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Abstract

The problem of estimating the mean rain-flow fatigue damage in randomly vibrat-
ing structures, is considered. The excitations are assumed to be through a vector of
mutually correlated, stationary Gaussian loadings. The load effect leading to fatigue
damage is considered to be a nonlinear function of the vector of excitation loads and
is thus non-Gaussian. Its probabilistic characteristics are however unknown. The fa-
tigue damage is assumed to follow a linear damage accumulation rule. Though exact
expressions for the mean fatigue damage are difficult to determine, approximations
and bounds for the mean rain-flow fatigue damage can be developed. Computing
these quantities require estimating the mean level crossing statistics for the as-
sociated non-Gaussian response. For the special case when the load effect can be
expressed as quadratic combinations of Gaussian processes, analytical expressions
are developed for computing the level crossing statistics. These, in turn, are used to
determine approximations and the bounds for the mean fatigue damage. The ap-
plicability of the proposed method is demonstrated through a numerical example.
With respect to this example, a comparative study on the quality of the bounds and
the approximations is carried out viz-a-viz the predictions from existing techniques
available in the literature.

Key words: expected fatigue damage, rain-flow cycle counting, non-Gaussian,
vector Gaussian process, nonlinear combination
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1 Introduction

Estimating the mean fatigue damage in structures subjected to random load-
ings constitute a key step in predicting the remaining life time of the struc-
ture. In randomly vibrating large engineering structures, the load effect which
causes fatigue damage, at a particular location in the structure, usually have
contributions from a large number of components. Often, the resulting load
effect is obtained as a nonlinear combination of these individual components
and are thus non-Gaussian, even if the external loads are Gaussian. For ex-
ample, if the stress tensor is not varying uniaxially, then nonlinear functions
of the stress tensor are sometimes used to define the stress metric and then
rain-flow counted to analyze the fatigue damage [25,26,34]. Another exam-
ple is when weakly nonlinear systems have to be used to analyze responses
to Gaussian loads. Here, the responses are often approximated by means of
quadratic transfer functions (Volterra quadratic input-output model), which
also leads to stresses which are non-Gaussian but as a function of a vector of
Gaussian processes, viz.

Y (t) = g(X1(t), . . . , Xn(t)), (1)

where, g(·) is a nonlinear deterministic function, {Xi(t)}n
i=1 are stationary

Gaussian processes and Y (t) is the non-Gaussian process that causes fatigue
damage.

Computing the fatigue damage from a random time history typically, involves
(a) splitting the time history into a number of equivalent loading cycles cor-
responding to different amplitude levels, (b) estimating the associated incre-
mental fatigue damage from Wöhler’s curves, and (c) application of a suitable
damage accumulation rule for computing the total fatigue damage. For a ran-
dom load, the computed fatigue damage is a random variable. In predicting
the remaining lifetime of a structure, the mean fatigue damage is the met-
ric which is generally used. Computation of the mean fatigue damage can be
carried out either in the time domain or in the frequency domain. The time
domain approach involves repeated fatigue analysis on an ensemble of time
histories having identical probabilistic characteristics. Subsequently, the mean
fatigue damage is calculated as the first moment. The accuracy of the esti-
mator is dependent on the sample size of the ensemble and is hence, time
consuming and computationally intensive. On the other hand, frequency do-
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main approaches provide fast and elegant methods for estimating the mean
fatigue damage. The latter approach is especially useful during the design pro-
cess, when a large number of analyzes may need to be carried out. Here, the
focus is on developing analytical expressions which relate the mean fatigue
damage to the probabilistic characteristics, often in terms of the power spec-
tral density function (PSD) and the probability density function (pdf) of the
loading process. The present study belongs to this genre.

A key feature in fatigue estimation due to random loads lies in extracting and
counting the equivalent load cycles from a random time history [35]. A number
of cycle counting methods have been proposed in the literature, of which, the
peak counting method, range counting method, level crossing method and the
rain-flow cycle counting method are most widely used. Of these, the rain-flow
cycle counting method [19] is regarded to lead to fatigue damage estimates
which conform best with experimental observations. In this study, we limit
our attention to developing approximations for the rain-flow fatigue damage.

The rain-flow cycle counting scheme, as proposed in [19], is highly nonlinear
and difficult to model mathematically. To overcome this drawback, an equiv-
alent but more suitable definition for mathematical derivations, has been sug-
gested [28]. This has led to the development of approximations for the expected
rain-flow fatigue damage due to stationary, Gaussian loads [30] and for loads
having Markov properties [29,10]. An upper bound for the expected rain-flow
damage was given in [31]. The bound coincides with the narrow-band approxi-
mation for Gaussian loads proposed already in [3]. For broad banded loads the
method seriously overestimates the damage. Questions related to estimating
the fatigue damage for broad-banded loadings and the accuracy when different
counting methods are used, have been addressed in [4,24,36,40].

While most studies in the literature have focussed attention on Gaussian loads,
many of the realistic applications of fatigue damage involve non-Gaussian load-
ings. However, studies on fatigue damage due to non-Gaussian loads are few
and are of recent vintage. Semi-empirical expressions for predicting the rain-
flow fatigue damage and its pdf have been developed in [2,37]. Here, the param-
eters of the models were determined from regression analyzes on an ensemble of
non-Gaussian time histories. Analytical approximations for the mean fatigue
damage for non-Gaussian loads obtained as monotonic transformations of sta-
tionary Gaussian loads have been developed in [38,39]. The present authors,
in an earlier study [34], developed analytical expressions which approximate
the rain-flow fatigue damage due to scalar non-Gaussian loads, obtained as
non-monotonic transformations of stationary, Gaussian processes.
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2 Problem Statement

We consider the problem of estimating the expected rain-flow fatigue dam-
age caused by non-Gaussian load processes that can be expressed in the form
as in Eq. (1). We assume that the fatigue damage due to Y (t) can be ex-
pressed through the well known Palmgren-Miner’s hypothesis [23,20]. Here,
the accumulated linear fatigue damage caused by load Y (t), t ∈ [0, T ], is de-
noted by DT , and is given by DT =

∑
αSb

j , where, α and b are experimentally
determined material properties, S denotes the stress levels for the counted
cycles and the counter j indicates the number of equivalent stress cycles cor-
responding to an appropriate cycle counting scheme. Here, we only consider
the rain-flow fatigue damage which we denote as DT . Since Y (t) is a random
process, DT is a random variable. The focus of this study is on developing
approximations for E[DT ], where E[· ] is the expectation operator.

3 Expected Rain-flow Fatigue Damage

We turn now to computation of E[DT ], defined using rain-flow count and
linear Palmer-Miner damage accumulation rule. For efficiency of presentation,
we begin with a definition of the rain-flow fatigue damage.

3.1 Definition of Rain-flow Fatigue Damage

Assume that x(t), t ∈ [0, T ] is a variable load function having a finite number
of local maxima. Assume that a local maximum vi = x(ti) in x(t) is paired
with one particular local minimum uk, determined as follows:

• From the i-th local maximum (value vi) one determines the lowest values in
forward and backward directions between ti and the nearest points at which
x(t) exceeds vi.

• The larger (less negative) of those two values, denoted by urfc
i , is the rain-

flow minimum paired with vi, i.e., urfc
i is the least drop before reaching the

value vi again on either side.
• Thus, the ith rain-flow pair is (urfc

i , vi), see Figure 1.

Note that for some local maxima vi, the corresponding rain-flow minima urfc
i

could lie outside the interval [0, T ]. In such situations, the incomplete rain-flow
cycle constitutes the so called residual and has to be handled separately. In
this approach, we assume that the maximums in the residual, form cycles with
the preceeding minimums in the residual.
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Fig. 1. Definition of rain-flow cycle.

The total damage DT defined using the rain-flow method and applying the
linear Palmgren-Miner damage accumulation rule leads to

DT =
∑

f(urfc
i , vi) + Dres, (2)

where Dres is the damage caused by cycles found in the residual.

An alternative definition for the rain-flow damage in Eq. (2) has been presented
in [32]. Here, for a smooth load, x(t), the rain-flow damage is given by

DT = −
∫ +∞

−∞

∫ v

−∞
f12(u, v)N(u, v) du dv +

∫ +∞

−∞
f2(v, v)N(u) du, (3)

where, f2(u, v) = ∂f(u,v)
∂ v

and f12(u, v) = ∂2f(u,v)
∂ u∂ v

. Here, for a smooth loading
function x(t),

• N(u) is the number of up-crossings of level u by x(t), t ∈ [0, T ], i.e., the
number of solutions to equation x(t) = u, such that, ẋ(t) > 0.

• N(u, v) is the number of up-crossings of an interval [u, v] by x(t), i.e., the
number of solutions to equation system x(t) = u, x(s) = v, 0 ≤ t < s ≤ T ,
such that, ẋ(t) > 0, ẋ(s) > 0 and for all z, t < z < s, u < x(z) < v. (Note
that N(u, u) = N(u)).

