

PREPRINT 2006:21

Optimal Search in Finite Element
Triangulations Using Binary Trees

ERIK D. SVENSSON

Department of Mathematical Sciences
Division of Mathematics
CHALMERS UNIVERSITY OF TECHNOLOGY
GÖTEBORG UNIVERSITY
Göteborg Sweden 2006

Preprint 2006:21

Optimal Search in Finite Element Triangulations
Using Binary Trees

Erik D. Svensson

Department of Mathematical Sciences
Division of Mathematics

Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Göteborg, August 2006

Preprint 2006:21
ISSN 1652-9715

Matematiska vetenskaper
Göteborg 2006

OPTIMAL SEARCH IN FINITE ELEMENT

TRIANGULATIONS USING BINARY TREES

ERIK D. SVENSSON

Abstract. We propose a simple algorithm that, given the set S of
all n-simplices, n = 2, 3, in a finite element triangulation and a query
point p ∈ Rn will find one n-simplex or Rn\S containing p in O(log N)
search time, where N is the number of n-simplices in the triangulation.
The algorithm requires O(N log N) preprocessing time and O(N) stor-
age. We apply the algorithm on two finite element triangulations and
demonstrate that the search time is of the same order as the time to
evaluate the barycentric coordinates of one n-simplex, which we regard
a relevant time scale in many finite element applications.

1. Introduction

Given the set S of all n-simplices, n = 2, 3, in a finite element trian-
gulation and a query point p ∈ Rn we pose the following search problem:
Does any n-simplex in S contain p? This problem relates to two funda-
mental problems in computational geometry: the planar subdivision search

problem, that is, given a planar subdivision in R2 with a number of line
segments, determine which region in subdivision contains p; or the post-

office problem, that is, given a set of points, find the point that is closest to
p, see [6] and references there in. There are many solutions and suggestions
how to solve the subdivision search problem, for example [5, 4, 2, 7, 6].
With N denoting the number of n-simplices in S we characterize, cf. [4],
a solution or algorithm to the posed search problem by: (1) preprocessing

time -the time to construct search structures, (2) space -the storage used
by the method, (3) search time -the time required to locate the region or
point in S. It is possible to solve the search problem in an optimal way,

Date: April 18, 2006.
2000 Mathematics Subject Classification. 68U05.
Key words and phrases. computational geometry, point location, finite element, post-

processing.
1

2 ERIK D. SVENSSON

that is, with O(N) preprocessing time, O(N) space and O(log N) search
time [4, 6]. However, these methods are often considered too complicated
[2] and although the search time scales linearly the constant in the linear
dependence, the query constant, may be large [6].

In this work we propose a simple algorithm to solve the posed search
problem that is characterized as optimal in search time and space and
requires O(N log N) preprocessing time.

2. Preliminaries

We first introduce a few concepts used in finite element practice and
theory, see for example [1].

Let Ai for i = 1, . . . , n+ 1 be scalars not all equal to zero. A hyperplane

π is subspace of Rn such that

(2.1) π =
{

x ∈ Rn :
n

∑

i=1

Aixi + An+1 = 0
}

An n-simplex in Rn is the convex hull T of n + 1 points a1, . . . , an+1,
called vertices, not all contained in a hyperplane, that is, for n = 0, . . . , 3:
a point, a line segment, a triangle, or a tetrahedron. For 0 ≤ m ≤ n, an
m-face of the n-simplex T is an m-simplex whose vertices are also vertices
of T .

Let Ω ⊂ Rn be a polyhedral domain. A triangulation T is a partition
of Ω into n-simplices T such that no vertex of any simplex lies in the
interior of any m-face, for 1 < m < n. A family of triangulations {Th}h>0

is said to be shape-regular if there is a γ > 0 such that hT /ρT ≤ γ for
all T ∈

⋃

h Th, where hT = maxT∈Th
diam (T) and ρT = sup{diam(S) :

S is a ball contained in T}.
An n-rectangle is a set of the form

(2.2) R =
n

∏

i=1

[ai, bi] = {x = (x1, . . . , xn) : ai ≤ xi ≤ bi, 1 ≤ i ≤ n}.

