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COMPUTATIONAL CHARACTERIZATION OF FLOWS

WITH SOME HYPERBOLICITY

ERIK D. SVENSSON

Abstract. Studying flows in general we do not know if the flow is
hyperbolic in a strict sense. Instead we vaguely assume that the flow is
dominated by contractions and expansions and say that flow have some
hyperbolicity. We compare a posteriori and shadowing error estimates
for computed orbits in flows with some hyperbolicity. Principal to the
estimates are the stability factors which we estimate in two examples
for orbits generated by velocity fields modelled by the Stokes equations
and computed by a finite element method.

1. Introduction

We consider domains Ω ⊆ R3 and Lipschitz continuous vector fields
Ω ∋ x 7→ f(x) ∈ R3 so that the dynamical system

(1.1) ∂tu(t, x) = f(u(t, x)), t > 0; u(0, x) = x,

defines a flow (t, x) 7→ u(t, x) ∈ Ω describing the motion of a fluid particle
starting at x and moving in the velocity field f .

Generally we can not find a closed expression for the flow and in order to
study the properties of the flow we may instead analyse a limited number
of numerically computed of orbits uk(t, xi) for i = 1, 2, . . . , I, where k refers
to the time discretization. For a reliable analysis we will have to control
the error

(1.2) e(t, x) := uk(t, xi) − u(t, x),

and make is small. From now on we consider a fixed x and set e(t) = e(t, x).
We are lead to the following classic question. Given a dynamical system
(1.1) and a number Tol > 0, is there a threshold time T so that ‖e(t)‖ ≤ Tol
for all t ∈ [0, T ], i.e., so the error is uniformly bounded on [0, T ]?
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For dynamical systems that are dynamically unstable, that is, sensitive
to perturbations, we anticipate that the error will grow, possibly at an
exponential rate, and we will only expect to be able to compute uk(t, xi)
with a small error for small T . However, if Ω is uniformly hyperbolic for
(1.1) and uk(t, xi) is computed with sufficient accuracy there is a shadow
orbit u(t, y) such that ‖uk(t, xi) − u(t, y)‖ < Tol for arbitrary t [16].

However, in practice we probably do not know if Ω is uniformly hyper-
bolic for (1.1) and also this requirement seems to be too strong and mainly
of theoretical interest. If we instead alleviate on the uniform hyperbolicity
and require Ω to have some hyperbolicity meaning that the flow is dom-
inated by contractions and expansions in a less strict sense we may still
obtain shadowing results similar to the aforementioned. In this case we
will expect the shadowing to hold for finite but large t, see for example
[5, 11, 12, 19] and the book [16].

As a concrete example we consider the Lorenz system

∂tu = (σ(u2 − u1), ρu1 − u2 − u1u3, u1u2 − βu3), t > 0;

u(0) = (1, 0, 0); for (σ, ρ, β) = (10, 28, 8/3).

In [14] this problem was solved accurately, in the sense that ‖e(T )‖ is
small, up to T = 50 which is predicted to be the threshold beyond which
‖e(T )‖ becomes too large to be represented with double precision arith-
metics (from the same work T = 100 for quadruple precision is predicted).

This result should be compared to [5] where the same problem is solved
accurately up to T = 9 × 106 in the sense that ‖uk(t, u(0)) − u(t, y)‖ is
small for t ∈ [0, T ], that is, very close to the computed orbit uk(t, u(0))
there is an exact orbit u(t, y).

This example obviously suggest that long time error control for problems
that are dynamically unstable will fail with the first method but could
possibly be archived with the last method, provided the structure of the
problem is sufficiently hyperbolic-like.

1.1. About this work. In this work we consider the case when the vec-
tor field f is not given in closed form but rather defined by a model, e.g.,
a partial differential equation, and approximated by computed numerical
data fh, where h refers to the space discretization. We solve (1.1) numer-
ically with fh as right hand side and estimate the error (1.2), where we
now also have to take the error in the velocity field

(1.3) ef := fh − f
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into account.
We assume that uk and fh are finite element approximations obtained by

solving appropriate finite element problems, which depend on the choice
of finite element method and the type of model defining f .

Provided ef is small enough and that we solve uk accurately enough we
have the following a posterior error estimate, see for example [6],

(1.4) sup
t∈[0,T ]

‖e(t)‖ ≤ S(T )E(fh, f, x),

where S(T ) is a stability factor and E(fh, f, x) is a function depending
on the data and made small as ef is made small and is uk solved more
accurately. The dependence on initial data for a particular problem will
be reflected in the stability factor and for dynamically unstable problems
this factor may grow exponentially in T , rendering the estimate useless
after some rather small time.

If we in addition to the requirements on ef and uk made for the estimate
above also require that the flow (1.1) is sufficient hyperbolic then we have
the following shadowing error estimate, see for example [5],

(1.5) sup
t∈[0,T ]

‖uk(t, x) − u(t, y)‖ ≤ S̃(T )E1(fh, f, x),

where u(t, y) is an exact solution to (1.1) with different initial data, S̃(T )
a stability factor and E(fh, f, x) is the same function as in the a posteriori
estimate above. Depending on the contractive and expansive directions in
the flow the stability factor may be subject to a mild growth over time
and the estimate will be valid for a rather large time.

In the present work we derive the finite time shadowing error estimate
(1.5). The overall idea is from [5] but now expressed using a finite element

framework. This work also differs in the way we estimate S̃(T ) and that
we use numeric data fh in the right hand side to (1.1). We also remark
that the overall framework in this paper has been inspired by [13] where
shadowing was considered in a more abstract setting, for parabolic partial
differential equations.

Finally, we describe a numerical experiment where we obtain fh as the
solution to a Stokes flow and with this data we compute and compare

S(T ) and S̃(T ) in (1.4) and (1.5). The experiment is inspired by the
experimental work [18] on a micro fluid mixing devise.
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2. Notation and preliminaries

For real valued functions u, v ∈ R3 we denote their scalar product by
u · v = u1v1 + u2v2 + u3v3.