Here, ẋ(t) denotes derivative of x(t) with respect to time t. Let (ui, vi) be a
sequence of cycles found in the load x(t) (both rain-flow cycles and the one
found in the residual). It can then be shown that, N(u, v) is equal to the
number of pairs (ui, vi), such that vi > v and ui < u [32]. This is the basis for
Eq. (3).

It must be noted that if f(u, v) = (v − u), following Eq. (3), we get

DT =
∫ +∞

−∞
N(u)du (4)
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as the first integral becomes equal to zero. If f(u, v) = (v − u)2, Eq. (3) leads
to DT = 2

∫ +∞
−∞

∫ v
−∞ N(u, v) du dv. Moreover, for f(u, v) = (v − u)α, where

α ≥ 2, the second integral in Eq. (3) is always identically equal to zero.

In the following, for simplicity of presentation, we assume that the function
f(·), defined in Eq.(2), to be such that f2(v, v) = 0, for all v.

The rain-flow cycles measure the sizes of closed hysteresis loops, while the
residual represents the memory of the material to previously experienced loads.
The sizes and number of local extrema that constitute the residual will depend
on the time when the structure was first loaded. Suppose that it happened at
time T0 ≤ 0. Then the damage DT , accumulated in the interval [0, T ], will also
depend on T0. More precisely, it will be given by Eq. (3) with N(u, v) defined as
follows: N(u, v) is the number of solutions to equation system x(t) = u, x(s) =
v, 0 ≤ s ≤ T and T0 ≤ t < s, such that, ẋ(t) > 0, ẋ(s) > 0 and for all z,
t < z < s, u < x(z) < v. Clearly, the damage is a decreasing function of T0.

3.2 Random Loads - Expected damage increase

For a random load X(t), 0 ≤ t ≤ T , the number of interval crossings, N(u, v)
is a random variable. Consequently, the rain-flow fatigue damage, at a par-
ticular time instant, is also a random variable. Determining the probabilistic
characteristics of this variable is not easy. On the other hand, estimating the
mean of the rain-flow fatigue damage is comparatively easier and is generally
used to predict the expected life of the structure in question. As mentioned
before, the damage depends on the time T0 ≤ 0 when the load started to act
on the structure. Hence, in order to study the stationary damage increase in
the period of length T , we assume that T0 = −∞.

If the joint pdf for cycle tops (v) and bottom (u) is known, then expected
damage can be computed as

E[DT ] = Tν
∫ ∫

f(u, v)prfc(u, v) du dv, (5)

where, prfc(u, v) is the joint pdf of urfc (minima) and v (maxima) of a rain-flow
cycle. Note that the rain-flow matrix is the discretized pdf, prfc(u, v), which is
then normalized so that elements in the matrix sums to one. The numerical
value of expected damage, E[DT ], is obtained by

(a) multiplying (element-wise) matrix with cycles damages f(·) and the rain-
flow matrix prfc,

(b) subsequently, summing all the elements in the resultant matrix f · prfc,
and

(c) finally, multiplying by the expected number of cycles Tν.
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Here, ν is the intensity of cycles, i.e., the expected number of cycles in unit
time.

Alternatively, using Eq. (3) and by changing order of integrations (Fubini’s
theorem) we have that

E[DT ] =
∫ +∞

−∞

∫ v

−∞
f12(u, v)E[N(u, v)]du dv. (6)

Since for stationary processes, the expected number of intervals up-crossings
are proportional to time duration T , the proportionality constant µ(u, v) can
be termed as the intensity of interval up-crossings and is equal to E[N(u, v)]
for T = 1 and T0 = −∞. The expected damage increase in period T can be
shown to be proportional to the loading time duration T , and is written as

E[DT ] = T
∫ +∞

−∞

∫ v

−∞
f12(u, v)µ(u, v) du dv. (7)

Consequently, we can write

d =
∫ +∞

−∞

∫ v

−∞
f12(u, v)µ(u, v) du dv, (8)

where, d can be called the damage intensity - the expected growth of the
damage in unit time. The primary difficulty here is that, in general, there are
only a few cases where the intensity µ(u, v) or the pdf prfc(u, v) can be com-
puted exactly. The explicit results are available when loads possesses Markov
property or have very simple structure.

3.3 Bound for the expected damage

In situations where explicit evaluation of µ(u, v) or prfc(u, v) is not possible,
one can evaluate bounds for the intensity crossings. Thus, if µ(u) be the up-
crossing intensity of level u by X(t), i.e., E[N(u)] = Tµ(u), then one can show
that

µ(u, v) ≤ min[µ(u, u), µ(v, v)] = µ̂(u, v), (9)

where, µ(u, u) = µ(u). The proof is given in [31]. Note that µ(u, v) ≤ µ(u)
follows from the fact that for symmetrical loads the expected number of up-
crossings of interval [u, v] that end in [0, T ] is equal to the expected number
of down-crossings of the interval [u, v] that end in [0, T ]. Since the intensity
of down-crossings of level u is equal to µ(u), the bound follows. Consequently,
one can write

E[DT ] ≤ T
∫ ∞

−∞

∫ v

−∞
f12(u, v)µ̂(u, v) du dv = T · d+. (10)
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The applicability of Eq. (10) lies in the ease of computation of the mean up-
crossing rate, µ(u). This can be computed using Rice’s formula [27], given
by

µ(u) =
∫ ∞

0
ẋpXẊ(u, ẋ) dẋ, (11)

where, pXẊ(x, ẋ) is the joint pdf of the process, X(t), and its instantaneous
time derivative, Ẋ(t). Clearly, µ(u) combined with Eq. (9) gives a conservative
estimate of the expected damage.

3.3.1 The narrow band approximation

In the early 60s, the narrow band approximation was presented by Bendat [3]
at a time when a definition for rain-flow cycle counting was not yet available.
Bendat proposed that for a stress time history, S(t), the cycle amplitude has
the following probability distribution:

P (S ≤ u) = 1− µ(u)

µ(0)
. (12)

He also proposed to approximate the intensity of cycles by means of the zero
crossing intensity, µ(0). It can be easily shown that the expected damage
increase, estimated using Bendat’s approach, coincides with the bound in Eq.
(9) for the case of symmetric loads, such that, µ(−u) = µ(u).

3.4 Asymptotic correction of the interval crossing intensity

The bounds for the expected damage, computed using the above arguments,
may be extremely conservative when loads become broad-banded. In order
to make the estimated damage less conservative, we focus on approximating
µ̂(u, v) using asymptotic properties of level crossings.

For large b, it is obvious that the contribution to the damage is mostly from
the large cycles. Mathematically, this damage is given by the integral

−
∫ u0

−∞

∫ +∞

v0

f12(u, v)µ(u, v) du dv ≤ −
∫ u0

−∞

∫ +∞

v0

f12(u, v) min[µ(u), µ(v)]du dv.

(13)
Now using the results derived in [15,16], one knows that asymptotically, i.e.,
when u0 tends to minus infinity while v0 goes to plus infinity, the up-crossings
of levels u and v, forms independent Poisson processes with intensities µ(u) and
µ(v), respectively. Using this property, one can asymptotically approximate

µ(u, v) ≈ µ(u)µ(v)

µ(u) + µ(v)
. (14)
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Hence

−
∫ u0

−∞

∫ +∞

v0

f12(u, v)µ(u, v) du dv ≈
∫ u0

−∞

∫ +∞

v0

f12(u, v)
µ(u)µ(v)

µ(u) + µ(v)
du dv.

(15)
The formula (14) was first given in [13].

Let now µ̃(u, v) = µ(u)µ(v)/{µ(u)+µ(v)}, for u < u0 and v > v0 and µ̃(u, v) =
µ̂(u, v), otherwise. Then, one gets

dpoiss =
∫ ∞

−∞

∫ v

−∞
f12(u, v)µ̃(u, v) du dv, (16)

where, dpoiss denotes the asymptotically corrected (approximate bound) for
the damage intensity. Note that dpoiss < d+.

3.5 The transformed Gaussian approximation

An alternative approach to approximating the interval crossing rate is to use
the so called transformed Gaussian process. Here, one approximates the ran-
dom (true) load Y (t) by Ỹ (t) = G(X(t)), where G(·) is a non-decreasing
deterministic function and X(t) is a stationary, Gaussian process. The ex-
pected damage intensity in Ỹ (t) can subsequently be estimated using the so
called Markov chain of turning points. The method is well described in the
literature, see e.g. [29,14,5,30,10,12,17]. The software to compute the approx-
imation is available in WAFO, see [8]. In this approach, one needs to specify
both the transformation G(·) and the spectral density S(ω) of X(t).

