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ABSTRACT
The problems discussed in this work concern asymptotic techniques and detailed
quantitative properties close to global equilibrium in classical kinetic theory. The
discussion is mainly centered on a particular two-rolls model problem for the
Boltzmann equation and hard forces, with the understanding that such a pro-
gram can be applied in many other contexts for single and multi-component gases.

The topics include asymptotic expansions, a priori estimates, existence results,
fluid dynamic limits, bifurcations and stability questions.
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1 Background.

This section contains some background material for the following presentation,
including references to more complete introductions for each separate topic.

The Boltzmann equation can formally and in a few notable cases rigorously,
be derived from particle mechanics via the so called BBGKY hierarchy ([L], [IP]
and others). With the n-particle Hamiltonian in a container €2,

N o N N
b; . ]
H?/ - ZE + Z ®(g; — ¢;) +ZUQ(%‘); u? =0 inQ, = oo outside (2,

the Hamiltonian system for the n-particle evolution becomes

OP,  OHY(X) 0Q; OHY(X) ~

or in Poisson brackets

d Q
S0 = {£(X), HE},

where
)= (520 5 (2, 20
=1 ! itj=1 v i
S0 455

This is the Liouville equation for the evolution of the phase space density fy.
Integrating away all but s particles gives a hierarchy of equations, the BBGKY
hierarchy, with the equation for the s-particle density

d

afs = _%sfs + ([%,/d$]fs+1)

Here [ , | denotes a certain commutator of operators. For finite N the hierarchy
is equivalent to the Liouville equation, but letting NV tend to infinity and s run
from one to infinity, it can also be used for a coarse grained description of states



of systems with infinitely many particles. In particular, s = 1 gives the Boltz-
mann equation under the hypothesis of molecular chaos (or factorization of f
into one-particle products) in the so-called Boltzmann Grad limit with the radius
of the molecules and the size of the vessel appropriately scaled when N — oo.
(For a broad discussion of this topic, see [CGP], [CIP].)

The n-particle evolution is reversible, whereas the limiting coarse-grained Boltz-
mann equation has an inbuilt arrow of time given by its negative entropy dissi-
pation rate.

Velocities in the pair collisions of the Boltzmann equation in R" - (v, v,) (before)
— (v',v]) (after) - are connected by

, VHvVe  |[v—v,|
= o

2 2 ’
, VAV |[v—v,
V.= - g,
2 2

where 0 € 8”71, the unit sphere in IR" . The density of a rarefied gas is as usual
modelled by nonnegative functions f(x,v) with z the position and v the velocity.
With respect to the velocities of the two particles before collision (v, v,) and the
ones after collision (v',v.), we shall write

f)=1F, f(v) =Fo, FO) = [, f(vl) = [2.

The x-domain €2 will in our main example be the position space between two
coaxial cylinders with inner normal n(z). On the ingoing boundary 9Q" =
{(z,v) € 02 x R";v-n(x) > 0} indata f, may be given, and a reflection operator
R can be defined for diffuse reflection, e.g. the Maxwellian type

f(z,v) = eM(v) / o ()| (o) do!

v’ -n(z)<0

Combining them leads to the mixed boundary conditions,
f=ORf+(1-0)f 0<o<L1. (1.1)
The stationary Boltzmann equation in the domain €2 is

v af(w,0) 0) = Q(@,0) — @ (3,0) = Q* (z,v) — fu(f)(x,)
/ / W) ffldwde,, zeQueR,  (12)
R3 JS2

where Q1 — @@~ is the splitting into gain and loss parts of the collision operator



@, and v is the collision frequency. In this equation v - \/,f(z,v)dzdv is the
transport term, i.e. represents the net variation per unit time due to the free
flow in and out of the volume element dzdv centered at (z,v) in phase space;
@~ (z,v)dzdv represents the decrease per unit time of the number of particles
in the same volume element by collisions with all other particles that are at the
position x at the same time; and Q" (x,v)dzdv represents the increase per unit
time of the number of particles in the volume element as the result of collisions
involving all particles at position z with velocities (v, v.). The kernel B describes
the specific collision process under study. A discussion of how to compute B
in particular cases can be found in [LaLi Section 18]. E. g. for interactions
inversely proportional to some power of the distance, this function B has a non-
integrable singularity in the angular variable at grazing collisions. To remove
such singularities, the Grad cut-off assumption is usually added, replacing the
divergent angular dependence by an integrable one one, thereby guaranteeing
separately convergent gain and loss terms.

Multiplying Q(f, f) with a function 1 (v), integrating with respect to velocity
and changing variables, formally gives

1

QN =7 [ B 1L+~ o — ¥l )dudu.du.
R? R3xIR3xS8?

In particular this integral vanishes for ¢ = 1,v,|v|?. In the cases of interest
in these lectures, the formal calculations can be rigorously justified. Taking
1 = In f, we obtain the entropy dissipation rate

I/
—e(f) = /B(ff* - f'f;)lnflfl dxdvdv,dw.
The entropy dissipation rate is strictly negative except for Maxwell distributions
2
M, =—L exp(—(”;g )), i.e. the equilibria for which the entropy dissipation

2m0) 2
vanishes. For additional general introductory material on kinetic theory, you may
consult [C] or [CIP] and their references.

Asymptotic studies of the Boltzmann equation like this work, require scalings for
collision terms, for variables, and for boundary values. The variables are first
rescaled to make the equation non-dimensional. Physically motivated additional
scalings in some parameter like the mean free path, may then be introduced for
particular situations to obtain formal comparison between the kinetic models at
leading order and corresponding gas dynamic ones. To go from the kinetic micro-
scopic to the macroscopic fluid dynamic descriptions, the conserved fields have
to be slowly varying on the kinetic scale and have reasonable space variations



over macroscopic distances. To expose these fluid fields, power series expansions
in the scaling variable are inserted into the kinetic equations and coupled with
formal truncations. A rest term is added to the truncated expansion for questions
of rigorous kinetic existence, and likewise for convergence issues when the mean
free path tends to zero. Let us consider some examples.

In the ncompressible case, the expansions and the limit-takings may be car-

ried out starting from a (normalized) global Maxwellian M = (27r)’ge’§, and
with the scaling F' = MG, > 0. A useful parameter is the Knudsen number, the
ratio between the microscopic and macroscopic space units, such as the molecular
mean free path (in ordinary air 107 ¢m) to a typical length scale for the flow,
often based on the gradients occuring in the flows. With ¢/ the Knudsen number
or the mean free path, we get a Boltzmann equation in G,

1
J(Ge, G).

€atG€ +uv- vae = 6_3
Here J is the rescaled quadratic Boltzmann collision operator,
1
J(®, ) (v) = —/ B = va,w) M(0,) (@) T(0') + B )T ()
2 IR3x S?
—®(v,)¥(v) — P(v)V(vy))dv,dw.

Also its linearization around 1 is an important operator in kinetic theory;

(LD)(v) = /IR Bl = @) M)(@() + 0() — B(v.
—®(v))dvdw = K(®) — vd.

With G, =1+ ¢™g,, the term of order €™ denoted by g., determines the hy-
drodynamic fields (p,u, ) representing the leading order density, velocity, and
temperature fluctuations. The equation for the g, perturbation becomes

€0ige + V- Vage + éLge = €"7J(9e, 9)

— (formally when e — 0)

g€—>p+u-v+0(%vg—g)

Vz-u =0 (incompressibility), w,(p+6)=0 (Boussinesq relation)
together with

j>1m=1: Owuw+u.Ysu+Vp=0, 0f0+u-vyv,0=0 E.E.

j=1m>1: O+ =pldu, 00=rA0 (Stokes ekv.)

j=1lm=1: Ou-+u.Veu+Vzp=plAyu, b+u-y.0=rA0 N.SE.
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More generally we may start from a local Maxwellian

Mpup =

TeT
(270)2

and are interested in solutions f. to the Boltzmann equation

atfe +v- mee = %Q(feafe)a

where f. is a perturbation of a Maxwellian M,, 4, which corresponds to the
solution of some compressible gas dynamic equation. Also f. is an approximate
solution of order p if

%Q(fe, fe) + O(€).

Ofe+v-Vafe=

Write f, as an asymptotic expansion plus a rest term,
J1
fe=) € fi+€°R.
J=0
This may be inserted into the Boltzmann equation and followed by a formal
identification as equations of one order at a time (the Hilbert expansion), either

just ending at some suitable order j;, or ending by rigorously solving the rest
term problem. The procedure in its simplest form is

order —1: Q(fo,fo) =0 = fo =My u@)o@ )
order 0: 0;fo+v-Vafo=Q(fo, /) +Qf1, fo)- (1.3)
The expansion Z;lzo ¢’ f; is of course not by itself a density solution of the Boltz-
mann equation, since it satisfies the Boltzmann equation only up to some order,
and may by its essentially polynomial character become negative, whereas a real

density should be everywhere positive.

As basis for the kernel of L in L%,(IR?) (i.e. L? in velocity with Maxwellian
weight function), we take ¥y = 1,%y = v, ¥r = vy, 10, = V,, 204 = %(02 - 3).
The right hand side in the zero order equation of (1.3) is orthogonal to the fluid
dynamic ¥ _-moments, which span the kernel of L. A corresponding fluid dynamic
projection gives the Euler equations of compressible gas dynamics

Or(pu) + Va(pu @ u) + V4(pf) = 0,

1 3 1 15)
3t(P(§U2 + 59)) + Vw(PU(§U2 + 59)) = 0.



Also mathematically interesting, but not implied by the formal asymptotics, is
in what sense the leading order gas dynamics equations are limits of the kinetic
ones. The Euler equations obviously do not depend on any detailed informa-
tion about the Boltzmann equation, not even the cross section of the collisions.
Composite molecules on the other hand, require additional terms for unavoidable
rotational and vibrational modes of interaction. The Euler equations describe

what happens at microscopic times of order e *.

To reach instead the compressible Navier-Stokes equations, one could perform
the Chapman-Enskog variant of the Hilbert expansion, adding a kind of equation
expansion. Low orders are then of most interest for obtaining/improving/varying
fluid dynamic models. Up to the Navier-Stokes level all is simple. We may start
from

fC = Mpeyusaee(]‘ + eflf + €2f2€)’ (14)

and assume that p, u., . solve the compressible Navier-Stokes system

Otpe + Vz (,06?1,5) =0,
pE(at + Ue - V$)ue + Vz(pGGE) =€Ve '(,Ue(Due))a

3 1
§pe(8t + Ue * VI)ee + peee VJ: Ue = €§M€D(U€) : D(ue) + € VJ: [K:e Vz 96]

Inserting (1.4) into the Boltzmann equation, gives fi., foe, such that (1.4) be-
comes an approximative solution of the Boltzmann equation of order two (see
[BGL]). The transport coefficients p. (viscosity) and k. (thermal conductivity),
are kinetically described by the collison operator dependent term f;. which con-
tains the main contribution to the momentum and heat flow dissipation. The first
order microscopic term is thus the main responsible for the conversion of mechan-
ical work to heat and the transport of heat to the boundary. Adding a rest term,
a true solution can be obtained for the Boltzmann equation. Conversely a solu-
tion to the Boltzmann equation may sometimes be used to derive rigorously a
Navier-Stokes description from the Boltzmann one, that describes what happens
for microscopic times of order ¢~2. After mild changes in the set-up, extra terms
may appear in the Navier-Stokes system (called ghost terms when their origin is
not from leading order but comes from higher order terms). For a more extended
introduction to such asymptotics, see Chapter 2 in [BGP] with references.
Proceeding beyond the Navier-Stokes level in the Chapman-Enskog procedure
introduces undesired effects; well-posedness and the monotone entropy property
may e.g. disappear. Among the many efforts to ameliorate this higher order
situation, we mention two recent approaches, by M. Slemrod [S| using certain ra-
tional approximations, and A. Bobylev’s operator calculus with projections [B],
both delivering well-posed alternative equations.



This work will focus on stationary aspects. Stationary solutions are of importance
in their own right, but also as time-asymptotics, and in rarefied gas dynamics.
The latter deals with gas flows, where Navier Stokes type equations are not valid
in some significant region of the flow field. The broad picture is one of normal re-
gions where the gas flow follows the macroscopic fluid equations, plus thin shock
layers, boundary layers, and initial layers, where matching conditions are sought
between different fluid regions or between fluid regions and boundaries.

We shall here concentrate on the boundary layer case for a situation where the gas
is contained between two concentric rotating cylinders, and also consider its scal-
ing limit for vanishing Knudsen number. That two-rolls set-up is a classical prob-
lem on the fluid dynamics side with a surprisingly varied bifurcation behaviour,
when the rotation rates of the cylinders change, which is well demonstrated in the
experimental work of Andereck, Liu and Swinney [ALS]. An interesting question
is how much of the bifurcations survive on the kinetic side. One may crudely
expect that, as soon as there is a rigorous enough mathematical analysis of the
fluid behavior, then the result should somehow carry over to the kinetic side.
This work demonstrates how the leading order fluid terms dominate the higher
order behaviour, when the solutions are close to equilibrium.

Systematic asymptotic studies close to equilibrium started already in the 1960-ies
with Grad [G], Kogan [K], and Guiraud [Gu] among the pioneers, and with the
main arguments based on fixed points and contraction mapping techniques. Two
main approaches are presently in use, one based on energy methods in Sobolev
spaces (i.e. involving LP-estimates of derivatives). The other employs the setting
of mixed weighted LP-spaces, where precise spectral aspects are readily available.
We shall here use the latter approach to study certain fully nonlinear stationary
kinetic problems between rotating cylinders, including fluid limits when instabil-
ities (bifurcations) arise. Part of the results were first published in [AN2] and
[AN3]. Among the new results are in particular the stability properties discussed
in Section 5.



2 A kinetic gas between two coaxial cylinders.

In this section asymptotic expansions are introduced and discussed for three
archetypical two-rolls situations.

Consider the stationary Boltzmann equation in the space {2 between two coaxial
cylinders with radii r4 < rz. Denote by (7,6, z) and (v,,vs, v,) respectively, the
cylindrical spatial coordinates and the corresponding velocity coordinates. Let
us start with parameter ranges where the system stays axially and rotationally
uniform, the interesting solutions then being positive functions f(r, vy, vg, v,). In
these coordinates the Boltzmann equation may be written

0
0o+ INF = 2001, (2.1)

r€(ra,re), (vp,vp,v,) € IR,

Here

of of

— VUp —.

NFf =2
f Ve 8@, 81}9

In the collision term @ the kernel B = |v — v,|?b(0), where b € L (S%), and
0 < B <1 in the hard force setting of these lectures.

The Knudsen number £ = € will be considered for various j’s. As boundary
conditions, functions f, are given on the ingoing cylinder boundary 0Q*, i.e.
{(ra,v);v, >0} and {(rp,v);v, < 0}. For the axially homogeneous case we may
assume that the solutions are even in the v,-variable. The most general we are
then able to say about the solvability of the problem is

Theorem 2.1 [AN1] Let 5 be the power of the relative velocity in the Boltzmann
collision kernel. Given m = f:f Jirs(L+ |v))? fdzdv and ingoing boundary values
f» with finite flow of mass, enerqy and entropy, then there exists a weak L'-
solution to the Boltzmann equation for hard forces in the two-rolls domain with
B-moment m and the indata profile k f, for some k depending on m.

Thus for mere existence it is enough to require that the flows of mass, energy
and entropy are finite for f,. Also the mixed boundary conditions (1.1) can be
handled. Results in this generality are based on weak L' compactness coming
from the entropy dissipation control. It gives on the other hand no information
about uniqueness, isolated solutions, fluid limits with extra terms, or possible
ghost effects. Such results have instead to be based on the asymptotic methods

9



inititated by Grad [G], Kogan [K]| and Guiraud [Gu] a full generation ago. But
still today many, if not most, important problems are open when it comes to rig-
orous mathematical analysis. The 1993 monograph by Maslova [M] is probably
still the best introduction to the rigorous mathematics in the area. The present
frontiers reached by rigorous mathematics unfortunately lag far behind what has
been obtained in the approach by formal asymptotics and scientific computing.
There two recent monographs by Sone, [S1] and [S2] give a good picture of the
state of the art. In [S1] one also finds a thorough discussion about the asymp-
totic expansions for the two-rolls problems of this lecture series, including many
aspects not covered here.

