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Abstract

A characterization of the ∗-subalgebras of L(H) analogues to Choi
and Effros characterization of abstract operator systems is presented. An
internal characterization of the C∗-representability of bounded ∗-algebras
is obtained and for a large class of ∗-algebras A, C∗-representability is
proved to be equivalent to the condition that the equation x∗x = 0 has
only zero solution in Mn(A) for all n ≥ 1. Sufficient conditions for the
O∗-representability of a ∗-algebra in terms of its Göbner basis are given.
These conditions are generalization of the unshrinkability of monomial
∗-algebras introduced by C. Lance and P. Tapper. The applications to
∗-doubles, monomial ∗-algebras etc. are presented.

KEYWORDS: ∗-algebra, C∗-algebra, O∗-algebra, A∗-algebra, Banach ∗-
algebra, noncommutative Gröbner basis, Hilbert space, faithful represen-
tation, algebraically admissible cone.

1 Introduction

This paper concerns with one aspect of the theory of ∗-algebras: the
conditions for a ∗-algebra to be faithfully represented by operators
on a Hilbert space.

The term ”algebra of unbounded operators” admits different in-
terpretations. In present work this term means O∗-algebra ([15,
p.36]), i.e. a ∗-subalgebra of the algebra of linear operators acting
on a pre-Hilbert space. Let E denote a pre-Hilbert space and H a
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16Z05 (Secondary)
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Hilbert space which is the completion of E. The ∗-algebras of lin-
ear operators acting on these spaces are denoted by L(E) and L(H).
Let A be a ∗-algebra over complex numbers. In this paper we study
conditions for the existence of an embedding of A into L(E) and
L(H). In the first case, it is equivalent to A being ∗-isomorphic to
a O∗-algebra, such algebras will be called O∗-representable. In the
second case A is isomorphic to a pre-C∗-algebra and we will say
(following C. Lance and P.Tapper [7]) that A is C∗-representable.

If A is embedded in L(E) and every operator a ∈ A is bounded
then one can extend each a ∈ A to an operator acting on H and
thus obtain an inclusion A ↪→ L(H). In the general case A will be
represented by unbounded operators on H such that the intersection
of their domains is dense.

The celebrated Gelfand-Naimark theorem characterizes closed ∗-
subalgebras of L(H) in terms of the norm on a ∗-algebra. There
are also characterizations of such subalgebras in terms of orders on
the set of self-adjoint elements [14]. The noncomplete subalgebras
of L(H) are less well studied. A characterization of pre-C∗-algebras
inside the class of normed ∗-algebras is given by G. Allan (see [4, p.
281]).

Our characterizations of C∗-representability given in Teorems 2
and 4 are significantly different from the ones cited above. We do
not require any additional structure on the ∗-algebra. These charac-
terizations are consequences of Theorem 1. The latter is analogues
to the Choi and Effors characterization of abstract operator systems.
The conditions of Theorem 2 could be considered as a generaliza-
tion of a simple necessary condition of the C∗-representability of a
∗-algebra A that the equation x∗x = 0 has only zero solution in
Mn(A) for all n ≥ 1. Such algebras are called completely positive.
We also prove (see Corollaries 3 and 4) that for a large class of ∗-
algebras complete positivity is also sufficient for C∗-representability.
We also present several examples which show that the condition of
complete positivity is not sufficient in general. As an application of
the obtained results to Banach ∗-algebras we present a characteri-
zation of A∗-algebras in Theorem 6.

The literature on the O∗-representability of finitely presented ∗-
algebras consists so far only of isolated classes of examples. In [9],
the author proved that a monomial ∗-algebra is O∗-representable if
and only if in the minimal defining set of monomial relations of the
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form wj = 0 where wj is a word, all wj are unshrinkable. It should be
noted that Lance and Tapper [13, 7] conjectured that such ∗-algebras
are C∗-representable. This is still an open problem. In Section 3 we
introduce a larger class of O∗-representable ∗-algebras which we call
non-expanding (see Definition 6). This class is a generalization of
monomial ∗-algebras. The main novelty of our approach is that we
use the notion of Gröbner basis to define this class and use methods
of Gröbner bases theory to establish O∗-representability and derive
further results.