The problem of selecting the transformation G(·) has been addressed in the
literature. Usually, it is proposed to select G(·), such that the pdf of Y (t)
and Ỹ (t) coincide; see [38,39]. In [33], it was proposed to choose G(·), such
that, the processes Y (t) and Ỹ (t), have the same upcrossing intensity (up to
a factor). A consequence of such transformations is that the bound coincides
for both the loads, Y (t) and Ỹ (t), and in the special case when b = 1, the
corresponding expected rain-flow fatigue damages are identical. In the same
paper, it was also discussed how to estimate both the transformation and
the spectrum from the measured signal. For the quadratic type of responses
studied in this paper, X(t) can be assumed to be the linear (Gaussian) ap-
proximation of the response. The corresponding PSD, S(ω) can subsequently
be easily determined. When the spectrum S(ω) and the transformation G(·)
have been selected, the process Ỹ (t) is fully specified.

The use of transformed Gaussian processes is, however, not always recom-
mended. For processes with large cycles that occur in clusters, e.g., due to
potholes in roads [6] or when the load consists of a slowly varying process
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with superimposed high frequency components, other methods need to be
used; see [33]. However, for quadratic loads, the use of transformed Gaussian
approach can be quite useful.

4 The second order responses

We now focus on deriving expressions for the response of randomly vibrat-
ing structures. The general form of the governing equations of motion, when
discretized using finite elements, can be written as

MŸ(t) + CẎ(t) + KY(t) = F(t). (17)

Here, M, C and K are the structure mass, damping and linear stiffness ma-
trices of dimensions n × n, Ÿ(t), Ẏ(t) and Y(t) are respectively the vectors
of nodal accelerations, velocities and displacements and F(t) is the vector for
nodal forces, of size n × 1. Let the focus of our attention be the structure
response at a particular location of the structure and is denoted by Y (t). We
assume that the external excitations can be modeled as stationary Gaussian
processes {Xj(t)}n

j=1. This, in turn, means that the structure response can be
expressed, at least in principle, as in Eq. (1).

Studying the increase in the expected rain-flow damage for quadratic responses
is a very difficult problem. One obvious possible approach would be to simu-
late the loads and to compute the corresponding damage due to the response.
However, in this approach, one needs to simulate an ensemble of long se-
quences of the response to get reliable estimates of the damage; see numerical
example discussed later in this paper. This can be quite time consuming and
expensive, especially at the design stage which includes repetitive iterations.
Thus, there is a need to develop alternative methods which can lead to approx-
imate estimates of the damage in a fast and reliable manner. In this paper, we
give a general representation (see Eq. 38), for which most quadratic response
problems can be written down. As has been already discussed, the crux of the
problem lies in computing the mean crossing intensities for such processes. For
computing the crossing intensity for loads which are represented in the form
of Eq. 38, we consider two approaches- the first one is based on integration of
Rice’s formula (Eq. 11) using the Monte Carlo method [11], and the second, is
the so called SORM asymptotic method, proposed first in [7]. Brief discussions
on these methods are presented in the appendices of this paper. The computed
crossing intensity, µ(u), is subsequently used to asses the expected damage as
discussed in the previous section.
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4.1 Definition of the g function in Eq. 1.

We now consider the special class of problems where the excitation load, F (t),
has a linear component, FL(t), and a quadratic component, FQ(t). Since Eq.
(17) is linear, the response can be expressed as a sum Y (t) = YL(t) + YQ(t),
where, YL(t) is the zero-mean Gaussian response when only FL(t) acts on the
structure and YQ(t) is the quadratic correction for nonlinearity due to the
presence of load FQ(t).

Let us assume that FL(t) and FQ(t) are linear and quadratic functions of
a zero-mean stationary, Gaussian random process, ζ(t), with a specified one
sided PSD, Sζ(ω). We define the Gaussian load ζ(t), in the limit as N tends
to infinity, to be of the form

ζN(t) =
N∑

j=−N

σj

2
(Uj − iVj)e

iωjt, (18)

where, Uj, Vj, j > 0, are independent standard normal variables and U−j = Uj,
V−j = −Vj, ω−j = −ωj. Moreover, ωj = jωc/N and σ2

j = Sζ(ωj)∆ω, where,
j = 1, .., N , σ0 = 0, ∆ω = ωc/N , ω is the frequency defined in 0 ≤ ω ≤ ωc

and ωc is the cut-off frequency, such that, Sζ(ω) = 0, if ω > ωc. For the sake
of simplicity in representation, we write ζ(t) instead of ζN(t). Thus, in the
discretized form, the linear response, YL(t), is given by

YL(t) =
N∑

j=−N

σj

2
H1(ωj)(Uj − iVj)e

iωjt, (19)

and the quadratic response, YQ(t), is given by

YQ(t) =
N∑

j=−N

N∑

k=−N

σj

2

σk

2
H2(ωj,−ωk)(Uj − iVj)(Uk + iVk)e

i(ωj−ωk)t. (20)

Here, H1(ω) and H2(ω1, ω2) are the linear and the quadratic transfer functions
for the structural response at the desired location.

We next define

Θ = [(U1 − iV1)e
iω1t...(UN − iVN)eiωN t]

′
, (21)

where, the superscript (′) denotes matrix transpose. Next, we introduce a
column vector

Z(t) =



<(Θ(t))

=(Θ(t))




′

, (22)
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where, <(·) and =(·) denote the real and imaginary parts of the arguments.
Then, the linear part of the response Y (t) can be written as

YL(t) =



<(q)

=(q)




′

Z(t), (23)

where, q is the column vector containing [σjH1(ωj)].

We next rewrite the quadratic response using the Z(t) process. We define the
following matrices,

Q= [qmn], qmn = H2(ωm,−ωn)σmσn,

R= [rmn], rmn = H2(ωm, ωn)σmσn, (24)

W = [wmn], wmm = −ωm, and wmn = 0 if m 6= n,

where, m,n = 1, .., N . Now introducing the matrix

A =



<(Q) + <(R) =(Q)−=(R)

=(Q)
′ −=(R)

′ <(Q)−<(R)


 , (25)

the quadratic response can be written as

YQ(t) =
1

2
Z(t)

′
AZ(t). (26)

Consequently, the response Y (t) can now be expressed in terms of 2N inde-
pendent, zero-mean, unit variance processes, {Zi(t)}2N

i=1, as follows:

Y (t) = g̃(Z(t)) =



<(q)

=(q)




′

Z(t) +
1

2
Z(t)

′
AZ(t). (27)

Here, Cov[Z(0),Z(0)] = I, where, I is the identity matrix of size 2N × 2N .
The auto- and cross- covariance between Z(t) and its time derivative Ż(t) are
given by

Cov[Z(0), Ż(0)] =




0 −W

W 0,


 (28)

Cov[Ż(0), Ż(0)] =



W2 0

0 W2


 , (29)

where, 0 is a 2N × 2N matrix with all elements being zeros. Computation
of the mean up-crossing rate of Y (t) can be carried out using the algorithms
presented in the appendices.
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4.2 The standard representation of the quadratic responses

The limitation of using Eq. (27) is that for accurate representation, the number
of discretized frequencies, N should be large, which, in turn, introduces a large
number of random variables into the formulation. This, in turn, requires larger
computational effort while calculating the mean up-crossing rate, µY (u). We
next focus on an approach which allows using large number of frequencies to
be used but still keeps N relatively low.

Since the matrix A of size 2N × 2N is real and symmetrical, it can be diag-
onalized. Let P be the matrix containing the ortho-normal eigenvectors of A
and let Λ be the diagonal matrix with eigenvalues λj of A on the diagonal,
such that,

A = PΛP
′
. (30)

Sorting the eigenvectors in such a way, so that |λ1| ≥ |λ2| ≥ ...|λ2N |, then
YQ(t) can be represented as

YQ(t) =
1

2
{P′

Z(t)}′Λ{P′
Z(t)} =

1

2

2N∑

j=1

λjX
2
j (t), (31)

where, X
′
(t) = [X1(t), .., X2N(t)] = Z(t)

′
P are zero-mean, stationary Gaussian

processes. In addition, since Z(t) = PX(t), YL(t) can be expressed as

YL(t) =



<(q)

=(q)




′

PX(t) = [γ1, .., γ2N ]X(t). (32)

Now the response Y (t) can be written as

Y (t) = g̃(PX(t)) = g(X(t)) =
2N∑

j=1

γjXj(t) +
1

2

2N∑

j=1

λjX
2
j (t), (33)

which is a function of 2N stationary Gaussian processes X(t). Clearly, the
expression in Eq.(33) is simpler than in Eq. (27). The corresponding covariance
matrices for X(t) and its time derivative are more complicated and are given
by Cov[X(0),X(0)] = I and

Cov[X(0), Ẋ(0)] = PT




0 −W

W 0


 P, (34)

Cov[Ẋ(0), Ẋ(0)] = PT



W2 0

0 W2


 P, (35)
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which are usually not diagonal matrices. However, the advantage of using Eq.
(33) is that when the absolute values of coefficients |λm|, m > k are close to
zero, the associated terms can be omitted. This leads to the following truncated
representation of Y (t), given by

Y app(t) =
k+1∑

j=1

γ̂jX̂j(t) +
1

2

k+1∑

j=1

λ̂jX̂j
2
(t), (36)

where, k ≤ 2N , λ̂k+1 = 0, γ̂k+1 =
√∑2N

j=k+1 γ2
j and X̂j(t) = Xj(t) for j ≤ k and

X̂k+1(t) =
∑N

j=k+1 γj/γ̂k+1Xj(t). Thus, X̂k+1(t) is a zero-mean Gaussian pro-

cess with variance equal to
∑2N

j=k+1 γ2
j /γ̂

2
k+1. The index k can be chosen using

the following method. First, note that Var[Y (t)]−Var[Y app(t)] = 2
∑2N

j=k+1 λ2
j .

