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ON A CERTAIN EXPONENTIAL INEQUALITY FOR
GAUSSIAN PROCESSES

Christer Borell
School of Mathematical Sciences, Chalmers University of Technology and
Göteborg University, S-412 96 Göteborg, Sweden
e-mail: borell@math.chalmers.se

Abstract
If X = (Xj)

m
j=1 is a zero-mean Gaussian process and �j = (E

�
X2
j

�
)1=2;

j = 1; :::;m; Tsirel�son (1985, Theory Probab. Appl. 30, 820-828) and more
explicit Vitale (1996, Ann. Prob. 24, 2172-2178, and 1999, Contemp. Math.
234, 209-212) applied results from Brunn-Minkowski theory to show that X
satis�es the following inequality:

E

�
exp( max

1�j�m
(Xj �

�2j
2
))

�
� exp(E

�
max
1�j�m

Xj

�
):

In this paper a more general inequality will be derived using a certain
representation formula for Gaussian integrals. In particular, it also follows
that

E

�
exp( min

1�j�m
(Xj �

�2j
2
))

�
� exp(E

�
min
1�j�m

Xj

�
):

At the very end of the article certain option prices in the Black-Scholes
and Bachelier models are compared.

Keywords: Gaussian processes; Brownian motion; Exponential inequality;
Option pricing

1. Introduction

It is well known that methods from di¤usion theory have often been useful
in proving geometric inequalities of Gaussian processes. In this short note
we will exhibit a new example.
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Throughout the paper, if not otherwise statedm is a �xed positive integer,
X = (Xj)

m
j=1 denotes a zero-mean Gaussian process, and �j = (E

�
X2
j

�
)1=2;

j = 1; :::;m:
The Alexandrov-Fenchel inequality and connections between mixed vol-

umes and Gaussian processes have led to the following exponential inequality:

E

�
exp( max

1�j�m
(Xj �

�2j
2
))

�
� exp(E

�
max
1�j�m

Xj

�
): (1.1)

The inequality (1.1) is explicit in Vitale (1996) and is equivalent to Corol-
lary 1 in Tsirel�son (1985) as pointed out by Vitale (1996). A more elemen-
tary proof of (1.1) based on the Prékopa-Leindler inequality and a result on
"rounding" of a convex body due to Hadwiger is given in Vitale (1999). More-
over, Vitale (1996) proved that the inequality (1.1) gives a sharp right-tail
probability bound of the random variable max1�j�mXj and argued that the
corresponding left-tail probability bound is not accessible from the methods
of his paper.
Here among other things we will submit an alternative proof of (1.1)

using a representation formula for Gaussian integrals discussed by Borell
(2002) that has its origin in Fleming and Soner (1993). The key ingredient
in the proof of this representation formula is a standard result in probability
theory, namely the Girsanov theorem. Actually, our approach will lead to
a slightly more general result than (1.1) so that a sharp left-tail probability
bound of max1�j�mXj becomes a corollary.
We will write f 2 K if f : Rm ! R is a Borel function such that

f(x1; :::; xm) is non-decreasing in each variable separately and

f(x1 + s; :::; xm + s) � f(x1; :::; xm) + s if x1; :::; xm 2 R and s � 0: (1.2)

The following properties are immediate from the de�nition of the class K :
(a) K contains all constant functions.
(b) min1�i�p fi; max1�i�p fi 2 K if f1; :::; fp 2 K:
(c)

Pp
1 �ifi 2 K if f1; :::; fp 2 K, �1; :::; �p � 0; and

Pp
1 �i � 1:

(d) f 2 K if f is smooth, @f=@xj � 0; j = 1; :::;m; and divf � 1:
(e) If f 2 K and x; y = (y1; :::; ym) 2 Rm; and yj � 0; j = 1; :::;m; then

f(x+ y) � f(y) + max
1�j�m

yj:

(f) If f 2 K and x; y 2 Rm;

j f(x+ y)� f(x) j�j y j :
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Here in Property (f) j y j denotes the Euclidean norm of y: Stated other-
wise Property (f) means that f is Lipschitz continuous with Lipschitz con-
stant one.