For matrixes A and linear operators L we denote their transpose and
adjoint by A∗ and L∗. We let I denote the identity matrix or identity
operator.

We will use ‖·‖ to denote the appropriate matrix and vector norms.
We only consider bounded domains ω ⊆ Ω ⊂ R3 with measure denoted

by |ω|, and where Ω is associated with the flow (1.1).
We will denote piecewise smooth functions by Cm and use standard

notation for Sobolev spaces W k,q(ω) and W k,q
0 (ω).

For vector fields

Ω ∋ x 7→ f(x) = (f1(x), . . . , fn(x)) ∈ Rn

we set

∇u := (Diuj)
n
i,j=1,

where

Di :=
∂

∂xi

i = 1, . . . , n,

denote the i:th partial derivative.
Finally, throughout this work we will use C or Ci, i = 1, 2, . . ., to denote

various constants, not necessarily taking the same value from time to time.

2.1. Hyperbolic sets. A compact set ω ⊂ Ω is said, see for example [17,
p. 8], to be uniformly hyperbolic for the flow u(t, x) if there is a continuous
decomposition

(2.1) R3 = E0(x) ⊕ Es(x) ⊕ Eu(x) ∀x ∈ ω,

and constants c > 0 and 0 < λ < 1 < µ such that for each x ∈ ω,

(1) E0(x) is the one-dimensional subspace generated by f(x);
(2) ∇u(t, x)Es(x) = Es(u(t, x)) and ∇u(t, x)Eu(x) = Eu(u(t, x));
(3) ‖∇u(t, x)ξ‖ ≤ cλt‖ξ‖ for all ξ ∈ Es(x) and t ≥ 0;
(4) ‖(∇u(t, x))−1ξ‖ ≤ cµ−t‖ξ‖ for all ξ ∈ Eu(x) and t ≥ 0.

We remark that u(t, x) is called an Anosov flow if Ω is uniformly hyperbolic
for u(t, x).

The requirements in this definition are rather strong and there are many
examples of dynamical systems with non-trivial and interesting properties



5

that do not meet these requirements [20]. We therefore relax this re-
quirement and instead vaguely think of the flow as being dominated by
contractive and expansive direction in a less strict sense. An example of
one such relaxation is the notion of nonuniform hyperbolicity, where loosely
speaking, ”for every” in the definition is replace by ”for almost all”, see for
example [1, 20]. We will not discuss and specify this in more detail. Instead
we consider an example that to some extent motivates the reasoning.

Example 2.1. Suppose f is incompressible, that is,

∇ · f(x) = 0 ∀x ∈ Ω.

Then for every open set A ⊂ Ω the volume of A is preserved in the flow
(1.1), that is,

|A| = |u(t, A)| for t > 0

see for example [4, p. 10].
Now for a small ball B(x, ε) at x ∈ Ω and with radios ε and for small t

we consider the deformation of the ball in the flow, B(x, ε) → u(t, B(x, ε)).
Since the volume of the ball is preserved and since the flow leaves the ball
unchanged in the direction of the flow we are left with two possibilities
(1) the ball is contracted and expanded in some directions such that the
volume is unchanged and (2) the ball is unchanged.

Consequently, it seems reasonable to assume that in large parts of Ω
there is a splitting (2.1). If we assume that the case where the ball is not
deformed only happen in isolated points then the splitting (2.1) will exist
for almost all x ∈ ω but now Es and Eu must not be continuous.

2.2. Finite element approximation. The finite element formulation of
(1.1) is derived from the following variational formulation of (1.1). Find
u ∈ C1([0, T ])3 with u(0, x) = x such that

(2.2)

∫ T

0

(
∂tu− f(u)

)
· v dt = 0 ∀v ∈ C1([0, T ])3.

As the functions u and v are replaced by piecewise polynomials we obtain
the Galerkin finite element approximation.

For simplicity we only consider continuous finite elements although this
work is readily generalized to discontinuous finite elements. Partition [0, T ]
into intervals Ii = [ti−1, ti] for i = 1, 2, . . . , N such that 0 = t0 < t1 < . . . <
tN = T and set ki = ti−1 − ti. Let Pq(Ii) denote the polynomials of degree
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less or equal to q on Ii and set

Vq([0, T ]) := {v ∈ C0([0, T ]) : v|Ii
∈ Pq(Ii), for i = 1 . . . N}

Wq([0, T ]) := {v ∈ C0(
N⋃

i=1

(ti−1, ti)) : v|Ii
∈ Pq(Ii), for i = 1 . . . N}

which is the finite element spaces of continuous and discontinuous piecewise
polynomials of degree q.

For q ≥ 1 and from (2.2) we obtain the finite element formulation. Find
uk ∈ Vq([0, T ])d with uk(0, xi) = xi such that

(2.3)

∫ T

0

(∂tuk − f(uk)) · v dt = 0 ∀v ∈Wq−1([0, T ])3,

where we note that now v ∈ Wq−1([0, T ])3. This is the continuous Galerkin
method of order q, referred to as the cG(q) method in [7, p. 210].

There are q+1 points in the interval Ii, where the piecewise polynomials
are evaluated, referred to as local nodes. In the same way there are N(q+
1) − 1 points in the interval [0, T ] referred to as global nodes.

We recall the following interpolation estimate, see for example [7, Theo-
rem 5.1, p. 79]. For a smooth function v on Ii let Ii,qv ∈ Pq(Ii) interpolate
v at the local nodes. Then Ii,qv satisfies

‖Ii,qv − v‖L∞(Ii) ≤ C‖kq+1
i Dq+1v‖L∞(Ii).

In the same way, for a smooth function v on [0, T ], let Iqv ∈ Wq([0, T ])
interpolate v at the global nodes. For a global estimate we let k = k(t)
denote the piecewise constant function so that k|Ii

= ki. Then

(2.4) ‖Iqv − v‖L∞([0,T ]) ≤ C‖kq+1Dq+1v‖L∞([0,T ]).