For the asymptotic problems in the domain between the two rotating cylinders,
our main concern in this work will be with (multiple) isolated solutions, bifurca-
tions and strict positivity, when the boundary indata are given as Maxwellians
M, with known boundary pressure P,, temperature 7T,, and rotation rate vy,
where ae = A for the inner and B for the outer cylinder. Split the solution to the
BE (2.1) as f = M(1+ ¢ + ¢°R) = M(1 + ®) with ¢ an asymptotic expansion,

2

J1
— i M = (27) 3 v 2.2
P =D W, M = () fep (), (22)

and with R, the rest term, in turn split into

The projection P, represents the fluid dynamic part. The asymptotic expansion
(2.2) has boundary values equal the corresponding terms up to a suitable order
in the e-expansions of the boundary Maxwellians M,,. The remaining part of the
boundary values are taken care of by the rest term.

As orthonormal basis for Py in L3,(IR?) (i.e. L? with weight function M), we
take tho = 1,9 = vg, Yr = vy, b, = v, %y = %(7} - 3)

The new unknown ®(r, 2, v, vy, v,) should solve

0o od 1 1
— — +—-NO®=—(LD b, D)).
g U+ 6( + J(®,®))

Here J is the rescaled quadratic Boltzmann collision operator,

@0 =5 [ B0 @) ME)@EE) + S0w)

2
~D (v )u(v) — B(0)ih(v,))dv.do,

10



and L is this operator linearized around 1,

(LD)(v) = /IR Bl = 0,0 M) (30) + B0)) - B(v.
—®(v))dvdw = K(®) — vd.

By a change of variables
(p,Lf) := /Mngodv = /MLfgpdv
1
=5 [t v = o=+~ £~ BMM.dvdv.do

In particular we notice that ¢ = f gives (f, Lf) < 0. Taking ¢ as a fluid moment
1;, implies that (v, Lf) = 0 for all f, hence that the fluid dynamic functions are
in the kernel of L. There are no others since the only solutions to the equation of
Cauchy type f+ f. — f'— f. = 0 are the fluid moments, as first shown already by
Boltzmann. Hence the kernel of L is spanned by the fluid moments. Moreover,

Lemma 2.2 There ezists a positive constant ¢ such that

_(f,Lf) > C/(Vé(I—Po)f)2Md’U

Proof of Lemma 2.2 We give the proof from [M]. Set

K= V_%Kl/_%,
A=sup{\; Kf = \f with Py if = 0,/(1/_%f)2Mdv =1}.

The compactness of K (cf proof of Lemma 3.2 below) together with (f, Lf) <0
imply that with A <1

(1= R)S. K= ) <3 [ (1 = P)foMae,
and so

(fLLH<(A-1) /((I — P)f)*vMdv. O

v (v —

Lengthy elementary computations show that L(vev,B) = vgv,, L(v,A) =
) bounded in

5) for some functions B(|v|) and A(|v|), with vev, B(|v|) and v, A(|v|
the L2,-norm (cf [BGP] Lemma 2.2.3).

11



Our basic Case 1 will be this two-rolls set-up with j = 1 in (2.1) and j, =
1, j1 = 2 in (2.2) with given Maxwellian ingoing, axially uniform boundary data,
modelling for instance when the cylinder surfaces are of ice in the form of the
solid phase of the gas between them. We assume that (no essential restriction)
the inner cylinder is rotating with velocity eug, the outer cylinder is not rotating
and the temperature and saturated pressure are the same at the two cylinders.
Then

Y f(ra, z,v) = (21 )6_%(vg+(vo_€m)2+”3), v >0,
i
(2.3)
1
v f(rg,z,v) = @e§“2, v, < 0.

We shall keep the same boundary values in the following Case 2-3. To simplify
the exposition in these lectures, we shall take uga = Uga(rp —74) with Upa fixed.
This will allow for additional conditions on the size of r5 — r4 when needed in
the convergence studies. An alternative would be to have rg — r4 fixed (even
large) and introduce more extended asymptotic expansions.

An axially homogeneous solution M (1 + ®) will be determined for (2.1), (2.3),
with in Case 1 an approximate asymptotic expansion ¢ of order 2 with boundary
values of first and second orders being ®4;, ®p;(=0), 1 < i < 2,

Da1 = €upavy
€ 2 2
Dyo = 5”0;1(—1 + vg),

plus a rest term eR,
O(r,v) = @(r,v) + €R(r,v),

and

r—rT r—r
Aav)+(I>KQB( b

o(r,v) = €@y (r,v) + 62((I)H2(7“, v) + Proal

,0))- (2.4)
Here the Hilbert expansion term ®p9 cannot by itself satisfy all boundary con-
ditions. To remedy that, second order additional Knudsen boundary layer terms

® o are inserted.

In the asymptotic expansion the Hilbert terms ®5; and ® g, satisfy

Loy = LOyy + J(Pp1, Ppy) — v - V2P = 0.

12



Here L®y; = 0 implies that @z = ay(r) + di(r)v? + bi(r)vg + c1(r)v,. The
v,-term is zero due to the symmetry imposed. For compatibility reasons the
hydrodynamic moments of the second equation are zero (cf. also (2.21), (2.41)
below). In particular the 1-moment gives for ® 5 that

C1

/

c+—=0,
r

hence ¢;(r) = £, where due to the boundary conditions ¢ = 0.

Set wy = fv2 BMdv wy = [v2AMdv, w3 = [v?v*AMdv. It is also consistent
(and implied by the fluid dynamic projection equations) to take a; = d; = 0,
giving

Dy (r,v) = by (r)vy. (2.5)
Then similarly
1 _
®po(r,v) = ag + dov? + byvg + v, + blva + (b — ;bl)vrvgB, (2.6)
where by fluid dynamic projections and after some computations,
2
Uy A s
b = = —r),
1(T) TJQB — Ti( r T)
1 ! 1 2 Y2
(a2 + 5d2) + b1b1 - ;bl = 0, CQ(’I‘) = 7,

1 1 1 1
bl2, —+ —bIQ — T’_b2 = _w_(bll + ;61)02,

(ws — bwy)(dy + %d') (by (V) — —b1 /MUT v? — 5)(L1(2J (vg, v,v9B)

(02 = 1))dv + (bid), — ;bf) / M(v? = 5)N (L= (2 (v, 1,09 B)
— (v, (vF — 1))d,

for some constant .. With the term (¥; — +b;)v,vyB, the function @45 of (2.6)
cannot satisfy the boundary conditions ® 49 (resp. ®ps) at 74 (resp. rp ). That
is instead handled by adding Knudsen boundary layers as will be discussed in
next lemma. Inserting 1+ ® into the rescaled Boltzmann equation gives the pure

p-part

1
l= ;(Lso + J(p, ) — v - Vap), (2.10)

which is of e-order two, provided the Knudsen terms satisfy

0P ron 0Pkop
IPKUA 1P on =, .
or '’ K2B = Uy

and p = —2.

Lq)K?A = Vr

’I'TA

Denote by n =

13

(2.9)



Lemma 2.3 There exist a second-order Hilbert term ®yo defined by (2.6) with
g, da, be, co satisfying (2.7-9), and Knudsen terms ®xo4(n,v), ®rap(u,v) such
that

0P
Uy el L®koq,
on
Droa(0,v) = Pas(v) — Pyo(ra,v), v, >0, (2.11)
UEEFHOO (I)KQA(nv ) 0,
and
0
Uy K28 — L®ksp,
o
(I)KQB(O, U) = (I)BQ(U) — @HQ(TB,U), Uy < 0, (212)
lim @KQB(/,L, ’U) =0.
pU——00

To prove this lemma, we need some properties of the Milne half-space problem:

Ura_w =Ly, n>0,
on
»(0,v) =g, v >0, (2.13)

/Mvrw(n,v)dv =m, n>0.

Set IR? = IR* N {v, > 0} and take by, = (a(r),b(r), c(r),d(r)) as the coefficients
of the fluid dynamic moments of ¢ (the v,-moment in our present setting is
identically zero by symmetry). The following results about the Milne problem
were proved in [BCN] and [GP].

Theorem 2.4 Let m € R and g € L2 ,,(IRY). There exists a unique solution
¥ to (2.13), which belongs to L®(r > 0; L%\, N L3y) N Ly (r > 0) and has

by € L*(R,). If Mz = O(|v|™) for all n > 0, then by, = lim,_00by exists,
and |by — boo| = O(r=") for any n > 0.

Proof of Lemma 2.3 It follows from Theorem 2.4, that there are unique solutions

Y, P24 and Y9p to




s
T 877

1 _
sz(O, U) = _(bll - ;bl)(TA)UrUHB, Uy > 0,

/MUH/JM(U’ U)dU = 07

= L¢2Aa

v 81/12B
T 87’]

1 B
o5 (0,v) = —(b] — ;bl)(rB)vrvgB, vy > 0,

/MUT¢23(n, v)dv = 0.

= LwZBa

Moreover,
lim ¢(n,v) = oo + doo” + boop + vy,
7—+00

. 2
Hm 924(n,v) = G24,00 + d24,000" + b24,00Vs,
n—+00

. 2
lim ¢op(n,v) = @2p,00 + d2B,eV” + bap oy,
—>+00

for some constants oo, doc, boo, 024,00, 24,00, 024,005 2B ,00s d2B0c AN bap oo-

Choose

1
a2(ra) = V2000 + G24,00 — 5(%%)2,

GZ(TB) - _:_20'00 + (2B,005
B

dQ(TA) = 72doo + d2A,00a
d2(TB) - _Z_Qdoo + d2B,ooa
B

b2 (TA) = 72boo + b2A,ooa

bz(TB) = Bboo - bZB,ooa
B
Then

2
©K2A = 72(¢ — Qo — doov - boove - Ur)
2
+7/}2A — 024,00 — d2A,ooU - b2A,ooU07

and
(I)KQB(:U', U) = _Z_Z(w(_,ua —U) — 0o — doov2 + boovﬁ + v?")
B
+1hop(—p, —v) — G2B,00 — d2B,ooU2 + b2B,00 V0,

15
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satisfy (2.11-12). The first equation in (2.7) defines as + 5ds if and only if

1 "B 1
(ag + 5d3)(rg) — (ag + 5ds)(r4) = iugA +/ gbf(s)ds,

TA
i.e.
B

(rg +1)(aoo + 5doo
+5d2B,00 — 524,00 — /

TA

VY2 = ) (azB,oo — (24,00 (2.20)

'I‘Bl

;b%(s)ds).

This fixes 79, hence ¢y and as + 5dy. Finally the second-order differential equa-
tions (2.8-9) together with the boundary conditions (2.16-19) define by and dy. O

Case 2. If the Knudsen number is decreased by choosing j = 4 in (2.1), but still
keeping the rotation velocity of the inner cylinder of order ¢, then the boundary
layer depth (of order €) is no longer of the same order as the Knudsen number
(i.e. €!). That gives rise to additional technical difficulties. In particular we now
have to introduce an additional so-called suction boundary layer from first order
in €, and then from third order on also retain the previous Knudsen terms. For
convenience we take r4 = 1 below in Case 2-3.

An asymptotic expansion ¢ of order 4 will thus be determined,

T —TB

o(r,v) = e(@m(r, v) + Py ( ,U)) + € (CDHQ(T', v) + <I>W2(T _erB,v))

T—7T r—1 rT—T
Z0) + rzal o ,v) + Presn( 643’1)))

r—r r—1 r—r
B;U)+(I>K4A( o ,v) + Pran( €4B;U))-

+€3 ((I>H3(7°, U) =+ q)Wg(

+ét (¢H4(7°, v) + Pyya(
(2.21)

The successive asymptotic computations order by order, allow us to require by
(hydrodynamic) orthogonality that

/(I)Hl(.,v)(l,vmv?)M(v)dv - /@Wl(.,v)(l,vr,v2)M(v)dv
= /(I)HQ(.,’U)U,«M(U)CZ’U =0, (2.22)

16



T —TB

B oo
-1 —
lim ®gia(tp,v) =0, lim  ®gip("2,0)=0, 3<i<d4
6 - €

4 ! stoo
(2.24)

Here (¢®; + 2@y + e3Pz + €2 @y (r, v) denotes the Hilbert terms up to fourth
order. The sum (e®y1 +€*®@yy2) ("2, v) consists of correction terms allowing the
boundary conditions to be satisfied to first and second order. They correspond to
suction boundary layer terms at rg. At third and fourth orders, supplementary
boundary layers of Knudsen type described by

r—1 r r—1 rT—r
63((I)K3A(6—4 v) + (I)K3B(TB v)) + €*(Praal ;v) + @ran( o Bav))a

are also required in order to get all the boundary conditions satisfied.
Let ¥(n,v) be the solution to the half-space problem

v,a—szw, n>0, ve R,
877
=0, v >0,
/1/) n,v)v,M(v)dv =1, n>0. (2.25)

From Theorem 2.4 about the Milne problem, it follows that there are constants
A, D, and F, such that

lim v(n,v) = A+ Dv* + Evg + v,. (2.26)

n—+oo

Let the nondimensional density, perturbed temperature and saturated pressure
at rp be

62

1+ 75

We may here in Case 2 couple the angular velocity to the Knudsen number
through

2 2
wp = (Pspy — Tp2), T =€ Tpy, Psp =€ Pspo.

TBQ 1 U2
TB

The boundary condition at g in (2.3) is replaced by
1 __w?
vt f(re,z,v) = (2%)_%7_’_ w33 e B p, <0,
(1 + 7']3)§

For the third order asymptotic term that will lead to a bifurcation of the radial
velocity - see (2.40) below- if A+ 5D < 0.
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Lemma 2.5
Assume that

(A+5D) <0,

and set

T
Abif = — (2’(1)1 7”;’3 (A =+ 5D)(3U9A1)) ? .

For A > Ay, there is no solution ¢ to the family defined in (2.21-24).
For A = Ay, there is a unique solution ¢ to the family defined in (2.21-24).
For A < Ay, there are two solutions ¢ to the family defined in (2.21-24).

Proof of Lemma 2.5. Define ¥ := 2, and let the expansions

D k1 €*® 1, (r,v) and D ks e (Pui(rs + €Y, v) + Oy (Y, )

formally satisfy the Boltzmann equation order by order. Then,

Loy = LOpy + J(Pp1, Pry) = LOys +2J(Py1, o)

:L(I)H4+2J(q)H1,(I)H3)+J(©H2,¢H2) :0, (227)
0P 1 —
Hk—4
ek L INB g = L > J(®mj, Pak—y), k>,
U +r Hk—4 Hk+j:1 (Prjs Prrk—;)
(2.28)

and

Loy, = LOwsy + J(Pw1, 2@p1 (75, .) + Pwi)

= LOys3 + 2J(®u1(rs, ) + Pwi, Pwa) + 2J(Pw1, Pua(rs,.) + YOy (rs,.))

