3] and references therein. For sufficiently regular domains and data there
are several extensions such that (u, p) ∈ W 1,q

0 (Ω)n ×Lq(Ω)/R, see Remark
1.1 below. In Theorem 1.1 we quote one example of such an extension
where the Stokes problem is formulated on Lipschitz domains. This is a
slight modification of [3, Theorem 2.9] where it was provided with g = 0.
However the case g 6= 0 is readily included.

Theorem 1.1. Let Ω ⊂ Rn, n = 2, 3, be a bounded Lipschitz domain.
There exist ε > 0 such that if (3+ε)/(2+ε) < q < 3+ε and f ∈ W−1,q(Ω)n

and g ∈ Lq(Ω) with
∫

Ω
g dx = 0, then there exist a unique weak solution

(u, p) ∈ W 1,q
0 (Ω)n ×Lq(Ω)/R to (1.1). Moreover, the solution satisfies the

inequality

(1.6) ‖u‖1,q + ‖p‖Lq/R ≤ C
(

‖f‖−1,q + ‖g‖q

)

,

for some C = C(n, q, Ω).

Proof. For g = 0 this is [3, Theorem 2.9]. For g 6= 0 we use the method of
subtracting the divergence, see for example [18, Theorem 1.4.1, p. 114], to
handle the non-homogenous compressibility constraint.

For Ω and g as stated there exists v ∈ W 1,q
0 (Ω)n such that

(1.7) ∇ · v = g and ‖v‖1,q ≤ C‖g‖q,

see, for example, [18, Lemma 2.1.1, p. 68]. Taking w = u − v we see that
(1.1) is equivalent to

−∆w + ∇p = f + ∆v, ∇ · w = 0, in Ω,

and w|∂Ω = 0. Now [3, Theorem 2.9] implies that there exist a unique
pair (w, p) ∈ W 1,q

0 (Ω)n × Lq(Ω)/R satisfying the above equations and the
inequality

‖w‖1,q + ‖p‖Lq/R ≤ C‖f + ∆v‖−1,q,

for some C = C(n, q, Ω).
Thus, (u, p) ∈ W 1,q

0 (Ω)n ×Lq(Ω)/R is a unique solution to (1.1) and the
estimate above implies that

‖u‖1,q + ‖p‖Lq/R ≤ C
(

‖f‖−1,q + ‖v‖1,q + ‖∆v‖−1,q

)

.
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The inequality (1.6) now follows from the estimate in (1.7) and the fact
that ‖∆v‖−1,q ≤ ‖v‖1,q. �

Remark 1.1. (1) For n = 2 the results of the theorem actually holds with
(4 + ε)/(3 + ε) < q < 4 + ε. This is provided in the same way as for
n = 3 [17]. (2) For polyhedral domains a similar theorem was established
in [13], in particular, for convex polyhedral domains the result holds with
1 < q < ∞. (3) For C1-domains there is a similar theorem again with
1 < q < ∞, see for example [8].

As a consequence of Theorem 1.1 and Remark 1.1 we obtain the following
inf-sup like estimate.

Corollary 1.2. For q and Ω as in Theorem 1.1 we have

(1.8) ‖(u, p)‖W1,q ≤ C sup
(φ,λ)∈W1,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W1,q′

∀(u, p) ∈ W1,q(Ω),

where C = C(n, q′, Ω).

Proof. Let (φi, λi) be the solutions to the following problems

−∆φ1 −∇λ1 = f̃ , ∇ · φ1 = 0, in Ω; φ1|∂Ω = 0,

−∆φ2 −∇λ2 = 0, ∇ · φ2 = g̃ − g̃0, in Ω; φ2|∂Ω = 0,

where f̃ ∈ W−1,q′(Ω)n and g̃ ∈ Lq′(Ω) with the mean g̃0 = |Ω|−1
∫

Ω
g̃ dx.

With Theorem 1.1 applied to the above problems and with (1.5) we get

(1.9)

sup
(φ,λ)∈W1,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W1,q′

≥
1

2

(

|L((u, p), (φ1, λ1))|

‖(φ1, λ1)‖W1,q′

+
|L((u, p), (φ2, λ2))|

‖(φ2, λ2)‖W1,q′

)

≥ C

(

|〈u, f̃〉|

‖f̃‖−1,q′
+

|(p, g̃ − g̃0)|

‖g̃ − g̃0‖q′

)

Since W 1,q and Lq are reflexive for 1 < q < ∞ we get

sup
f̃∈W−1,q′ (Ω)n

|〈u, f̃〉|

‖f̃‖−1,q′
= ‖u‖1,q,
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and since (p, g̃ − g̃0) = (p − p0, g̃), where p0 = |Ω|−1
∫

Ω
p dx, we have

sup
g̃∈Lq′ (Ω)

|(p, g̃ − g̃0)|

‖g̃ − g̃0‖q′
≥

1

2
inf
c∈R

sup
g̃∈Lq′ (Ω)

|(p + c, g̃)|

‖g̃‖q′
=

1

2
‖p‖Lq/R,

where we also used the estimate ‖g̃ − g̃0‖q′ ≤ 2‖g̃‖q′ .

Now since (1.9) is valid for any f̃ ∈ W−1,q′(Ω)n and for any g̃ ∈ Lq′(Ω)

we may take the supremum with respect to f̃ and g̃, which together with
the last two estimates above completes the proof. �

The next theorem concerns the W 2,q(Ω)n × W 1,q(Ω)-regularity of the
solution to (1.1) in polyhedral domains. The theorem is due to [13], for a
review see [12], although it is formulated somewhat differently here.

Theorem 1.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and let
1 < q ≤ 4/3. Suppose f ∈ Lq(Ω)n and g ∈ W 1,q(Ω) such that

∫

Ω
g dx = 0.

Then there exist a unique weak solution (u, p) ∈ W 1,s
0 (Ω)n × Ls(Ω)/R to

(1.1) for s = nq/(n− q) such that (u, p) ∈ W 2,q(Ω)n ×W 1,q(Ω). Moreover,
the solution satisfies the inequality

(1.10) ‖u‖2,q + ‖p‖W 1,q/R ≤ C
(

‖f‖q + |g|1,q

)

,

for some C = C(n, q, Ω).

Proof. By virtue of Theorem 1.1 and Remark 1.1 we obtain the existence,
since by Sobolev’s imbedding theorem we have Lq ⊂ W−1,s and W 1,q ⊂ Ls

for s = nq/(n − q), 1 < q ≤ 4/3 and we readily check that 2 ≤ s ≤ 4 for
n = 2 and (3 + ε)/(2 + ε) < s < 3 + ε for n = 3 and any ε > 0.