The sufficient conditions of non-expendability obtained in Sec-
tion 4 allowed one to show that several known classes of ∗-algebras
fall in the class of non-expanding ∗-algebras. Thus their repre-
sentability could be treated from a unified point of view. These suf-
ficient conditions are algorithmically verifiable for ∗-algebras given
by a finite number of generators and relations.

2 Representability by bounded operators.

In this section several characterizations of representability of a ∗-
algebra by bounded operators acting on a Hilbert space H are pre-
sented.

If a ∗-algebra A is ∗-isomorphic to a subalgebra of a C∗-algebra
A then by the Gelfand-Naimark theorem A is also ∗-isomorphic
to a subalgebra of L(H) and thus can be faithfully represented by
bounded operators on H. Such ∗-algebra is called C∗-representable
(see [7]).

Firstly we will present a criterion of C∗-representability in terms
of algebraically admissible cones. Let Asa denote the set of self-
adjoint elements in A. The following definition was introduced
in [11].

Definition 1. Given a ∗-algebra A with unit e, we say that a subset
C ⊂ Asa is algebraically admissible cone if

(i) C is a cone in Asa and e ∈ C;

(ii) C ∩ (−C) = {0};

(iii) xCx∗ ⊆ C for every x ∈ A;

The assumptions of the C∗-representability criterion given in
Theorem 1 are the same as in Choi and Effros characterization of
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abstract operator systems [3], however we do not require any addi-
tional structure on the matrices over a ∗-algebra to exist and the
matrix order is replaced with the order given by an algebraically
admissible cone.

With a cone C we can associate a partial order ≥C on the real
vector space Asa given by the rule a ≥C b if a− b ∈ C. Henceforth
we will suppress subscript C if it will not lead to ambiguity. Some
elementary properties of this order which will be frequently used are
given in the following.

Lemma 1. The following properties hold.

(a) x∗x ∈ C for every x ∈ A, in particular a2 ∈ C for a ∈ Asa.

(b) For λ ∈ R+ and a ≥ b in Asa λa ≥ λb and −λb ≥ −λa.

(c) If a ≥ b and b ≥ c then a ≥ c.

(d) If a ≥ b and c ∈ Asa then a + c ≥ b + c.

(e) If a ≥ b and c ≥ d then a + c ≥ b + d.

(f) If a ≥ b and x ∈ A then x∗ax ≥ x∗bx.

Recall that an element u ∈ Asa is called an order unit for Asa

provided that for every x ∈ Asa there exists a positive real r such
that ru+x ∈ C. An order unit u is called Archimedean if ru+x ∈ C
for all r > 0 implies that x ∈ C. A ∗-algebra is called positive if for
every x ∈ A the equality x∗x = 0 implies x = 0.

Our first characterization of C∗-representability is given in the
following theorem.

Theorem 1. A ∗-algebra A with unit e is C∗-representable if and
only if A is positive and there is an algebraically admissible cone on
A such that e is an Archimedean order unit.

The proof of the theorem will be divided into a sequence of lem-
mas.

Lemma 2. Let A be a ∗-algebra with algebraically admissible cone
C and unit e which is an order unit. The function ‖·‖ defined as

‖a‖ = inf{r > 0 : re ≥ a ≥ −re} = inf{r > 0 : re± a ∈ C}

is a seminorm on the R-space Asa. Moreover ‖x∗ax‖ ≤ ‖x∗x‖‖a‖
for every x ∈ A and a ∈ Asa.
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Proof. If re ≥ a ≥ −re then, by Lemma 1, for λ > 0 we have
λre ≥ λa ≥ −λre and for λ < 0 we have λre ≤ λa ≤ −λre. Hence
‖λa‖ = |λ|‖a‖. To prove the subadditivity of ‖·‖ take arbitrary
a and b in A. If r1e ≥ a ≥ −r1e and r2e ≥ b ≥ −r2e then, by
Lemma 1, (r1+r2)e ≥ a+b ≥ −(r1+r2)e. Hence ‖a+b‖ ≤ ‖a‖+‖b‖.

From re ≥ a ≥ −re, by Lemma 1, it follows that rx∗x ≥ x∗ax ≥
−rx∗x for every x ∈ A. For every ε > 0 we will have (‖x∗x‖+ ε)e ≥
x∗x ≥ −(‖x∗x‖+ε)e. Thus r(‖x∗x‖+ε)e ≥ x∗ax ≥ −r(‖x∗x‖+ε)e.
Letting ε → 0, we obtain ‖x∗ax‖ ≤ ‖x∗x‖‖a‖.