= LOwy + 2J(Pws, Pui(rs, ) + Pwi) + J(Pwa, Pwa + 2@ ps(rs, -)

+2Y@H1(7‘B, )) + 2J(@W1, (I)Hg(TB, ) -+ Yq)IHQ(T'B, )
)

Y2 0o
2 — %, (rp,.)) — v, }V/Vl =0, (2.29)
a<1> 1 <3
vy B3 7“_ N(®gr-a-i(rB,.) + Pwr-—a-i)
= 0
k—1
j=1

Similarly to (2.5), by (2.27) ®g1(r,v) = by (r)ve for some function by, and g, >
2 split into a fluid dynamical part a;(r) + d;(r)v? + b;(r)ve + ¢;(r)v, and a non-
fluid-dynamic part involving Hilbert terms of lower order than 7. In particular

18



for 1 <7 <4 we get

D1 (r,v) = by (r)ve,
1
@HQ = a9 + dz’U2 + bg’Ua + 5()?’03,

1
B3 = az + dsv® + bsvg + 30, + bidovgv?® + bibov) + ébi’vg’,

1 1
(I)H4 = Q4 + d4’l)2 + b4’l)9 + C4Up + (bldg + bzdz)’l)gUQ + (blbg + 5[)3 - 51)?0@)’03

1 1 1 1
+b103UTU9 + Eb%bgvg + 56@@4 + ﬂb%vg + §bfd21)g1)2.

Equations (2.28) have solutions if and only if the following compatibility condi-
tions hold,

Sy 1
/ (vraam + —N@Hi) (1,v% = 5,v9,v,)M(v)dv =0, 4> 1.
r r

They provide first-order differential equations for the functions a;(r), b;(r), ¢;(r)
and d;(r), i > 1. In particular,

(rb))' =0, (10dy+ b3)" =0, (2.31)
1 1
(T263b2)l = ’U]1T2(b’1 - ;bl)l + (2’(1)1 - wz)’l"(bll — ;bl),
1 1
2
(a3 + 5d3 + b1b2)l = ;blbg, (233)
(res)’ =0, (2:34)
1 1 35 7
(a4 + 5d4 + b1b3 -+ 51)% — 5[)?@2 + Ed% -+ §b%d2),
2 1 1 1 7
(res)' = 0.

Together with the boundary condition at r4 of first and second orders, this fixes

Wy a1

2 9A 2
92 10 7”2)U NETRG

Qg1 (r,v) = w%vaa Qpy =
and c3(r) = %2, for some constant uz # 0. Moreover, (2.22) and (2.29-30) give
that ®p1(Y,v) = 21(Y)vy, for some function z;, and that @y, 7 > 2 split into a
fluid dynamical part x;(V) +y;(Y)v? + 2;(Y)vg +t;(Y)v, and a non-fluid-dynamic
part involving Hilbert terms of lower order than i. Notice that ®y4 is the sum
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of z{vgvTB and a polynomial in the v-variable with bounded coefficients in the
r-variable. More precisely,

1
Dyry = 9 + yov® + 2009 + (b1 (rB) 21 + 523)7)3’

Dz = 73 + Y30° + 2309 + 130, + (b1(rB)y2 + 21y2 + Z1d2(7“B))UeUQ
+(bl(7‘3)22 —+ 2129 + 2162(7”3) =+ Yb’l(TB)Zl)Ug

1 1 1
+(—b?(7’3)21 + 5[)1(7“3)2% + —Z?)’Ug,

2 6
Pws = T4 + yav® + 2409 + tavr + 20,0 B(v) +

Equations (2.29) have solutions if and only if the following compatibility (orthog-
onality) conditions hold,

ke
/(vraq)Wk 3 Z N(®uk—s-i(rB,-)
-0

+@Wk_4_i) (0% = 5,09)M(v)dv =0, k> 5, (2.36)

and

wrs 1 o= Y,
/ (UT aY + g Zz_;(—l) (g) N(@Hk—4—i(TB; ) +

@Wk_4_,-) (1,v)M(v)dv =0, k> 5. (2.37)

Equations (2.36) (resp. (2.37)) provide second-order (resp. first-order) differential
equations for y; and z; (resp. z; + by; and t;). In particular,

Us
w2y — —zl 0,

B
1
(xQ + dy2 + bl(TB)Zl + 52’%)’ =0,
10
woyy + —yp+ A1 =0, wizy — %z; + A, =0,
B B
ty =0,
(x5 + 5ys + b (rB)2e + 2120 + 2109 (rp) + YV, (rp)21) =
1
——(2bi(rp)z + ), (2.38)
B

10
ways + Y3+ A2 =0,

" U3 / !
w1 = 2 4 (0 (rp) + 22) (es(rs) +15) ) + A2 =0,

1
ti; =+ ’I‘_(t3 + 03(7‘3)) + Cg(TB) = 0,
B
(24 + 5ys)' + A3 = 0. (2.39)
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Here A;, 1 < i < 3, denote terms involving Hilbert and suction coefficients up to
order ;. Together with the boundary conditions at first and second orders, and
the conditions (2.23), this fixes

Upap ¥
Dy (1, 0) = — 2L -,
B

as well as @y in terms of uz, and implies that ¢t3 = t, = 0. Then, giving the
value 0 to any coefficient of order bigger than 5 in the second-order differential
equations satisfied by y; and z;, 3 <4 < 4 and taking into account (2.21-24) fixes
the functions y; and z;, 3 < ¢ < 4 in terms of u;. A Knudsen analysis at third
and fourth orders makes the first-order differential equations satisfied by x3 + 5y
and x4 + 5y, compatible with (2.23) at third and fourth orders. Finally u3 must
solve the equation

rg+1 w

— Aug + —(—3uly) = 0.
- uz + 27%( Ug 1)

uj(A +5D)

(2.40)

A study of the positive roots uz to (2.40) leads to the three cases described in
the theorem for A with respect to Ay . That proof requires a non-degeneracy
in the Milne asymptotics (2.26),

A+5D < 0. (2.41)

The condition is expected to hold on physical grounds and has been verified nu-
merically for hard spheres and Maxwellian molecules. A mathematical proof of
(2.41) related to the numerical approach seems feasible, but has not been under-
taken . [

Case 3. The techniques developed for the previous particular two-rolls situa-
tions, also hold the key to resolving other and sometimes more famous problems.
This third example is such a generalization. The density f will now be allowed to
depend on the axial variable z, assuming periodicity in the axial direction. The
previous transport term in (2.1) is then extended to include also a z-derivative
term Uz%. We consider the Knudsen number ¢/ for j = 1 in (2.1), and keep
the earlier ingoing Maxwellian data. For small enough parameters, there is an
axially uniform solution as in the Case 1. This axially homogeneous cylindrical
Couette flow of Case 1 will bifurcate into axially periodic ones - Taylor rolls -
when the rotation of the inner cylinder is started from rest and then is being

sufficiently increased. The equations for the successive terms in the asymptotic
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expansions are now no longer ordinary but partial differential equations, which
here may be solved by elementary and explicit Fourier methods. We shall only
allow bifurcations to a fixed axial period, for convenience taken as c(rp — r4),
and carry out the computations when ¢ = 1. Denote the first (lowest) bifur-
cation velocity value by ug4p, and require that all functions have the symmetry
flr,z,v,v9,v,) = f(r,—2z,v,,v9,—v,). The first order asymptotic expansion
term ®gq, should satisfy L&y, = 0, i.e. belong to the kernel of L, hence

@1 (r,v) = ay(r, 2) + di(r, 2)v* + by(r, 2)vg + c1(r, 2)v, +e1(r, 2)v,.  (2.42)

The fluid dynamic orthogonality arguments leading to (2.5) in Case 1, here imply
that in a one-sided neighbourhood of ug4p, the first order coefficients may satisfy
a steady (secondary) Taylor Couette fluid flow problem ((4.9) below) with cor-
responding boundary values. This fluid bifurcation problem was first rigorously
studied in [V] using topological Leray Schauder degree, to be followed over the
years by a number of alternative treatments and expansions - see [CI] for proper-
ties, references and an overview. It follows from that theory that the coefficients
in (2.42) are smooth functions with uniform bounds in a neighbourhood of ug4p.

Denote by the index b when an axially homogeneous term ®p; is evaluated at
the first bifurcation velocity ugs = ugap, and let 62 denote the deviation from this
bifurcation value. With ®p; = @5 + 6@}, and ®{ given by the smooth pertur-
bation to the fluid Taylor Couette problem, we can successively construct higher
order terms in the asymptotic expansion. E.g. for j = 2,3, the perturbations
®l(z,v,0) and ®i(z,v,d) should satisfy

ool Ol

Lo! —vp—t —v,—L = Nh; =0 2.43
o+ g11L —v ar v py 1 ) ( )
- oPL odl
Lo} —vp—2 —p,—2 — Nhy =0 2.44
3 + ga1 (% 87‘ (% 8,2 2 3 ( )
with
. - 1
g1 = 2J (D1, ®1) + 6J(B),BY), Ry = ;qﬁ,
1

go1 = 2J(Bpry, BY) + 2T (Bprap, 1), hy = ;‘bé-

The locally uniform smoothness of ®5; (for small §), implies by (2.43) spacewise
smoothness for <I>§, | uniformly for small . We may also prove by Fourier tech-
niques, that the fluid dynamic moments of ®} and its derivatives are uniformly
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bounded in L™ in a §?-neighbourhood of the bifurcation point wugas for small
enough e. The procedure may be repeated for the ®i-term.

To provide the correct boundary values for the problem, we add boundary layer
corrections to ®; and @3 of Knudsen type. Our previous boundary layer analysis
based on [GP] applies, when the equations are taken in Fourier space for the
periodic z-variable. This is so since at the crucial steps in the decay study for
the Milne problem in [GP], the relevant squared L%-integrals in velocity space of
the Fourier coefficients can be added to give (by Parseval’s identity) analogous
estimates for the corresponding squared L?-norms with respect to z of ®} and
®L. This also holds for their z-derivatives, which in turn via Sobolev embedding
leads to uniform bounds with respect to z for the Knudsen layer terms.

For the interested reader we end this section with a proof of the appearance
of this Taylor bifurcation in the present context. Extend the asymptotic expan-
sion of Case 1 by third and fourth order terms ®3(r,v) and ®*(r,v), and denote
it by
ebivg + € (ou + Pr2a(n,v) + Prap(p, v))
+6*(@3u + Pr3a(n,v) + Prsp(is, v)) + € (0au + Praa(n, v) + Pran(p,v)),

where @9, = Ppo of Case 1. This expansion is uniform with respect to the

variable z, and n = =1,y = "8 Consider the following z-periodic perturbation

€ [

©(r, z,v) of the z-homogeneous expansion,
o(r, z,v) = e(blvg + dcosaz(Uvg + Vu,) + 8(sinaz) W, + §°Usgvg

+é? ((pzu + ®Pgoa + Prop + 5(003042)((/)%1 + Pro1a(n,v) + Pro1p(p, v))

+6(sinaz) (V7 + Yro1a + Vkoin) + 07 (05 + Pr20a + Pr2on)
+6%(cos2az)(p3e + Preosa + Prazp)

)
+0°(sin2az) (Y3y + Yrooa + Vi22B)
+¢? (903u + ®gza + Prsp + 0(cosaz) () + Praia + Praip)

+0(sinaz) (Vi + Yisia + %{313))
+€"(Pau + Pran + Prap).

Here all coefficient functions are taken with respect to space as functions of r
only. Look for boundary conditions where the rotational velocity of first order in
€, by + 6(cosaz)U + 62Uy, at 74 = 1 deviates from b; by a §%-order term Augy.
All the unknowns U, V, W, ... should then vanish at r4 and rg, except Uy, for
which

UQO(TA) = AUGA, U20(7‘B) =0.
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Lemma 2.6 Let
1
L= (Lo +J(p¢) = €v- Vup).
If 6 < e and if (U,V) are solutions to

Ly(U) — gV =0, L.(V)+¢qU=0,
U(T‘) = V(T‘) :VI(T') :Oatr:rA’r:rB’ (245)

where

1 1 2 3
LyU)=U"+-U"= (5 + oAU, L (V)=V®W ¢ ;V(?’) —(5+ 202) V"

3 2%, 3 22
HE_T)V +(—r—4+7+a )V,
Quga 20%ugs 1%
= - = —————(—&% — ]_ ,
9 wi(ry —1)’ ¢ wy(ry — 1)(7°2 )

then the function ¢ can be taken z-dependent, and so that | =1, is of order e in
L.

The function ¢ is the asymptotic expansion for an axially periodic solution bi-
furcating from the axially homogeneous one at ugs = ugap.

Proof of Lemma 2.6 Replacing in [, ¢ by its expansion implies that

1
| = edcosaz (L(gofl — b Uv; — b1 Vwg) — (U — =U)v,vg
r
1 0P 0P
—(VIUT? + —V/Ug —+ CEW/UE) + L(DKQIA — Uy K214 + Lq)K2lB — Uy K218
r on ol
+edsinaz (L(q/)fl — 01 Woev,) + aUvgv, + (aV — W v,
0 0
+Lbgo1a — vy Yk + LYgor — vr Vg
on ol
2 o 1o 1.5, 1 | 2
+ed (L(gpzo — ZU vy — ZV Ui — iUervg — ZW v; — biUxvj
1 0P k204 0P ko0p
—(Uéo - ;Uzo)vrve + L®go0a — vr o + L®kooB — vr By
2 o Lo 1.5, 1 Lo o
+ed cosQozz(L(cp22 - ZU vp — ZV vy — EUervg + ZW v
0P 0P
+L®gooa — vy k2 L®koop — vy K22p
o
0
+ed?sin2az (L(wgz — UWugv, — VWu,v,) + Lbkosa — vr ngQA
n
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0
+LtpKoop — UT$>
"
0
+626cosaz(Lg0?1 + 2J(byvg, ©2,) + 2J (ou, Uvg + Vu,) — (v, ;711 . N & + a2,
0d
+LOxz1a + 27 (bivg, @iana) + 27 Uy + Vr, Orcan) = N = vy —p =
1 0Pk31m
+L(I)K3IB + 2J(b1U3, (DKng) + 2J(U’U9 + V'Ur; (PKQB) _ _N(I)K2IB —, a,u )
8
+e2sinaz (LT/J% + 2J (brvg, ¥2)) + 2J (02, W) — (v, gn i an 02 v,)
0
+Ltpresia + 27 (brvg, breora) + 2T (W, ®xon) — Nbgara — vr ¢g;m
1 OYKs31B
+Lgsip + 2J (b1vg, Yxag) + 2J(Wo,, Prop) — T_NwKle —, o )
B
+0(e*).
The compatiblity conditions in the edcosaz term write
1
aW = =V'— V. (2.46)
r

And so ¢?, can be taken as

0 =al, +d 11)2 + b2 vp + &y vy + €3y, + biUvg + b1 Vv
_ 1 _ _
+(U" - —U)vTvgB + =V (vj —v})B + aW (v2 — v})B,

r r

for some functions a?,, d?,, b?,, ¢, and €?,. Moreover,

V2 = o, + 6307 + BEvg + Vv + 02, + bW, — alvgu, B
—aVuv,B + W'vw,B,

for some functions o?,, 6%,, 8%, 7%, and n?,. Then, the compatibility conditions
of the €2§cosaz-term of [ are

1
() + (k) +anfy =0, (2.47)

1 2 2 2 2
w—(a%1 +5d%, +b,U) = aW' + —O‘W + —v' + (r—2 + )V + mblU, (2.48)
1 1

% 1
1:1 (U' = ~U) + aby W = a*w U = 0, (2.49)

o2 + 567, = 0. (2.50)

2
(b1V)I + ;blV + wl(U — —U)

Taking (2.46) into account in (2.49) implies that

LgU + QQV =0.
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The compatibility conditions of the e2?dsinaz-term of | are

1
(’Y%l)l + _(7%1) - ozefl =0, (2-51)
T
(a2, +582) =0, (2.52)
1 1 1
w—(a?1 +5d3, +b,U) = W" + ;W’ —20*W — a(V' + ;V). (2.53)
1

Differentiating (2.53) with respect to the variable r and taking (2.48) and (2.46)
into account, implies that

L.V +qU=0.