Again, let S be the set of all n-simplices, n = 2, 3, in a finite element
triangulation T and set card(S) := N , that is, we use the cardinal number
to count the number of n-simplices in S.

In the complexity analysis we use a parameter N to measure the size
of the search problem. We may interchangeably take N as the number of
m-simplices, 0 ≤ m ≤ n, in the triangulation. In R2 this is solely due

3

to the Euler relations whereas in R3 we will have to impose additional
constraints on the triangulation.

Consider a triangulation T , where we now assume that Ω and ∂Ω are
simply connected which will only influence the Euler relations that we
will use. Let Ni for m = 0, . . . , n be the number of m-simplices in the the
triangulation and let N∂

m for m = 0, . . . , n−1 be the number of m-simplices
on the boundary of the triangulation.

We first consider n = 2. By counting the edges and triangles in the
triangulation we get the identity 2N1 −N∂

1 = 3N2 and since 0 ≤ N∂
1 ≤ N1

we may estimate
3

2
N2 ≤ N1 ≤ 3N2,

which shows that the number of edges and triangles are interchangeable.
Inserting this into the Euler relation for triangulations in R2, see for ex-
ample [3],

N0 − N1 + N2 = 1,

we get

1 +
1

2
N2 ≤ N0 ≤ 1 + 2N2,

which shows that the number of vertices and triangles are interchangeable.
Consider next n = 3. By counting the faces and tetrahedra in the

triangulation we get the identity

(2.3) 2N2 − N∂
2 = 4N3

and since 0 ≤ N∂
2 ≤ N2 we may estimate

2N3 ≤ N2 ≤ 4N3,

which shows that the number of faces and tetrahedra are interchangeable.
By counting the edges and tetrahedra in the triangulation we obtain

∑N1

i=1
ai = 6N3, where ai = card({T ∈ T : Ei ∩ T = Ei}) is the number of

tetrahedra neighboring the edge Ei. Hence

(2.4) āN1 = 6N3,

where ā = N−1

1

∑N1

i=1
ai is the average of {ai}

N1

i=1, which shows that the
number of edges and tetrahedra are interchangeable.

Also by counting the edges and faces on the boundary we get the identity
2N∂

1 = 3N∂
2 which together with the Euler relation on the boundary N∂

0 −

4 ERIK D. SVENSSON

N∂
1 + N∂

2 = 2 implies that N∂
2 = 2(N∂

0 − 2) and with (2.3) we get the
identity

(2.5) 2N2 = 4N3 + 2(N∂
0 − 2).

Inserting (2.4) and (2.5) into the Euler relation for triangulations in R3

N0 − N1 + N2 − N3 = 1,

we get

N0 + N∂
0 =

(6

ā
− 1

)

N3,

and since 0 ≤ N∂
0 ≤ N0 we may estimate

1

2

(6

ā
− 1

)

N3 +
3

2
≤ N0 ≤

(6

ā
− 1

)

N3 + 3,

which shows that the number of vertices and tetrahedra are interchange-
able.

Notice that we will have to impose ā < 6 in order to have a use full
estimate. This is often true in practice since the triangulation is generated
with a shape-regularity constraint. We also remark that we may try to use
the uniform estimate

N1 min
i=1,...,N1

ai ≤
N1
∑

i=1

ai ≤ N1 max
i=1,...,N1

ai,

in the analysis above but in practice this will often be useless since instead
of imposing ā < 6 we will have to impose maxi=1,...,N1

ai < 6 which is
not likely to be true in practice –there are always a few edges where the
condition fails. The mean value ā is a milder condition better suited in
this situation.

In conclusion, we just showed that provided ā < 6, we could use either
N = Ni, for i = 0, . . . , n in the complexity analysis. We will use this fact
without further notice throughout this work.