The regularity (u, p) ∈ W 2,q(Ω)n × W 1,q(Ω) follows from [13, Theorem
5.3] which is also true provided (u, p) ∈ W 1,s

0 (Ω)n × Ls(Ω)/R [15]. The
estimate (1.10) is then as consequence of the open mapping theorem, see
for example [6, Corollary 5.11, p. 162]. �

Remark 1.2. (1) For n = 2 and if the maximum inner angle in the poly-
hedral domain is less than π − δ for some δ > 0, then the result can be
extended to hold with 1 < q ≤ 2 + ε for some ε > 0 [15] and cf. [13,
§5.5]. (2) For n = 3 and if the maximum inner angle at the edges in the
polyhedral domain is less than 3π/4 − δ for some δ > 0, then the result
can be extended to hold with 1 < q ≤ 3 + ε for some ε > 0 [15] and cf.
[13, §5.5]. (3) For C1-domains there is a similar theorem with 1 < q < ∞,
see for example [8]. In cases (1) and (2) the existence is also true since for
convex domains Theorem 1.1 is modified as in Remark 1.1.
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We now state a corollary where we assume that we have the higher
regularity in Remark 1.2.

Corollary 1.4. Suppose that the solution (ũ, p̃) to (1.4) with data as in
Theorem 1.3 belongs to W 2,q′(Ω)n × W 1,q′(Ω) for some q′ > n. Then the
solution (u, p) to (1.1) satisfies

(1.11) ‖u‖q + ‖p‖W 1,q′ (Ω)′/R ≤ C
(

‖f‖−2,q + ‖g‖W 1,q′(Ω)′

)

,

for some C = C(n, q′, Ω) and where 1/q +1/q′ = 1 and W 1,q′(Ω)′/R is the
dual space to W 1,q′(Ω)/R.

Proof. We use the same technique as in the proof of Corollary 1.2. With
(1.3) we estimate

‖f‖−2,q + ‖g‖W 1,q′(Ω)′ = sup
φ∈C∞

0
(Ω)n

|〈f, φ〉|

‖φ‖2,q′
+ sup

λ∈W 1,q′/R

|〈g, λ〉|

‖λ‖W 1,q′/R

≥ sup
(φ,λ)∈W2,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W2,q′

.

Let (φi, λi) be the solutions to the following problems

−∆φ1 −∇λ1 = f̃ , ∇ · φ1 = 0, in Ω; φ1|∂Ω = 0,

−∆φ2 −∇λ2 = 0, ∇ · φ2 = g̃ − g̃0, in Ω; φ2|∂Ω = 0,

where f̃ ∈ Lq′(Ω)n and g̃ ∈ W 1,q′(Ω) with the mean g̃0 = |Ω|−1
∫

Ω
g̃ dx.

We assumed that (φi, λi) ∈ W 2,q′(Ω)n × W 1,q′(Ω) and thus we estimate

(1.12)

sup
(φ,λ)∈W2,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W2,q′

≥
1

2

(

|L((u, p), (φ1, λ1))|

‖(φ1, λ1)‖W2,q′

+
|L((u, p), (φ2, λ2))|

‖(φ2, λ2)‖W2,q′

)

≥ C

(

|(u, f̃)|

‖f̃‖q′
+

|〈p, g̃ − g̃0〉|

|g̃|1,q′

)

,

for some C = C(n, q′, Ω).
Since Lq and W 1,q′(Ω)′ are reflexive for 1 < q < ∞ we get

sup
f̃∈Lq′ (Ω)n

|〈u, f̃〉|

‖f̃‖q′
= ‖u‖q,
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and since (p, g̃ − g̃0) = (p − p0, g̃), where p0 = |Ω|−1
∫

Ω
p dx, we have

sup
g̃∈W 1,q′ (Ω)

|〈p, g̃ − g̃0〉|

|g̃|1,q′
≥ inf

c∈R

sup
g̃∈W 1,q′ (Ω)

|〈p + c, g̃〉|

‖g̃‖1,q′
= ‖p‖W 1,q′ (Ω)′/R.

Now since (1.12) is valid for any f̃ ∈ Lq′(Ω)n and any g̃ ∈ W 1,q′(Ω) we

may take the supremum with respect to f̃ and g̃, which together with the
last two estimates above completes the proof. �

1.4. Finite element formulation. Let {T }h>0 denote a family of regular
triangulations of Ω and let hT denote the diameter of an n-simplex T ∈ T
and set hmin = minT∈Th

hT .

We only consider conforming finite element spaces, Xh ⊂ W 1,q
0 (Ω)n for

the velocity and, Mh/R ⊂ Lq(Ω)/R for the pressure and define the prod-
uct space Wh = Xh × Mh/R. From (1.3) we obtain the finite element
formulation. Find (uh, ph) ∈ Wh such that

(1.13) L((uh, ph), (φh, λh)) = 〈f, φh〉 + (g, λh) ∀(φh, λh) ∈ Wh.

As usual we also require that Wh satisfies the inf-sup condition [11], that
is,

(1.14) ‖(uh, ph)‖W1,2 ≤ C sup
(φh,λh)∈Wh

|L((uh, ph), (φh, λh))|

‖(φh, λh)‖W1,2

,

for all (uh, ph) ∈ Wh, which implies that (1.13) is well posed.
We particularly have in mind the family of Taylor-Hood finite elements,

see fore example [11], which satisfy the above requirement.
We recall a few standard results from interpolation theory, see for ex-

ample [16]. Let ST denote the union of all simplices adjacent to T and
let IXh

and IMh
denote interpolation operators IXh

: Wm,q
0 (Ω)n → Xh

and IMh
: Wm−1,q(Ω)/R → Mh/R. For integers ℓ = 0, 1, m = 1, . . ., and

(φ, λ) ∈ Wm,q(ST )n × Wm−1,q(ST )/R, we have

(1.15) ‖∇ℓ(φ − IXh
φ)‖q,T ≤ Chm−ℓ

T |φ|m,q,ST
,

and

(1.16) ‖λ − IMh
λ‖Lq(T )/R ≤ Chm−1

T |λ|W m−1,q(ST )/R.

On the boundary, ∂T , we use the trace inequality [8, Theorem 3.3, p. 43]
and scale it appropriately, i.e., for w ∈ W 1,q(T ) we obtain the estimate

‖w‖q,∂T ≤ C
(

h
−1/q
T ‖w‖q,T + h

1−1/q
T |w|1,q,T

)

,
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and hence

(1.17) ‖φ − IXh
φ‖q,∂T ≤ Ch

m−1/q
T |φ|m,q,ST

.

We also use inverse estimates, see for example [2, Theorem 4.5.3, p. 111].
For any T ∈ T , let V be a finite dimensional subspace of W k,q(T ) ∩
Wm,s(T ), where 1 ≤ q ≤ ∞ and 1 ≤ s ≤ ∞ and 0 ≤ m ≤ k. Then there
exist a constant C such that for all v ∈ V

(1.18) ‖v‖k,q,T ≤ Ch
m−k+n/q−n/s
T ‖v‖m,s,T .

2. Error analysis

We consider the error in the finite element solution to (1.13),

eu := uh − u and ep := ph − p,

and note that (eu, ep) ∈ W1,q, since the finite elements are conforming.
Define the residual in the momentum equation (me) by

(2.1) Rme := f + ∆uh −∇ph ∈ W−1,q(Ω)n,

and the residual in the compressibility constraint (cc) by

(2.2) Rcc := g −∇ · uh ∈ Lq(Ω),

where we note that
∫

Ω
Rcc dx = 0.