It follows that the coefficients @2, @35, V35, ©3,, V3, as well as the Knudsen
terms can be defined so that [ be of order 4 provided (2.45) holds. O

Lemma 2.7 Let o > 0 be given. There are nonnegative functions uy and vy,
and uga = upap > 0, such that for rg — ra small enough, the problem (2.45) has
the solutions {(U,V) = z(u1,v1);x € IR}.

Proof of Lemma 2.7 The equation LyU = 0 is disconjugate on [1,rp] for any
rg > 1 since

TB 1
/ (ry” + -+ o?)y?)dr
1

is nonneggative ([Co]). Hence there is a continuous Green function G such that
for any continuous founction f, the problem

LHU = fa U(l) = U(TB) = 0:

has the unique solution

Moreover,
G(r,s)(r —1)(r —rg) >0, (r,s)€]l,rg]?
so that (G is non positive. It also satisfies
rG(r,s) = sG(s,r), (r,s) € [1,78]%

since

/rLg(U)Xdr:/ rLe(X)Udr.
1 1
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By [Co] the equation
L,(V)=0, V(1)=V(rg)=V'(1)=V'(rg) =0,

is disconjugate on [1,75] for 7 — 1 small enough. Hence there is a C? Green
function H such that for any continuous function f, the problem

L’I'V = fa V(l) = V(TB) = Vl(l) = V,(TB) = Oa

has the unique solution

B
V(r) = / H(r, 5)f(s)ds.
1
Moreover,
H(r,s)(r —1)*(r —r5)>>0, (r,s)€[l,rs]?
so that H is nonnegative. It also satisfies
rH(r,s) =sH(s,r), (r,s) € [1,rp]%,

since

/ rLT(V)Ydr:/ rL,.(Y)Vdr.
1 1

And so, solving (2.45) comes back to finding ugap := Upap(rg — 1) and V' > 0
such that

wy (ry —1)\2
KV={(———=)V 2.54
< 4(1/U9Ab ) ’ ( )

where K is the operator defined by

KV(r) = — /1 ’ /1 " He (B~ 1)G(s, )V (1)dids.

K is compact in L?(1,7g). It maps the cone of the nonneggative functions of
L? into its interior, since G is nonpositive, H is nonnegative, and neither G nor
H are identically zero. And so the Krein-Rutman theorem applies. There is an
2
ﬂu(?"?rl)) _

eigenvector v; > ( corresponding to a positive eigenvalue of K, ( T

2
(%’:{P) with algebraic and geometric multiplicity equal to one. Denote by

ui(r) = —qp /ITB G(r,s)vi(s)ds, r €[l,rp]-

Then any (zuy,zvy), x € IR, is solution to (2.45). O
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3  Fluid dynamic and non-fluid-dynamic esti-
mates.

This section discusses a priori estimates for the two-rolls cases introduced in Sec-
tion 2.

We recall that the orthonormal basis ¥y = 1,%y = vy, ¥, = v, Y, = v,y =

7s(v? = 3) for the kernel of L in L3,(IR*) was introduced in Section 2 to-

gether with an orthogonal splitting of functions f € L2%,([ra,rp] x IR?) into
f=fi+f.=PRf+{U—-FR)f, where for the fluid dynamic part

V6
2
V6

?f4(7‘)v2,

/M(v)(l, v,v%) f1(r, 2,v)dv = 0,

fi(r,v) = fo(r) fa(r)

+fo(r)vg + fr(r)vr + fo(r)v, +

/Mwof(r, v)dv = fo(r), /M¢4f(r, v)dv = fq(r),
/Mlﬁ@f(r, v)dv = fo(r), /erf(r,v)dv = f(r),
/M%f(r, v)dv = f,(r).

Set Df := UT%(-H)Z%) + INf with N defined in (2.1). In Case 1 due to the
symmetries, the position space may be changed from the two-cylinder domain
Q C IR?® with measure dz, to [ra,7p] C IR™ with measure rdr. All functions
considered are even in v, giving in particular f, = 0. The relevant ingoing
boundary space becomes

ey

vr >0

(/v,<o | v | M(v) | f(rp,v) |? dv)é < +00}.

0 M(v) | f(rav) [P o) +

Set

£ = (i l7lai= ([ M@([ £ 0)1dz)idv)” < o)
Wi ([ra,rp] x R®) = Wi~ = {fivif € L9,v"iDf € Ly f € L*}.
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Lemma 3.1 Let l/’%g € L1, F, e L*, 2 < q < o0, be given. There ezists a
unique solution F' € W1~ to
Ji
1 : .
DF = —~(LF +2) J(F,®)+g), Fja+=F, (3.1)
€

i=1

where the terms ® of the azially homogeneous asymptotic expansion were in-

troduced in (2.2), and the boundary data F, are given on the ingoing boundary
o0r.

Notice first that the a priori estimates (3.2), (3.4) below imply uniqueness in L.
Then use the solution formula F' = W F, +Ug + UKF from the proof of Lemma
3.2 below in the case ¢ of (2.2) equals zero. Here UK is compact in L? (e.g
by first proving the compactness of UE for FF := f MFdv and then using the
splitting K = K'+ K" below), so the L? case follows from Fredholm’s alternative.
The L case then follows from (3.3), and the intermediate cases hold similarly.
Finally the addition of the small perturbation J(F, ¢) does not change the result.

To obtain uniform control of the final non-linear Boltzmann equation all the
way to the fluid dynamic limit, we shall use this section to secure sufficiently
strong a priori estimates in L? for the linear problem (3.1). With regard to
the shortest, the most transparent or the most elegant method of proof, various
approaches are the best suited depending on the situation. We shall varyingly
be using straight forward direct computations, dual estimates, ODE methods or
Fourier techniques.

For the non-fluid-dynamic part F, of the solution and for the comparison of
the solution in different L?-spaces, in the simplest Case 1 we may use quite ex-
plicit computations. Define a specular reflection operator S at r = r, rp as

Sf(T, U) = f(ra —Vr, Vg, Uz)-

Lemma 3.2 Let ¢ = 2,00, and let F be a solution in W~ to (3.1) for g =g, .
The follounng estimates hold for small enough € > 0;

€ | SF |+ | viF h<c(|v7igls +ei | Fy o
+e(l| Frlla + |l Fo ll2 + 1| Fo ll2 + || Fall2)), (3.2)
| V2 F | o< (| v 2g oo +€ 0 |VIF |+ | V3 F, |). (3.3)

The estimate (3.3) also holds in this form, when g has a non-vanishing fluid
dynamic component gj.
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Proof of Lemma 3.2. We first turn to the estimate (3.3). To prove it, we shall
need some estimates which are suitably discussed in the original coordinates of
(1.2). Consider the exponential form of (3.1) with ¢ of (2.2) equal zero;

d v S (KF
£(F(aj + sv,v)e’c) = Le—i_g)(x + sv,v),

or integrated

y 0 KF
F(z,v) =e < Fy(x — sov,v) +/ e’ (KF+9)

—5s0

a R

(x + sv,v)ds
€

=WF,+UKF +Ug.
Here sy denotes the time to reach the ingoing boundary along the characteristic.

Split the kernel k of K into k,, = signk min(|k|,n) and the remaining part k — k,,
and denote the corresponding operators by K’ and K”. The operator norm of
K — K' = K" tends to zero, and K is compact in L2,. Tt immediately follows
that F can be written as

F={UK)F+UK'UK+UK'UK")F + (UKU +U)g+ (UKW +W)F,
= (UK"\?F + Z,F + Z,g + ZsF,.

The K"-factor makes the operator norm of Z; in L® tend to zero (uniformly in
€) when the cut-off n — oco. Also by straight forward computations

1 _1 L L
‘VQZQQ‘OOSC‘I/29|OO, |V2Z3Fb|ooSC‘V2Fb‘~-

Tt remains the term UK'UK’. The first U is (uniformly in €) bounded in >,
so it is enough to consider K'UK’. Setting FF(z) = [ F(z,v)M(v)dv, we can
estimate K'UK' by a cut-off dependent multiple of EUFE in the operator norm.
For fixed € the operator FUF is bounded from L? into LY for p > d, q =
oo, d>1,aswellasforl <p<d, q<dp(d—p)t, d>1. Hered is the
dimension of the z-space. For the proof of this estimate of EUE we follow [M
Chapter 6]. Let us first consider the case e = 1, d = 2, our main concern being
the domain €2 equal an open annulus between the radii 4 and rp.

Let v' = (vg, vy) for v = (vy, vy, v,) and let g be a function from LP(€2) where we
let g(z — sv',v) for x € Q take the value zero after x — sv has for the first time
left €. This gives

(e o]
Ug(z,v) = / g(x — sv',v)el73) s,
0
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Set G(x) = Eg(x,v). Then

EUG(z) = / e "G (x — sv') M (v)dvds
IR3 % (0,00)

< / e "G (x — sv') M (v)duds,
IR3 x(0,00)

where vy = infr(v) > 0. It follows that the v,-integral can be added after
concluding the estimate of the dv'ds-integral. We continue the discussion for
v' € IR? using the notation v' = v. A change of variables (s,v) — (r,y) with
r=lv], y=x—svgives EUG < G * ¢ with

o) = cily] / k(ry)dr, o >0,
0
k() = M(r)e™ ',

Since M (v) < ce~2"l, we get

_car _ear_rolyl

k(r,y) < cie” 2 2
™

<erle s e ol

It follows that ¢ € L? if p < 2. If 1 < p < 2 the result now follows from Young’s
inequality (i.e. from x¢ : L? — L% for ¢~' = p~' — p'~'). By Hélder’s inequality
EUG € L* if p > 2. The proof for Q € IR? is analogous whereas the case d = 1
requires a slightly different estimate of k.

For the desired estimate of the solution in L* by L2-terms for d = 2 we have to
apply the estimate of UK'UK' twice (also the solution formula). Including the
e-dependence in the above estimate of EUE gives the factor €.

With this estimate of EUFE and choosing the cut-off n large enough, (3.3) follows
when ¢ = 0. Recalling that ¢ is of order €, and taking € small enough, it follows
that the addition of J(F, ) to g does not change the result in this part of the
proof, neither does the addition of a fluid component to g.

Consider next the mapping from v 2L9 x L* into W9 given by (g, F;) — F,
g g

with F' a solution to (3.1) for ¢ = 0. Green’s formula and the spectral inequality
of Lemma 2.2 for the linearized collision operator L, i.e.

—/Mfodv zc/Mufjdv,
give

€| SF 2+ |v2F, \§§§|I/_%gL 246 |vaF |24e| B 2.
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This completes the estimate (3.2) when ¢ = 0. The inclusion of J(F, ) to g,
adds ce | veF| |2, which is incorporated in the left hand side, and a term

ce(ll B llz + 11 Fo [l + | Fo llz + Il Fu ll2)- O

The control of the fluid part F) of the solution, i.e. the kernel of L, is less efficient.
In particular Case 2 requires a careful analysis. For this we have chosen a direct
computation of each moment in order to obtain sharp estimates. The method is
here illustrated in some detail in the following lemmas for the simpler Case 1.

Lemma 3.3 Let g = g +g. (i.e. with a possible fluid dynamic part g in g, and
let F be a solution in W* to (3.1). For € > 0 and small enough,

| v ll2 + 1| Fo ||2 + 1 Fo [l + || Fylo< el Ful2
—|V29L|2+ L9y 2+ [ Fp ). (3.4)

Proof of Lemma 3.3. Define

foiri (1 /MvevaL(r v)dv, i+ j > 2,

and fgi,s9(r) correspondingly, when there is an extra factor | v |? in the integrand.
A multiplication of (3.1) with vgM (resp. v*M) and integration over IR3 leads to

Fy. (1 1 r
FH?‘(T) = 97"( ) _/ 82% S,

+
r2 r2

Foo(r) = CT—Q + —/ (V694 — 2g0)ds

Multiply equation (3.1) with A(|v|)v,M and integrate over IR3,

( / UEAMqu)' = (ks + Fe A)' — %(Fe i Faz) (3.5)
—|—% (% + % ' s(V6g4 — 2g0)ds + /UTAJ(FJ_, e@l)Mdv)

1 _
+Ze” I/UTAJ (F, @) Mdv + - /gv,AMdv.



Using the spectral inequality of Lemma 2.2, we notice that
_ 1 _
ky := /U$¢4AMdU = —/UTU%TAMdU =
V6
\/,/vr 5)v, AMdv = —/ v, A v, AMdv < —c/|vrA| Mdv < 0.

Set Fy = k4F, + F,2 7 and regroup the terms in (3.5) as

. e 1
Fi="24+{"(Fpa- Fo1)
Tre T

1,1 [ -
-1-—(—/ s(\/ég4—2g0)d3+/vTAJ(FL,e<D1)Mdv)

€ \Te

1 _
+Zd I/UTAJ (F, &) Mdv + - /gv,AMdv}.

7j=2

Denoting the expression within {} by G4 gives

(F) =2+ Gy,
TE
which integrates to give

F4(T‘B) — F4(7“A) = €

%(lan—lnrA +/ G4(s
F4( ) F4(’/‘B)+T(IIIT’—IIITB +/ G4

Eliminating c,9, it follows that

- - Inr —Inrp

Fulr) = Fu(rg) + (ja(rB)-ja(rA)4-J{T3ci¢s)ds)

- / " Ga(s)ds. (3.6)

With w; = (v?v3B, 1), an analogous solution formula for i = w4 “”ZB
can be obtained in the same way. Namely, multiply the equatlon (3.1) Wlth
Muv,vyB(Jv|) and integrate over IR3. It follows that

Inrg —Inry
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Fy,,  Fpp—3F)p
( r ) - 7,2 +

1rcy 1 [T 5
L L[ v fonbstor e
rexr? 2 i e
J1 _ _ .
42307 [ ovaBa(F,09) Mo
=2
1 = Cor
+= [ vuyBMgdv = =~ + Gy.
¢ r3e

And so

Eliminating cy, gives

Fo(r) _ Folrs) | (r* —rh)r’ (ﬁe(rB) _ Fy(ra)

r rB (r3 —r?)r2\ rp T4
. / Ga(s)ds)—i— / Go(s)ds.
TA TB

(3.7)

Multiplying the equation (3.1) with M and integrating over IR3, leads to (rF,) =

rL ie.
€

F.(1 1 [
F.(r) = ’"()—i-—/ s2ds.
1

r r €

By definition of F.(1),

|F(1) = / v F(L,0)Mdv |

1

< c(/ v, | FQ(I,U)Mdv)2 <c(|SF |-+ | F |.).
And so by (3.8)

1
IE lle< (- Ly le + [ SE 2+ [ Fy ).
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Multiply the equation (3.1) with v,M and integrate with respect to v. It fol-
lows that

( / V2 (r,v) Mdv)' = (F0 + \/§F4 + Fﬂ)/

_ Fg? _Fr2 +gr

r €

Multiply this with 2(F0 + \/gﬂ + F,a) and integrate with respect to r on

(r,7B), then on (r4,75), to obtain

2 1
| Fo+ \/;F o< e(1 Pl e o+ | [ o2PGrm )bt ).

But

\/UEF(TB,U)Mdv < c(/M vy | F2(rg, v)dv)
<c| SF [+ | Fy [).

Hence

2 1
| Fo+ \/gm o< c( [Filo+= 1l llo+ [ SF | + | F | ) (3.10)

It follows from (3.6) and (3.7) that

1 1
| Eulle+ 11 Eo o e | Frla+35 [ gyl +2 |gx lo
+[SF |+ | Bl +e| B D).