Finally we recall the following inverse estimate. Let T be a finite element
triangulation of Ω and set hT = diam (T ) for all T ∈ T . For any T ∈ T ,
let V be a finite-dimensional subspace of W k,q(T ) ∩Wm,s(T ), where 1 ≤
q ≤ ∞, 1 ≤ s ≤ ∞ and 0 ≤ m ≤ k. Then there exists a constant C such
that for all v ∈ V

(2.5) ‖v‖W k,q(T ) ≤ Ch
m−k+n/q−n/s
T ‖v‖W m,s(T ),

see for example [2, Theorem 4.5.3, p. 111].
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2.3. Linearization. Let ū ∈ C0([0, T ])3 and rewrite (1.1) by linearization
around ū

(2.6) ∂tu(t, x) + A(t)u = F (t, u),

where we define the linear part of f ,

(2.7) A(t) := −∇f(ū(t))

and the nonlinear part,

(2.8) F (t, u) := f(u) + A(t)u.

Let L(t, s) for 0 ≤ s ≤ t ≤ T be the solution operator to the linearized
homogeneous problem

(2.9) ∂tu+ A(t)u = 0, t > s; u(s, x) = x.

Thus, u(t, x) = L(t, s)x is the solution of (2.9). We note that L(t, s)
satisfies the following properties: L(s, s) = I and L(t, r)L(r, s) = L(t, s)
for 0 ≤ s ≤ r ≤ t ≤ T . Consequently we may regard L(t, s) as the inverse
to L(s, t).

For t ∈ [0, T ] we consider the following weak formulation of (2.9). Find
u ∈ C1([s, t])3 with u(s, x) = x such that

(2.10)

∫ t

s

(∂τu+ A(τ)u) · v dτ = 0 ∀v ∈ C1([s, t])3.

We also introduce the dual problem to (2.10). Find ϕ ∈ C1([s, t])3 with
ϕ(t, ψ) = ψ such that

(2.11)

∫ t

s

φ · (−∂τϕ+ A∗(τ)ϕ) dτ = 0 ∀φ ∈ C1([s, t])3,

which is the weak formulation of the following problem,

(2.12) −∂sϕ+ A∗(s)ϕ = 0, s < t; ϕ(t, ψ) = ψ.

Let K(s, t) denote the solution operator to (2.12), that is, ϕ(s) = K(s, t)ψ.
Note that K(s, t) = L∗(t, s) since, by integration by parts in (2.11),

∫ t

s

(∂τφ+ A(τ)φ) · ϕ dτ = φ(s+) · ϕ(s+) − φ(t−) · ϕ(t−),

and thus, with φ = u in the above identity and v = ϕ in (2.10) we get

0 =

∫ t

s

(∂τu+ A(τ)u) · ϕ dτ = x ·K(s, t)ψ − L(t, s)x · ψ.
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Finally, we consider (1.1) with f(x) replaced by fh(x) and linearize
around ū ∈ C0([0, T ])3:

(2.13) ∂tu(t, x) + Ah(t)u = Fh(t, u),

where we define the linear part of fh,

(2.14) Ah(t) := −∇fh(ū)

and the nonlinear part,

(2.15) Fh(t, u) := fh(u) + Ah(t)u.

Let Lh(t, s) for 0 ≤ s ≤ t ≤ T be the solution operator the the linearized
homogeneous problem

(2.16) ∂tu+ Ah(t)u = 0, t > s; u(s, x) = x.

Thus, u(t, x) = Lh(t, s)x is the solution to (2.16). In analogy to (2.9)
there is a weak form and a dual problem to (2.16) with solution operator
L∗

h(t, s).

2.4. Exponential dichotomies. If Ω is uniformly hyperbolic for u(t, x)
then the following definition is meaningful, cf. [13].

Definition 2.1. The solution operator L(t, s) is said to have an exponen-
tial dichotomy in the interval [0, T ] if there are projections P (t), t ∈ [0, T ]
and constants M ≥ 1, β > 0 such that, for 0 ≤ s ≤ t ≤ T ,

(1) L(t, s)P (s) = P (t)L(t, s);
(2) ‖L(t, s)P (s)‖ ≤Me−β(t−s);
(3) ‖L(s, t)(I − P (t))‖ ≤Me−β(t−s).

The range R(P (t)) is called the stable subspace and the complementary
space R(I−P (t)) = N (P (t)) (the null space of P (t)) is called the unstable
subspace.

If L(t, s) has an exponential dichotomy on the interval [0, T ] then for
sufficiently smooth f the following boundary value problem is well posed,

(2.17)
∂tϕ+ A(t)ϕ = f(t), t ∈ (0, T ),

P (0)ϕ(0) = ϕ0, (I − P (T ))ϕ(T ) = ϕT ,

where ϕ0 ∈ R(P (0)) and ϕT ∈ R(I − P (T )).
The solution is given by

(2.18) ϕ(t) = G(t, 0)ϕ0 −G(t, T )ϕT +

∫ T

0

G(t, s)f(s) ds,
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where G(t, s) is the operator

(2.19) G(t, s) =

{
L(t, s)P (s), 0 ≤ s ≤ t,

−L(t, s)(I − P (s)), t < s ≤ T.

This is readily verified by the following calculations. By Duhamel’s prin-
ciple on the interval (0, t)

ϕ(t) = L(t, 0)ϕ0 +

∫ t

0

L(t, s)f(s) ds,

and by Property 1 in Definition 2.1,

P (t)ϕ(t) = L(t, 0)P (0)ϕ0 +

∫ t

0

L(t, s)P (s)f(s) ds.

In the same way on the interval (t, T )

(I − P (T ))ϕ(T ) = L(T, t)(I − P (t))ϕ(t) +

∫ T

t

L(T, s)(I − P (s))f(s) ds.

By applying the operator L(t, T ) and rearranging the terms,

(I − P (t))ϕ(t) = L(t, T )(I − P (T ))ϕ(T ) −

∫ T

t

L(t, s)(I − P (s))f(s) ds,

since L(t, T )L(T, s) = L(t, s) for s ≤ T ≤ t. The above result now follows
by considering

ϕ(t) = P (t)ϕ(t) + (I − P (t))ϕ(t).