Next, k is chosen so that the variance of Y app(t) differs by less than ε% from
the exact, i.e.,

Var[Y (t)]− Var[Y app(t)] ≤ ε

100
Var[Y (t)]. (37)

In this case also, we can use the algorithms discussed in the appendices, for
computing the mean up-crossing rate µY (u). However, certain modifications
may be carried out which can lead to simplification in the application of the
method. This requires rewriting the response Y (t), as

Y (t) =
k∑

i=1

{ΓiXi(t) + ΛiX
2
i (t)}+ Γk+1Xk+1(t) = YNG(t) + YG(t). (38)

Clearly the process Y app(t) is of form of Eq. (38). It is also obvious that YNG(t)
is a non-Gaussian process and YG(t) is a Gaussian process. Appendix 2 details
a different approach for computing the mean up-crossing rate, which simplifies
the computations presented in Appendix 1.

Finally, it must be noted that a Gaussian approximation for Y (t) can be
obtained by letting all Λi = 0 in Eq. (38). This leads to the following Gaussian
approximation YL(t), given by

YL(t) =
k+1∑

i=1

ΓiXi(t). (39)

In the remaining sections of this paper, the transformed Gaussian approxima-
tion for Y (t) will be approximated by G(YL(t)).)
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5 Numerical Example and Discussion

The theory proposed in this paper is illustrated through a numerical example.
The example considers the rain-flow fatigue damage at the support of a can-
tilever beam, subjected to randomly varying wind loads. The wind loads are
modeled as stationary Gaussian processes. The forces imparted on the beam
are obtained as quadratic functions of the wind loads. Consequently, the the-
ory proposed in this paper, have been used for assessing the mean fatigue
damage. The predictions have been compared with those obtained from full
scale Monte Carlo simulations. This involves digital generation of an ensemble
of time histories for the response quantities of interest, from the available PSD
functions. Corresponding to each sample time history, a deterministic analysis
is carried out using the WAFO toolbox [8] to compute the associated rain-flow
fatigue damage. The expected fatigue damage is subsequently computed as the
first moment of the computed fatigue damages.

m1 m2
m10

c1 c2
c10c3

k1 k2
k10k3

F1(t) F2(t) F10(t)

1
2
3

5
4

7
6

9
8

10

Fig. 2. Schematic diagram of the 10-dof cantilever beam subjected to random wind
excitations.

The wind velocity is modeled as a stationary Gaussian process with specified
mean wind speed, ζm, and PSD, Sζ(ω). The force due to wind loadings is
given by F (t) = 1/2Cdρlb(ζ(t) + ζm)2, where, ζ(t) is a zero-mean Gaussian
random process denoting the wind velocity at the tip of the beam, Cd is
the drag coefficient, ρ is the air density and l and b are the dimensions of the
structure. The beam is modeled as a simple lumped-mass model of 10-degrees-
of-freedom. The variation of the wind velocity along the beam span is taken
to be deterministic and is assumed to be parabolic, see Fig. 2. The normalized
constants, {χi}10

i=1, are used to denote the wind velocity profile and are such
that the maximum velocity is at the beam tip. The Davenport spectrum is
assumed for Sζ(ω), and is given by

Sζ(ω) = κ
ζ2
f

n

x2

(1 + x2)4/3
, (40)

where, x = (Lref/z)(ωz/ζ10) = (1200/z)f , f = nz/ζz is the normalized fre-

15



quency, n = ω/(2π) is the frequency in Hz, Sζ(n) is the PSD of ζ(t) in
m2s−2Hz−1, z is the distance from the fixed end in m, ζz is the mean wind
speed in m/s measured at distance z from the support, κ is the surface drag
coefficient, ζf is the friction velocity in m/s and Lref is the representative scale
length. Denoting η = 0.5Cdρlb = 0.0250, the wind force F (t) can be expressed
in terms of two dynamic components Fl(t) = 2ηζmζ(t) and Fq(t) = ηζ(t)2.
The contribution from the mean wind velocity, ηζ2

m, acts as a constant load
and has no bearing on the dynamic response of the structure.

The dynamic analysis is carried out by modeling the beam as a simple 10-
degree-of-freedom lumped-mass model. The governing equations of motion are
as in Eq. (17), with F(t) = Υ(Fl(t) + Fq(t)). Here, Υ is the influence matrix
of size 10 × 1, whose elements denote the constants χi, (i = 1, .., 10). The
damping is assumed to be proportional, such that C = η1M + η2K, where,
η1 and η2 are the mass and stiffness proportionality constants. An eigenvalue
analysis reveals that the first five natural frequencies of the structure are 2.32,
6.90, 11.32, 15.49 and 19.32 rad/s respectively. Assuming that damping is 10%
in the first two modes, we get η1 = 0.3467 and η2 = 0.0217.
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D

Fig. 3. Power spectral density function for YL(t).

The maximum stresses are developed at the base of the cantilever beam and
the rain-flow fatigue damage are calculated for this location. ζ(t) is modeled
as a Gaussian process and is expressed using the approximation in Eq. (18).
Since structure behavior is assumed to be linear (see Eq. 17), the response
process can be expressed as a sum Y (t) = YL(t) + YQ(t), where, YL(t) is the
Gaussian response when only FL(t) acts on the structure and YQ(t) is the
quadratic correction for nonlinearity due to the presence of load FQ(t). This
enables rewriting the response Y (t) as in Eq. (27) and as in Eq. (33). Here,
the linear and quadratic transfer functions are obtained as

H1(ω) = [−ω2M + iωC + K]−1Υ (41)

H2(ω1, ω2) = H1(ω1 + ω2). (42)

In this example, we discretized the PSD, Sζ(ω), into 200 segments, i.e., N =
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Fig. 4. Sample time history of response Y (t).

200. Thus, the response Y (t), is obtained as a nonlinear combination of a 400-
dimensional vector of random processes X(t). Figure 3 illustrates the PSD of
YL(t). Figure 4 illustrates a sample time history of stress, Y (t), developed at
the root of the beam, calculated using Eq. (27) and Eq. (33). This illustrates
that both these representations are equivalent.

5.1 Number of quadratic terms in Eq.(36) and accuracy of estimates of µY (u)

We next focus on fixing k in Eq. (36). Figure 5 illustrates the variation of k
with respect to ε. We consider ε = 0.3 and correspondingly, k turns out to be
equal to 9. The response can now be approximated by Y app(t) as in Eq. (36),
containing 10 terms. Figure 6 compares a sample response time history Y app(t)
with k = 9 and with Y (t) (when there are no truncations i.e., k = 400). A
very good agreement between the two representations is observed.

The accuracy of this representation in estimating µY (u), can be verified from
Fig. 7. Here, we present a comparison between the estimated upcrossing rates
for Y (t), when Monte Carlo simulations are used on an ensemble of 100 time
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Fig. 5. Number of terms required in Eq.(36) for different values of percentage error,
ε %.
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Fig. 6. Effect of truncation of terms in the representation of Y (t).

histories consisting of k = 400 and when k = 9. The corresponding comparison
of the predicted level crossing rates between the integration method (Appendix
1) and the SORM approach (Appendix 3) is shown in Fig. 8 in the log-scale.
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Fig. 7. Estimated up-crossing rates, µY (u), using different methods, when k = 9 in
Eq. (36).
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Fig. 8. Comparison of estimated µY (u) between the Integration method and Asymp-
totic method.