Finally, we will use the notion binary tree denoting a data structure
devised for fast data searching [8]. The binary tree contains a number of
items called nodes of the tree. Each node contains data and zero or two
links connecting to other nodes in the tree. The first node in the tree is
called the root. A connected set of nodes of the tree is called a subtree

and a node that has no connections to other nodes is called a leaf. See the
illustrations in Figure 2.1. The height of the tree is equal to the maximal
number of nodes connecting the root and any leaf.

5

datadatadata

data

data

leaves

root

subtree

Figure 2.1: Binary tree.

3. Binary search in triangulations

We devise a binary tree that will be used to find the n-simplex containing
the query point p, or no n-simplex if p is not in Ω. Each node in the tree will
contain numbers Ai for i = 1, . . . , n + 1 representing a hyperplane π, and
the subtrees negSubtree and posSubtree, also binary trees that are parts
of the entire tree. The hyperplanes will partition Rn into negative and
positive sides that will be used to sort the n-simplices in the triangulation
at preprocessing. As a result of this sorting, every leaf will contain a set of
n-simplices Sl where ideally Sl is such that card (Sl) = 1 or at least close
to 1.

Given a query point p we use the search Algorithm 1 to find 0 or 1 n-
simplex in the triangulation containing the point, 0 meaning that p is out-
side the Ω. In the algorithm we use a generic algorithm inSimplex(T, p)
to test whether T contains p and we refer to Algorithms 4 or 5 in the
Appendix for details.

In the sections below we describe two algorithms for constructing the
binary tree. Both algorithms however suffer from different deficiencies and
it is only after combining them in a new one we obtain an algorithm that
will be useful in practice.

3.1. Partitioning along xi-hyperplanes. Let R be the smallest n-rectangle
containing Ω. For ai and bi as in (2.2), defining the n-rectangle, set
a = (a1, . . . , an) and

dx = (dx1, . . . , dxn) = (b1 − a1, . . . , bn − an).

6 ERIK D. SVENSSON

Algorithm 1: findSimplex(point p, binary tree binaryTree)

Input: point p, binary tree binaryTree

Output: n-simplex T or 0 (no n-simplex)

if no subtrees then /* at a leaf */

forall T ∈ Sl do /* linear search */

if inSimplex(T, p) then /* see Algorithm 4 or 5 */
return T

return 0 /* no n-simplex was found */

else /* choose a subtree */

if
∑n

i Aipi + An+1 < 0 then
return findSimplex(p, negSubtree)

else
return findSimplex(p, posSubtree)

Find the largest side of R, and set i = argmaxi=1,...,n(dxi) and let π denote
the hyperplane with Ai = 1 and An+1 = −ai − dxi/2 (Aj = 0 for j 6= i
and j < n + 1). Partition R along the hyper plane π into to n-rectangles
R− and R+. Sort the n-simplices T ∈ S, where we recall that S is the
set of all n-simplices in the triangulation, now also contained in R. Add
T to S− if T ∩ R− 6= ∅ and add T to S+ if T ∩ R+ 6= ∅. Repeat this
procedure recursively for the pairs (R−, S−) and (R+, S+) until card (S) <
2 or card (S) = card (S−) or card (S) = card (S+). We summarize this
procedure in Algorithm 2.

The height of the tree is ∼ log N and each recursive step in the pre-
processing requires sorting ∼ N n-simplices. Hence, the preprocessing
time for the binary tree is O(N log N).

The search time will require O(log N) operations, but the query constant
will be rather large since at the leafs a linear search is preformed. The
number of simplices in Sl will be roughly bounded by the number of n-
simplices neighboring a node in the triangulation, in practice this is ∼ 10
for n = 2 and ∼ 40 for n = 3. This will slow down the search and due to
this Algorithm 2 is not a good choice in practice.

3.2. Partitioning along (n − 1)-faces. Recall that S is the set of all
n-simplices in T and that Nn−1 is the number of (n − 1)-faces in the
triangulation. Let πi for i = 1, . . . , Nn−1 be the hyperplanes defined by the
(n− 1)-faces in the triangulation. Denote the halfspaces on opposite sides

7

Algorithm 2: binaryTreeRectangular(S, a, dx)

Input: a set S of n-simplices, a and dx defining an n-rectangle R
Output: binary tree data structure
Data: the binaryTreeRectangular contain numbers Ai for

i = 1, . . . , n + 1 representing the hyperplane π, subtrees
negSubtree and posSubtree, and a set Sl of n-simplices.