This together with (3.9-10) gives (3.4). O

Analogous estimates hold in the axially homogeneous Case 2. Care is here needed
to remove terms of low e-order in the proof of the fluid dynamic estimates. This
complication has its origin in the fact that the boundary scalings (of order €) here
are larger than the Knudsen number (¢*). For upcoming negative order terms
in F'| the example a = [ MdvJ(F,vs)v, A will suffice to clarify the technique.
That moment can obviously be written as [ MdvF x for some non-fluid-dynamic
function x. Projecting the whole equation along L'y, increases the epsilon order
of the term « by one. This can be repeated until all appearing moments of F,
are of non-negative order. A corresponding raising of order for the fluid dynamic
estimates is more involved (see [AN2]). The resulting a priori estimates are
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Lemma 3.4 If 0 < ¢ is small enough and g = g, , then for small enough € > 0
the following estimates hold for a solution of (3.1) in W2,

[FF < c(e? 53 b+ [ Rl ),  (3.11)
_ ~_1
| Folle + 1 B llo+ I B llo+ 1l By < e(€ | 57800 o+ | Byl ). (312)

If F is a solution of (3.1) in W™, then the following estimate holds for small
enough € > 0;

| 3F o< | 7 %9 oo +€ 0 | 73F |+ |57 Fy o), ¢ < oo. (3.13)

A fluid dynamic component in g does not change the results in (3.14-15).

In Case 3 the partial differential nature of the problem requires more work
than the ordinary differential equations appearing in Cases 1 and 2. But the
two-roll domain is bounded and has a simple geometry that allows the use of a
direct approach involving orthogonal (Fourier) expansions. For more complicated
geometries in other bounded domains one may first by similar Fourier based
methods study the dual problem in say a box containing the domain in question,
and then via dual estimates and trace theorems obtain corresponding results for
more arbitrary bounded domains (cf [M]).

With the change of variables from (r,z) € (1,75) x (=222, 22=1) to (s,Z) €
(—m,m)* and with n = ’"Bwl, we will be interested in the case when the new
unknown F(s, Z,v) := F(ns + "5 nZ,v) solves

oF oF

U e + v, 27 (LF +9), (3.14)

+p(s)NF =

NS

where p(s) = m The control of the fluid dynamic moments will be ob-

tained by Fourier series expansions. Write (in the new variables) the Fourier
expanded density function F' as

F(s,Z,v) = Z o™ (v)elnstiZ),

(n.j)ez?

The fluid dynamic moments Fy, Fy, F., Fy, and F, become

§ : nj zn5+]Z F4 s, Z § :mnj zns—i—]Z
(n,
§ :unje ns—i—]Z ( ): § :unjez(ns—f—jZ) F 8 Z § :un]e n5+]Z)

(n,5) (n,3)
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where

mgjj = (o™, 1), = (0, 1hy),
u = (o™ 1),  uy = (a"j,wg) u™ = (" 1h,).

Recall that («, 8) denotes the scalar product [ «(v)3(v)M (v)dv, and notice that

O = 0 due to the symmetry F(s, Z,v,,vq,v,) = F(s,—Z, v, v9,—v,). Notice
that the Fourier coefficients of the first r-derivative contain a multiple of the
boundary value difference,

oF . —1) .
87“) ina™(F) + %dj, (n,j) € 7%,

a™(

whereas for the first z-derivative no such term is present. Set d = (F(r — 0) —
F(—7 +0)) 5 with & its j’th Fourier coefficient in the Z-direction.
Denote by A := (v2A, ), wy = (v2v2B, 1), and by Q = I — P, and write

1

e(Z,v) == o

((MF)(W —0,2,v) — (uF)(—7 +0, Z, u)) =" ).
Set

. 3 . _ . _
AV = ——Z(g”J vy) — 35(9™, vv,B) + n(g™, (20 — v3 — v?)B)

€
—ine(—1)"d’ o oyp T+ 3= 1)"d’, — 3ije(—1)"d’,,

'U 7}0 T 1) Vz
—ien®(Qu, (202 — vj — v2) B, Qa™) — ienj(Qu,(2v? — v — v2) B, Qa™)
—3ienj(Quiv, B, Qa”j) iej* (Qu,v? B, Qa™)
—enn(E) e 12 _02)5 = 3enj(uF){_ s 25 T 3(E) 5,

. % . _ . _
AV = —?Z(g’” v,) + 5(g™, (202 — v? — v3)B) + 3n(g™, v,v,B)

—3ine(— )"d” g —ije(=1)"d J(o2—uz—ozyp + 31— 1)"dl,
—31,6n2(Q1)21)zB,Q04"7) 3ienj(Qu.v B, Qa™)
—ienj (Quy (2v; — vy _UQ)B Qaw) iej (sz(2v E_UG)B Qa’n])
—Senn(,uF)(v3 2B —enj(uF) (0202 +2U2)B+Z77(MF)UT’Uz

Lemma 3.5 Let F be a solution to (3.14). Denote by e; = o For (n, j) # (0,0),

nA, +jA, 4

nj 4 nj 4 n jj [\nJ
my’ = —gwi(g™, 1) + gwi(=1)"d; + 32+ 52 W (uE)y]

3

2 1 1 n om0 :
= nj -5 7 nj (] zA _ nj
+\/;7A( ) ( (g™, 0* = 5) +i—g)7 s + =(g",v.A) 61 (19, 4

n? + j2) \ 2 €1 €1
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_—( ) df;,a(v2_5) _7/(_1) ndj2_ ( ) jdv v, A+T]( 1) g vZA

€1
+n?(Qu2 A, Qa™) + j (Q’UQA Qa™) + 2nj (v, A, Qo/”)
—inn(uF)! 3 — inj (uF)yl,, + inj(uk)? 4

—nQ(MQF)Ug,Uann(uF)Zg (W F),), (3.15)

A2 +57)

( 61) df} (v2—5) +i(—1)”ndf;%+ij( )"df} oA n(—l)"ef}m
n?(QuZA, Qa”j) 72 (QuiA, Qa"j) — 2nj(v,v, A, Qa"j)

+mn(uF Ve g (uF)yh, — g (), 5+ 0P (W)

—inn(uF) 3 5 + 0 F)va) (3.16)

+

. 1 1 . m, _ 1], n
uy” = ﬁ( - g(gm, vg) — g(gw,vrvaB) - 5(9"’, vgv, B) — 2— (MQ)MGB

(=1)"
€1
n*(Quve B, Qa™) — 72 (Quev2B, Qa™) — 2nj(v,vv, B, Qa™)
+inn(uF )(Ua suzug) s T 4070 (uF)P 5+ 2inn(uF ),,% 5

—om(u B),, )+ 2P (W)Y, ), (3.17)

+

df,'e +in(— )”dj% 5T ij(— 1" + 2n(—1)"¢

vrvgU, B U2U9E

, ; . 2NN 4 i A _ o
nj __ ! ( n nj 1 J A'r +n z n jj n])
o\~ =g+ 1)+ —— +n(—=1)"d. + nn(uF , (3.18
TR+ 2\« (6, 1) 3eywy (n? + 52) n(=L)"dr +an(uF)), (3.18)
i j njA™M — n2A™ ) _ o
Y= —=g",1 : 2ot j(=1)"d Py). (319
Yo Ty ( €1 * 3erwi (n? + 52) T (k) ). (3.19)

Proof of Lemma 3.5. This is proved by moment projections and direct compu-
tations from the Fourier expanded (3.14), see [AN3]. O

Lemma 3.6 Let F be a solution to (8.14). Then for n small enough,

\mo"|+\m2°|+\u2°|+|u°°\+\u°°|

v n F ~ 3
< (\g|||2+| 9L|2+|5F|N+@+HI|FII2)-
61 €1 \/a
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Proof of Lemma 3.6 For (n,j) = (0,0), it holds that

1 1 -
00 __ n0 jinm
o = o dZ[i(F(’JT—O)—f—F -7 +0)) %a e
=A =) a"em, (3.20)
n#0

where A = L [" dZ(F(r — 0) + F(—r +0)). First,

1
00 00 2
Q2 = (o1 v?AMdv + o UZA

V6

A multiplication of (3.20) with Mv2A and v-integration gives

v2A § :a’UQA

n#0

To proceed, take the scalar product of (3.14) with v, A and identify the Fourier
coefficients,

(—1)"df;2A + in(v2 A, a™) + ij(v,v,A, ™) + n(uF, 271,2) =
1 _
- ((v,(qﬂ —5), ™) + (g, UTA)).

! (3.21)

Also take the scalar product of (3.16) with v? — 5, and identify the Fourier coef-
ficients,

_i(_l)ndi(w—@ + n(v(v* = 5), &™) + j(v,(v* — 5), ™)
Z’ n
= (67,0 =5) + (b)Y e s))

(3.22)

Moreover, (3.14) writes

%(/LF) + V.o

so that
i(ny + ju,) (WF)Y + (—1)"v,e’ (v) — v, (' F)"

(N E) = S (L(F)Y + (u0)"),
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where

e(Z,0) = — ((uF)(w —0,2,0) — (uE) (-7 +0,2,0)) = 3 ).

2T ez
Taking the scalar product with v, A leads to
(—1)"€)s 5+ in(vp A, (LF)™) + ij(v,0. 4, (uF)" —

(g = (007 = 5), W)+ (A, (ng))). (3:29

(7 A, (WF)™)

By (3.21-23) for n # 0,
1 i no0_ (_1)n 0

n0 n0
o _ - d
av%A e%nggvz—S €1 v A 61TL2 vy (v2—5)
—1)" n n
+7’( ’I’L) dngi ean (IU’F’)”O('U2 —5) + Z_(MF)'U 2 —p2
1 ) n
= _?gv -5 _g'urA + = (:u‘g)w
(=1)" = ) (—1)" 0
+ 61”2 dgr(v275) dva n2 ev%ﬁ
.7 77
/LE(ILLF):}?—U% - (/'I’F)'uzA
2
n £\ n0 m
+E(M' )o2i — 2 —(u F)vz_vg
From here, using
1 00

dgr(qﬂ—s) + n(pF )29@2—5) = gg(uz—s),
it follows that
| 90 2+ [ 94| g 2+ v 2gy |
2 ~
|m0\<(9022942+77 gr |2 9L2+|FL‘2
+ | SE |+ | Byl +n] By ).

Since
00 00 \/6 00 00 00 1 00 00
my = Q2 — 3 my —Qlp2, Uy = _(aUgUgB a_LU UOB)
1
2 : Y, % = = (% 00
A u, = wy (avzfuzB aJJJ2’U B)

n#0

similar inequalities can be obtained for m$°, u’, v, and u% and the lemma

follows. O
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Lemma 3.7 Let 1/%6 € L™ be given. Then there is ng > 0 such that for n < ng,
a solution F in W?~ to

oF oF

T o F1 - = LF F ) .24
v 8S+vaZ+WNF ( +eJ(F,B)+g (3.24)
Fjpar = B,
satisfies
2
i bse(G o b+t vt by IAL). )

Proof of Lemma 3.7 Consider first the case where 8 = 0. As in the axially
homogeneous situation, Green’s formula and Lemma 2.2 imply that

e | SE %+ vaFyL f< (| vagy 3+ / . Fp+e | B 2).  (3.26)

Then Parseval’s identity, Lemma 3.6 for (n,j) = (0,0), and an estimate of the
Fourier coefficients (n, j) # (0,0) as given in Lemma 3.5, imply that

y N
v 2 Fy .
|| g1 ||2 + | b |

€1 \/6_1

And so (3.25) holds in the § = 0 case, since | Fj| || V%FH l2,- The case 8 # 0
can be handled as the case § = 0 with g in the right hand side, by taking instead
g+ eJ(F, () in the right hand side. This gives

~ g 1~ ~
Byl o L2 AP | Bl ).
1

~ Lgile  |lv2(g0 +eJ(F,B)) ||2 1
E|,< Fy |
| ||\2_C( 2 + - hl | )

1
V2 1 a
<o(ll L0l LRy P vie L ).

€7 €1 Ver

Thus the lemma holds for 7 small enough. [

Remark. If we had access to the estimates in this section of the non-hydrodynamic
part with respect to L for (large) ¢ > 2, then the actual asymptotic expansions
required in the existence proofs of the following Section 4 would be considerably
shortened in the Cases 2 and 3.
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4 Existence theorems and fluid dynamic limits.

Based on the discussions about asymptotic expansions and a priori estimates in
Sections 2-3, this section studies existence results and fluid dynamic limits for
our three choices of archetypical two-rolls behaviour.

Given the asymptotic expansion ¢ of (2.4), the aim for Case 1 is to prove the
existence of a rest term I, so that

f=M(1+¢+eR) (4.1)

is a solution to (2.1), (2.3) in Case 1 with M~ f € L®. This corresponds to the
function R being a solution to

1
DR =~ (LR +2J(R,¢) + ¢J(R, R) + z),

where [ was defined in (2.10). Recall that the asymptotic expansion ¢ is of order
two in e with correct boundary values up to order two and that [ of (2.10) - the
pure - part of the equation - is of e-order two and n-order one in L1, where
n = rp — r4. Notice that ®, j = 1,2, may be constructed so that ’practically’
D®/ = (I — Py)D®’, hence | = ;. This holds modulo a possible higher order
fluid dynamic component, neglected in this section, that does not change the line
of reasoning or its results.

Let the sequences (R")ncv be defined by R° = 0, and

1 =y .
DR™! == (LR"+1 +2 ; e J(RM, ®7) + g"), (4.2)
R (1,v) = R4(v), v, >0, R""'(rp,v) = Rg(v), v, <0. (4.3)
In (4.2-3)
g" :=eJ(R", R") + 1,
2

&2 . -
€R4(v) = eUoarve— T %a — ] — Zejqﬂ (ra,v), v, >0,

7j=1
2

eRp(v) := —Zejq)j(rg,v), v <0,
j=1

with R4, Rp of e-order two.
For the rest term iteration scheme (4.2-3) the following holds.

Lemma 4.1 For 0 < ¢, 0 < rg —rg small enough, there is a unique sequence
. . ~1
(R™) of solutions to (4.2-8) in the set X :={R;| 02 R |,< C} for some constant
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C. The sequence converges in L1 for 2 < g < 0o, to an isolated solution of
1
DR=- (LR +eJ(R, R) +2J(R, ¢) + l) , (4.4)
€
R(1,v) = Ra(v), v, >0, R(rg,v) = Rg(v), v, <O0. (4.5)

Proof of Lemma 4.1 Denote by n = rg —r4. The existence result of Lemma 3.1
holds for the boundary value problem

DF = %(LF+ 2J(F, ) +g),

F(1,v) = Rs(v), v, >0, F(rg,v)= Rg(v), v, <O0.
Here g = g, and by Lemma 3.2-3
1 I,
| V2 F o< 01(2 v 2gy o+ | By [~ >,
1 1 1,1 1
[VAF [wS (| v g o += | VEF o+ | VAR . ). (4.6)
We note the obvious L?-norm equivalence | Fj |o=| U%FH |2, and the Grad type
inequality
_1 1 1
| v72J(9,h) [4< C [ v7g |oo| 2R |y, (4.7)

which follows by an easy, direct computation. This will next be used to show by
induction that

| V2 (R — R™) o< en | v2(R* = R*) |3, | viR" |w< cnyn€ IN,n>0. (4.8)
For n = 0, R! is the solution to
1
DR'= =(LR'+2J(p, R") + 1),
€
R'(1,v) = Ra(v), v, >0, R'(rp,v) = Rz(v), v, <0,

so that by (4.6-7) | v2R! |< cne, | v2R! |o0< cn, where = r5 — ra. Also,
R™?% — R™*1 is a solution to

1
D(Rn+2 _ Rn—i—l) — _(L(Rn+2 _ Rn-i—l) + QJ(QD, Rn+2 _ Rn—|—1)
€

+eJ(R™ + R", Rt — R™)),
R"2 _ Rl =0, 0QT,

which by (4.6-7) and the induction hypothesis (4.8) leads to
| y%(Rn—H . Rn+1) |2§ c ‘ V*%J(R’IH-I +Rn,Rn+1 . Rn) ‘2
<o(| V2R oo + | VIR |) | v2 (R — R™) |5
<2 | vi(R™ = R") |,.
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Moreover,
| V3 R™? | <| v3 (R™? — ™) | +...
+ | 1/%(R2 —RY) | + | V2R lo< en,

for sufficiently small n > 0. And so (R™) converges to some R, solution to (4.4-5)
in L9 for ¢ < co. The contraction mapping construction guarantees that the
solution is isolated. [

The existence of isolated solutions to (2.1), (2.3) is an immediate consequence of
Lemma 4.1. It also follows that, when € tends to zero the fluid dynamic moments
converge to the (Hilbert type) corresponding leading (first) order limiting fluid
solution given by (2.5). This is obvious in L? from the estimate of R' in Lemma
4.1, and holds in L* for the following reason. If the asymptotic expansion were
carried out to third order, then R! would be of order ¢ also in L*. Grouping it
together with the new third order term from the asymptotic expansion, shows
that the R of our present Lemma 4.1 also is of order e. We have thus proved

Theorem 4.2 For 0 < ¢, 0 < rg — rq small enough and 7 = 1, there is an
isolated azially homogeneous solution of (2.1).(2.3). When € tends to zero, the
corresponding fluid dynamic moments of ¢ converge to solutions of the limiting
fluid equations at the leading order e.