We next explore the possibility of further truncation of quadratic terms in Eq.
(36). We consider the case where k = 1. Here, there is only one quadratic term
in Eq. (36) and corresponds to ε = 50. For this example, the representation
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Fig. 9. Rain-flow cycles for sample Y (t).

is still quite good; see Fig. 6. However, Fig. 9 reveals that there are differ-
ences in the identified rain-flow cycles. Table 1 presents a comparison of the
expected rain-flow fatigue damages for the cases k = 400, k = 9 and k = 1 for
various levels of α = 6.9 × 10−(6+b) and b. Figure 10 compares the predicted
µY (u) for the case when k = 1, as obtained by Monte Carlo simulations as
well as when they are computed using the theory presented in Appendix 1.
It can be observed that for negative threshold levels, the upcrossing rates are
underestimated, when Eq. (36) contains only one quadratic term. However,
the predicted upcrossing rates using Monte Carlo simulations and the the-
ory presented in Appendix 1 are in good agreement (though erroneous), for
all threshold levels. This indicates the robustness of the theory presented in
Appendix 1. The differences with the benchmark can be attributed to the trun-
cation of too many terms resulting in about 50% of the quadratic variability
being lost.
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Fig. 10. Estimated up-crossing rates, µY (u), using different methods, when k = 1.

We next explore the possibility of doing away with quadratic terms altogether
by taking k = 0. Thus, Eq. (36), contains only linear terms and Y (t) = YL(t), is
a Gaussian random process. Figure 4 compares the corresponding sample time
history with the case when k = 400. We observe that some cycles are missed
and the amplitudes of the rain-flow cycles are underestimated (see also. Fig.
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Table 1
Expected rain-flow fatigue damage, f(u, v) = α(v − u)b, T = 1500s, α = 6.9 ×
10−(6+b); k in E[Dk], d+

k and dpoiss
k refers to numerical value of k in Eq.(36).

b E[D400
T ] E[D9

T ] E[D1
T ] E[D0

T ] Td+
9 Td+

1 Tdpoiss
9 Tdpoiss

1

1 0.0029 0.0029 0.0028 0.0027 0.0029 0.0028 - -

2 0.0038 0.0038 0.0036 0.0032 0.0047 0.0044 0.0047 0.0044

3 0.0065 0.0065 0.0061 0.0051 0.0093 0.0086 0.0091 0.0084

4 0.0140 0.0140 0.0131 0.0097 0.0219 0.0197 0.0206 0.0186

5 0.0354 0.0354 0.0333 0.0214 0.0588 0.0514 0.0534 0.0467

6 0.1014 0.1013 0.0958 0.0517 0.1777 0.1492 0.1557 0.1307

9). The estimated µY (u) also significantly differ from the benchmark values-
underestimated for most threshold values (see Fig. 7 and 10). The computed
rain-flow fatigue damages, tabulated in Table 1, also clearly show that the
predictions are significantly different if k = 0. This highlights the importance
of taking into account the non-Gaussian features of the structure response.

It must be noted that by truncating from 400 to 9 quadratic terms, sub-
stantial reduction in computational effort is achieved without introducing any
significant truncation error. On the other hand, further reduction to just one
quadratic term does not provide any significant gain in terms of computa-
tional costs but introduces discretization errors. Clearly, the truncation to 9
quadratic and one Gaussian component perfectly describes the variability of
the stresses at the location where the damage due to fatigue is of interest. One
could ask the question whether there would be a difference if one wished to
compute the one year value of the load, i.e., the level u which has upcross-
ing intensity 3.2 × 10−8. This is equivalent to one crossing of the level u in
T = 366 × 24 × 365 s. Thus, the one year levels are computed to be 54.82,
54.80 and 54.78 for the cases when k = 1, k = 9 and k = 20 respectively. The
result that asymptotically only one quadratic term is needed is not surpris-
ing. As has been discussed in Appendix 3, for quadratic loads the term with
highest coefficient λ determines the asymptotic properties. It may be noted
here, that for the case of extreme responses, the Monte Carlo integration of
Rice’s formula may not always be an appropriate method, especially if k is
large. This is because the size of the vector of random variables that need to
be simulated for the Monte Carlo integration may be prohibitively large. On
the other hand, the asymptotic SORM method gives very accurate results at a
much less computational cost. It can thus be concluded that the process Y (t)
with 9 quadratic terms can be used to describe the response and will be solely
used in the following.
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6 Estimates of damage intensity d

In this section, the bounds d+ for the damage intensity are presented. These
bounds, which have been defined in Eq. (10), are based on crossing intensi-
ties µ(u), which in turn, are computed using the algorithms presented in the
appendices. The bounds are compared with the estimated damage intensities
from simulated samples of the response Y (t) and with the approximate bound,
dpoiss, computed by means of Eq. (16).

Additionally, the method of transformed Gaussian process is used to approx-
imate the response and compute the damage intensity in the process. The
process is defined as follows.

Let Ỹ (t) = G(YL(t)), where

G(u) =





√
−2Var(YL(0)) ln(µa(u)/µa(0)) if u > 0,

−
√
−2Var(YL(0)) ln(µa(u)/µa(0)) if u < 0.

(43)

Here, µa(u) is the SORM approximation of the crossing intensity of the re-
sponse process Y (t), computed using the algorithm presented in Appendix
3.

The process Ỹ (t) crosses the level u with intensity µa(u). This is different
from the crossing intensity of the response µ(u) for low u-levels. Since the two
crossing intensities differ only for small u-levels, the difference is small (less
than 5%) when checked by Monte Carlo simulations. This difference is smaller
than discretization errors and are negligible in comparison with other sources
of uncertainties.

This discrepancy in the computation of crossing intensities for low u-levels,
is more than offset by the gain in the simplicity of the approach, which is a
consequence of the fact that the zero upcrossing intensity of YL(t) process is
equal to µa(0), see Appendix 3. If it is required that Ỹ (t) to be transformed
YL(t) and has the mean level crossing rate equal to µ(u), then time also needs
to be scaled, i.e., Ỹ (t) = g(YL(c · t)) for some constant c.

The spectrum of YL(t) is given in Fig. 3 while the transformation G(·) is shown
in Fig. 11. However, before presenting the results, we make some comments
on uncertainties while estimating the damage intensities.
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Fig. 11. The function G(·) for the transformed Gaussian approximation.

6.1 Uncertainties in estimation of damage intensity

When evaluating the quality of an approximation one is often comparing the
computed damage intensity d for the damage functions f(u, v) = (v − u)b, b
taking values in a suitable interval. The damage intensity can be estimated
from an observed (or simulated) load and can be compared against the derived
approximation. We comment on three aspects of such comparisons.

Bias: As we have already discussed, due to the length T of the signal used to
estimate the damage intensity, the observed damage is smaller (on an average)
than the expected damage increment. This bias is due to the fact that the load
is unknown before one starts to measure the signal, i.e., T0 = 0, while in the
definition of d one assumes that the loads have been acting for a long time
prior to measurements.

Variability of the damage: Obviously new measurements of the signal will give
different estimates of the damage intensity d. In practice, one has only one
estimate of d and hence, it is of interest to estimate how large is the statistical
uncertainty, due to the finite length of observation interval T . Since we are
comparing damage intensities d for different fatigue exponents b, it is more
convenient to analyze the logarithms of the estimated damages. In Fig. 12,
we present a normal probability plot for base 10 logarithms of the observed
damage intensities (computed using Eq. 44), when b = 6 for two cases: (a) for
time T = 1500 seconds (when the signal consist of about 500 cycles) and (b)
T = 3000 seconds (which corresponds to a signal with about 1000 cycles), for
an ensemble of 100 simulated signals of the response Y (t). The dots to the
right corresponds to the logarithms of damages for longer signals. We observe
that the medians differ due to the bias (T0 = 0) by 0.06, i.e., 15% percent.
Furthermore, the variance of the logarithms of d estimates slightly decreased
from 0.2 to 0.18, for b = 6. We can therefore conclude that the statistical
variability measured by standard deviation is much larger than the bias.
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Fig. 12. Normal probability plot for base 10-logarithms of observed damage inten-
sities.

Discretization errors: There are primarily two types of discretization errors.
One possible source of discretization error is when one uses the following prop-
erty of stationary and ergodic loads, viz. the damage intensity d = E[DT ]/T =
limT→∞ DT /T , and hence

d ≈ DT

T
. (44)

However, often in field experiments, the real loads are saved in the form of
a rain-flow matrix prfc(u, v). Subsequently, the damage intensity is computed
using Eq. (5), viz.

d ≈ ν
∫ ∫

f(u, v)prfc(u, v) du dv (45)

Computations of rain-flow matrices implies that the rain-flow cycles are dis-
cretized and this is the second source of discretization errors. Hence, the two
approaches (Eqs. 44 and 45) may give different estimates for the damage in-
tensity. There can be considerable differences for f(u, v) = (v− u)b, when b is
large. Consequently, if two methods have to be compared, one should use the
same method for computing the damage, i.e., by means of a direct sum or the
rain-flow matrix.