Ai = 0 for i = 1, . . . , n + 1 /* initialization */

if card (S) < 2 then /* if leaf */
Sl = S
return this binaryTreeRectangular

else
i = argmaxi=1,...,n(dxi)
dxi = dxi/2
Ai = 1
An+1 = −ai − dxi

forall T ∈ S do /* sort simplices */

if
∑n

i=1
Aiaj + An+1 < 0 for one vertex aj ∈ T then

add T to S−

if
∑n

i=1
Aiaj + An+1 > 0 for one vertex aj ∈ T then

add T to S+

if card (S) > card (S−) and card (S) > card (S+) then /* new

subtrees */
negSubtree = binaryTreeRectangular(S−, a, dx)
ai = ai + dxi

posSubtree = binaryTreeRectangular(S+, a, dx)
else /* leaf */

Sl = S
return this binaryTreeRectangular

of πi by Rn
i,− and Rn

i,+. Now sort the simplices T ∈ S and add T to Si,−

if T ∩ Rn
i,− 6= ∅ and add T to Si,+ if T ∩ Rn

i,+ 6= ∅. Choose one of these
hyperplanes π = πi such that

i = argmaxi=1,...,Nn−1

{

card (Si,−)/card (Si,+) if card (Si,−) < card (Si,+),

card (Si,+)/card (Si,−) otherwise,

and set S− = Si,− and S+ = Si,+. Repeat the procedure recursively for S−

and S+ until card (S) < 2 or card (S) = card (S−) or card (S) = card (S+).

8 ERIK D. SVENSSON

This procedure creates a binary tree and we summarize it in Algorithm 3.

The height of the tree is ∼ log N and each recursive step in the pre-
processing requires sorting ∼ N2 n-simplices. Hence, the preprocessing
time for the binary tree is O(N2 log N), which is far from optimal.

The search time will require O(log N) operations and the query constant
will be rather good. Also, in this situation, a linear search is performed
at the leafs. However, in this case the number of simplices in Sl will be
small, mostly 1 and with small and rare variations. We have not made any
attempts to give a rigorous upper bound for the number of simplices in Sl.

Due to the scaling of the preprocessing time this algorithm is not a good
choice in practice, at least not for large triangulations.

3.3. binaryTreeRectangular and binaryTreeFace combined. We no-
tice that the deficiencies in Algorithms 2 and 3 are complementary, small
preprocessing time and large search time for Algorithm 2 but large pre-
processing time and small search time for Algorithm 3. In other words it
seems desirable to combine the algorithms in such way that only the favor-
able characteristics of the algorithms remain and cancel the deficiencies.
The idea is to let Algorithm 3 continue where Algorithm 2 is terminated.
We input S = Sl from Algorithm 2 into Algorithm 3 and let it refine the
tree further. In this way we will gain a binary tree with good query con-
stant since the card(Sl) after Algorithm 3 has terminated will be small,
and since Algorithm 3 is only applied on small sets S from Algorithm 2 it
will not have major impact on the total preprocessing time.

If we assume that there are ∼ N different leaves in the tree after Al-
gorithm 2 has terminated and that each such leaf holds M n-simplices
then the total preprocessing time will be the preprocessing time for Al-
gorithm 2 plus the preprocessing time for Algorithm 3 applied on N sets
each holding M n-simplices, that is, the total preprocessing time will scale
like O(N log N + NM2 log M) which is close to O(N log N) for small M
and large N .