In Case 1 the (incompressible) fluid dynamics behaviour is given by the limiting
uga Tp—1> _ Upa Tp—T"

Tr%fri T r rpirac

Using similar arguments but more extended asymptotic expansions, the same
type of results can be proved in the other cases. In Case 2 our present estimates

give (see [AN2])

Theorem 4.3 Assume that rg — 74 is small enough and that (A + 5D) < 0.
There is a negative value Ayiy of the parameter A, such that for the quantity
Apis — A positive and small enough, there are for € positive and small enough,
two isolated, non-negative L'-solutions f7, 7 = 1,2 of (2.1), (2.3) coexisting with
M-fl e L™,

first order (angular) velocity

/M_lsupessre(u”) | f2(r,v) |* dv < +o0.

The two solutions have different outward radial bulk velocities of order €3. For

fized €, they converge to the same solution, when A increases to Ayg. Their
fluid dynamic moments converge to solutions of the corresponding limiting fluid
equations at leading order, when € — 0.

Here the leading order (in € ) fluid dynamics behaviour is given by the first order
ugY

u3®
angular velocity #AL — *4lewirs and the two possible third order radial velocities
%2 where ug solves (2.40).

Finally in Case 3 one obtains
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Theorem 4.4 For j =1, 0 <€, 0 < rg —r4 small enough, there is a small-
est bifurcation value ugap > 0, such that the axially homogeneous solution to the
problem (2.1), (2.3) bifurcates at ugap with a steady secondary solution appearing
locally for ugap < uga, which is axially symmetric and azially (rp —r4)—periodic.
When € tends to zero, the corresponding fluid dynamic moments converge to so-
lutions of the limiting fluid equations at the leading order € (bifurcated solution
of Taylor-Couette type).

In this case the limiting fluid Taylor-Couette equations of incompressible Navier-
Stokes type are

Ou, ou,  uj 10P, r
ot = L= =2 S (A - 7)), (4.9)

UTE + 0z r o 20r r2
Uy a(TUQ) 6u0 . Ug
- + u, 0z _N(AUO_T_Q)a

r  Oug
%4‘ % — _1%_’_ A
gy T, T Ta g, T HEYs
10(ru,)  Ou,
- -0
r or + 0z ’

where 1 depends on the molecular model, and P; is the next order term in € of
the perturbed relative pressure.

Proof of Theorem 4.4 Given the asymptotic expansion (4.1) in Case 3 and its
bifurcation point, the aim is to prove the existence of a rest term R, so that for
the parameters near the bifurcation point, there is an axially periodic solution

=M1+ ¢p+e€R)

to (2.1) with an added Z-term and boundary values (2.3) with M~1f € L.

This corresponds to the rest term R being a solution of the same type to

1 -
DR =~ (LR +2J(R, ) + eJ(R,R) + z).

In Section 2 a third order asymptotic expansion in € was constructed in a §°-
neighbourhood of the bifurcation velocity ug4, with correct boundary values up
to e-order three, and so that [ - the ¢-part of the equation - is smooth in r, z and
of order € in L?. Notice that ® can be constructed so that D®7 = (I — P,) D®,
hence that [ =1, .

Let the sequences (R"),cv be defined as in the earlier Couette case by R® = 0,
and

3

1 . _

DR = —(LR™ 423 (R, @) + g7, (4.10)

€
j=1

R"(1,v) = R4(v), v, >0, R""'(rp,v) = Rp(v), v, <0. (4.11)
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In (4.10-11)

g" == J(R", R") +1,
3
2 . .
€R4(v) = eMoave— T Ua — ] — ZEJ(DJ (ra,v), wv,>0,
7j=1

eRp(v) :=0, wv, <0,

with R = (R4, Rp) of e-order three.
For the rest term iteration scheme (4.10-11) the following proposition holds and
with it the proof of Theorem 4.4 is complete.

Proposition 4.5 For € > 0 and small enough together with n = rg — ra, there
is a unique sequence (R™) of solutions to (4.10-11) in the set X := {R;|vzR 14 <
Ke} for some constant K. The sequence converges in L7 for 2 < ¢ < o0, to an
1solated solution of

DR = %(LR +eJ(R, R) + 2J(R, ¢) + z), (4.12)
R(1,v) = Ra(v), v, >0, R(rp,v)= Rg(v), v, <O0. (4.13)

Proof of Proposition 4.5. The existence result of Lemma 3.1 holds for the bound-
ary value problem

3
Df 1(Lf+QZejJ(f,<I>j)+g>,

€
=1

f(,v) =Ra(v), v, >0, f(rg,v) = Rg(v), v, <O0.

Rescale in space to (—m, 7)? and consider the approximation (4.10-11) in the case
n = 0 with ¢° = [. As discussed before (4.10), this ¢° = ¢ is of order € in L>,
and

v % oo + | Ry | o< 1€,
for some constant ¢;. By (3.25) and (3.3) it holds that for some constant ¢,
| vz R o< cregme?, | vz R lo< 2¢1697€, (4.14)
for n and € small enough. Let us prove by induction that

| vz R" lo< 4erege,

| y%(R"Jfl — R") |2< 2¢1c9¢ | V%(R” —R" Y, n>1 (4.15)
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For n =1, R? — R! satisfies

D(R? — RY) = g(L(RQ ~RY)+ 2§:ejJ(R2 — R',®) + eJ(R!, Rl)),
=1
(R* — RY(ra,2,v) =0, v, >]0, (R> — RY(rp,2,v) =0, v, <0,

so that, by (3.25),

(VIR = RY) o< eon | VTR (RY R s
Recall that for any g € L™ (resp. h € L,

v 3 T(g,h) |y e [ v3g [l vER ], - (4.16)

Hence

V3 (B = RY) b< erfe | vi (R~ RY) |2
for n small enough. If (4.15) holds until n, then

| V2 R™ | o<| vE(R™ = R") |oo +..+ | v3(R' = R%) |

< S VR = R oot | AR — B 1)
< 4cqceqe,
for n small enough. Then R"*2 — R"+! satisfies
] 3
D(Rn+2 _ Rn—H) _ - (L(Rn+2 _ Rn+1) +92 Z GjJ(Rn+2 _ Rn—f—l’ (I)J)
€

j=1
+€J(Rn+1 + Rn’Rn—}-l _ Rn))

(R™2 — R"™(ra, 2,0) =0, v, >0, (R"™ — R"™)(rp,2,0) =0, v, <0,

so that by (3.25) and the bound on | ¥2R" |, and | v2 R*+! |,

for € and 7 small enough.

And so (R™) converges for sufficiently small > 0 to some R, solution to (4.12-
13) in L7 for ¢ < oo. The contraction mapping construction guarantees that this
solution is isolated.
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5 Stability.

We next come to the question of stability for the solutions obtained in the previ-
ous sections. Only Case 1 will be discussed. It turns out that the well known fluid
stability of the leading order term is the prime mover behind the kinetic stability,
which in a certain way is uniform down to the fluid level. More precisely we shall
devote this section to prove the following new result.

Theorem 5.1 The steady Couette problem for the Boltzmann equation in the
two rolls problem is stable. The stability is uniform in the following sense for
small enough mean free path €. When the gap between the cylinders is small
and the angular, azial and energy moments are perturbed of order e or €2, then
uniformly in € the perturbation vanishes asymptoticaly in time. Also an initial
perturbation of order €2, with small but otherwise arbitrary fluid dynamic as well
as non fluid dynamic part, vanishes asymptotically in time.

This type of results is expected to carry over to the cases 2-3, where also the fluid
stability is well understood.

Among the few earlier rigorous non-linear kinetic stability results outside the
situation with global Maxwellian limits, are the studies in [UYY] dealing with
stability of half-space Milne problems, and [UYZ] dealing with the Boltzmann
equation in full space with an external force.

With &, = 1 + ®, the rescaled stationary solution, the stability problem con-
sists in proving that the distribution function ® tends to ®, when t — oo, where
® solves the evolutionary problem
O Lo b = (L 4 (@, B)),
®(0,7,v) = dy(r,v) + P(r,v), 7€ (ra,rp), v € R,
B(t,14,0) = Py(ra,v), t >0, v, >0,

and P is a small perturbation of ®,.
Denote by ¥ = & — &,. It should then be a solution to

o - . .~ S
Wt tvvd= 5 (L IR +2I0.8)), ()
@E(O,r,v) = P(r,v), r € (ra,rp), v € IR (5.2)

W(t,ra,v)=0,t>0, v, >0, Yt rg,v)=0t>0, v <0,
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and tend to zero when ¢ — oo.
Here the following perturbations P are considered,

P(r,v) = e(a1 (v> = 5) + Brvg + 711v2) + € (e (v® — 5) + Bovp + Y2v)
+63p3(x, v, €),

where «;, 5;, Vi, 1 < i < 2 are L*®-functions of the space variable, and the
function p3(z, v, €) is measurable with || ps ||oc2< ¢ uniformly in €, where

N =

1 75 [loos= ( / sup p2 (e, v, €)M (v)dv)’.
IR

3 e

As in Section 4, the stationary solution ®, is here determined by an approximate
asymptotic expansion ®; of terms of up to third order in € with boundary values
being those of the same order of 2%~ —<w4)) at {(r,, v), v, > 0} (resp. 0 at
{(rB,v), v, < 0}, plus a rest term €S,

Qi (r,v) =1+ @4(r,v) + eS(r,v),
where || S ||co2< c|rp — Tal€, || S ||22< ¢|rp — rale?, and

Dy (r,v) = €@y (r,v) + €Dy + 3,

r—1 r—7Tg

D; = Dpyy(r,v) + Prial ) + @i

v), 2<i<3.
€

The Hilbert terms ®5;, 1 < i < 3 satisfy

Loy = LOyy + J(Pp1, Pr1) — v - VaPm
= L(PHE} -+ 2J(<I)H1,(I)H2) - - qu)HQ =0.

They are given by
O (r,v) = by (r) vy,
Ba(r,v) = ag + dov® + bovg + cov, + %bfvg + (b — %bl)vrvgB,
D p3(r,v) = a3 + d3v” + bavg + c3v, + dyv, A + bidavgv”® + b1b203
+by Cov,vg + ébi’vg — by (b — %bl)L_l(J(Ug, v,v9B))

R T 1
bl = SBL (0 (0 = 1) + el (4 = 02))

1 1 _ _
+= (b, — =b1) L™ (v — 3v2vg) B) + byv, vy B.
T T

We take r4 = 1 (implying rp > 1). For compatibility reasons

b(r) = 204 ("B _ ) (5.4)

=2
rg—1"r

49



a; + 5d; (resp. ¢;), 2 <1 < 3, satisfy first-order differential equations, whereas b;
(resp. d;), 2 <1 < 3, satisfy second-order differential equations. Knudsen terms
D a; (resp. Pip;), 2 < i < 3 are added in order to satisfy the given zero ingoing
boundary conditions up to third order.

The solution 1 to the evolutionary problem (5.1-3) is determined as the sum of
an asymptotic expansion 1 and a rest term €R,

=1+ R,
where
w(tﬂ /r’ U) - ele (ta T, U) + 62w2 + €3w3,

—1 r—r .
Y = Vit r,v) + Ykialt, ) + Ykis(t, B ), 2<i<3.

The initial values of 13 is taken as zero, those of 1y, 19 are the corresponding
orders of P and finally Ry := €?p; is taken as initial value for R. For (5.1) to be
satisfied up to zeroth order in € included, it is required that

0= Lyg = Lo + J(Yu1, Y1 + 2Pm1) — v - Vo

0
= Lbps + 2J (Yu1, Yus + Pu2) + 2J (Yua, 1) — gfl — vV Vs¥H2
0 0
= L¢’K2A — Ur V24 = L¢K2B — Ur Vs
on o
= Lpresa + 2J(Vu1(ra), Yioa + Proa) + 2J (Yo, Pu1(ra))
1 0
L Npran — v, 20K
r on
= Lisp + 2J (Vi1 (rB), Ykon + Pros) + 2J (Vkon, @1 (rB))
1 0
——Ntvgop — ¥y ngB-
r ol
The rest term R should then be a solution to
1
%1: +v.v.R= —LR+ J(R R)+ H(R) a
where
1
and
0 1
o= 26( - % — v Va¥u3 — —(N¢K3A + Npgsg) + J (P2, 12)
+2J (Y1, 3 + $3) + 2J (2, Do) + 2J (3, P

(QJ(%J/J?, + ®3) +2J (3, P2) — -

)
51/)3)
€ (J(%,%) +2J(¢3,‘I’3)) + 5 J(lﬁ S).
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The equations involving Lyy;, 1 <1 < 3 give the v-dependence of ¥y,

Yu1(t,r,v) = Ay + D1v? + Bivg + Civ, + Eyv,,
Yua(t,r,v) = Ay + Dyv?® + Byvg + Cov, + Eyv, + g2,
VYus(t,r,v) = Az + Dsv? + Bsvy + Csv, + E3v, + gs.

Here A;, B;, C;, D; and F;, 1 < i < 3 denote functions in the (¢, r) variables. By
the compatibility conditions

/U : v:cle(la UT)MdU =0,
and the initial and boundary conditions at first order, it holds that
A1 +5D; =C; =0.

A(|v|) was introduced after Lemma 2.2 from the nonhydrodynamic solution to

L(v,A) = v,(v? — 5) together with B(|v|) from the corresponding solution to

L(v,v9B) = v,vp. Further,

1 1 1
g2 = =D3v* + (=B} + Bib))vj + §E121)§

2 2
+(Bj + b1) D1vgv? + D1 Ejv,v* + (By + by) Eqvgu,
oD, - 0B 1 _  0F; _
A T'A “a_ _B T B a_ Ur sz
+8rv +(8r . 1)VrUg +arvv

and g3 is a similar expression depending on ¥y, ¥ge, ®g1 and Pgo . By the
compatibility conditions

0
/( 7;;{1 + v - Va¥uz) (ve, v — 5,v,) Mdv = 0,

the functions By, D; and F; are solutions to the parabolic equations

0B; 0’°B;, 10B; 1

ot oz ' r or r_QBl) =9
Bi(0,7) = Bi(r),
Bi(t,r4) = By(t,rg) =0,
0D, w3 — 5wy 0°D; 10D,
ot T 10 o a0
Dy(0,7) = ay (1),
D1(t,r4) = Di(t,r5) =0,

0’E, 10F,

or2 ' r or

+w1(

or,
ot

wl(
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Here,
wy = /vagBMdv, Wy = /vaMdv, ws = /vaQAMdv.

The convergence to zero when t — oo of ¥y is well known from the fluid dynam-
ics context (see e.g. [V]). Here the convergence follows from classical asymptotic
properties of the solutions to the above linear parabolic equations [LSU]J.