6.1.1 Example of discretization error

We consider 100 simulated responses for Y (t), each of duration 1500 s. For each
signal, the damage was estimated using Eq.(44) and Eq.(45), with different
values of damage exponent b. The logarithms of the damages are well approx-
imated by the normal pdf with medians presented in Table 2. We see that
the discretization error is about 100.05 = 1.12, i.e., 10%, even if the rain-flow
matrix contained 100 levels (which is more than what is common in practice).
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Table 2
Median of log10[d]; differences due to discretization errors.

b 1 2 3 4 5 6

d (Eq. 44) 0.4476 1.5558 2.7903 4.1187 5.5272 6.9660

d (Eq. 45) 0.4785 1.5964 2.8367 4.1695 5.5755 7.0244

6.1.2 The transformed Gaussian approximation for the response

Here, we have simulated 100 samples of transformed Gaussian process Ỹ (t)
of duration 1500 s. For each signal, the damage was estimated using Eq.(44)
and Eq.(45), for different values of damage exponent b. The logarithms to
the base 10, of the damages are very well approximated by the normal pdf
with medians presented in Table 3. We see that the median damage for the
transformed Gaussian process Ỹ (t) and that estimated from 100 simulations
of the response Y (t), are very close for b ≥ 3 (the interesting levels), with
the difference being less than 10%. For lower values of b, the approximation
is less accurate due to underestimation of the crossings for low levels by the
SORM-method.

Table 3
Median of the base 10 logarithms of the damage intensity for the transformed Gaus-
sian approximation of the response, estimated using Eq. (44) and Eq. (45) with 100
signals of duration 1500 s.

b 1 2 3 4 5 6

d (Eq. 44) 0.4067 1.5061 2.7511 4.0966 5.5126 6.9717

d (Eq. 45) 0.4370 1.5429 2.7907 4.1375 5.5534 7.0202

The discretization errors are similar. However the loads are not equivalent from
the fatigue point of view. In both cases, the estimates of the damage intensity
are approximately log-normally distributed, with very similar median damage.
However, the standard deviations of the logarithms are different. In Table 4, we
give standard deviations of the base 10 logarithms of the estimated damages
computed, for 100 realizations of Y (t) of durations 1500 s.

It can thus be concluded that the large cycles are more evenly spread in
the transformed Gaussian loads. In other words, on an average, there are as
many large cycles in both models but the transformed Gaussian load has the
numbers closer to the average.

6.2 Expected damage transformed Gaussian load

We turn now to the evaluation of the expected damage for the transformed
Gaussian load. Note that the method approximates the sequence of the turning
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Table 4
Standard deviations of the base 10 logarithms of the damage intensity for the trans-
formed Gaussian approximation for the response, estimated using Eq. (44) and Eq.
(45), for 100 signals of duration 1500 s.

b 1 2 3 4 5 6

(Var[d])0.5 (Eq. 44) 0.0253 0.0473 0.0730 0.1071 0.1503 0.2006

(Var[d])0.5 (Eq. 45) 0.0116 0.0207 0.0366 0.0614 0.0942 0.1331

points in Ỹ (t) by a Markov chain, with the Markov transition matrix computed
from the spectrum S(ω) and the transformation G(·), see Fig. 3 and 11. Figure
13 illustrates the contour lines of the probabilities that the rain-flow cycles will
have a maximum with height ui and minimum with height uj, with probability
pij. Such a matrix could be called the expected rain-flow matrix normalized to
have sum equal to unity. Figure 14 is the corresponding figure but defined for
the min-max cycles. The contour lines are defined, such that, the probability
of a point being outside the contour is known. Thus, if there are about 500
cycles in an observed time history, then it is expected that there would be
about 5 cycles (represented by dots in Figs. 13-14) above the second contour,
approximately 25 cycles above the third contour and so on. In Figs. 13 and 14,
the rain-flow and Markov matrices are plotted along with the observed cycles.
It can be seen that the rain-flow matrix is not too contradictory; only a few
number of cycles with negative crests are overestimated in the transformed
Gaussian load. The base 10 logarithms of the estimated damages, as b is
varied from 1 − 6 are respectively, 0.4312, 1.5487, 2.8084, 4.1647, 5.5896 and
7.0654. The values should be compared with the second row of Table 2. The
bias analysis indicates that we could expect the values to be slightly higher,
with a difference of about 0.08 for b = 6. The agreement is very good. We
conclude that for the example studied in this paper, the transformed Gaussian
approximation is sufficiently accurate.
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Fig. 13. Contours of normalized expected rain-flow matrix and observed rain-flow
cycles.

25



m
in 

[m
]

max [m]

Joint density of maximum and minimum

−10 0 10 20 30

−15

−10

−5

0

5

10

15

20

25

30
Level curves enclosing:
10  
30  
50  
70  
90  
95  
99  
99.9

Fig. 14. Contours of normalized expected min-max matrix and observed min-max
cycles.

6.3 The bounds and asymptotic Poisson correction

We next present the bounds, based on µ̂(u, v) and µ̃(u, v), when the upcrossing
intensities, µ(u), are computed using the algorithm in Appendix 1. The nu-
merical estimates have been presented in Table 5. For b = 1, the bound given
in Table 5 is actually the exact fatigue damage and is not a bound. We observe
that for higher values of b, the bounds are progressively higher. Thus, for b = 6
the bound is about 60% higher than the damage estimated from 100 realiza-
tions of response Y (t) of duration 1500 s. However, it must be noted that this
overestimation has a 20% contribution from bias; see previous discussions. The
Poisson corrected damage intensity is about 30% too high. This, though, is
not very high, especially when compared to other uncertainties. On the other
hand, the advantage of using the Poisson corrected approximation lies in its
simplicity. Finally, in Table 6, we present the estimates of the damage inten-
sity, where the up-crossing intensities, µ(u), are computed using the SORM
approximation (Appendix 3). We observe that the approximations here are
about 3% lower than the true bound and clearly could be used equivalently.

Table 5
Base 10-logarithms for the estimates for the upper bound and the Poisson corrected
approximations for the expected rain-flow fatigue damage; mean crossing rates com-
puted using algorithm presented in Appendix 1.

b 1 2 3 4 5 6

d+ 0.4520 1.6560 2.9524 4.3221 5.7518 7.2318

dpoiss 0.4520 1.6524 2.9396 4.2949 5.7081 7.1726
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Table 6
Base 10-logarithms for the estimates for the upper bound and the Poisson corrected
approximations for the expected rain-flow fatigue damage; mean crossing rates com-
puted using SORM approximations

b 1 2 3 4 5 6

d+ 0.4169 1.6264 2.9278 4.3013 5.7337 7.2155

dpoiss 0.4169 1.6230 2.9154 4.2749 5.6911 7.1575

7 Concluding Remarks

A frequency domain based method has been developed for estimating the ex-
pected rain-flow fatigue damage in randomly vibrating structures, where the
structure response is due to nonlinear combination of a vector of mutually
correlated, stationary, Gaussian loads. The crux of the problem lies in es-
timating the mean up-crossing rate of the non-Gaussian structure response.
For the special class of problems where the excitations can be modeled as
quadratic functions of Gaussian loads, analytical approximations have been
presented for the mean up-crossing rates for the structure response. Numeri-
cal algorithms have been developed which enable computing the level crossing
statistics for problems not amenable for analytical solutions. Issues related to
numerical efficiency and reduction in computational complexities have been
addressed. Comparisons of the predictions using the proposed method have
been carried out with available analytical techniques, such as SORM based
asymptotic methods and with full scale Monte Carlo simulations. The pro-
posed method leads to bounds for the expected rain-flow fatigue damage. A
study has been carried out which investigates the quality of the bounds. A
quantitative analysis has been carried out to identify sources of errors in the
fatigue damage estimations. A comparative study of the predictions have been
made when alternative approximations, such as, using transformed Gaussian
loads and assuming Markov models for the loads. It can be concluded that
the method proposed in this paper leads to fairly accurate estimates for the
expected rain-flow fatigue damages. The required computational effort is sig-
nificantly less than the existing time domain approaches and is commensurate
with the analytical techniques available in the literature. Though the applica-
bility of the proposed method has been demonstrated with respect to a wind
vibration problem, the method can be used for studying the fatigue damage
due to non-Gaussian load effects arising from other environmental loads also;
see [18,22].

27



Acknowledgement

This work was supported in part by the Swedish Foundation for Strategic Re-
search (SSF) via the Gothenburg Mathematical Modelling Center (GMMC).

References

[1] Baxevani A, Hagberg O, Rychlik I. Note on the distribution of extreme waves
crests. Proc. 24th Int Conf Offshore Mech and Arctic Eng 2005.