In weak form the residual becomes

(2.3) R((uh, ph), (φ, λ)) := 〈f, φ〉 + (g, λ) − L((uh, ph), (φ, λ)),

for all (φ, λ) ∈ W1,q′ .
From (1.3) we obtain the identity

(2.4) L((eu, ep), (φ, λ)) = R((uh, ph), (φ, λ)) ∀(φ, λ) ∈ W1,q′

and from (1.13) and it follows

(2.5) R((uh, ph), (φh, λh)) = 0 ∀(φh, λh) ∈ Wh,

which is the classical Galerkin orthogonality.
Inspired by [7, Lemma 3.1] we now provide the following lemma.

Lemma 2.1. For q ∈ [1,∞], and m = 1, 2, there is a constant C such
that

|R((uh, ph), (φ, λ))| ≤ Cηm,q

(

|φ|m,q′ + |λ|W m−1,q′/R

)

,
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for all (φ, λ) ∈ Wm,q′ where

ηm,q =







(

∑

T∈T ηq
m,q,T

)1/q

for q ∈ [1,∞),

maxT∈T ηm,∞,T for q = ∞,

with

ηm,q,T = hm
T ‖Rme‖q,T +

1

2
h

m−1/q′

T ‖[∂νuh]‖q,∂T\∂Ω + hm−1
T ‖Rcc‖q,T .

Here [∂νuh] denotes the jump across ∂T in the normal derivative, ∂νuh =
ν · ∇uh, where ν denotes the outward normal to ∂T .

Proof. By (2.5) and by integration by parts

R((uh, ph), (φ, λ)) = R((uh, ph), (φ − IXh
φ, λ − IMh

λ))

=
∑

T∈T

(

(f + ∆uh −∇ph, φ − IXh
φ)T

+
1

2
([∂νuh], φ − IXh

φ)∂T\∂Ω

+ (g −∇ · uh, λ − IMh
λ)T

)

.

Since
∫

Ω
(g −∇ · uh) dx = 0, we have

(g −∇ · uh, λ − IMh
λ)T = inf

c∈R

(g −∇ · uh, λ − IMh
λ + c)T

and hence by Hölder’s inequality,

(2.6)

|R((uh, ph), (φ, λ))|

≤
∑

T∈T

(

‖f + ∆uh −∇ph‖q,T‖φ − IXh
φ‖q′,T

+
1

2
‖[∂νuh]‖q,∂T\∂Ω‖φ − IXh

φ‖q′,∂T\∂Ω

+ ‖g −∇ · uh‖Lq(T )‖λ − IMh
λ‖Lq′ (T )/R

)

.
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Thus, with the interpolation estimates (1.15)–(1.17) in (2.6) we get

(2.7)

|R((uh, ph), (φ, λ))|

≤ C
∑

T∈T

(

hm
T

(

‖f + ∆uh −∇ph‖q,ST

+
1

2
h

1/q′

T ‖[∂nuh]‖q,∂T\∂Ω|φ|m,q′,ST

+ hm−1
T ‖g −∇ · uh‖Lq(T )|λ|W m−1,q′(ST )/R

)

.

Finally, we conclude the proof by using Hölder’s inequality for sums and
the notation in (2.1) and (2.2). �

Let (ũ, p̃) be the solution to the dual problem (1.5). By choosing (φ, λ) =
(ũ, p̃) in (2.4) we get

L((eu, ep), (ũ, p̃)) = R((uh, ph), (ũ, p̃)),

and by choosing (φ, λ) = (eu, ep) in (1.5) we obtain

L((eu, ep), (ũ, p̃)) = 〈eu, f̃〉 + (ep, g̃).

Thus

(2.8) 〈eu, f̃〉 + (ep, g̃) = R((uh, ph), (ũ, p̃)).

In order to proceed in the error analysis we need to choose the data in the
dual problem in a certain way. Let δ = δx0,ρ/2 ∈ C∞

0 (Ω) be a regularization
of the Dirac distribution at x0 ∈ Ω, that is, let

(2.9) supp(δ) ⊂ B(x0; ρ/2),

∫

Rn

δ dx = 1, 0 ≤ δ ≤ Cρ−n,

where B(x0; ρ/2) denotes the ball with center in x0 and radius ρ/2 chosen
such that

(2.10) ρ ≤ hσ
min,

where σ > 0 will be specified in the proofs of Lemmas 2.2–2.4 below. For
q ∈ [1,∞] it follows that

(2.11) |δ|k,q ≤ Cρ−n(1−1/q)−k.
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In the remainder of this section we state and prove three lemmas pro-
viding estimates of the following kind

‖eu‖∞ . |(eui
, δx0,ρ/2)|,

‖∇eu‖∞ . |(eu, Diδx0,ρ/2ej)|,

‖ep‖∞ . |(ep, δx0,ρ/2)|,

where eui
denotes the i:th component of eu and where ej is the j:th unit

vector. We stress that x0 may be different in the there estimates. With
these estimates we will be able to make a connection to the estimate in
Lemma 2.1, which in turn is crucial for the final pointwise error analysis.

In order to obtain these estimates we will have to assume that eu and ep

are continuous. This will be the case for eu provided the data is sufficient
regular due to Theorem 1.1, whereas for ep we also have to impose further
constraints on the domain Ω, see Remark 1.2. We note that ∇eu is not
continuous since ∇uh is discontinuous. However, with the same assump-
tions as for ep we derive an estimate that includes jump terms of the same
type as in the right hand side of the estimate in Lemma 2.1.

Lemma 2.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and let x0 ∈ Ω
and i be such that ‖eu‖∞ = |eui

(x0)|. Then for data to (1.1) as in Theorem
1.1 and for some q > n there is a constant C such that

‖eu‖∞ ≤ |(eui
, δ)| + Chβ

min

(

‖f‖−1,q + ‖g‖q

)

,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9) and β may be
chosen arbitrarily large.

We note that the lemma is meaningful since due to Theorem 1.1 and
Remark 1.1 there is q > n such that eu ∈ W 1,q

0 (Ω)n.

Proof. By Sobolev’s imbedding theorem, see [1, p. 98], W 1,q
0 (Ω)n ⊂ C0,γ(Ω)n

for some γ such that 0 < γ ≤ 1 − n/q. Consequently, by the mean value
theorem there is x1 ∈ B(x0, ρ/2) ∩ Ω such that (eui

, δ) = eui
(x1) and thus

‖eu‖∞ ≤ |(eui
, δ)| + |eui

(x0) − eui
(x1)|.

We estimate the last term in the right hand side above. By Sobolev’s
inequality

|eui
(x0) − eui

(x1)| ≤ Cργ‖eui
‖C0,γ(B(x0,ρ/2)∩Ω) ≤ Cργ‖eu‖1,q.

By the triangle inequality,

‖eu‖1,q ≤ ‖u‖1,q + ‖uh‖1,q,



15

and by Theorem 1.1,

‖u‖1,q ≤ C
(

‖f‖−1,q + ‖g‖q

)

,

and by the inverse estimate (1.18) and the inf-sup condition (1.14),

‖uh‖1,q ≤ Ch
n(1/q−1/2)
min ‖uh‖1,2 ≤ Ch

n(1/q−1/2)
min

(

‖f‖−1,q + ‖g‖q

)

.