Theorem 1.1. Suppose f 2 K: Then f(X) 2 L1(P ) and

E

�
exp(f(X1 �

�21
2
; :::; Xm �

�2m
2
))

�
� exp(E [f(X)]): (1.3)

Moreover,

E

�
exp(f(X1 �

�21
2
; :::; Xm �

�2m
2
))

�
� e�

�2max
2 exp(E [f(X)]) (1.4)

where �max = max1�j�m �j:

By choosing f(x1; :::; xm) = max1�j�m xj in (1.3) we obtain the inequality
(1.1).

Corollary 1.2. If f 2 K is positively homogeneous of degree one, then

P [f(X)� E [f(X)] � a] � exp(� a2

2�2max
) (1.5)

where a > 0:

Since X and �X have the same probability law the inequality (1.5) with
f(X) = min1�j�mXj yields

P

�
max
1�j�m

Xj � E
�
max
1�j�m

Xj

�
� �a

�
� exp(� a2

2�2max
) if a > 0

an inequality which, as mentioned above, seems impossible to deduce from
(1.1) (cf Remark 2 in Vitale (1996)).
Using methods from di¤usion theory, Ibragimov, Sudakov, and Tsirel�son

(1976) derived the inequality (1.5) for X1; :::; Xm 2 N(0; 1) independent and
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f a Lipschitz continuous function with Lipschitz constant one, a result which
does not seem accessible by the appoach in this paper. Note that the in-
equality (1.3) is not true in this case as is readily seen by choosing m = 1
and f(x) = x�; x 2 R:
It is not obvious that the inequality (1.3) follows from Brunn-Minkowski

theory as is the case with (1.1).
The paper is organized as follows. Section 1 recalls a result from stochastic

analysis and Sections 3-4 are devoted to proofs of Theorem 1.1 and Corollary
1.2. Finally, in Section 5 Teorem 1.1 is used to compare certain option prices
in the Black-Scholes and Bachelier models.

2. A representation formula of Gaussian integrals

Let 
 be the standard Gaussian measure on Rn, that is

d
(x) = exp(�j x j
2

2
)
dxp
2�

n :

Here if W = (W (t))t�0 denotes a standard Brownian motion in Rn, the law
of W (1) equals 
: For simplicity we think of W as the identity map on the
Fréchet space C([0;1[ ;Rn) and P stands for Wiener measure on this space.
Furthermore U denotes the class of allRn-valued, bounded, and progressively
measurable processes u(t); t � 0:
Now suppose g : Rn ! R is a bounded Borel function. ThenZ
Rn

egd
 = exp(sup
u2U

E

�
g(W (1) +

Z 1

0

u(t)dt)� 1
2

Z 1

0

j u(t) j2 dt
�
): (2.1)

The formula in (2.1) originates from optimal control theory, see Remark
2.1, pp. 257-58, in Fleming and Soner (1993). The present formulation is
as in Borell (2002), where also a complete proof is given (see also Borell
(2000)). As the proof of (1.1) in Vitale (1999) depends on the Prékopa-
Leinder inequality, it should be remarked that this inequality is an immediate
consequence of (2.1), see Theorem 6.2 in Borell (2002).
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If g : Rn ! R is a Borel function bounded from below, then by (2.1) and
monotone convergenceZ

Rn

egd
 � exp(sup
u2U

E

�
g(W (1) +

Z 1

0

u(t)dt)� 1
2

Z 1

0

j u(t) j2 dt
�
): (2.2)

3. Proof of Theorem 1.1

Setting k x k1= max1�j�m j xj j; Property (e) in Section 1 implies that

f(x1; :::; xm) � f(k x k1; :::; k x k1) � f(0)+ k x k1

and
f(x1; :::; xm) � f(� k x k1; :::;� k x k1) � f(0)� k x k1

and, hence f(X) 2 L1(P ): Moreover, if k 2 N+, Properties (a) and (b) in
Section 1 show that fk = max(�k; f) 2 K: Thus proving (1.3), by Fatou�s
lemma and dominated convergence, there is no loss of generality in assuming
that f is bounded from below.
We proceed the proof of (1.3) by choosing an m by n matrice A =