Lemma 3. Let A be a ∗-algebra with algebraically admissible cone
C and with unit e which is an Archimedean order unit. For x ∈ A
define |x| =

√
‖x∗x‖. Then

1. |λx| = (λλ)1/2|x| for every λ ∈ C and x ∈ A;

2. |xy| ≤ |x||y| for every x, y in A;

3. ‖a‖ ≤ |a| for every a ∈ Asa.

Proof. The first statement is trivial.
For x, y in A, by Lemma 2, we have ‖(xy)∗xy‖ = ‖y∗(x∗x)y‖ ≤

‖y∗y‖‖x∗x‖. Hence |xy| ≤ |x||y|.
Clearly, for every α ∈ R, α±a ∈ Asa. Hence, by Lemma 1,

(α±a)2 ∈ C. Thus

−(α2 + a2) ≤ 2αa ≤ α2 + a2,

and for α = ‖a‖ one has

−(‖a‖2 + a2) ≤ 2‖a‖a ≤ ‖a‖2 + a2.

If a2 ≤ ε then

−(‖a‖2 + ε) ≤ 2‖a‖a ≤ ‖a‖2 + ε.

Consequently, ‖2 · ‖a‖ · a‖ ≤ ‖a‖2 + ε and, thus, ‖a‖2 ≤ ε. Letting
ε ↘ ‖a2‖ we obtain that ‖a‖2 ≤ ‖a2‖. Therefore, ‖a‖ ≤ |a|.

Lemma 4. Let A be a ∗-algebra with algebraically admissible cone
and unit e which is an Archimedean order unit. Then |·| is a semi-
norm on A satisfying C∗-axiom, i.e. |x∗x| = |x|2 for every x ∈ A.
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Proof. First we will prove that |x∗| = |x| for every x ∈ A. For
this it suffices to show that |x∗| ≤ |x|. In fact, if this is true then
|x| = |(x∗)∗| ≤ |x∗|. By definition |x∗|2 = ‖xx∗‖. Since xx∗ is self-
adjoint, ‖xx∗‖ ≤ |xx∗| by Lemma 3. Thus |x∗|2 ≤ |xx∗| ≤ |x||x∗|.
If |x∗| = 0 then 0 ≤ |x| and the required inequality holds, otherwise
we have |x∗| ≤ |x|.

For every x ∈ A by Lemma 3 we have |x∗x| ≤ |x||x∗| = |x|2 and
|x|2 = ‖x∗x‖ ≤ |x∗x|. Thus |x|2 = |x∗x|.

Applying the previous equality to a self-adjoint element a we
obtain |a|2 = |a∗a| = |a2|. Thus |a2| = |a|2.

We will prove that |x + y| ≤ |x| + |y|. For every x ∈ A one has
‖x2 + x∗2‖ ≤ 2‖x∗x‖. Indeed, since x + x∗ is self-adjoint we have
(x + x∗)2 ≥ 0, i.e

x2 + x∗2 + xx∗ + x∗x ≥ 0.

From this it follows that x2 +x∗2 ≥ −{x, x∗} where {x, x∗} = xx∗+
x∗x. Since i(x−x∗) is also self-adjoint we have −(x−x∗)2 ≥ 0. Thus
{x, x∗} ≥ x2 + x∗2 and therefore −{x, x∗} ≤ x2 + x∗2 ≤ {x, x∗}.
Hence

‖x2 + x∗2‖ ≤ ‖{x, x∗}‖ = ‖xx∗ + x∗x‖
≤ ‖xx∗‖+ ‖x∗x‖ = |x|2 + |x∗|2

= 2|x|2 = 2‖xx∗‖.

We will prove the following.

‖x∗ + x‖ ≤ 2‖x∗x‖1/2 = 2|x|. (1)

Indeed, for self-adjoint a by Lemma 3 ‖a‖2 ≤ ‖a2‖ and

‖x + x∗‖2 ≤ ‖(x + x∗)2‖
= ‖x2 + x∗2 + xx∗ + x∗x‖
≤ ‖x2 + x∗2‖+ ‖xx∗ + x∗x‖
≤ 2‖x∗x‖+ ‖x∗x‖+ ‖xx∗‖
= 4‖x∗x‖.