Thus, with (2.10) we obtain

|eui
(x0) − eui

(x1)| ≤ Chβ
min

(

‖f‖−1,q + ‖g‖q

)

,

where β = γσ + n(1/q − 1/2) may be chosen arbitrarily large by taking σ
large. �

Lemma 2.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that
the solution to (1.1) with data as in Theorem 1.3 is continuous in the
sense that (u, p) ∈ W2,q, for q > n. Let x0 ∈ Ω, i and j be such that
‖∇eu‖∞ = |Dieuj

(x0)|. Then there are constants C1,2 such that

‖∇eu‖∞ ≤ |(eu, Diδej)| + C1h
β
min

(

‖f‖q + |g|1,q

)

+ C2 max
T∈T

‖[∂νuh]‖∞,∂T\∂Ω,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9), β may be
chosen arbitrarily large, and [∂νuh] is the jump as described in Lemma 2.1.

We note that the lemma is meaningful since with additional constraints
on the domain Ω as in Remark 1.2 there is q > n such that u ∈ W 2,q(Ω)n

so that u ∈ W 1,∞(Ω)n. Note also that ∇uh is discontinuous across ∂T for
T ∈ T which need to be taken into account proving Lemma 2.3. However,
∇uh is continuous in the interior of each T ∈ T .

Proof. The idea of the proof is the same as for Lemma 2.2. Let

BT =
⋃

{T ∈ T : T ∩ B(x0, ρ/2) 6= ∅},

where we for simplicity assume that BT is convex and note that card(BT ) ≤
C due to the regularity in the triangulation.

By the mean value theorem there are xT ∈ B(x0, ρ/2) ∩ T for T ∈ BT

such that

(Dieuj
, δ) =

∑

T∈BT

(Dieuj
, δ)B(x0,ρ/2)∩T =

∑

T∈BT

Dieuj
(xT )

∫

B(x0,ρ/2)∩T

δ dx,
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where
∫

B(x0,ρ/2)∩T
δ dx < 1 and thus

(2.12) ‖∇eu‖∞ ≤ |(eu, Diδej)| +
∑

T∈BT

|Dieuj
(x0) − Dieuj

(xT )|,

since by integration by parts (Dieuj
, δ) = −(eu, Diδej).

We estimate the terms in sum above. For T ∈ BT consider the line from
x0 to xT and for Tℓ ∈ BT suppose this line intersect m + 1 n-simplices
Tℓ and m boundaries ∂Tℓ at points xℓ for ℓ = 1, . . . ,m. Note that m is
bounded from above since card(BT ) ≤ C. Let x−

ℓ and x+
ℓ be the limits at

xℓ going from x0 and xT respectively. Set x+
0 = x0 and x−

m+1 = xT . We
estimate

(2.13)

|Dieuj
(x0) − Dieuj

(xT )| ≤
m
∑

ℓ=0

|Dieuj
(x+

ℓ ) − Dieuj
(x−

ℓ+1)|

+
m
∑

ℓ=1

|Dieuj
(x−

ℓ ) − Dieuj
(x+

ℓ )|.

For each term in the first sum above we may now proceed as in the proof
of Lemma 2.2. By Sobolev’s and the triangle inequality we get

|Dieuj
(x+

ℓ ) − Dieuj
(x−

ℓ+1)| ≤Cργ‖Dieuj
‖C0,γ(B(x0,ρ/2)∩Tℓ)

≤Cργ‖eu‖2,q,Tℓ

≤Cργ
(

‖u‖2,q + ‖uh‖2,q,Tℓ

)

.

By Theorem 1.3 we have

‖u‖2,q ≤ C
(

‖f‖q + |g|1,q

)

,

and by the inverse estimate (1.18) and the inf-sup condition (1.14)

‖uh‖2,q,Tℓ
≤ Ch

−1+n(1/q−1/2)
Tℓ

‖uh‖1,2,Tℓ
≤ Ch

−1+n(1/q−1/2)
min

(

‖f‖−1,q + ‖g‖q

)

,

since q > n.
Thus, with (2.10) and for Tℓ ∈ BT we obtain the uniform estimate

(2.14) |Djeui
(x+

ℓ ) − Djeui
(x−

ℓ )| ≤ Chβ
min

(

‖f‖q + |g|1,q

)

,

where β = γσ−1+n(1/q−1/2) may be chosen arbitrarily large by taking
σ large.
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As for the terms in the second sum in (2.13) and for Tℓ ∈ BT we use the
following uniform estimate

(2.15) |Djeui
(x−

ℓ ) − Djeui
(x+

ℓ )| ≤ max
T∈T

‖[∂νuh]‖∞,∂T\∂Ω.

Finally, (2.13) – (2.15) in (2.12) concludes the proof. �

Lemma 2.4. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the
solution to (1.1) with data as in Theorem 1.3 is continuous in the sense
that (u, p) ∈ W2,q, for some q > n. Let ep be such that

∫

Ω
ep dx = 0 and

let x0 ∈ Ω be such that ‖ep‖∞ = |ep(x0)|. Then there is a constant C such
that

‖ep‖∞ ≤ |(ep, δ)| + Chβ
min

(

‖f‖q + |g|1,q

)

,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9) and β may be
chosen arbitrarily large.

We note that the lemma is meaningful since with additional constraints
on the domain Ω as in Remark 1.2 there is q > n such that ep ∈ W 1,q(Ω)
so that ep ∈ L∞(Ω).

Proof. The idea of the proof is the same as for Lemma 2.2. By assumption
p ∈ W 1,q(Ω) for q > n and hence it follows by Sobolev’s imbedding theorem
that ep is continuous. Consequently, by the mean value theorem there is
x1 ∈ B(x0, ρ/2) ∩ Ω such that (ep, δ) = ep(x1) and thus

‖ep‖∞ ≤ |(ep, δ)| + |ep(x0) − ep(x1)|.

We estimate the last term above. By Sobolev’s inequality

|ep(x0) − ep(x1)| ≤ Cργ‖ep‖C0,γ(B(x0,ρ/2)∩Ω) ≤ Cργ‖ep‖1,q.

By the triangle inequality

‖ep‖1,q ≤ ‖p‖1,q + ‖ph‖1,q,

and Theorem 1.3

‖p‖1,q ≤ C
(

‖f‖q + |g|1,q

)

,

and by the inverse estimate and the inf-sup condition (1.14)

‖ph‖1,q ≤ Ch
−1+n(1/q−1/2)
min ‖ph‖2 ≤ Ch

−1+n(1/q−1/2)
min

(

‖f‖−1,q + ‖g‖q

)

.

Thus with (2.10) we obtain

|ep(x0) − ep(x1)| ≤ Chβ
min

(

‖f‖q + |g|1,q

)

,
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where β = γσ−1+n(1/q−1/2) may be chosen arbitrarily large by taking
σ large. �

3. A priori estimates of the dual solution

We consider the dual problem (1.4) for specific choices of data so that
we may estimate the scaling of the constants in (1.6) and (1.10) as q ↓ 1.