[2] Benasciutti D, Tovo R. Cycle distribution and fatigue damage assessment
in broad-band non-Gaussian random processes. Probab Eng Mech
2005;20(2):115-127.

[3] Bendat JS. Probability Functions for Random Responses: Prediction of
Peaks, Fatigue damage and Catastrophic Failures. NASA technical report
1964.

[4] Benasciutti D, Tovo R. Spectral methods for lifetime prediction under wide
band stationary random processes. Int J of Fatigue 2005;27:867-877.

[5] Bishop NWM, Sherratt. A theoretical solution for estimation of rainflow
ranges from power spectral density data. Fatigue Frac Eng Mater Struct
1990;13:311-326.

[6] Bogsjo K. Stochastic modelling of road roughness. Licentiate of engineering
thesis, Lund, Sweden; 2005.

[7] Breitung K. (1988) Asymptotic crossing rates for stationary Gaussian vector
processes. Stoch Proc and Applications 1988;29:195-207.

[8] Brodtkorb PA, Johannesson P, Lingren G, Rychlik I, Rydén J, Sjö E. WAFO
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A Appendix 1

We first rewrite the joint pdf pY Ẏ (·, ·) in the form

pY Ẏ (y, ẏ) =
∫ ∞

−∞
...

∫ ∞

−∞
pX2...XnY Ẏ (x2, .., xn, y, ẏ)dx2..dxn, (A.1)

where, pX2...XnY Ẏ (·) is the joint pdf of random variables X2,...,Xn, Y and

Ẏ , at time t. We seek the transformation between the joint pdf pX2..XnY Ẏ (·)
and pX1..XnẎ (·). We assume that at time t, Y in Eq. (1), is a function of X1

with all the other random variables being fixed. Thus, from Eq. (1), given by
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Y = g(X1, x2, ..., xn), we assume that there are k solutions for X1 for a given
set of values Y = y, X2 = x2, .., Xn = xn. This leads to the expression

pX2..XnY Ẏ (x2, ..., xn, y, ẏ) =
k∑

i=1

∣∣∣∣∣∣
∂Y

∂X1

∣∣∣∣∣∣

−1

i

pX1X2..XnẎ (x1, x2, ..., xn, ẏ), (A.2)

y = g(x1, x2, ..., xn). The joint pdf pX1...XnẎ (·) is now written as

pX1..XnẎ (x1, .., xn, ẏ) = pẎ |X1..Xn
(ẏ|X1 = x1, .., Xn = xn)Πn

j=1pXj
(xj), (A.3)

since X is assumed to be a vector of mutually independent Gaussian random
variables, pX1..Xn(x1, .., xn) = Πn

j=1pXj
(xj).

Ẏ (t) is obtained by differentiating Eq. (1) with respect to t, and when condi-
tioned on {Xj = xj}n

j=1, is given by

Ẏ |X =
n∑

i=1

∣∣∣∣∣∣
∂Y

∂Xi

∣∣∣∣∣∣
X

Ẋi =
n∑

i=1

giẊi = GẊ. (A.4)

Here, the vector G = [g1, .., gn], Ẋ = [Ẋ1, .., Ẋn]
′
, the superscript (′) denoting

transpose, gi = ∂Y /∂Xi and when conditioned on X, is a constant. Ẋ(t)
are the time derivatives of X(t) and are also zero-mean stationary, Gaussian
random processes. Thus, Ẏ |X in Eq. (A.4) is a linear sum of Gaussian random
variables and is a Gaussian random variable with parameters

µẎ |X = E[Ẏ |X = x] = G{E[Ẏ] + Cov(Ẋ,X)Cov(X,X)−1(x− E[X])}
=GCov(Ẋ,X)x,

σ2
Ẏ |x = Var[Ẏ |X = x] = G{Var[Ẋ]− Cov(Ẋ,X)Cov(X,X)−1Cov(X, Ẋ)}

=G[CẊẊ −C
′
XẊ

CXẊ]G′. (A.5)

Here, E[·], Var[·] and Cov[·] respectively denote the mean, variance and the
covariance.

Substituting Eqs. (A.1-A.5) in Eq. (11), the mean up-crossing rate is given by

µY (u) =
k∑

i=1

∫ ..

Ωi

∫
|h(i)

1 |−1
{ ∫ ∞

0
ẏpẎ |X(ẏ;x(i))dẏ

}
pX1(x

(i)
1 )

n∏

j=2

pXj
(xj)dx2..dxn.

(A.6)

Here, x(i) = [x
(i)
1 , x2, .., xn], h

(i)
1 =

∣∣∣∣ ∂Y
∂X1

∣∣∣∣
X(i)

, and Ωi denotes the domain of inte-

gration determined by the permissible set of values x2, ..., xn for each solution
of x

(j)
1 . Since pẎ |X(·) is Gaussian, it can be shown that [21]

∫ ∞

0
v̇pẎ |X(ẏ;x)dẏ = σẎ |XΨ

(
µY |X
σY |X

)
, (A.7)
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where, Ψ(x) = φ(x) + xΦ(x) and φ(x) and Φ(x) are respectively the stan-
dard Gaussian pdf and the standard Gaussian probability distribution func-
tion (PDF). Thus, Eq. (A.6) can be expressed as

µY (u) =
k∑

i=1

∫ ...

Ωi

∫
f̃(x

(i)
1 , x2, .., xn)

n∏

j=2

pXj
(xj)dxj, (A.8)

where, f̃(x
(i)
1 , x2, .., xn) = |h(i)

1 |−1σẎ |XΨ
(

µẎ |X
σẎ |X

)
pX1(x

(i)
1 ). This approach had

been first proposed in [21] and closed form expressions for a limited class of
problems had been presented.

The scope of this approach had been extended in [11] to a wider class of
problems. The difficulties involved in evaluating µY (u) from Eq. (A.8) are
(a) determining the domain of integration Ωi, defined by the possible set of

solutions for X
(i)
1 , and (b) evaluation of the multidimensional integrals

Ij =
∫

...
Ωj

∫
f̃(x

(j)
1 , x2, .., xn)

n∏

j=1

pXj
(xj)dxj, (A.9)

where the dimension of the integral, Ij is (n − 1). Questions addressing the
solution of these integrals using the Monte Carlo method has been discussed
in [11]. In this paper, we employ the Monte Carlo integration method for
computing µY (u).

B Appendix 2

For structure responses written as

Y (t) =
k+1∑

j=1

{ΓjXj(t) +
Λj

2
X2

j (t)} (B.1)

where, Λk+1 = 0, one can express Y (t) as a combination of a Gaussian and a
non-Gaussian process, in the form

Y (t) =
k∑

j=1

{ΓjXj(t) +
Λj

2
X2

j (t)}+ Γk+1Xk+1(t) = YNG(t) + YG(t). (B.2)

We rewrite pY Ẏ (y, ẏ) in terms of a joint pdf of the random variables X1, .., Xk

and get

pY Ẏ =
∫ ∞

−∞
...

∫ ∞

−∞
pX1X2..XkY Ẏ (x1, .., xk, y, ẏ)dx1..dxk. (B.3)

Subsequently, we follow an identical procedure as detailed in Appendix 1.
However, the difference is that now the first k random variables are used
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rather than the last k in the vector X. This is advantageous for quadratic
forms as for given values of Y = y, X1 = x1, .., Xk = xk, there exists only one
solution for Xk+1, given by

xk+1 = y −
k∑

j=1

{Γjxj +
Λj

2
x2

j}. (B.4)

Also, the domain of integration for the multi-dimensional integrals is [−∞,∞].
This leads to the simpler form for µY (y), given by

µY (y) =
∫ ∞

−∞
..

∫ ∞

−∞
1

J
{σẎ |XΨ

(µẎ |X
σẎ |X

)
pXk+1

(xk+1)}
k∏

j=1

pXj
(xj)dxj

=
1

Γk+1

E[σẎ |XΨ
(µẎ |X

σẎ |X

)
pXk+1

(xk+1)]X1...Xk
, (B.5)

where, J = dY/dXk+1 = Γk+1 and xk+1 depends on X1, ..Xk. The parameters
σẎ |X and µẎ |X are computed as in Appendix 1.

C Appendix 3

The following generalization of Breitung’s approximation [7] can be found
in [1]. The formulae presented here are, in principle, explicit, although they
require finding the design point. In comparison with the Monte Carlo (MC)
simulation approach, presented in Appendices 1 and 2, the disadvantage in this
method is that for small levels u the formulaes are only approximations. On the
other hand, for higher (and often more important) levels u, the formulaes are
very accurate, but requires the identification of the design point. Note that
the MC-methods can not be used to compute crossings of very high levels,
e.g. µ(u) < 10−6. In such a case importance sampling has to be used and that
would in turn, require identification of the design points. In that case, the MC
method would give similar result to the asymptotic approach however with
much higher computational effort.