Thus ‖x∗ + x‖ ≤ 2|x|. We will prove that ‖x∗y + y∗x‖ ≤ 2|x||y|.
Indeed, the substitution x∗y instead of x in (1) implies ‖x∗y+y∗x‖ ≤
2|x∗y| ≤ 2|x||y|.
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The inequality |x+y| ≤ |x|+|y| follows from the following estimates:

|x + y|2 = ‖(x + y)∗(x + y)‖
= ‖x∗x + y∗y + x∗y + y∗x‖
≤ ‖x∗x‖+ ‖y∗y‖+ ‖x∗y + y∗x‖
≤ |x|2 + |y|2 + 2|x||y|
= (|x|+ |y|)2.

Proof of Theorem 1. To prove the statement of the theorem
it is sufficient to show that the norm |·| defined in Lemma 3 is a
C∗-norm on A. In view of Lemma 4 we need only to prove that
|x| = 0 implies x = 0 for every x ∈ A. Assume that |x| = 0,
i.e. inf{r > 0 : re ≥ x∗x ≥ −re} = 0. Thus re ± x∗x ∈ C for
every r > 0. Since e is Archimedean we have that ±x∗x ∈ C. As
C ∩ (−C) = {0} we conclude that x∗x = 0. The positiveness of A
implies x = 0.

If A is C∗-representable then A can be identified with a unital
subalgebra of a C∗-algebra A. We can define then C = A+ ∩ A.
Using well know properties of the cone of positive elements in a C∗-
algebra one can easily show that C is an algebraically admissible
cone and e is an Archimedean order unit. �

The main drawback of the characterization given in Theorem 1
is that it requires some additional structure on a ∗-algebra. So
our next objective is to give an intrinsic characterization of C∗-
representability using the algebraic structure of involuting algebra
alone. It is turn out to be possible under the assumption of bound-
edness which is an algebraic version of a well known notion of ∗-
boundedness.

Recall that a ∗-algebra A is called ∗-bounded if for every a ∈ A
there is constant Ca such that for every ∗-representation π : A →
B(H) we have ‖π(a)‖ ≤ Ca.

Definition 2. An element a ∈ Asa is called positive if a =
∑n

i=1 a∗i ai

for some n ≥ 1 and ai ∈ A for 1 ≤ i ≤ n. The set of positive
elements in A will be denoted by A+.

It is easy to check that the cone A+ on a unital ∗-algebra A is an
algebraically admissible cone. To formulate our next result we will
need some definitions from the theory of ordered algebras ([14]).
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Definition 3. Let A be a unital ∗-algebra.

1. An element a ∈ Asa is bounded if there is α ∈ R+ such that
αe ≥ a ≥ −αe.

2. An element x = a + ib with a, b ∈ Asa is bounded if so are the
elements a and b.

3. The algebra A is bounded if all its elements are bounded.

We will collect some useful facts about bounded elements in the
following Lemma. They can be found in [14, proposition 1, p. 196]:

Lemma 5. Let A be a unital ∗-algebra then

1. the set of all bounded elements in A is a ∗-subalgebra in A;

2. an element x ∈ A is bounded if and only if xx∗ is bounded;

3. if A is generated by a set {sj}j∈J such that each sjs
∗
j is bounded

then A is bounded.

For example, an algebra A generated by isometries (i.e., elements
satisfying relation s∗s = e) or projections (i.e., elements satisfying
relation p∗ = p = p2) is bounded. One can easily prove that a
bounded ∗-algebra A is ∗-bounded and thus there exists its universal
enveloping C∗-algebra C∗(A).

Recall the definition of ∗-radical introduced by Gelfand and Naimark
(see [4, (30.1)]).

Definition 4. For a ∗-algebra A the ∗-radical is the set R*(A) which
is the intersection of the kernels of all topologically irreducible ∗-
representations of A by bounded operators on Hilbert spaces.

It is known that R*(A) is equal to the intersection of the kernels of
all ∗-representations (see for example [4, Theorem (30.3)]). Clearly
the factor algebra A/ R*(A) of a ∗-bounded algebra A is C∗-repre-
sentable. As a direct corollary of Theorem 1 we obtain the following
theorem proved in the author earlier paper [8].

Theorem 2. Let A be a bounded ∗-algebra then the following holds.