For (1.6) we will consider (f̃ , g̃) = (Diδej, 0) or (f̃ , g̃) = (0, δ − |Ω|−1) and

for (1.10) we will consider (f̃ , g̃) = (δei, 0), where δ is the regularized Dirac
distribution (2.11). We proceed as in [14, Theorem 3.1] and [4, Lemma
2.2]. The analysis relies on the explicit knowledge of how the constant in
Sobolev’s inequality scales as q ↓ 1, which can be estimated by using the
the best constant in the Sobolev inequality, where the dependence on the
dimension n and the exponent q appear explicitly. We quote Sobolev’s
inequality from [9, Theorem 7.10, p. 155]. Let ω be a bounded domain in
Rn, n = 2, 3. Then there is a constant C such that for any v ∈ W 1,s

0 (ω)d,
d = 1, . . . , n, and for 1 ≤ s < n

(3.1) ‖v‖ns/(n−s),ω ≤ C|v|1,s,ω,

where C = C(n, s) scales like

(3.2) C ≤ γ

(

n
s − 1

n − s

)1−1/s

,

and where γ = γ(n, s) < ∞ as s ↑ n.
In the analysis below we will find it useful to have (3.1) and (3.2)

formulated somewhat differently. By rearranging the exponents in (3.1)
and estimating the constant (3.2) accordingly we conclude that, for any

v ∈ W
1,nr/(n+r)
0 (ω)d and for n/(n − 1) ≤ r < ∞,

(3.3) ‖v‖r,ω ≤ Cr1−1/n|v|1,nr/(n+r),ω.

The following lemma is a consequence of (3.3).

Lemma 3.1. Let ω ⊂ Rn, n = 2, 3, be a bounded domain. Then there is
a constant C such that, if v ∈ Lq(ω)d, d = 1, . . . , n,

(3.4) ‖∇k−1v‖−k,q̃,ω ≤ C(q − 1)−1+1/n‖v‖q,ω,

for q̃ = nq/(n − q) and 1 < q ≤ n.
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Proof. By integration by parts and with Hölder’s inequality in the defini-
tion of the dual norm (1.2) we estimate

(3.5)

‖∇k−1v‖−k,q̃,ω = sup
ϕ∈C∞

0
(ω)d

|〈v,∇k−1ϕ〉|

‖ϕ‖k,q̃′,ω

≤ ‖v‖q,ω sup
ϕ∈C∞

0
(ω)n

|ϕ|k−1,q′,ω

‖ϕ‖k,q̃′,ω

.

Since 1 < q ≤ n implies n/(n − 1) ≤ q′ < ∞, we may use Sobolev’s
inequality (3.3) to estimate,

(3.6) |ϕ|k−1,q′,ω ≤ Cq′1−1/n|ϕ|k,q̃′,ω,

because nq′/(n + q′) = q̃′. Thus, inserting (3.6) in (3.5) concludes the
proof. �

As in [14, 4] we introduce a dyadic partition of Ω. Let dj = 2jρ for
j ∈ N and d−1 = 0. Define the partition of Ω,

(3.7) Aj = {x ∈ Ω : dj−1 ≤ |x − x0| ≤ dj},

and the supersets to Aj,

(3.8) Bj = {x ∈ Ω : 2−1dj−1 ≤ |x − x0| ≤ 2dj}.

From this definition we get the simple estimate

(3.9) |Bj| ≤ Cdn
j = C2jnρn.

Moreover, let ηj ∈ C∞
0 (Bj) be a mollifier such that, ηj = 1 in a neigh-

borhood of Aj and such that for s ∈ [1,∞],

(3.10) |ηj|k,s,Bj
≤ Cd

n/s−k
j .

Generalizing the last estimate in [14, Proof of Theorem 3.1] we get. For
a > 1 and as q ↓ 1 we have,

(3.11)
∞
∑

j=0

2−ja(1−1/q) =
1

1 − 2−a(1−1/q)
≤

C

q − 1
.

Finally, we recall the following two generalizations of Hölder’s inequality.
Let 1 ≤ q ≤ ∞, q ≤ r ≤ ∞ and q ≤ s ≤ ∞ such that

1

q
=

1

r
+

1

s
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and let u ∈ Lr(ω) and v ∈ Ls(ω). Then uv ∈ Lq(ω) and

(3.12) ‖uv‖q,ω ≤ ‖u‖r,ω‖v‖s,ω.

In the second generalization we estimate the duality pairing. For a vector
space V let u ∈ V ′ and v ∈ V . Then

(3.13) |〈u, v〉| ≤ ‖u‖V ′‖v‖V .

In particular, when u ∈ W−k,q(ω) and v ∈ W k,q′

0 (ω) we get

(3.14) |〈u, v〉| ≤ ‖u‖−k,q,ω‖v‖k,q′,ω.

3.1. W1,q-estimates as q ↓ 1. In the following theorem we assume that
we have the higher regularity in Remark 1.2.

Theorem 3.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that
the solution to (1.4) with data as in Theorem 1.3 is continuous in the
sense that (ũ, p̃) ∈ W2,q for some q > n. Then for 1 < q < 2 there is a

constant C such that the solution (ũ, p̃) to (1.4) with (f̃ , g̃) = (Diδej, 0) or

(f̃ , g̃) = (0, δ − |Ω|−1) satisfies the inequality

‖ũ‖1,q + ‖p̃‖Lq/R ≤ C(q − 1)−2+1/nρ−n(1−1/q).

Proof. Let Aj, Bj and ηj be as in (3.7)–(3.10). Choose a fixed value q̃ =
n/(n − 1). Let p̄ = p̃ + c for a fixed c ∈ R. By Hölder’s inequality

(3.15)

‖ũ‖1,q + ‖p̃‖Lq/R ≤
∞
∑

j=0

(

‖ũ‖1,q,Aj
+ ‖p̄‖q,Aj

)

≤
∞
∑

j=0

(

‖ηjũ‖1,q,Bj
+ ‖ηj p̄‖q,Bj

)

≤
∞
∑

j=0

|Bj|
1/q−1/q̃

(

‖ηjũ‖1,q̃,Bj
+ ‖ηj p̄‖q̃,Bj

)

.

Notice that ηjũ and ηj p̄ satisfy (1.4) in Ω with right hand side f̃ = f̃j =

∆(ηjũ) + ∇(ηj p̄) and g̃ = g̃j = ∇ · (ηjũ), where f̃j and g̃j vanish outside
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Bj. Hence, for each term in (3.15) we can apply Theorem 1.1,

(3.16)

‖ηjũ‖1,q̃,Bj
+ ‖ηj p̄‖q̃,Bj

= ‖ηjũ‖1,q̃,Ω + ‖ηj p̄‖q̃,Ω

≤ C
(

‖∆(ηjũ) + ∇(ηj p̄)‖−1,q̃,Bj
+ ‖∇ · (ηjũ)‖q̃,Bj

)

≤ C
(

‖ηj(∆ũ + ∇p̄) + 2∇ηj · ∇ũ + ∆ηjũ + ∇ηj p̄‖−1,q̃,Bj

+ ‖∇ηj · ũ + ηj∇ · ũ‖q̃,Bj

)

≤ C
(

‖ηj f̃‖−1,q̃,Bj
+ ‖ηj g̃‖q̃,Bj

+ ‖∇ηj p̄‖−1,q̃,Bj

+ ‖∇ηj · ũ‖q̃,Bj
+ ‖2∇ηj · ∇ũ + ∆ηjũ‖−1,q̃,Bj

)

,

where C = C(n, q̃, Ω).
We estimate the right hand side of (3.16) in a few steps. By integration

by parts

‖2∇ηj ·∇ũ+∆ηjũ‖−1,q̃,Bj
≤ ‖∇ηj ·∇ũ‖−1,q̃,Bj

+ sup
ϕ∈C∞

0
(Bj)n

(∇ηj, ũ · ∇ϕ)Bj

‖ϕ‖1,q̃′,Bj

.