We also see that the solution satisfies the estimate

(2.20) sup
t∈[0,T ]

‖ϕ(t)‖ ≤M
(
‖ϕ0‖ + ‖ϕT‖ + 2β−1 sup

t∈[0,T ]

‖f(t)‖
)
,

which follows from Property 2 and 3 in Definition 2.1 and the estimates

‖ϕ(t)‖ ≤ ‖G(t, 0)‖ ‖ϕ0‖ + ‖G(t, T )‖ ‖ϕT‖ + sup
t∈[0,T ]

|f(t)|

∫ T

0

|G(t, s)| ds,

and ∫ T

0

|G(t, s)| ds ≤

∫ T

0

e−β|t−s| ds ≤
2M

β
.

Note that with f(t) = −ψδ(t− τ) for some ψ ∈ Rn and τ ∈ [0, T ], where
δ is the Dirac distribution, we obtain the estimate

(2.21) sup
t∈[0,T ]

‖ϕ(t)‖ ≤M max{‖ϕ0‖, ‖ϕT‖, ‖ψ‖}.
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3. Error analysis

Subtracting (2.3) from (2.2) we obtain the weak representation of the
error e := uk(t, xi) − u(t, x). Find e ∈ C1([0, T ])3 with e(0, x) = xi − x
such that

(3.1)

∫ T

0

∂te · v dt =

∫ T

0

(f(u) − ∂tuh) · v dt ∀v ∈ C1([0, T ])3.

With Ah(t) as in (2.14) we linearize around uk and let

f(u) − ∂tuk = ef (u) + Ah(t)e+ η(uk, u) +R(uk),

where we define the error in the computed velocity field,

(3.2) ef (u) := f(u) − fh(u),

the non-linear part,

(3.3) η(uk, u) := fh(u) − fh(uk) + Ah(t)e

and the residual to (2.3),

(3.4) R(uk) := fh(uk) − ∂tuk.

We note that the residual is orthogonal to functions in the finite element
space Wq−1([0, T ])3 in the following sense,

(3.5)

∫ T

0

R(uk) · v dt = 0 ∀v ∈ Wq−1([0, T ])3.

We rewrite (3.1) according to the linearization above. Find e ∈ C1([0, T ])3

with e(0, x) = xi − x such that

(3.6)

∫ T

0

(∂te+ Ah(t)e) · v dt =

∫ T

0

(ef (u) + η(uk, u) +R(uk)) · v dt,

for all v ∈ C1([0, T ])3.
The following lemma will be useful characterizing the function η(·, ·).

Note that ∇fh is discontinuous across ∂T \ ∂Ω for T ∈ T .

Lemma 3.1. Let u, v, w ∈ Ω and suppose the convex hull K of {u, v, w} is

contained in Ω. Then a finite element function fh : Ω ∋ x 7→ fh(x) ∈ R3
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satisfies

‖fh(u) − fh(v) + ∇fh(w)(u− v)‖

≤ C‖u− v‖
(
h
−1−n/p
min

(
‖u− w‖ + ‖v − w‖

)
‖∇fh‖Lp(Ω)

+ max
T∈T

‖[∇fh]‖L∞(∂T\∂Ω)

)
,

for some 1 ≤ p ≤ ∞ and where the constant C depends on card(K ∩ T )2

and the constant in (2.5), and [·] denotes the jump across ∂T .

We remark that the exponent p in practice is determined by available
error estimates.

Proof. Consider the line l : [0, 1] ∋ s 7→ su+ (1 − s)v ∈ Rn and let

lT =
⋃

T∈T

T ∩ l 6= ∅.

From the identity

fh(u) − fh(v) −∇fh(w)(u− v)

=

∫ 1

0

(
∇fh(su+ (1 − s)v) −∇fh(w)

)
(u− v) ds,

and by the mean value theorem there are points ξT ∈ T for T ∈ lT such
that

∫ 1

0

∇fh(su+ (1 − s)v) ds =
∑

T∈lT

∫

l∩T

∇fh(su+ (1 − s)v) ds

=
∑

T∈lT

∇fh(ξT )

∫

l∩T

ds.

Hence, since
∫

l∩T
ds < 1

‖fh(u) − fh(v) −∇fh(w)(u− v)‖ ≤ ‖u− v‖
∑

T∈lT

‖∇(fh(ξT ) − fh(w))‖

For each point ξT consider the line between ξT and w. Suppose this line
crosses mT boundaries ∂T for T ∈ T at points ξT,i for i = 1, . . . ,mT . Let
ξ−T,i and ξ+

T,i be the limits at ξT,i going from ξT and w respectively, and set
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ξ+
T,0 = ξT and ξ−T,mT +1 = w. Estimate the terms in the sum above

‖∇(fh(ξT ) − fh(w))‖ ≤
mT∑

i=0

‖∇(fh(ξ
+
T,i) − fh(ξ

−
T,i+1))‖ +

mT∑

i=1

‖[∇fh(ξT,i)]‖,

where [∇fh(ξT,i)] = ∇(fh(ξ
−
T,i) − fh(ξ

+
T,i)) denotes the jump at ξT,i.

By the mean value theorem and an inverse estimate

‖∇(fh(ξ
+
T,i) − fh(ξ

−
T,i+1))‖ ≤

(
‖u− v‖ + ‖v − w‖

)
‖∇2fh‖L∞(T )

≤ Ch
−1−n/p
min

(
‖u− w‖ + ‖v − w‖

)
‖∇fh‖Lp(Ω),

since ‖ξ+
T,i − ξ−T,i+1‖ ≤ ‖ξT − w‖ ≤ ‖u− v‖ + ‖v − w‖.

For the jump terms we estimate

‖[∇fh(ξT,i)]‖ ≤ max
T∈T

‖[∇fh]‖L∞(∂T\∂Ω).