Theorem 1 Let g : Rn → R be a function such that the surface

S = {x = (x1, . . . , xn); g(x) = 0}

has a point x0 such that ||x0|| = 1 and ||x|| > 1 for all other x ∈ S. By x
we denote both the vector (x1, . . . , xn) and the n × 1 column matrix. Suppose
Z(t) is an n-dimensional, stationary, differentiable, Gaussian vector process,
and let Ż(t) denote its derivative. The correlation of the vector (Z(t),Ż(t)) is
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denoted by Σ,

Σ =




I Σ12

Σ21 Σ22


 . (C.1)

For a family of processes g(Z(t)/β), β > 0, under some mild technical as-
sumptions, the intensity of zero up-crossings is given by

µβ(0) =
e−β2/2

2π
(c + O(β−2)), c =

√√√√xT
0 (Σ22 − Σ21G0Σ12)x0

det (I + P0G0P0)
, (C.2)

as β tends to infinity, where G0 := 1
|∇g(x0)|

[
∂2g

∂xi∂xj
(x0)

]
i,j=1,2,...,n

and P0 :=

I − x0x
T
0 .

Since Z(t) is stationary, the same formula is valid for down-crossings.

Based on the above theorem, the following remarks can be made:

(1) Formula (C.2) is in a sense finitely additive, i.e., if there are a finite
number of points with minimal distance to the origin, the asymptotic
formula for the upcrossing intensity of the process g(Z(t)/β) is the sum
of the upcrossing intensities estimated using Eq. (C.2) for each point
separately. Breitung’s asymptotic approximation fails in the case of an
infinite number of such points.

(2) Theorem 1 is a generalization of Breitung’s result in two sense: In contrast
to Theorem 1, Breitung demands the surface S to be finite, and Theorem
1 contains the order of the error term.

(3) Theorem 1 lends itself to a geometric interpretation. Note that g(Z(t)/β)
crosses the zero level, if and only if, the vector process Z(t) crosses the
surface βS. Hence, instead of saying that the formula is asymptotic “as
β tends to infinity” we may say “as the surface S is inflated”.

(4) The simpler FORM approximation is derived by assuming that locally
at the design point x0 the curvature of the surface is zero, i.e., G0 is a
matrix containing only zeros giving the following approximation

µβ(0) ≈ e−β2/2

2π

√
xT

0 Σ22x0. (C.3)

Here, we are interested in quadratic processes of type

Y (t) =
n∑

j=0

γjXj(t) +
n∑

j=0

λj

2
Xj(t)

2, (C.4)

where X(t) = (X0(t), . . . , Xn(t)) is a vector of stationary Gaussian process,
such that, for each t, Xj(t) ∈ N(0, 1) and the variables Xj(t) ⊥ Xk(t). Denote

Ẋ(t) = (Ẋ0(t), . . . , Ẋn(t)). Let the correlation structure of X(t), Ẋ(t) be given
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by Eq. (C.1). We shall now demonstrate how the theorem can be used to
approximate µ(u), the upcrossing intensity of the level u by the process Y (t)
defined in Eq. (C.4).

Gaussian case, all λi = 0

Let us consider two special cases when the stress is a Gaussian process i.e.,
the quadratic correction term in Eq. (C.4) may be ignored. This implies that
λj = 0. Thus, Eq. (C.4) simplifies to Y (t) = γ

′
X(t), where γ = (γ1, . . . , γ2N).

Define

g(x) = 1− 1

||γ||γ
′
x, (C.5)

and note that, if β = u/||γ|| := βu, the process g(X(t)/β) down-crosses the
zero level exactly when Y (t) up-crosses the level u. (Here || · || denotes norm
in Rn, e.g., ||γ||2 =

∑
γ2

j = Var[X(0)].) On the surface g(x) = 0, the point
closest to the origin is x0 = γ/||γ||, and since all second order derivatives of g
are zero, Breitung’s approximation gives

µβ(0) =
1

2π

√
γ′Σ22γ

||γ|| exp

(−β2
u

2

)
, (C.6)

since x0 = γ/||γ||. As expected the approximation is exact, as given by Rice’s
formula for a Gaussian process, since with Var[X(0)] = ||γ||2 and Var[Ẋ(0)] =
γΣ22γ

′
.

Pure quadratic case, all γi = 0

Suppose next that the linear term in Eq. (C.4) is negligible. In this case, we
may write Y (t) = 1

2
X(t)

′
ΛX(t), where Λ = diag ([λ1, . . . , λn]) is the diagonal

matrix, with
∏n

i=1 λi 6= 0. We also assume that λ1 ≤ λ2 ≤ · · · ≤ λn. Addition-
ally, for u > 0, we need to assume that λn > 0, since otherwise Y (t) ≤ 0 for
all t. By defining

g(x) = 1− 1

λn

x
′
Λx, (C.7)

it can be seen that for β =
√

2u/λn := βu, the zero down-crossing intensity

of the process g(X(t)/β) equals the upcrossing intensity of the level u by the
process Y (t). Consequently, µβ(0) = µ(u) and Theorem (1) may be used to
compute µβ(0). Note, however, that there are two points

x± := ±
[
0 0 . . . 1

]′
(C.8)

of minimal distance to the origin. Hence, one has to compute formula (C.2)
for each one of these points separately (G0 = − 1

λn
Λ for both points), and add
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the results. Consequently, by Theorem 1,

µ(u) =
1

π
exp(− h

λn

)




√√√√Var[Ẋn(0)]−∑n
i=1(λi/λn)Cov(Xi(0), Ẋn(0))2

(1− λ1/λn) . . . (1− λn−1/λn)
+ O(h−1)


 ,

(C.9)
since we have two design points.

Note that µ(v) for v < 0 one can use the Eq. (C.9) with u = −v and by
changing signs of λi, which has to be again ordered into increasing order.

General quadratic loads:

Before proceeding further, it should be emphasized that Theorem 1 for the two
cases of purely linear/quadratic loads gave asymptotic formulas as the level
tends to infinity. The general case is more complicated. This is not surprising
since we have the mix of two different limiting cases. We have to construct
somewhat artificial asymptotics. The idea is as follows. Fix the level u, as-
sumed to be large, and let

p(x) := γ
′
x +

1

2
xT Λx. (C.10)

Assume that there is only one point xu on the surface

{x ∈ Rn; p(x) = u} (C.11)

of minimal distance to the origin, and define βu := ||xu||. Let

g(x) := 1− 1

u

(
βuγ

′
x + β2

u

1

2
x
′
Λx

)
. (C.12)

As before, the process g(X(t)/βu) crosses the zero level when the process
p(X(t)) crosses the level u; hence, using Breitung’s method, with x0 = xu/βu,
for each level u separately, we have µβu(0) equal to the u-upcrossing intensity
for the process p(Z(t)). Therefore, it is reasonable to believe that if βu is
large, then the term O(β−2) for β = βu is small. Hence the approximation is
good. However, the problem is that for each value u one has to find the design
point xu and define a new function g(·). This implies that we cannot use the
theorem, which is valid for a fixed g, to motivate that the error term decreases
to zero as h tends to infinity.

However, there are good reasons to use Breitung’s approximation in this way
instead of a formula which is truly asymptotic as the level u tends to infinity,
especially if the linear terms dominate over the quadratic for the levels of
interest, u. This is because, for u large enough, the u-crossings of the process
will almost exclusively depend on the quadratic part. In contrast for u-level
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close to zero (βu ≈ 0) the quadratic term in Eq. (C.10) is negligible and
one has the pure Gaussian case. Note that the method approximates the zero
crossing intensity by zero crossing intensity in the pure Gaussian process. It is
suggested that the use of Breitung’s method will give a proper balance between
the linear and the quadratic terms.

We turn now to the computation of Breitung’s approximation

µβu(0) = exp(−β2
u/2)c(βu)/2π, (C.13)

given in Theorem 1. Note that, opposed to the formulation in Theorem 1, we
indicate c′s dependence of βu. Evaluating the terms gives

∇g(x)
′|x=xu/βu =−

(
βu

u
γ +

β2
u

u
Λx

)
|x=xu/βu = −βu

u
(γ + Λxu) ,

G0 =
−βuΛ

|| (γ + Λxu)| |Λ P0 = I − 1

β2
u

xux
′
u. (C.14)

Now we can use the following approximation

µ(u) ≈ e−β2
u/2

2π
c(βu), (C.15)

where

c(βu) =

√√√√xT
u (Σ22 − Σ21G0Σ21)xu

β2
u det (I + P0G0P0)

(C.16)

The simpler FORM approximation is, by Eq.(C.3), given by

µ(u) ≈ e−β2
u/2

√
xT

u Σ22xu

2πβu

. (C.17)

It must be noted that the point of minimum norm, xu, can be found by
standard optimization methods, see [9].
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