Since (∇ηj p̄, ϕ) ≤ ‖p̄‖W 1,n(Bj)′|∇ηj · ϕ|1,n,Bj
, notice that the dual expo-

nent to q̃ is q̃′ = n,

‖∇ηj p̃‖−1,q̃,Bj
≤ ‖p̄‖W 1,n(Bj)′ sup

ϕ∈C∞
0

(Bj)n

|∇ηj · ϕ|1,n,Bj

‖ϕ‖1,n,Bj

,

and since (∇ηj · ∇ũ, ϕ) = −(ũ,∇(∇ηj · ϕ)),

‖∇ηj · ∇ũ‖−1,q̃,Bj
≤ ‖ũ‖q̃,Bj

sup
ϕ∈C∞

0
(Bj)n

|∇ηj · ϕ|1,n,Bj

‖ϕ‖1,n,Bj

.

Now by Hölder’s inequality

|∇ηj · ϕ|1,n,Bj
≤ |ηj|1,∞,Bj

|ϕ|1,n,Bj
+ ‖∇2ηjϕ‖n,Bj

,

and moreover by (3.12) with s such that 1/n = 1/s + 1/q′, (3.3), and
Hölder’s inequality

(3.17)

‖∇2ηjϕ‖n,Bj
≤|ηj|2,s,Bj

‖ϕ‖q′,Bj

≤C(q′)−1+1/n|ηj|2,s,Bj
|ϕ|1,nq′/(n+q′),Bj

≤C|Bj|
1−1/q(q − 1)−1+1/n|ηj|2,s,Bj

|ϕ|1,n,Bj
.

Finally, by Hölder’s inequality

‖∇ηj · ũ‖q̃,Bj
+ sup

ϕ∈C∞
0

(Bj)n

(∇ηj, ũ · ∇ϕ)

‖ϕ‖1,q̃′,Bj

≤ 2|ηj|1,∞,Bj
‖ũ‖q̃,Bj

.
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Thus, with the above estimates in (3.16) we obtain

(3.18)

‖ηjũ‖1,q̃,Bj
+ ‖ηj p̄‖Lq̃(Bj)/R ≤ CI‖ηj f̃‖−1,q̃,Bj

+ CII‖ηj g̃‖q̃,Bj

+ CIII

(

|ηj|1,∞,Bj
+ |Bj|

1−1/q(q − 1)−1+1/n|ηj|2,s,Bj

)

×
(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)

= Ij + IIj + IIIj.

With (3.18) we now estimate (3.15) in three steps. Recall (3.9) that will
repeatedly be used in the estimates below.

I. For data f̃ = Diδeℓ and by integration by parts we obtain by the same
argument as in (3.17) and with the same exponents

‖ηjDiδeℓ‖−1,q̃,Bj
≤ C‖δ‖q̃,Bj

sup
ϕ∈C∞

0
(Bj)n

|ηjϕ|1,n,Bj

‖ϕ‖1,n,Bj

≤ C‖δ‖q̃,Bj

(

‖ηj‖∞,Bj
+ |Bj|

1−1/q(q − 1)−1+1/n|ηj|1,s,Bj

)

.

Since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with (2.11) and for ρ sufficiently
small

(3.19)

∞
∑

j=0

|Bj|
1/q−1/q̃Ij ≤ Cρn(1/q−1/q̃)(q − 1)−1+1/n‖δ‖q̃

≤ Cρ−n(1−1/q)(q − 1)−1+1/n,

where we used n/q−n/q̃−n(1−1/q̃)+n(1−1/q)+n/s−1 = −n(1−1/q).

II. For data g̃ = δ − |Ω|−1 and since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with
(3.1) and (2.11)

(3.20)

∞
∑

j=0

|Bj|
1/q−1/q̃IIj ≤ Cρn/q−n/q̃‖∇δ‖1 ≤ Cρ−n(1−1/q),

where we used n/q − n/q̃ − 1 = −n(1 − 1/q).

III. By Hölder’s inequality and since q < 2

|Bj|
1/q−1/q̃IIIj ≤ Cd

n/q−n/q̃
j

(

|ηj|1,∞,Bj
+ d

n(1−1/q)
j (q − 1)−1+1/n|ηj|2,s,Bj

)

×
(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)

≤ Cd
−n(1−1/q)
j

(

1 + (q − 1)−1+1/n
)(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)

≤ Cd
−n(1−1/q)
j (q − 1)−1+1/n

(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)

,
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where we used n/q − n/q̃ − 1 = −n(1 − 1/q) and n/q − n/q̃ + n − n/q +
n/s − 2 = −n(1 − 1/q).

Adding all the terms and by Hölder’s inequality in the sum with expo-
nent q̃, with conjugate exponent q̃′ = n, estimating the geometric sum as
in (3.11) and by Corollary 1.4

(3.21)

∞
∑

j=0

|Bj|
1/q−1/q̃IIIj ≤ C(q − 1)−1+1/n

(

∞
∑

j=0

d
−n2(1−1/q)
j

)1/n

×

(

∞
∑

j=0

(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)q̃

)1/q̃

≤ Cρ−n(1−1/q)(q − 1)−1
(

‖ũ‖q̃ + ‖p̃‖W 1,n(Ω)′/R

)

≤ Cρ−n(1−1/q)(q − 1)−1
(

‖f̃‖−2,q̃ + ‖g̃‖W 1,n(Ω)′
)

,

since p̄ = p + c for arbitrary c ∈ R we may take the infimum over all c.
For f̃ = Diδej and since ‖Diδej‖−2,q̃ ≤ C‖Diδej‖−2,nq/(n−q) we obtain

by Lemma 3.1,

(3.22) ‖Diδej‖−2,q̃ ≤ C(q − 1)−1+1/n‖δ‖q ≤ Cρ−n(1−1/n)(q − 1)−1+1/q,

For g̃ = δ − |Ω|−1 we note that (δ − |Ω|−1, ϕ) = (δ, ϕ − ϕ0) where
ϕ0 = |Ω|−1

∫

Ω
ϕ dx. Using Sobolev’s inequality as in the proof of Lemma

3.1

(3.23) ‖δ − |Ω|−1‖W 1,n(Ω)′ ≤ Cρ−n(1−1/n)(q − 1)−1+1/n.