Collecting the estimates above concludes the proof. �

For fixed uk we consider η = η(uk, uk − e) and ef = ef (uk − e) as a
functions of e. Set

(3.7)

N0,T (e, v) :=

∫ T

0

η(uk, uk − e) · v dt,

E0,T (e, v) :=

∫ T

0

ef (uk − e) · v dt,

R0,T (uk, v) :=

∫ T

0

R(uk) · v dt,

and estimate N0,T , E0,T and R0,T . Let

(3.8) Bρ := {e ∈ C1([0, T ]) : ‖e‖L∞([0,T ]) ≤ ρ}.

With u = uk − e and v = w = uk in Lemma 3.1 we get

(3.9) ‖N0,T (e, v)‖ ≤ C‖v‖L1([0,T ])rN(fh, ρ)ρ for e ∈ Bρ

where we defined

(3.10) rN(fh, ρ) := ρh
−1−n/p
min ‖∇fh‖Lp(Ω) + max

T∈T
‖[∇fh]‖L∞(∂T\∂Ω).

Now N0,T is Lipschitz continuous, that is,

(3.11) ‖N0,T (e1, v)−N0,T (e2, v)‖ ≤ C‖v‖L1([0,T ])rN(fh, ρ)‖e1−e2‖L∞([0,T ]),

for e1, e2 ∈ Bρ and where rN(fh, ρ) is as in (3.10).
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To see this, suppose e1, e2 ∈ Bρ. By Hölder’s inequality,

|N0,T (e1, v) −N0,T (e2, v)|

≤ ‖η(uk, uk − e1) − η(uk, uk − e2)‖L∞([0,T ])‖v‖L1([0,T ]),

where

η(uk, uk − e1) − η(uk, uk − e2)

= fh(uk − e1) − fh(uk − e2) −∇fh(uk)(e1 − e2).

With u = uk − e1, v = uk − e2 and w = uk in Lemma 3.1, (3.11) follows.
As for E0,T we will use the uniform estimate

(3.12) E0,T (e, v) ≤ C‖ef‖L∞(Ω)‖v‖L1([0,T ]).

We also note by taking u = uk − e1, v = uk − e2 and w = 0 in Lemma
3.1 that E0,T is Lipschitz continuous, that is,

(3.13) ‖E0,T (e1, v) − E0,T (e2, v)‖ ≤ C‖v‖L1([0,T ])rE(ef )‖e1 − e2‖L∞([0,T ]),

for e1, e2 ∈ Bρ and where rE(ef ) is defined by

(3.14) rE(ef ) := h
−n/p
min ‖∇ef‖Lp(Ω).

Finally, due to the Galerkin orthogonality (3.5) we may add Iq−1v
∫ T

0

R(uk) · v dt =

∫ T

0

R(uk) · (v − Iq−1v) dt,

and hence by (2.4)

(3.15) R0,T (uk, v) ≤ C‖kqR(uk)‖L∞([0,T ])‖D
qv‖L1([0,T ]).

3.1. A posteriori error analysis. Consider the dual problem to (3.6).
Find ϕ ∈ C1([0, T ])3 with ϕ(T, x) = ϕT such that

(3.16)

∫ T

0

φ · (−∂tϕ+ A∗
h(t)ϕ) dt = 0 ∀φ ∈ C1([0, T ])3.

With v = ϕ in (3.6) and φ = e in (3.16) subtracting the equations we
get ∫ T

0

∂t(e · ϕ) dt =

∫ T

0

(ef (u) + η(uk, u) +R(uk)) · ϕdt,

or with the notation in (3.7) we get

(3.17) e(T ) · ϕT = e(0) · ϕ(0) +R0,T (uk, ϕ) + E0,T (e, ϕ) +N0,T (e, ϕ),
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which is a fixed point problem in e that admits a unique solution provided
N0,T and E0,T has sufficiently small Lipschitz constants.

Estimating the right hand side in (3.17) we use Cauchy’s inequality for
the fist term and for the remaining terms we use the estimates (3.15),
(3.12) and (3.9). As is usual we define the stability factors

(3.18)

S0(T ) := ‖ϕ(0)‖,

S1(T ) := ‖Dqϕ‖L1([0,T ]),

S2(T ) := ‖ϕ‖L1([0,T ]).

We remark that the stability factor mentioned in (1.4) now is S(T ) =
max {S0, S1, S2}.

Theorem 3.2 (A priori error estimate). Let ρ, fh and uk be such that

(3.19)

S0(T ) ≤ 1/6,

CS2(T )rE(ef ) ≤ 1/6,

CS2(T )rN(fh, ρ) ≤ 1/6,

where C is as in Lemma 3.1, rN(fh, ρ) and rE(ef ) as in (3.10) and (3.14),
and suppose

(3.20)

e(0) · ϕ(0) ≤ S0(T )‖e(0)‖ ≤
1

6
ρ,

R0,T (uk, ϕ) ≤ CS1(T )‖kqR(uk)‖L∞([0,T ]) ≤
1

6
ρ,

E0,T (u, ϕ) ≤ S2(T )‖ef‖L∞(Ω) ≤
1

6
ρ.

Then the error e(T ) = uk(T ) − u(T ) is bounded from above by

(3.21)
e(T ) · ϕT ≤S0(T )‖e(0)‖ + S1(T )‖kqR(uk)‖L∞([0,T ])

+ S2(T )‖ef‖L∞(Ω) ≤ ρ.

Proof. From (3.11), (3.13) and (3.19) it follows that (3.17) is a contraction
mapping on Bρ. From (3.19) and (3.20) we also see that the mapping is
into Bρ. Therefore there is a unique solution e ∈ Bρ to (3.17) that satisfies
(3.21). �

We note that

‖ϕ(T )‖ ≤ ‖ϕ(0)‖ + ‖A∗
h‖L∞([0,T ])

∫ T

0

‖ϕ(s)‖ ds,
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and by Gronwall’s lemma, see for example [8, p. 625] we estimate

‖ϕ(T )‖ ≤ ‖ϕ(0)‖
(
1 + T‖A∗

h‖L∞([0,T ])e
T‖A∗

h
‖L∞([0,T ])

)
.

For flows that are dynamically unstable we do not expect any better esti-
mates than this. Thus (3.19) and (3.20) will be very difficult or impossible
to achieve in these situations.