Note that we may also try to apply Algorithm 3 on a smaller set Ss ⊂ S
(S outputted from Algorithm 2), chosen by some means, which will im-
prove the preprocessing time at the expense of the search time. For exam-
ple we may take Ss to be the n-simplex whose barycenter is closest to the
center of mass of all barycenters of all n-simplices in S. Then card (Ss) = 1
and the total complexity will be O(N log N). This will alter card (Sl) at the

9

final leafs, when Algorithm 3 has terminated, and card (Sl) will be larger
but still relatively small when compared to binaryTreeRectangular.

4. Numerical examples

We now consider two triangulations, one in R2, Figure 4.1, and the other
in R3, Figure 4.2. We build the search structure proposed in Section 3.3
and measure: the preprocessing time and the average search time for 106

randomly chosen query points as function of number of nodes N in the
triangulations as we perform 4 and 3 uniform refinements in the R2 and
R3 triangulations, respectively.

The preprocessing time is normalized with the preprocessing time for
the triangulations at start and the search time is normalized with the time
it takes evaluating the barycentric coordinates for one n-simplex, see the
Appendix where we account for the implementation used. The motivation
for the normalization of the search time is to find a time scale appropri-
ate for finite element applications. For example, it is often necessary to
evaluate the barycentric coordinates when post-processing finite element
data.

In Figures 4.3 and 4.4 we visualize the search process in the two dimen-
sional triangulation. We search for a query point contained in the shaded
triangle in Figure 4.3 and marked with the bullet • in Figure 4.4. We also
plot the the hyperplanes π (lines) used to partition the triangles in the
triangulation. After 12 levels in the binary tree the triangle containing the
query point could be identified. There are 9 layers from Algorithm 2 and
3 layers from Algorithm 3.

Finally we plot the results from the measurements in Figures 4.5 and
4.6, where we also make a least square data fit to the appropriate scaling,
O(N log N) for the preprocessing time and O(log N) for the search.

10 ERIK D. SVENSSON

Figure 4.1: A two-dimensional triangulation with 940 nodes and 1572 trian-
gles.

Figure 4.2: A three-dimensional triangulation with 578 nodes and 1567 tetra-
hedra.

11

Algorithm 3: binaryTreeFace(S)

Input: a set S of n-simplices
Output: binary tree data structure
Data: the binaryTreeFace contain numbers Ai for i = 1, . . . , n + 1

representing the hyperplane π, subtrees negSubtree and
posSubtree, and a set Sl of n-simplices.

Ai = 0 for i = 1, . . . , n + 1 /* initialize */

if card (S) < 2 then /* if leaf */
Sl = S
return this binaryTreeFace

else

r = 0.0 /* parameter do decide the best partition */

/* Let πi with scalars Bi be the hyper planes defined

by the Nn−1 (n − 1)-faces in S. */

forall πi do

forall T ∈ S do /* sort simplices */

if
∑n

i=1
Biaj + Bn+1 < 0 for one vertex aj ∈ T then

add T to Si,−

if
∑n

i=1
Biaj + Bn+1 > 0 for one vertex aj ∈ T then

add T to Si,+

if card (Si,−) ≤ card (Si,+) and r < card (Si,−)/card (Si,+) then
r = card (Si,−)/card (Si,+)
S− = Si,− and S+ = Si,+

Ai = Bi for i = 1, . . . , n + 1
else if card (Si,+) < card (Si,−) and r < card (Si,+)/card (Si,−)
then

r = card (Si,+)/card (Si,−)
S− = Si,− and S+ = Si,+

Ai = Bi for i = 1, . . . , n + 1
if card (S) > card (S−) and card (S) > card (S+) then /* new

subtrees */
negSubtree = binaryTreeFace(S−)
posSubtree = binaryTreeFace(S+)

else /* leaf */
Sl = S
return this binaryTreeFace

12 ERIK D. SVENSSON

Figure 4.3: Search process using the binary tree with Algorithm 2. We are
searching for a query point contained in the shaded triangle in the rear leg of the
tiger. The horizontal and vertical lines are the hyperplanes π used to partition
the triangles in the triangulation.

Figure 4.4: The query point is marked with the bullet •. (left) Search in
the tree with Algorithm 2, zoom in. The set of shaded triangles is the set Sl in
the leaf from Algorithm 2. (right) Search in the tree with Algorithm 3. The
algorithm terminates with one triangle in the final leaf.