Collecting the results in (3.19)–(3.23) concludes the proof. �

Corollary 3.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that
the solution to (1.4) with data as in Theorem 1.3 is continuous in the sense
that (ũ, p̃) ∈ W2,q for some q > n. Then there is a constant C such that the

solution, (ũ, p̃) to (1.4) with (f̃ , g̃) = (Diδej, 0) or (f̃ , g̃) = (0, δ − |Ω|−1)
satisfies the inequality,

‖ũ‖1,1 + ‖p̃‖L1/R ≤ C|log ρ|2−1/n.

Proof. By Hölder’s inequality,

‖ũ‖1,1 + ‖p̃‖L1/R ≤ |Ω|1/q′
(

‖ũ‖1,q + ‖p̃‖Lq/R

)

.

Thus, with Theorem 3.2, taking q − 1 = 1/| log ρ|, we finish the proof. �
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3.2. W2,q-estimates as q ↓ 1.

Theorem 3.4. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Then for
q ∈ (1, 4/3] there is a constant C such that the solution (ũ, p̃) to (1.4) with

(f̃ , g̃) = (δei, 0) satisfies the inequality

‖ũ‖2,q + ‖p̃‖W 1,q/R ≤ C(q − 1)−αnρ−2(n+1)(1−1/q)

where α2 = 2, α3 = 4/3.

Proof. We proceed as in the proof of Theorem 1.1. Let Aj, Bj and ηj be
as in (3.7)–(3.10). Let p̄ = p̃ + c for a fixed c ∈ R. Choose a fixed value
q0 ∈ (1, 4/3]. Then for 1 < q < q0 by Hölder’s inequality

(3.24)

‖ũ‖2,q + ‖p̃‖W 1,q/R ≤
∞
∑

j=0

(

‖ũ‖2,q,Aj
+ ‖p̄‖1,q,Aj

)

≤
∞
∑

j=0

(

‖ηjũ‖2,q,Bj
+ ‖ηj p̄‖1,q,Bj

)

≤
∞
∑

j=0

|Bj|
1/q−1/q0

(

‖ηjũ‖2,q0,Bj
+ ‖ηj p̄‖1,q0,Bj

)

.

We note that ηjũ and ηj p̄ satisfy (1.4) in Ω with f̃ = f̃j = ∆(ηjũ)+∇(ηj p̄)

and g̃ = g̃j = ∇ · (ηjũ), where f̃j and g̃j vanish outside Bj for each j.
Hence, for each term in (3.24) we can apply Theorem 1.3,

(3.25)

‖ηjũ‖2,q0,Bj
+ ‖ηj p̄‖1,q0,Bj

= ‖ηjũ‖2,q0,Ω + ‖ηj p̄‖1,q0,Ω

≤ C
(

‖∆(ηjũ) + ∇(ηj p̄)‖q0,Bj
+ |∇ · (ηjũ)|1,q0,Bj

)

≤ C
(

‖ηj(∆ũ + ∇p̄) + 2∇ηj · ∇ũ + ∆ηjũ + ∇ηj p̄‖q0,Bj

+ |∇ηj · ũ + ηj∇ · ũ|1,q0,Bj

)

≤ CI‖ηjδei‖q0,Bj
+ CII‖∇

2ηjũ‖q0,Bj

+ CIII

(

‖∇ηj · ∇ũ‖q0,Bj
+ ‖∇ηj p̄‖q0,Bj

)

= Ij + IIj + IIIj,

where C = C(n, q0, Ω) and with −∆ũ−∇p̄ = δei and ∇· ũ = 0, and where
we also used |∇ηj · ũ|1,q0,Bj

≤ ‖∇2ηjũ‖q0,Bj
+ ‖∇ηj · ∇ũ‖q0,Bj

.
With (3.25) we now estimate (3.24) in three steps. Recall (3.9) that will

repeatedly be used in the estimates below.
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I. Since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with (2.11)

(3.26)
∞
∑

j=0

|Bj|
1/q−1/q0Ij ≤ Cρn/q−n/q0‖δ‖q0

≤ Cρ−n(1−1/q).

II. By Hölder’s inequality with exponent q̃ = q/(q − 2/n) and s such that
1/q0 = 1/s + 1/q̃ and with (3.10)

|Bj|
1/q−1/q0IIj ≤ Cd

n/q−n/q0

j |ηj|2,s,Bj
‖ũ‖q̃,Bj

≤ Cd
−(n+2)(1−1/q)
j ‖ũ‖q̃,Bj

,

where we used n/q − n/q0 + n/s − 2 = −(n + 2)(1 − 1/q).
Adding all the terms and by Hölder’s inequality in the sum with expo-

nent q̃, with conjugate exponent q̃′ = nq/2, and estimating the geometric
sum as in (3.11)

(3.27)

∞
∑

j=0

|Bj|
1/q−1/q0IIj

≤ C

(

∞
∑

j=0

d
−(n+2)(1−1/q)nq/2
j

)2/nq( ∞
∑

j=0

‖ũ‖q̃
q̃,Bj

)1/q̃

≤ Cρ−(n+2)(1−1/q)(q − 1)−2/nq‖ũ‖q̃.

With (3.3), Hölder’s inequality (nq̃/(n + q̃) ≤ nq/(n − q)), Theorem 1.1,
Lemma 3.1 and (2.11)

(3.28)

‖ũ‖q̃ ≤Cq̃1−1/n‖ũ‖1,nq̃/(n+q̃)

≤Cq̃1−1/n‖δ‖−1,nq/(n−q)

≤Cq̃1−1/n(1 − q)−1+1/n‖δ‖q

≤Cρ−n(1−1/q)(q − 2/n)−1+1/n(1 − q)−1+1/n,

where we remark that

2n/(n + 1) ≤ nq/(n − q) ≤ 2n/(n − 1),

for n = 2, 3 and 1 < q < 4/3 and thus we may use Theorem 1.1.
Collecting the estimates in (3.27) and (3.28) we obtain

(3.29)
∞
∑

j=0

|Bj|
1/q−1/q0IIj ≤ Cρ−2(n+1)(1−1/q)(q − 2/n)−1+1/n(q − 1)−1−1/n.