3.2. Shadowing. In this section we assume that L(t, s) has an exponential
dichotomy on the interval [0, T ]. We note the connection between L(t, s)
and Lh(t, s) provided in the following roughness result. From [16, Lemma
7.4, p.133] we know that if L(t, s) has an exponential dichotomy on [0, T ]
and if

‖Ah(t) − A(t)‖ ≤ δ ≤ δ0(M,β).

Then Lh(t, s) also has an exponential dichotomy on [0, T ] with constants
Mh, βh and projection Ph(t) satisfying

0 < βh < β and ‖Ph(t) − P (t)‖ ≤ Cδ,

where Mh, βh and C are constants only depending on M and β.
We now assume that Lh(t, s) has an exponential dichotomy on the in-

terval [0, T ] in the sense given in the paragraph above. It then follows
that L∗

h(s, t) also has an exponential dichotomy on [0, T ] with projection
I − P ∗

h (t) and constants Mh and βh. By taking the adjoint in Property 1
of Definition 2.1 and subtracting the identity we get

(I − P ∗
h (s))L∗

h(t, s) = L∗(t, s)(I − P ∗
h (t)),

and multiplying from left and right with L∗
h(s, t) and L∗

h(s, t) we obtain
Property 1 for L∗

h(s, t)

L∗
h(s, t)(I − P ∗

h (s)) = (I − P ∗
h (t))L∗

h(s, t).

The other properties now follow using the identity above.
Consider the following boundary value problem related to (2.17)

(3.22)
− ∂sϕ+ A∗

h(s)ϕ = −ψδ(s− t), s ∈ ([0, T ]);

(I − P ∗
h (0))ϕ(0) = 0, P ∗

h (T )ϕ(T ) = 0,

where ψ ∈ R3 and δ is the Dirac delta distribution and thus the solution
ϕ(s) will have a jump −ψ = ϕ(t)+ − ϕ(t)− at time s = t.

This problem is also well posed by the same arguments as for (2.17) and
the solution is

ϕ(s, t) = −G∗
h(s, t)ψ,
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where we explicitly added t as an argument in the solution and where
G∗

h(s, t) now is the Green operator

(3.23) G∗
h(s, t) =

{
(I − P ∗

h (t))L∗
h(s, t), 0 ≤ t ≤ s,

−P ∗
h (t)L∗

h(s, t), s < t ≤ T.

In weak form (3.22) reads. Find ϕ ∈ C1([0, t))3 ∪ C1((t, T ])3 :

(3.24)

∫ T

0

φ · (−∂sϕ+ A∗
h(s)ϕ) ds = φ(t) · ψ ∀φ ∈ C1([0, T ])3,

and by integration by parts

(3.25) φ(t) · ψ =

∫ T

0

(∂sφ+ Ah(s)φ) · ϕ ds+ φ(T ) · ϕ(T ) − φ(0) · ϕ(0),

where we stress that ϕ(0) and ϕ(T ) are not equal to zero, in fact only
(I −P ∗

h (0))ϕ(0) = 0 and P ∗
h (T )ϕ(T ) = 0 (P ∗

h (0)ϕ(0) and (I −P ∗
h (T ))ϕ(T )

are determined by the differential equation).
Suppose e(t) = uk(t, xi) − u(t, y) ∈ Bρ, where Bρ is the ball (3.8), and

such that Ph(0)e(0) = 0 and (I − Ph(T )e(T ) = 0 which implies that

e(T ) · ϕ(T ) = e(T ) · (I − P ∗
h (T ))ϕ(T ) = (I − Ph(T ))e(T ) · ϕ(T ) = 0,

and likewise e(0) · ϕ(0) = 0.
Taking φ = e in (3.25) and with (3.6) and (3.7) we get

(3.26) e(t) · ψ = R0,T (uk, ϕ) + E0,T (u, ϕ) +N0,T (u, ϕ),

which is a fixed point problem with a similar right hand side as in (3.17)
although the problem defining ϕ is not the same in this case. Note that
the right hand side does not have any derivative in ϕ and hence is well
defined even when ϕ is discontinuous as in the present case.

Estimating the right hand side in (3.26) we use Cauchy’s inequality
for the fist two terms and for the remaining terms we use the estimates
(3.15) (with care), (3.12) and (3.9), now tanking into account that ϕ is
discontinuous at s = t. As is usual we define the stability factors

(3.27)

S̃1(T ) := sup
t∈[0,T ]

max
{
‖Dqϕ(·, t)‖L1([0,t)), ‖D

qϕ(·, t)‖L1((t,T ])

}

S̃2(T ) := sup
t∈[0,T ]

‖ϕ(·, t)‖L1([0,T ]),

where now ϕ is the solution to the boundary value problem (3.22). We

remark that the stability factor in (1.5) now is S̃(T ) = max {S̃1, S̃2}.
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Theorem 3.3 (Shadowing). Let ρ, fh and uk be such that

(3.28)
CS̃2(T )rE(ef ) ≤ 1/4,

CS̃2(T )rN(fh, ρ) ≤ 1/4,

where C is as in Lemma 3.1, rN(fh, ρ) and rE(ef ) as in (3.10) and (3.14),
and suppose

(3.29)
R0,T (uk, ϕ) ≤ CS̃1(T )‖kqR(uk)‖L∞([0,T ]) ≤

1

4
ρ,

E0,T (u, ϕ) ≤ S̃2(T )‖ef‖L∞(Ω) ≤
1

4
ρ.

Then the numerical solution uk(t, xi) is shadowed by an exact solution

u(t, yi) and the error e(t) = uk(t, xi) − u(t, yi) is bounded from above for

all t ∈ [0, T ]

(3.30) |e(t)| ≤ S̃1(T )‖kqR(uk)‖L∞([0,T ]) + S̃2(T )‖ef‖L∞(Ω) ≤ ρ.