13

search

N

ti
m

e

∼ log N

103 104 105
1

5

10

15

preprocessing

N

ti
m

e

∼ N log N

103 104 105

100

101

102

103

Figure 4.5: (Two-dimensional triangulation) Data from applying the algo-
rithm in Section 3.3 to the triangulation in Figure 4.1. The dashed lines are
least square fits. (left) Average search time for 106 randomly chosen query
points. The time is normalized with the time to evaluate the barycentric co-
ordinates for one triangle, which is a characteristic time scale in finite element
post-processing. (right) Preprocessing time normalized with the preprocessing
time of the triangulation at start.

search

N

ti
m

e

∼ log N

103 104 105
1

5

10

15

preprocessing

N

ti
m

e

∼ N log N

103 104 105

100

101

102

103

Figure 4.6: (Three-dimensional triangulation) Data from applying the algo-
rithm in Section 3.3 to the triangulation in Figure 4.2. The dashed lines are
least square fits. (left) Average search time for 106 randomly chosen query
points. The time is normalized with the time to evaluate the barycentric coor-
dinates for one tetrahedron, which is a characteristic time scale in finite element
post-processing. (right) Preprocessing time normalized with the preprocessing
time of the triangulation at start.

14 ERIK D. SVENSSON

Appendix A. Various simple algorithms for n-simplices

In this appendix we give account for various simple algorithms or mere
implementations of mathematical notions that we have used throughout
this work on n-simplices with vertices in ai = (xi, yi) for i = 1, . . . , 3
(triangles) or ai = (xi, yi, zi) for i = 1, . . . , 4 (tetrahedra) as in Figure A.1.
We represents barycentric coordinates λ with the (n+1)×(n+1) matrices
M. For x ∈ Rn we then get the barycentric coordinate as λ = Mx.

a1

a2

a3

a1

a2

a3

a4

Figure A.1: n-simplices. (left) A triangle with vertices a1, a2 and a3. (right)
A tetrahedron with vertices a1, a2, a3 and a4.

A.1. Triangles, n = 2.

A.1.1. Volume. We compute the signed volume as the vector product
V (a1, a2, a3) = ((a2 − a1) × (a3 − a1))/2 which in terms of the vertices
is

V (a1, a2, a3) =
1

2

(

(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)
)

,

and the volume is |V (a1, a2, a3)|.

A.1.2. Barycentric coordinates. The matrix M is the inverse to




x1 x2 x3

y1 y2 y3

1 1 1



 ,

15

cf. [1], and we get

M = V (T)−1





y2 − y3 x3 − x2 x2y3 − x3y2

y3 − y1 x1 − x3 x3y1 − x1y3

y1 − y2 x2 − x1 x1y2 − x2y1



 ,

A.1.3. Point in a triangle. In order to test whether a point p is contained
in a triangle T we test if p and a3 are on the same side of the line trough
a1 and a2, and likewise for the other two vertices, cf. [6, Code 1.6, p. 29].

Algorithm 4: inTriangle(T, p)

Input: triangle T , point p
Output: true (p ∈ T) or false (p 6∈ T)

v = V (a1, a2, a3)
if v ∗ V (a1, a2, p) < 0.0 then

return false

if v ∗ V (a3, a1, p) < 0.0 then
return false

if v ∗ V (a2, a3, p) < 0.0 then
return false

return true

A.2. Tetrahedra, n = 3.

A.2.1. Volume. We compute the signed volume as the vector triple product
V (a1, a2, a3, a4) = (a2 −a1) · ((a3 −a1)× (a4 −a1))/6 which in terms of the
vertices is

V (a1, a2, a3, a4) =
1

6

(

− (x4 − x1)(y3 − y1)(z2 − z1)

+ (x3 − x1)(y4 − y1)(z2 − z1)

+ (x4 − x1)(y2 − y1)(z3 − z1)

− (x2 − x1)(y4 − y1)(z3 − z1)

− (x3 − x1)(y2 − y1)(z4 − z1)

+ (x2 − x1)(y3 − y1)(z4 − z1)
)

,

and the volume is |V (a1, a2, a3, a4)|.