The compatibility conditions

/ (ale +v- Vz¢H2) (1,v,)Mdv = 0,

ot
write
0 we 0D
5 (1(C2+ 5 0) =0
) 35, 1, 1 .\ Bi(Bi+2b)
= (A2 +5D, + D} + 5B} + Bibi + 5El) =T (69)

Let A(n,v), pas(t,n,v) and ppa(t,n,v) be the solutions of Theorem 2.4 to the
half-space problems

oA
ra_ LA:
v an

A0,v) =0, v, >0,
/vr/\(n,v)dv =1,

aPAZ
on

pAQ(ta Oa U) = _T/NJHQ(ta Ta, U)a Ur > Oa

/vrpAz(n,v)dv =0,

(% = LpA2,

and

0pB2
op

pBZ(ta O’U) = _1ZH2(ta TBaU)a Ur < 05
/vrsz(u,v)dv =0.

Uy = LPB2>

As n (resp. p) tends to 400 (resp. —o0), A and pas (resp. ppz) tend to some
Qoo F 000V? + BooVs + Ur + YooUz AN Qoo + Go0a¥? + BooAVs + YooaV, (T€SP. Qoop +
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0ooBV? + BooBVs + YooBVz). Give as boundary conditions to As, By, Dy and E,
Ay(t,14) = aeC2(t,74) + anoalt), Aa(t,rB) = axCa(t, ) + aeop(t),
By(t,74) = BocCa(t,74) + Pooa(t), Ba(t,rp) = BecCa(t,TB) + Leon(t),

Dy(t,74) = 600Ca(t,74) + 0s0a(t), D2(t,78) = 00cCs(t,7B) + doop(t),
Es(t,ra) = 70C2(t,74) + Vo0a(t),  Ea(t, r5) = 100C2(t, 78) + Yoon (1),
with

Wo (TB 0D, 0D,

Colt,ra) = ruCalt, i) + 2 (ra ot (b rm) = H(t7a) ).

Then there is a solution Ay + 5D, to (5.5) if and only if

(42 +5D:)(t,15) = (Ao +5D0)(tr0) = [ Bu(Br+20)(60)

TA
which fixes Cy(t,75). Finally, the linear parabolic problems for By, Dy, and for
E5 provided by the compatibility conditions

/ (8¢H2 +wv- v$¢H3) (vg, v* — 5,v,)Mdv = 0,

ot
have unique solutions;
0B, 0’°B, 10B, 1
ot TlGe i et =i

By (0,7) = Ba(r),
BQ(ta TA) = B C (ta TA) + ﬂooA(t)a
BQ(t’ TB) = ﬁooc2(t’ TA) + ﬁooB(t)a
0Dy w3 —bHwy 0?°Dy 10D, -
o P10 (o Tra )T
Dy(0,7) = (1),
Dg(t, TA) = 50002(t, T’A) =+ 5ooA(t),
Dy(t,rg) = 00cCa(t,74) + 00 (1),
2
El(O: T) ’72(T),
Ea(t,m4) = Yoo Ca(t, 74) + Yooal(t),
Es(t,78) = Y0oCo(t,74) + Yoon(t)-
Here, fi, f1 and fl are given functions depending on ¥y, b; and cs.
Let ¥go4 and Ygop be defined by
VYroa = Co(t,74) (A — Qoo — G00¥? — Boo¥s — Uy — YooUz)
P24 = Qooa(t) = Sooa(t)0? = Booa(t)vg — Yoo (t)vs,
VYican(t, 1, v) = Co(t, r8) (A=, =) — Qoo — Foo¥® + Boss + Ur + Yoolz)
+paB(t, =1, —V) — Qoo (t) — Joon(t)V? + Boon(t)Vs + Yoon (t)v,
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They satisfy

0
Ur waKZA = L¢K2A,
n

wHZ(ta ’I"A,’U) + wK2A(ta07IU) = Oa t> Oa Up > Oa

EIEOO wK2A(t7 m, U) = Oa

n
and

0
Uy %KQB = Lk,
"

wH2(ta TB)U) + wKQA(taOav) = Oa t> 07 U < 0:

lim wKQB(t, s U) =0.
p——00

The convergence to zero of ¥gs + Ykoa + Ykop When t — oo, follows from the
convergence of 11, and from the properties of the parabolic problems and of the
Knudsen terms.

The Knudsen terms 1x34 and 1 x3p are defined analogously, so that the boundary
conditions at third order be satisfied by . The third order terms are constructed
similarly to the second order ones, and analogously converge to zero when ¢ — oo.

For the a priori estimates of the rest term the following norms will be used,
t :
| R ||2t,2,2= (/ / R%s,x,v)M(v)dsdwdv) ,
0 JOxIR3

| R ||oo,2,2= sup (/ R%*(t,xz,v)M
QxIR3

t>0

%
(v)dxdv) ,

1
| R ||00,00,2= SUp </R sup RQ(t, x, v)M(v)dv) 2,

t>0 3 zel

t 1
I llran= ([ [ 0M@) | Fsma0) P dvds)” +
0 v >0
t 1
(/ / v | M(v) | f(s,7B,v) ? dvds)2 < +00.
0 v, <0
The rest term R can be split into R = R; + Ry, where

1
V- Vle = ELRl + ZH(Rl), (56)
1
Ry(t,ra,v) = —;w(t, ra,v), t>0,v,>0,

1
Ry(t,rp,v) = —=9(t,rp,v), t>0, v, <0, (5.7)
€

54



and

OR, 1 1 1 9
=24 0 VoRy = LRy + Z‘](Rl + Ry, Ri + Ro) + ZH(RQ) + a,

ot
Ry(0,7,v) = Ry(r,v),
Ry(t,ra,v) =0, t>0, v, >0,
Ry(t,rp,v) =0, t>0, v, <0,

where @ = a— %. Notice that o can be taken non-hydrodynamic modulo higher

order terms in €, which converge uniformly to zero when time tends to infinity.

Hence only 28t contributes to the hydro-dynamics in &. A priori bounds on R,

ot
are first derived, and also hold for %. The ingoing boundary values as given by
(5.7) are subexponentially decreasing in €, and tend to zero when time tends to

infinity.

Lemma 5.1 With R™ (R%) the ingoing (outgoing) boundary values of Ry, any
solution to (5.6-7) satisfies

L .
Vel R llagan + 1| v2(I = Po)Ry ||222< cvV/e || R [lat,s
| PoRy ||2t,2,2§ cl|l RY" ||2t,2,~v

1 c ;
| V2 Ry [|oot,c02< p | R" lloot,2,~ -

Proof of Lemma 5.1. Denote by

1
2

| Ry |o= ( M(Rl)Q(t,x,v)dmdv)

Qx IR3

with ¢ acting as a parameter.
By (3.2-4)

Vel BRI |4 | v3(I = Po)Ry [o< o Ve | BRI | +e [ v R H(R)) |5 ),
Pl o< e | v H(R) b | B L),

1 1 ,
ViR = e | v 3 H(R) o+ [vEH(R) [+ | B,

Then,
VR (Ry) [o< o | 13 (1 + et + €45) |og
+ | V%(@1 + €@y + €D3) |0 + | Vi S loo ) | VIR, P
<en|viRy |,
and

| v H(R)) [so< e | V3R |oo,

5



where n =rg — r4.
Including the estimates in ¢, this ends the proof of the lemma. [J

The a priori bounds on R, are obtained by an approach adapted from [M], and
involve dual, space-periodic solutions discussed in the following two lemmas.

Lemma 5.2 Let ma > rg. Let g be such that
/ g(T,z,v)dz =0, a.a.7 €[0,00), v € IR>. (5.8)
[0,27a]

Let (7, z,v) be periodic of period (2ma)? in the space variable, solution to

Jyp

3= TV Vap = —Lso +9, (5.9)

go(O,x,v) = 0.

Then,
| ¢ loea (Ve ll v 3T = Ro)g
| A = R lbza< e(e I v73 (1 - o)

v

N——

| v73(1 — Py)g

c(% |

Proof of Lemma 5.2. First, multiplying (5.9) by ¢ and integrating the resulting
equation on [0, 7] x [0, 27a]?* x IR? leads to

||€0|| T22+_ ||V2(I P0)90||2T22
<cle| v 2(1 R)g ||2T22 +m || Poy ||2T22+ || Pyg ||2T22) (5.10)

By (5.8) it holds that

2_/ Pyo(7,z,v)dz =0, 7>0,ve R’
or 0,2ma)

so that

/ Pyp(F,z,v)dz =0, 7>0, veR. (5.11)
[0,27a]
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Denote by @(7,&,v), £ € Z? the Fourier series of ¢ with respect to space, and
define g analogously. Then for £ # (0, 0),

0p _

or (%L“g'”)@*g'

Let 3 be a truncation function belonging to C'(IR) with support [0, co], and such
that B(7) =1 for 7 > 6 for some § > 0. Let ¢ = @. Then

op 1 . ., 0B 2
E_(GL—Hg v)g0+<pa7__+g5, e Z°.

Let F be the Fourier transform in 7 with Fourier variable o. Denote by
b =Fp, 7 =F( ' Lo+ 03 +9B), Z=F( 'Ly +gp), U= (io +i€-v) .

Let x be the indicatrix function of the set
{v; [o+&-v|<al,
for some positive a to be chosen later. Let ¥5(v) = (1+ | v |)®. First,
I Pox®) lln< e | [ (o€ oMo [ 1l + | [ x0(o,&,0)0? Mo || 0 |
+ | /ch(a,g,u)v,Mdv 1 o flar + | /X(I)(o,f,v)ngdv vl )

<cll v @l (sl + 1l Xthosa )
(67

— || Y=s® || g -
seyfrer o=@ lla

Now ¢ = —UZ, and so
| (1= 0@ 1< e( (=200 1 + | a2l =0T I3 ) 102 |13

=32 [ = 00F GG M [ 431 =0 (6) - D7)

c , 4 P v . ny .
S Teay 12l =20 [0 =00 @2 Mav( [ 0,1~ 0)(F () — 02) Mo
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Choosing o =|| ¥_,® ||5']| ¥—sZ ||u leads to
€N P® < e[l 6@l 9.7 Il
|s|z [ 0= 00 @I Mav( [ (1 - ) (@) ~ U2 M
Hence,
€1 P < el 2o Nl + 11 oI = B)@ ) 1| 62
- 1€ Z [ i =00 F @ Mo [ 430 - (o) - U)MoY
Consequently,
NP < e 1617w o2 I3+ 6o = P)® lull &7 Il )
|§|Z [ 0= 00Fe L Man( [ i1 - ) (F(e8) - U2)Mdv

And so,

52
1+ | €|

€ a3 ) o *
1+|£|Z/¢J Uf'% Md”/% (1 =x)(F(pB) = UZ)Mdv)".

| P < e a2 1% + 1 (T = R} 1 )

Therefore, for s > g

52
17+|£|/P0®205,U)Mdvda
1
<e(5 [ Iv-@L = P)@)o,&.) Iy do+ [ 1|00 = Po)@(0,6, ) [y do
/ | 687 &) Iy d7)

|§|2 =3 [ao [ w0 —00@Eegtman [ 40 -0 (FeR) - DMy
<o(% / V4 = P)®(o,€, ) Iy do+ [ 11 6-.98(7.,) Iy d)

N 12 56) — 0 :
g2 ] 4o [ v ovEEg M [ b0 - (FE) - 0
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Making ¢ tend to zero implies that
/0 h / (Po@)2(, €, v) Mdvd7
< c(é /Ooo/y((f — P)@)(7, &, v) MdvdF
+ /0 N ¢_5§2(f,§,v)Mdvd7">.

Summing the former inequalities over all £ € Z? with £ # (0, 0) and taking (5.11)
into account, implies by Parseval that

/ /(Pow)z(ix,v)Mdvdxdf
0
1 o0
= 0(6_2/0 /”((I—PO)SO)Q(T,x,v)Mdvd:ch
+/ /VIQQ(f,x,U)Mdvdxdi').
0

Together with (5.10) this ends the proof of the lemma. OJ

Lemma 5.3 Let ma > rg. Let g be such that

/ g(7,z,v)dz =0, a.a.7€[0,00), ve IR (5.12)
[0,27a)?

Let o(T,z,v) be periodic of period (2mwa)? in the space variable z and solution to
0 1
et Vap = Lo+, (5.13)
or €
©(0,z,v) = 0.

Then,

/ / / v, 0% (7, z,v) Mdvdo (x)d7 +/ / / | v | ©*(7, z,v) Mdvdo (z)dT
0 |z|=rp Jv,>0 0 |z|=ra Jv,<0
< e%/ /gQ(T,x,v)MdvdxdT).
0

(Here do(x) is the surface measure of the circles.)

Proof of Lemma 5.3. Let C(o,1) be the set in the (z,y)-plane consisting of the
half with y > 0 of the circle with radius rp and center at the origin together with
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the rectangle given by |z| < rg,—n < y < 0, where n > 0 taken small enough
that any rotation of the set C(o;) around the origin stays within the square
{lz|,|y| < ma}. Let Ciy,, be the set Clo,1) rotated from the (0, 1)-direction
to the (vg, vy)-direction. Let X(0,1) be defined and continuous in Ci, 1), monotone
and continuously differentiable in the y-direction, equal zero at y = —% and equal
one at y > 0. Define x(y,,)(2,y) correspondingly by rotation. Then

0
E(X%Ua:,vy)(p )+ v- Vw( (vaﬂ,vy)QOQ) =

2
Zvam,vy)WW + 2XCuy )99 T 20+ Vo X(w2,0,)) X (a0 9
Hence,

T
/ / UTX%Um;’U:u)(p2(7_—7 z,v)Mdo(z)dr < Ay + B, + C,
|z|=rm

where by Lemma 5.2

2 T
/ Aydv = —/ /X%vw’vy)goLgonvdxdT
v >0

// o) PL(( — PO) YMdvdxdT

T c
/Bvdv = 2/ /X?W v)P9MdvdzdT <
0 ’ €

T
[udvi=2 [ [0 DX Mdodadr
0

1 C _1
<cllvzp ”gf,z,zf 2 | v 2g ||§,2,2 .

Here the C\-estimate was carried out for hard spheres, but holds also for hard
forces for the particular g appearing in the applications below. The r4-part is
treated similarly. [

For the iteration procedure to obtain Ry we shall be using systems of the type

0Ry 1 1
—L — 14
8t + 6?) vaQ R2 + GG’ (5 )
Ry(0,, v) = Roy(r,v), (5.15)
Ry(t,ra,v) =0, t>0, v, >0,
Ry(t,rp,v) =0, t>0, v, <O. (5.16)
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Multiply (5.14) with RyM, integrate over [0,%] x 2 x IR* and use the spectral
inequality, so that

I Re(t) 2.2 +- || R 13122 + 7 W(I Po) Ry I35,

<c( 1 Rollga+ 1l v3(I = By)

2N P Pz 4 | oG e )

for every n; > 0.

The a priori bounds on FPyR, are discussed in the following two lemmas. They
are based on dual techniques using the space periodic solutions introduced above.
Denote by

h(t,z,v) := PpRy— < PyRy >, < f(t,v) >:= / f(t,z,v)dzx
Q

Lemma 5.4 For any 0 <n <1 there is €, such that, for 0 < e < ¢,

I8 13aa< S (1 Ro 3o + w3 = PG IBaa +55 | BG IBaa ) +71I< PoRs >IBaa

Proof of Lemma 5.4. In the variables (7, z,v) := (%,x, v), the function R, is so-
lution to

1
% +v-VRo = ZLRQ + G, Ry(0,7,v) = Roy(r,v),

Ry(T,7ra,v) =0, 7T>0, v, >0,
RQ(%,TB,’U):O, 7_'>0, Ur<0-

Let ¢ be the (27a)?-periodic ¢ function solution to
0 1
agf"i_v Vzp = _L90+h QD(O,I',U):O,

where h is taken as zero outside the gap between the cylinders and periodically

continued. Denote by
(f,9)u = /f(v)g(v)M(v)dv.