(ajk)1�j�m;1�k�n with real entries such that the random vectorsX andAW (1)
possess the same probability law (here elements inRn are identi�ed with ma-
trices of order 1� n). Now, if aj denotes the j : th row of A, by (2.2)

E

�
exp(f(X1 �

�21
2
; :::; Xm �

�2m
2
))

�
(3.1)

� exp(sup
u2U

E

�
f((ajW (1) + aj

Z 1

0

u(t)dt� j aj j
2

2
)mj=1)�

1

2

Z 1

0

j u(t) j2 dt
�
):

Here for each 1 � j � m;

aj

Z 1

0

u(t)dt =

Z 1

0

aju(t)dt

�
Z 1

0

1

2
(j aj j2 + j u(t) j2)dt
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=
j aj j2
2

+
1

2

Z 1

0

j u(t) j2 dt

and since f 2 K, we get

f((ajW (1) + aj

Z 1

0

u(t)dt� j aj j
2

2
)mj=1)�

1

2

Z 1

0

j u(t) j2 dt

� f(AW (1)):

From this and (3.1) the inequality (1.3) follows at once.
The inequality (1.4) follows from Property (e) in Section 1 and the Jensen

inequality, which completes the proof of Theorem 1.1.

4. Proof of Corollary 1.2

The inequality (1.5) is a consequence of (1.3) and Markov�s inequality and a
proof follows the same line of reasoning as in Vitale (1996). For completeness
all details are given here. To begin with we use (1.3) with X replaced by rX;
where r is a positive constant to obtain

E

�
exp(f(rX1 �

r2�21
2
; :::; rXm �

r2�2m
2
)

�
� exp(E [f(rX)])

and next apply Property (e) in Section 1 and the homogeneity of f to get

E

�
exp(rf(X)� r

2�2max
2

)

�
� exp(E [rf(X)]):

Consequently,

E [exp(r(f(X)� E [f(X)]))] � exp(r
2�2max
2

)

and given a > 0; the Markov inequality gives

P [f(X)� E [f(X)] � a] � e�raE [exp(r(f(X)� E [f(X)]))]

� exp(�ra+ r
2�2max
2

):
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Here, if �2max = 0; (1.5) is trivial and if �
2
max > 0 we choose r = a=�

2
max to

get (1.5). This completes the proof of Corollary 1.2.

5. Comparison of certain option prices in the Black-Scholes and
Bachelier models

We will �nish this paper by giving an interpretation in option pricing of the
inequalities stated in the Abstract. For a detailed description of the theory
of options, see Delbaen and Schachermayer (2006).
Consider a capital market with m + 1 asset price processes Ŝ0; :::; Ŝm

in the time interval [0; T ] : We suppose Ŝ0(t) > 0 for each t and choose
Ŝ0 as a numéraire and de�ne the discounted price processes Sk = Ŝk=Ŝ0;
k = 0; 1; :::;m: Below we will consider two derivatives Dmax and Dmin of
European type paying the amounts Y = max1�j�m fSj(T )=Sj(0)g and Z =
min1�j�m fSj(T )=Sj(0)g (in units of the numéraire), respectively to their
owners at time of maturity T:
As above W denotes a standard Brownian motion in Rn: In the Black-

Scholes model,
dSj(t) = Sj(t)�jdW (t); j = 1; :::;m

whereD = (�jk)1�j�m;1�k�n is an appropriate volatility matrice with constant
entries and the j : th row of D is denoted by �j. The prices of the derivatives
Dmax and Dmin at time zero in this model equal

�BSY = E

�
max
1�j�m

�
exp(�jW (T )�

�2jT

2
)

��
and

�BSZ = E

�
min
1�j�m

�
exp(�jW (T )�

�2jT

2
)

��
respectively, where �j =j �j j; j = 1; :::;m (here matrices of order 1 � n are
identi�ed with elements in Rn):
In the Bachelier theory assuming the same volatility matrice as above,

dSj(t) = Sj(0)�jdW (t); j = 1; :::;m
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and the prices of the derivatives Dmax and Dmin at time zero equal