16 ERIK D. SVENSSON

A.2.2. Barycentric coordinates. The matrix M is the inverse to








x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1









,

cf. [1], and we get

M = V (T)−1





| | | |
M1 M2 M3 M4

| | | |



 ,

where

M1 =









y4(z3 − z2) + y3(z2 − z4) + y2(z4 − z3)
y4(z1 − z3) + y1(z3 − z4) + y3(z4 − z1)
y4(z2 − z1) + y2(z1 − z4) + y1(z4 − z2)
y3(z1 − z2) + y1(z2 − z3) + y2(z3 − z1)









,

M2 =









x4(z2 − z3) + x2(z3 − z4) + x3(z4 − z2)
x4(z3 − z1) + x3(z1 − z4) + x1(z4 − z3)
x4(z1 − z2) + x1(z2 − z4) + x2(z4 − z1)
x3(z2 − z1) + x2(z1 − z3) + x1(z3 − z2)









,

M3 =









x4(y3 − y2) + x3(y2 − y4) + x2(y4 − y3)
x4(y1 − y3) + x1(y3 − y4) + x3(y4 − y1)
x4(y2 − y1) + x2(y1 − y4) + x1(y4 − y2)
x3(y1 − y2) + x1(y2 − y3) + x2(y3 − y1)









,

M4 =









x4(y2z3 − y3z2) + x3(y4z2 − y2z4) + x2(y3z4 − y4z3)
x4(y3z1 − y1z3) + x3(y1z4 − y4z1) + x1(y4z3 − y3z4)
x4(y1z2 − y2z1) + x2(y4z1 − y1z4) + x1(y2z4 − y4z2)
x3(y2z1 − y1z2) + x2(y1z3 − y3z1) + x1(y3z2 − y2z3)









,

A.2.3. Point in a tetrahedron. In order to test whether a point p is con-
tained in a tetrahedron T we test if p and a4 are on the same side of the
plane trough a1, a2 and a3, and likewise for the other three vertices, cf. [6,
Code 1.6, p. 29].

17

Algorithm 5: inTetrahedron(T, p)

Input: tetrahedron T , point p
Output: true (p ∈ T) or false (p 6∈ T)

v = V (a1, a2, a3, a4)
if v ∗ V (a1, a2, a3, p) < 0.0 then

return false

if v ∗ V (a1, a4, a2, p) < 0.0 then
return false

if v ∗ V (a1, a3, a4, p) < 0.0 then
return false

if v ∗ V (a2, a4, a3, p) < 0.0 then
return false

return true

References

[1] P. G. Ciarlet, Basic error estimates for elliptic problems, Handbook of Numerical
Analysis, Vol. II, North-Holland, 1991.

[2] O. Devillers, S. Pion, and M. Teillaud, Walking in a triangulation, Internat. J.
Found. Comput. Sci. 13 (2002), 181–199.

[3] A. Ern and J-L. Guermond, Theory and Practice of Finite Elements, Springer-
Verlag, 2004.

[4] D. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1983),
28–35.

[5] R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM
J. Comput. 9 (1980), 615–627.

[6] J. O’Rourke, Computational Geometry in C, second ed., Cambridge University
Press, 1998.

[7] N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees,
Comm. ACM 29 (1986), 669–679.

[8] H. Schildt, C the Complete Reference, third ed., McGraw-Hill, 1995.

Department of Mathematical Sciences, Chalmers University of Tech-

nology, SE-412 96 Göteborg, Sweden

E-mail address: erik.svensson@math.chalmers.se

	PREPRINT 2006:21
	 ERIK D. SVENSSON
	
	Department of Mathematical Sciences
	Division of Mathematics
	 Preprint 2006:21
	Department of Mathematical Sciences
	Division of Mathematics
	Chalmers University of Technology and Göteborg University
	ISSN 1652-9715