0 , 2
E(Rg, ©)g + /dwz(nggo)Mdv = Z(LRZ’ (I —P)o)n
+(G’ QD)H + (h, PORQ)H-

Then,
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Integrating with respect to 7 and = gives

K, _ 1 _
| A ||§;,2,2S — | Ro(7, ) 32 +55= | (7, II32
2K,

K2 1
RS Iy + 57

v (I = Po)g 37,5

(R AP

Ks 1
+— | vz (I — Po) Ry ||2¢22 +2K

K _1 1
+—||V2(I PO)G||2722+ ||V2(I P0)<P||2T22

1
|| kG ||2722 +2K | Pog ||§'T,2,2’

for any positive constants K;, j =1, ..., 5.
It then follows from the preceeding estimates that

I8 B (g Il Ro s 4 w737 = )G [Baa 25 | BG )

+n ||< RyR, >||2,2,2 .

This ends the proof of Lemma 5.4 when coming back to the ¢-variable. [

Lemma 5.5
2 1 2 1 -3 2 1 2
< PoRa >||52,< C(Z | Ro I3 2 +E | v 2 (I = R)G |l322) + ) | PG |I52.2)-

Proof of Lemma 5.5. For ¢ > 0 let ¢(¢, z,v) be the solution to the (stationary)
problem

1
v-vwgo:;Lgo—e<P0R2>

o(t,ra,v) =0, t>0, v, >0,
o(t,rg,v) =0, t>0, v, <O0.

By (3.2-4),
| v3 (I — Py) Ry >|laa,
| Pop [l22<]I< PoRa > (|22, (5.17)
| ®" < Ve l|< PoRy >||ay2 -
Then

0 Jyp .
ea(Rg, ©) — €(Ry, at) /dww(vR2<p)Mdv

2
= E(LRQa (I - PO)(AO)H + (Ga QD)H - 6(< P0R2 >aR2)H

62



Hence for 7, of order ¢

I< PoRs |00 ¢ Il Bo 3o+ | v™3(1 = o)

|| PG 31,2

+?1 | PoRs I3, +/O /RQE(S,JZ,U)MddedS).

And so, by Lemma 5.4, and for 7; of order ¢ and small enough
T = PG gz 45 | PG [z )

<=l & ,
+/ /Rg—(s,x,v)Mdvdxds.

It remains to bound the term fo Ry 9¢ 2(s,2,v) Mdvdzds from above. Differentiate
the equation satisfied by ¢ with respect to t. Similarly to (5.17),

dp 0R,
En llot,2,2<|< Po—~ 9

Taking the hydrodynamic part of the equation (5.14) leads to
0Ry 1 1

P —= Py(v - = -P,d.
05 +e 0(vV - Ve R2) . G

< Py

| Pom- >||2t22

Moreover,
< Py(v- Ry >= c(rBPO(v,Rz(t, rB,V)) — raPo(v.Ro(t, 7 a, v)))

Hence,

o

OR,
| Bl o eli< Pyt SR o5 11 BS
And so, Lemma 5.5 follows. [

Lemma 5.6 Any solution Ry to the system

R, 1 2 1
R R VA —LR2 + ZH(R,) + -G,
ot e € €

RQ(O,T‘, U) = RO(T’,U)7
Ry(t,7a,v) =0, t>0,v, >0,
Ry(t,rp,v) =0, t>0,v <0,

||P0

satisfies

1
e AL f =

| o llo2< e( 1l o llnz + Il v7H(I = RO)G

1
oz +— | V73 = R)G 22+ || oG 222 )

| Po

Y

\/_

oo+ 11751 = P)G

1
| Ba llo< e 1| Ry

1
+m | PG ||2,2,2 +e || G ||oo,oo,2 )
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Proof of Lemma 5.6. Consider first for H = 0 the solution R, to

OR
ot

1 1
2+ -v- Ry = —2LR2+—G,
€ €

Ry(0,7,v) = Ry(r,v),
Ry(t,ra,v) =0, t>0,v, >0,
Ry(t,rp,v) =0, t>0, v <O0.

It satisfies

225 C( | Ro ||2,2

#);

1
Sup || Ba(t) llzz + Il v (1 = Po) Ry
2>

+ || (I = P)G ||2,22 + Ry ||22,2 +

\[llPo \/—”Po

for any n > 0. Moreover, it follows from Lemmas 5.4-5 that

| Ro

v 2 (I - PG

1
| PoR2 ||2,2,2< C( 2 | PoG [|2,2,2 )

Ve 7

Choosing n = /e leads to the first inequality of Lemma 5.6, and choosing n = €
leads to the second one. Then, by some additional computations similar to what
we have done in previous sections,

1
| R ||oo,002< C(E | R2 |loo22 + || Ro lloo2 +€ || G |loo,00.2 >,

which leads to the last inequality of Lemma 5.6. Adding the small perturbation
LH(R;) does not change the results. [J

Proof of Theorem 5.1. The convergence to zero when ¢ — oo of the asymptotic
expansion 1 for the difference ® — ®, was discussed at the beginning of this sec-
tion. The corresponding rest term e? was split into eR; + e Ry, where by Lemma
5.1 and by the boundary conditions being satisfied by v up to third order in ¢,

1 ; 1 Cc ;
| 2Ry [[2225 ¢ | BY" |ons || V2 Ry [foo,00,2< E\Rin\oo,m

i.e. subexponential decrease in € and convergence to zero when time tends to
infinity.

So it only remains to show the existence of Ry and its convergence to zero when
t — +00. We shall prove that Ry can be obtained as the limit of an approximating
sequence and that

/0+Oo/Q/1R3(R2)2(t,$,U)M(v)dtda:dv < ce. (5.18)
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This in turn implies the L2-convergence to zero of Ry when time tends to infinity,
ie. limy o [ Ro(t,2,v)2Mdzdv = 0.
Let the approximating sequence (R%) be defined by RS = 0, and

ORy* 1 1 2
ot v Vel = LRy 4+ —H (RS
€ € €

1
+EJ(R1 + Rg, R, + Rg) + Q,

RyTH0,7,v) = Ry(r,v),
Rt (t,ra,v) =0, t>0, v >0,
Ryt (t,rg,v) =0, t>0,v <0,

where Ry is of e-order two and

_om,
ot

a=q«w

The function R} is solution to

ORY 1 o1
W+;UVIR2:6—2LR2+

2 1
;H(R;) + ZJ(RI’ Ry) + @,
R3(0,7,v) = Ry(r,v),
Ry(t,r4,v) =0, t>0,v, >0,
Ry(t,r3,v) =0, t>0,v <0,
so that by Lemma 5.6 and the subexponential decrease of R™ together with the
orders 2 of Ry and 1 of a; and 2 of ¢,

1
|| R% ||O0,00,2S 0165, ” R% ||2,2,2S C1€,

for some constant ¢;. A closer inspection shows that ¢; = O(rg — r4) when the
coefficients in the perturbation P are O(rg —74).
By induction, for 7 — r4 small enough

j 1 .

| B3 lloo,o02< 22lrp — rale?, j <m,

lo22< esv/rp —ra || Ry — Ry
for some constants cy, c3. Namely, if this holds up to n** order, then

0 1
gi B8 = R 4 Cv - Vul(RE - B

1 2 1
= SL(RE™ — RPY) + ZH(R? — Ry + -G,

€ € €
(R — R3*1)(0,7,0) = 0,

I B3 — R

lo22, n>1,
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with
Gn+1 = (I - PO)Gn+1 = 2J(R1a RS_H - R;L) + ‘](Rg—i_l + RS, R;H—l - Rg)a
and where by Lemma 5.6

I Ry — Ry |

c
22,25 % | G" 222

< (1B loooei + 1 BE™ ooz + 1| B s ) 1| BEY! = RS 1z
<corg—71a || Ry — Ry |l20s -
This ends the first induction step, and also implies that
| R5*? [lapo<|| R5* = R5* |lag0 +oot | RS = Ry ll202 + || Rs [l222< 2¢ie,

for 75 — r4 small enough. Similarly || Ry lloo,00,2< 2¢a|rp — rA|e%. In particular
(R%) is a Cauchy sequence in L?([0, +00[x€ x IR3,). The existence of R, follows,
and the estimate (5.18) holds. This completes the study of the Ry-term and

Theorem 5.1 follows. O

The dependence on a small enough rg — r4 was introduced to be able to use a
short e-expansion. With an e-expansion of higher order the same proof shows that
the existence of Ry and the stability result of Theorem 5.1 hold for an arbitrary

fixed rg — r4, when € is small enough.
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6 Positivity.

We shall in this final section discuss the positivity of the earlier solutions.

In the time-dependent small data case, positivity of all sufficiently nice solu-
tions can be proved by Gronwall based ideas, see [LZ]. But in the stationary
small data case the question whether all nice solutions are positive remains an
interesting open problem. For general time-dependent problems, positivity is usu-
ally introduced at the beginning of the approximation procedure and then kept
throughout, so the solutions constructed are positive, but not necessarily other
solutions. When there is uniqueness around, time-dependent positivity may al-
ternatively be obtained by comparison with some other equation already known
to have only positive solutions (see [A]). That turns out to be a possible approach
also here for our stationary solutions using a new type of comparison equation.
The proof starts by considering a variant of the stationary Boltzmann equation
with a particular extra term depending only on the negative part of the solu-
tion. This new equation is then proved only to have positive solutions, the extra
term disappears and the solutions solve the BE. The proof goes on to construct
a solution to the new equation of the type we already discussed for the original
problem, and to show that this new solution coincides with the original solution.
There is the following technical problem. In one step of the proof, growth esti-
mates are needed for terms like v,v9B = L v,vy. For Maxwellian molecules such
estimates are proved in [C], and that can be used to complete our positivity proof
in the Maxwellian case. But for strictly hard forces, suitable growth estimates
still seem to be an open problem - also of interest in other contexts.

Write f = f* — f~ with f* = max(f,0) and f~ = max(—f,0) . Suppose f
satisfies the related problem (6.1-2) below. Then f~ = 0 by Theorem 6.1 below,
and f = f* is a non-negative solution also to (2.1), (2.3). If the contraction
mapping approach used above can be extended to the construction of suitable
solutions for the problem (6.1-2), then as a consequence, any solution from the
previous sections would coincide with such a non-negative solution.

Theorem 6.1 Let Q be a bounded set in IR™ with smooth boundary, and fy a
nonnegative function defined on Q. If M~ f € L®(Q x IR?) and f solves the
boundary value problem

/U'sz:Q(f+7f+)_ML(M71fi)7 (.’E,’U) € XRS? (61)
f=/f 0QF, (6.2)
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then f~ =0, and f = f* solves the corresponding boundary value problem for
the Boltzmann equation,

veaf = QU f), QxR
f="fe, 0QF.

Proof of Theorem 6.1 The function F = M~!f satisfies

vV = J(FT, FY) = L(F"), F=M"f,, 09"
Define J* and J~ by J(p,p) = JT(p,0) — J (¢, ), where
T (e.0)0)i= [ 0=, P b0)Mag' v
T (0 )0) = e(o) [ 0=, 4(6) Moo

Also, F~ satisfies

—v - Vol = Xp-po(JT(FT, FT) = L(F7)), (6.3)
F =0, 80"
Multiplying (6.3) with —M F~, integrating on 2 x IR?® and using that
- / MF Xp-soL(F )dv = — / MF~L(F~)dv
> c/Ml/ | (I - Py)F~ | dv,
implies that
1
—/ lv-n|M(F )P +c My | (I—P)F |?
2 Joq- Ox IR3

< / MF~xp-yod * (F*, F+) < 0.

It follows that

And so, F'~ satisfies
F~ =0, 00" U000, v-v.F~ <0.

This implies that F'~ is identically zero. [
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Corollary 6.2 If there is a solution f to (6.1-2) in a ball of contraction from
the proofs of Theorem 4.2-4, then f~ = 0 and f = fT is the unique and strictly
positive solution in that ball of the corresponding boundary value problem (2.1),

(2.3).

Theorem 6.3 The solutions obtained in Theorem 4.2-4 are strictly positive in
the case of Maxwellian molecules.

Proof of Theorem 6.3. For the case of Maxwellian molecules there is indeed in all
three cases a solution to (6.1-2), i.e. the hypothesis of the corollary holds. We
start with the axially homogeneous situation of Case 1. Set y = Xjyj <t and

n

denote again by ¢ the previous asymptotic expansion of order two,

2
o(r,v) = Ze’fbi.
i=1
If the terms in ®, 1 < i < 2 are polynomially bounded in the v-variable, with
bounded coefficients in the r-variable, then for ¢ and % small enough and positive,
it would hold that

2
1+X¢:1+X<Zei<1>i) > 0. (6.4)
=1

The required bounds follow from the previous discussion of the terms in ¢ except
the B-term in ®? (and also some A-terms in Case 2-3). But it is well known that
also such A and B terms are polynomially bounded in the Maxwellian case (cf
[C]). Notice that the L9-norm of (1 — x)® for any ¢ is of arbitrarily high order in
€ because of the factor M in the v-integrand.

Using the approach of Section 4, the positivity under the cut-off ¥ in (6.4), and
the corresponding splitting

f=M(1+ xp+e€R),

lead to a nonnegative solution of (6.1-2) with M~'f € L® as follows. Namely,
the rest term R should be a solution to

1 ] .
DR =~ (LR +2J(R, x0) + eJ (R, R) + l), (6.5)
where
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1

I=~(L(w) + (3, X0) — eD(xp) ),

and

R(r,v) = R(r,v) when eR(r,v) > —(1 + )‘(Zei@(r,v)>,

1=1

2
R(r,v) = —— (1 + X Z e (r, v)) otherwise.
i=1

€

Here [ can be decomposed as /| as in Section 4, and [ which in L is of arbitrarily

high order in e. The approximating sequences (R") e and (R")emv are defined
by R® = R® =0, and

2

1 ) _ .

DRn-H — Z (LRH-H +9 § GJJ(R”‘H’ X(I)J) + g”)} (66)
i=1

R (1,v) = Ra(v), v, >0, R""(rg,v) = Rz(), v, <0, (6.7)
with
g" ==eJ(R",R") +1,
eRA(v) := e T B X®(ra,v), v >0,
eRp(v) :== —x®(rg,v), v, <0,

and

2
R"(r,v) = R"(r,v) when eR"(r,v) > —(1 + }ZZeiq)i(r,v)),

1=1

2
R™(r,v) = —% (1 + X Z €' (r, v)) otherwise.

=1

From here the only difference with respect to the contraction mapping analysis
of Section 4, is related to the appearance of factors R™ instead of the previous R"
in J. The existence result in Lemma 3.1 is not changed by the replacements R.
Arguing similarly to the previous cases, the contribution to the a priori non fluid
dynamic estimate (3.2) due to g gives rise to an extra term | g |, €', hence

1 ~L ~— L1 _ ~_ 1 1
€2 | SF |« + | 02FL p< o| 77290 o +€7 | 07 2g) o +e | Flj 2 €7 | Fy [).

70



The proot of the fluid dynamic Lemma 3.3 is essentially unchanged in the present
situation (with the R-terms included in g, ), and its estimate (3.4) follows.

We turn to the existence proof for (6.5), (6.7). In the new situation the con-
traction mapping arguments from the proof of Theorem 4.2 still hold. That
leads to an isolated solution for (6.5), (6.7) which defines the positive solution of
Corollary 6.2. The solution lies in the same ball of contraction as the solution
constructed in Section 4, so they coincide and the solution of Section 4 is positive.
That completes the proof of Theorem 6.3 in the axially homogeneous case.

The other cases for Maxwellian molecules are similarly proved. [J

Remark. The only obstacle for extending the above approach to hard forces, is

a lack of growth estimates at zero and infinity for certain terms in the asymptotic
expansion ¢, like the terms v, A and vyv, B.
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