Proof. Set ψ = 1. From (3.11), (3.13) and (3.28) it follows that (3.26) is
a contraction mapping on Bρ. From (3.28) and (3.29) we also see that the
mapping is into Bρ. Therefore there is a unique solution e ∈ Bρ to (3.26)
that satisfies (3.30) and we get u(t, yi) = uk(t, xi) − e(t). �

We note that provided L∗
h(s, t) has an exponential dichotomy ϕ will stay

bounded by (2.21) and in contrast to the error estimate (3.21) the estimate
in this case (3.30) will remain valid for large T . However we must show
that L∗

h(s, t) has an exponential dichotomy or by some means estimate
ϕ(t, ·). We discuss this matter in the next section.

3.3. Finite time shadowing. In this section we discuss the finite time
shadowing results from [5]. We first assume that L(t, s) has an exponential
dichotomy as described in Sections 2.4 and 3.2.

We consider the boundary value problem (3.22) and the solution oper-
ator (3.23). From now on set ψ = 1.

Partition [0, T ] into M sub intervals [Tm, Tm+1] for m = 0, 1, . . . ,M − 1
and where T0 = 0 and TM = T . Let Lm = L(Tm+1, Tm) be a sequence of
operators and set

Lmn = Lm−1 · · ·Ln, m > n, and Lmm = I.

If we choose s = Tm and t = Tn in (3.23) we get

(3.31) ϕ(Tm, Tn) = −G∗
mn,
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where

G∗
mn =

{
(I − P ∗(Tn))L∗

mn, 0 ≤ n ≤ m,

−P ∗(Tn)L∗
mn, m < n ≤M.

This is the solution to the recurrence problem cf. [13, Section 3.2]

(3.32)
− δm+1,n = ϕm+1 − L∗

mϕm, m = 0, . . . ,M − 1;

(I − P ∗(0))ϕ0 = 0, P ∗(TM)ϕM = 0,

for n ∈ [0,M − 1] and where δm,n = 1 if m = n and δm,n = 0 if m 6= n.

Let f̂ = f/‖f‖ denote the normalization of f . Choose one (3×2) matrix
Z0 such that the (3 × 3) matrix

(
f̂h(u(0, x)) Z0

)

is orthonormal and by QR-factorization define recursively form = 0, 1, . . . ,M−
1

(
f̂h(u(Tm+1, x)) L∗

mZm

)
=

(
f̂h(u(Tm+1, x)) Zm+1

) (
· · · · · ·
0 Am

)
,

where

(3.33) Am :=

(
am bm
0 cm

)
= Z∗

m+1L
∗
mZm

is upper triangular and with positive diagonal entries as long as matrix
on the left hand side has full rank [10, Theorem 5.2.2, p. 217]. Note that
Z∗

mZm = I.
Set ϕm = Zmφm and transform (3.32)

(3.34)
− δm+1,nZ

∗
m+1 = φm+1 − Amφm, m = 0, . . . ,M − 1;

Z∗
0(I − P ∗(0))Z0φ0 = 0, Z∗

MP
∗(T )ZMφM = 0.

In most situations we do not know the projections P (0) and P (T ).
Nevertheless we may solve (3.34) by taking a good guess. With φm =
(φm,1, φm,2) and (3.33) we rewrite (3.34)

(3.35)
φm+1,1 = amφm,1 + bmφm,2 + δm+1,nzm+1,1,

φm+1,2 = cmφm,2 + δm+1,nzm+1,2,

where zm+1,i is the sum of the i:th row in Z∗
m+1.

Considering the sequences {am}
M
m=0 and {cm}

M
m=0 we distinguish six dif-

ferent cases and solve (3.35) accordingly. Set a =
∏M

m=0 am and c =∏M
m=0 cm.
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(1) If a > 1.0 and c < 1.0. Set φ0,2 = 0 and solve the second equation
forwards obtaining φm,2, and set φm,1 = 0, substitute φm,2 into the
first equation and solve backwards obtaining φm,1.

(2) If a < 1.0 and c > 1.0. Set φ0,2 = 0 and solve the second equation
backwards obtaining φm,2, and set φm,1 = 0, substitute φm,2 into
the first equation and solve forwards obtaining φm,1.

(3) If a < 1.0 and c < 1.0 and a > c. Do as in the first case.
(4) If a < 1.0 and c < 1.0 and a < c. Do as in the second case.
(5) If a > 1.0 and c > 1.0 and a > c. Do as in the first case.
(6) If a > 1.0 and c > 1.0 and a < c. Do as in the second case.

Cases (1) and (2) are considered as ideal and imply that ‖φ‖ is small. The
remanding cases are not ideal and the solution may blow up and ‖φ‖ may
be large.

Since we only guess the projections we may expect to mix the stable and
unstable subspaces when solving according to the steps above. The com-
puted solution will serve as an estimate for the true solution and hopefully
this solution will be small or have a mild growth over time.

3.3.1. Computing S̃i(T ), i = 2, 3, in practice. We now substitute L∗(s, t)
by L∗

h(s, t) in the analysis above and compute the norm to {φm}
M
m=0 in

(3.35) in two different ways.
Case I . In the first case we solveM−2 problems (3.35) for n = 1, 2, . . . ,M−
2 and compute the norms from this set of solutions. The amount of work
for this procedure will scale like O(M2).
Case II . In the second case we proceed as proposed in [5]. Instead of (3.35)
we consider

(3.36)
ηm+1,1 = amηm,1 ∓ |bm|ηm,2 ∓ |zn,1|,

ηm+1,2 = cmηm,2 ± |zm,2|,

where the ∓ and ± depend on whether we solve according to case (1) or
(2) as described above. This procedure will imply that |φm,1| ≤ ηm,1 and
|φm,2| ≤ ηm,2. The amount of work for this procedure will scale like O(M).

4. Finite time shadowing in Stokes flow

Inspired by [18] where laminar fluid mixing was experimentally stud-
ied in small channels we set up the following model. Let Ω ⊂ R3, be a
polyhedral domain with periodic boundaries ΓA and ΓB, see Figures 4.1
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and 4.2, and consider the Dirichlet Stokes problem with periodic boundary
conditions in dimensionless form

(4.1)

−∆U + ∇P = 0 in Ω,

∇ · U = 0 in Ω,

U = 0 on ∂Ω \ (ΓA ∪ ΓB),

U |ΓA
= U |ΓB

,

P |ΓA
= P |ΓB

+R,

where U = (U1, U2, U3) is the unknown velocity field, P the unknown
pressure and R is a constant modelling the pressure drop.