�BY = E

�
max
1�j�m

f1 + �jW (T )g
�
= 1 + E

�
max
1�j�m

f�jW (T )g
�

and

�BZ = E

�
min
1�j�m

f1 + �jW (T )g
�
= 1 + E

�
min
1�j�m

f�jW (T )g
�

respectively.
In the following, �(x) = P [W (1) � x] ; x 2 R; and ' = �0: Moreover,

set

cm = m

Z 1

�1
x'(x)�m�1(x)dx:

Note that if G1; :::; Gm 2 N(0; 1) are independent; then

cm = E

�
max
1�j�m

Gj

�
:

Theorem 5.1. Suppose the asset prices S1; :::; Sm are non-negatively corre-
lated. Then
(a)

e�
�2maxT

2 � �BSY
�BY

� exp(�max
p
Tcm)

1 + �max
p
Tcm

:

(b) if �max
p
Tcm < 1;

e�
�2maxT

2 � �BSZ
�BZ

� exp(��max
p
Tcm)

1� �max
p
Tcm

:

Proof. (a): By (1.1),

�BSY � exp(E
�
max
1�j�m

f�jW (T )g
�
):

Moreover, the inequality (1.4) yields the lower bound

�BSY � e�
�2maxT

2 exp(E

�
max
1�j�m

f�jW (T )g
�
):
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Thus

e�
�2maxT

2 � �BSY
exp(�BY � 1)

� 1

and, since exp(x) � 1 + x if x 2 R; we get

e�
�2maxT

2 � �BSY
�BY

� exp(�BY � 1)
�BY

: (5.1)

Here the member in the right-hand side of (5.1) is a non-decreasing function
of �BY in the interval [1;1[ : Moreover, if "j 2 Rn; j = 1; :::;m; and

j �j � �k j�j "j � "k j; j; k = 1; :::;m

then by a variant of the Slepian lemma

E

�
max
1�j�m

f�jW (T )g
�
� E

�
max
1�j�m

f"jW (T )g
�

(see Theorem 3.15 in Ledoux and Talagrand (1991)). Clearly, there is no loss
of generality in assuming n � m and choosing "j = �max

p
Tej; j = 1; :::;m;

where e1; :::; en is the standard basis in Rn, we have

E

�
max
1�j�m

f�jW (T )g
�
� �max

p
Tcm

and Part (a) follows.
(b): As in the proof of Part (a) we get

e�
�2maxT

2 � �BSZ
exp(�BZ � 1)

� 1:

Therefore, if �BZ > 0;

e�
�2maxT

2 � �BSZ
�BZ

� exp(�BZ � 1)
�BZ

(5.2)

where the the member in the right-hand side of (5.2) is a non-increasing
function of �BZ in the interval ]0; 1] : Moreover, since

E

�
min
1�j�m

f�jW (T )g
�
= �E

�
max
1�j�m

f�j(�W (T ))g
�
� ��max

p
Tcm
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Part (b) follows at once. This completes the proof of Theorem 5.1.

As a simple numerical example we consider seven non-negatively cor-
related asset prices with yearly volatilities not exceeding 25 percent and
the derivatives above with time to maturity at most 2 months i.e. 2/12
years. Then Theorem 5.1 gives that 0:9948 � �BSY =�BY � 1:0088 and
0:9948 � �BSZ =�BZ � 1:0106: If we know that the yearly volatilities are less
than 2.5 percent and all other assumptions are unchanged, then the di¤erence
between the upper and lower bound of the quotient �BSY =�BY (�

BS
Z =�BZ ) given

in Theorem 5.1(a) (Theorem 5.1(b)) does not exceed 1.5�10�4 (1.5�10�4).
For the data reported by Bachelier in his thesis the yearly volatility was

about 2.4 percent (see Schachermayer and Teichmann (2006)). Compare
also Proposition 2 in Schachermayer and Teichmann (2006) which shows
that the di¤erence between at the money call prices in the Bachelier and
Black-Scholes models is non-positive and of the order O((�2T )3=2); where
the volatility � of the underlying asset is assumed to be the same in the two
models. Furthermore, the same proposition ensures that the corresponding
implied volatilities in the two models are very close.
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