26 ERIK D. SVENSSON AND STIG LARSSON

III. By Hölder’s inequality with exponent q̃ = n/(n − 1) and s such that
1/q0 = 1/s + 1/q̃

|Bj|
1/q−1/q0IIIj ≤ Cd

n/q−n/q0

j |ηj|1,s,Bj

(

‖ũ‖1,q̃,Bj
+ ‖p̄‖q̃,Bj

)

≤ Cd
−n(1−1/q)
j

(

‖ũ‖1,q̃,Bj
+ ‖p̄‖q̃,Bj

)

,

where we used n/q − n/q0 + n/s − 1 = −n(1 − 1/q).
Adding all the terms and by Hölder’s inequality in the sum with expo-

nent q̃, with conjugate exponent q̃′ = n, and estimating the geometric sum
as in (3.11)

(3.30)

∞
∑

j=0

|Bj|
1/q−1/q0IIIj

≤ C

(

∞
∑

j=0

d
−n2(1−1/q)
j

)1/n( ∞
∑

j=0

(

‖ũ‖1,q̃,Bj
+ ‖p̄‖Lq̃(Bj)

)q̃

)1/q̃

≤ Cρ−n(1−1/q)(q − 1)−1/n
(

‖ũ‖1,q̃ + ‖p̃‖Lq̃/R

)

,

since p̄ = p + c for arbitrary c ∈ R we may take the infimum of all c.
With Theorem 1.1, Hölder’s inequality (q̃ ≤ nq/(n − q)), Lemma 3.1

and (2.11)

(3.31)

‖ũ‖1,q̃ + ‖p̃‖Lq̃/R ≤C‖δ‖−1,q̃

≤C(1 − q)−1+1/n‖δ‖q

≤Cρ−n(1−1/q)(1 − q)−1+1/n,

where Theorem 1.1 is applicable in analogy to the remark at (3.28).
Collecting the estimates in (3.30) and (3.31) we obtain

(3.32)
∞
∑

j=0

|Bj|
1/q−1/q0IIIj ≤ Cρ−2n(1−1/q)(q − 1)−1.

Finally adding (3.26), (3.29) and (3.32) concludes the proof. �

Corollary 3.5. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Then there
is a constant C such that the solution, (ũ, p̃) to (1.4) with f̃ = δei and
g̃ = 0 satisfies the inequality,

‖ũ‖2,1 + ‖p̃‖W 1,1/R ≤ C| log ρ|αn ,

with αn as in Theorem 3.4.
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Proof. See the proof of Corollary 3.3. �

4. Main results

We now make a precise statement of the main results and begin with
the pointwise error estimate of the velocity field.

Theorem 4.1. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Suppose
the data to (1.1) is as in Theorem 1.1 for some q > n. Then the error eu

in the finite element solution to (1.13) satisfies

‖eu‖∞ ≤ C| log hmin|
αnη2,∞ + C1h

β
min,

where α2 = 2, α3 = 4/3 and with η2,∞ as in Lemma 2.1 and where β can
be chosen arbitrarily large.

Proof. Let x0 ∈ Ω and i be such that ‖eu‖L∞ = |eui
(x0)| and let (ũ, p̃) be

the solution to (1.4) with data f̃ = δei and g̃ = 0. With Lemma 2.2, the
identity (2.8), Lemma 2.1 with q = ∞, and Corollary 3.5, we obtain

‖eu‖∞ ≤ (eu, δei) + C1h
β
min

(

‖f‖−1,q + ‖g‖q

)

≤ |R((uh, ph), (ũ, p̃))| + C1h
β
min

≤ Cη2,∞

(

‖ũ‖2,1 + ‖p̃‖W 1,1/R

)

+ C1h
β
min

≤ C| log ρ|αnη2,∞ + C1h
β
min.

Choosing ρ = hσ
min for σ sufficiently large such that β becomes large as in

Lemma 2.2 concludes the proof. �

For the gradient of the velocity field and the pressure we only ob-
tain pointwise error estimates on a restricted class of polyhedral domains,
namely convex domains when n = 2 and under an inner angle condition
when n = 3, see Remark 1.2.

Theorem 4.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the
solution to (1.1) with data as in Theorem 1.3 is continuous in the sense
that (u, p) ∈ W2,q for some q > n. Then the error ∇eu in the finite element
solution to (1.13) satisfies

‖∇eu‖∞ ≤ C| log hmin|
2−1/nη1,∞ + C1h

β
min,

with η1,∞ as in Lemma 2.1 and where β can be chosen arbitrarily large.
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Proof. Let x0 ∈ Ω, i and j be such that ‖∇eu‖∞ = |Dieuj
(x0)| and let

(ũ, p̃) be the solution to (1.4) with data f̃ = Diδej and g̃ = 0. With
Lemma 2.3, the identity (2.8), Lemma 2.1 with q = ∞, and Corollary 3.3,
we obtain

‖∇eu‖∞ ≤ (eu, Diδej) + C1h
β
min

(

‖f‖q + |g|1,q

)

+ C2 max
T∈T

‖[∂νuh]‖∞,∂T\∂Ω

≤ |R((uh, ph), (ũ, p̃))| + C1h
β
min + C2 max

T∈T
‖[∂νuh]‖∞,∂T\∂Ω

≤ Cη1,∞

(

‖ũ‖1,1 + ‖p̃‖L1/R

)

+ C1h
β
min + C2 max

T∈T
‖[∂νuh]‖∞,∂T\∂Ω

≤ C| log ρ|2−1/nη1,∞ + C1h
β
min.

Note that the jump term [∂νuh] from Lemma 2.3 is incorporated into the
error estimator η1,∞ in Lemma 2.1.

Choosing ρ = hσ
min for σ sufficiently large such that β becomes large as

in Lemma 2.3 concludes the proof. �

Theorem 4.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the
solution to (1.1) with data as in Theorem 1.3 is continuous in the sense
that (u, p) ∈ W2,q for some q > n. Then the error ep in the finite element
solution to (1.13) satisfies

‖ep‖∞ ≤ C| log hmin|
2−1/nη1,∞ + C1h

β
min,

with η1,∞ as in Lemma 2.1 and where β can be chosen arbitrarily large.

Proof. Let x0 ∈ Ω be such that |ep(x0)| = ‖ep‖L∞ and let (ũ, p̃) be the

solution to (1.4) with data f̃ = 0 and g̃ = δ − |Ω|−1. With Lemma 2.4,
the identity (2.8) and choosing ep such that

∫

Ω
ep dx = 0, Lemma 2.1 with

q = ∞, and Corollary 3.3, we obtain

‖ep‖∞ ≤ (ep, δ) + C1h
β
min

(

‖f‖q + |g|1,q

)

≤ |R((uh, ph), (ũ, p̃))| + C1h
β
min

≤ Cη1,∞

(

‖ũ‖1,1 + ‖p̃‖L1/R

)

+ C1h
β
min

≤ C| log ρ|2−1/nη1,∞ + C1h
β
min.

Choosing ρ = hσ
min for σ sufficiently large, such that β becomes large as in

Lemma 2.4 concludes the proof. �

Finally we obtain Lq-estimates of the velocity gradient and the pressure.
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Theorem 4.4. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Suppose the
data to (1.1) is as in Theorem 1.1 for some 2n/(n + 1) ≤ q ≤ 2n/(n− 1).
Then the error (eu, ep) in the finite element solution to (1.13) satisfies

‖eu‖1,q + ‖ep‖Lq/R ≤ Cη1,q,

where η1,q is as in lemma 2.1.

Proof. With Corollary 1.2, the identity (2.4), and Lemma 2.1 we get

‖(eu, ep)‖Wq ≤ C sup
(φ,λ)∈Wq′

|L((eu, ep), (φ, λ))|

‖(φ, λ)‖Wq′

= C sup
(φ,λ)∈Wq′

|R((uh, uh), (φ, λ))|

‖(φ, λ)‖Wq′

≤ Cη1,q sup
(φ,λ)∈Wq′

‖φ‖1,q′ + ‖λ‖Lq′/R

‖(φ, λ)‖Wq′

≤ Cη1,q.

�
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