θ

w

h

αh βℓ

ℓ

ΓA ΓB

C

xy
z

flow

Figure 4.1: Three juxtaposed Ridge Domains. The shaded planes ΓA and
ΓB are periodic boundaries. We choose the following values for the parameters:
ℓ = w = 1, h = 0.3, θ = 45◦, α = 2/3, β = 0.5, and the length of the unit cell is
= 1.
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Figure 4.2: Three juxtaposed Herringbone Domains. The shaded planes
ΓA and ΓB are periodic boundaries. We choose the following values for the
parameters: ℓ = 2/3, w = 1, h = 1/5, θ = 45◦, α = 2/3, β = 9/16, p = 2/3, and
the length of the unit cell is = 14/9.
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From [3] and [15] we know that U ∈ W 2,4/3(Ω)3 ∩W 1,3
0 and thus U is

continuous although not Lipschitz continuous. There will be singularities
in ∇U and P along the edges and vertices of Ω. However, if we let Ω′ ⊂
Ω such that dist(Ω′, ∂Ω) is not too small, then we may argue that U is
Lipschitz continuous in Ω′ by an interior estimate as in for example [9,
Theorem 4.2, p. 209]. Thus when we compute orbits using f = U (or in
practice f = Uh) in (1.1) we only consider orbits that are not too close to
∂Ω.

We refer to the domains in Figures 4.1 and 4.2 as Ridge and Herringbone
respectively, the names are from [18]. Accurate solutions to (4.1) in the
two domains are computed by a finite element method, Hood-Taylor P2P1

on fine triangulations. We illustrate the solutions in Figures 4.3 and 4.4.
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Figure 4.3: Velocity field for (4.1) solved in the Ridge Domain, Figure 4.1, at
x = 0.0. (a) The y and z components of the velocity field. (b) The x component
of the velocity field.

We compute orbits to (1.1) using the simple cG(1) method described in
Section 2.2, with f = Uh where Uh now is the computed solution to (4.1) .
The time steps ki for i = 1, 2, . . . , N is chosen adaptively so that the local
residual is less than a small tolerance, for more details see [7]. We plot two
typical orbits in Figure 4.5 for the Ridge Domain and in Figure 4.6 for the
Herringbone Domain.

The dual problem (3.16) is solved by the same means but with time steps
ki for i = 1, 2, . . . , 2N − 1 obtained by refining the partition of [0, T ] used
for computing the orbits to (1.1). As ϕT we choose either of the canonical
unit vectors, e.g., (1, 0, 0). The stability factors Si(T ) for i = 1, 2, 3 are
then readily computed, see Figure 4.7.
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Figure 4.4: Velocity field for (4.1) solved in the Herringbone domain, Figure
4.2, at x = 0.0. (a) The y and z components of the velocity field. (b) The x
component of the velocity field.
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Figure 4.5: Computed orbit for x = (0, 1/2, 9/20) in the velocity field Uh

computed on the Ridge Domain. (a) Three dimensional plot. (b) Projection
on the xy-plane.

We compute the projection matrices Sm as explained in Section 3.3 by
approximating the action of L∗

m using the same method and the same time
steps as for the dual problem (3.16). The recurrence problem is solved in
the two different ways as described in Section 3.3, and depicted in Figures
4.8 and 4.9.
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Figure 4.6: Computed orbit for x = (0, 1/2, 1/3) in the velocity field Uh com-
puted on the Herringbone Domain. (a) Three dimensional plot. (b) Projection
on the xy-plane.
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Figure 4.7: (◦, +, ⋄) = (S0, S1, S2) Stability factors (3.18) for orbits in Figures
4.5 and 4.6.

5. Discussion

We have derived a shadowing error estimate (1.5) for computed orbits
uk(t, xi) to (1.1) with f replaced by a finite elements approximation fh.

Principal to the error estimate is the stability factors S̃1(t) and S̃2(t) which
for sufficiently hyperbolic problems do not grow at any considerable rate
as a function of the time t, in contrast to the stability factors Si for the a
posteriori error estimate where the stability factor grow at an exponential
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Figure 4.8: (◦, +) = (S̃1, S̃2) Stability factors (3.27) for orbit in Figure 4.5
computed as suggested in Section 3.3.1 (a) Case I (b) Case II.
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Figure 4.9: (◦, +) = (S̃1, S̃2) Stability factors (3.27) for the orbit in Figure 4.6
computed as suggested in Section 3.3.1 (a) Case I (b) Case II.

rate. We demonstrate this for orbits generated from the finite element
velocity field modelled by the Stokes equations on two different domains,
the Ridge Domain and the Herringbone Domain.

We note that there is an quite large difference in the way we choose to

estimate the stability factors S̃1(t) and S̃2(t), either as in Case I or as in
Case II as explained in Section 3.3.1, see Figures 4.8 and 4.9.

It is fare to say that the shadowing error estimate (1.5) is not rigorous as
long as we do not control all constants in the estimate. At this stage we are
not able to completely control the error in the finite element approximation
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fh. We only can provide asymptotic error estimates of ef , that is, there is
an unknown but bounded constant in the right hand side of the estimate
and we can only deduce that the error goes to zero as h→ 0.
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[18] A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, and G.M. White-

sides, Chaotic mixer for microchannels, Science 295 (2002), 647 – 51.
[19] E. S. Van Vleck, Numerical shadowing using componentwise bounds and a sharper

fixed point result, SIAM J. Sci. Comput. 22 (2000), 787–801.



26 ERIK D. SVENSSON

[20] L-S. Young, Developments in chaotic dynamics, Notices Amer. Math. Soc. 45
(1998), 1318–1328.

Department of Mathematical Sciences, Chalmers University of Tech-

nology, SE-412 96 Göteborg, Sweden
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