1. |x| coincides with the norm of the universal enveloping C∗-
algebra C∗(A) of x ∈ A, i.e. |x| = supπ‖π(x)‖ where π runs
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over all ∗-representations of A by bounded operators on Hilbert
spaces. Thus

sup
π
‖π(x)‖2 = inf

f∈A+

{(xx∗ + f) ∩ Re}.

Moreover, ‖a‖ = |a| for self-adjoint a ∈ A.

2. The null-space of | · | which is R*(A) consists of those x such
that for every ε > 0 there are x1, . . . , xn in A satisfying the
equality

x∗x +
n∑

j=1

x∗jxj = εe. (2)

3. A is C∗-representable if and only if R* (A) = {0}.

Proof. Since every x in A is bounded there are real α > 0 and
x1, . . . , xm in A such that

xx∗ +
m∑

i=1

xix
∗
i = α. (3)

If π is a representation of A by bounded operators then ‖π(xx∗)‖ ≤
α. Thus supπ‖π(x)‖2 ≤ inf α, where π runs over all ∗-representations
of A and infimum is taken over all α as in (3). Therefore |x| ≥
supπ‖π(x)‖ for all x ∈ A. The converse inequality also holds since
the right-hand side is the maximal pre-C∗-norm. This proves the
universal property of the pre-norm | · |. Obviously its null-space is
R*(A). By Lemma 3, ‖a‖ ≤ |a| for every self-adjoint a ∈ A. But
inequality −αe ≤ a ≤ αe implies that −αI ≤ π(a) ≤ αI for every ∗-
representation π and identity operator I. Hence ‖π(a)‖ ≤ α. From
this follows |a| ≤ ‖a‖ and, consequently, |a| = ‖a‖.

Thus we only have to prove that the null-space of | · | is the set
of all x such that for every ε > 0 there are x1, . . . , xn in A such
that (2) is fulfilled. As in the proof of Theorem 1 the null-space is
the set of x such that inf{r > 0 : re ≥ x∗x ≥ −re} = 0. But by
definition of the order re−x∗x ≥ 0 if there x1, . . . , xn ∈ A such that
re− x∗x = x∗1x1 + . . . x∗nxn which proves (2) and the theorem.

As a corollary of the above theorem we obtain the following de-
scription of the elements positive in every representation.
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Corollary 1. Let A be a bounded ∗-algebra. An element a ∈ Asa

has the property that π(a) ≥ 0 for each ∗-representation π of A in
L(H) if and only if for every ε > 0 there are x1, . . . , xn ∈ A such
that a + ε =

∑n
j=1 xjx

∗
j .

Proof. Clearly, given a ∈ A, τ(a) ≥ 0 for every ∗-representation τ of
A in L(H) if and only if π(a) ≥ 0 for universal representation π of A.
Since every representation could be factored through the universal
representation π, |x| = ‖π(x)‖ for all x ∈ A. Here |·| is the norm as
in Theorem 2. A self-adjoint operator π(a) is positive if and only
if ‖CI − a‖ ≤ C where C = ‖π(a)‖ and I is the identity operator.
Thus assuming π(a) ≥ 0 we have, by Theorem 2, that ||a|−a| ≤ |a|
and hence ‖|a| − a‖ ≤ |a|. Consequently, |a| − a ≤ |a|+ ε for every
ε > 0. Which means that a + ε can be written as

∑n
j=1 xjx

∗
j for

some xj ∈ A. The converse statement is obvious.

It is a well known fact that for a finite dimensional ∗-algebra
A the necessary and sufficient conditions for C∗-representability is
that A is positive, i.e. the equation x∗x = 0 has only zero solution
in A. For an infinite dimensional ∗-algebra A the above condition is
not sufficient since there are positive (even commutative) ∗-algebras
such that M2(A) is not positive (see [4, Example (32.6)]). This
motivates the following definition.

Definition 5. A ∗-algebra A is called completely positive if Mn(A)
is positive for every n ≥ 1.

We will prove below that for a large class of ∗-algebras the com-
plete positivity is equivalent to C∗-representability. However, we
will also present examples of completely positive algebras which are
not C∗-representable.

Consider the inductive limit M∞(C) = lim(Mn(C), φn) where

φn(a) =

(
a 0
0 0

)
is an embedding of Mn(C) into Mn+1(C). It is clear that A is com-
pletely positive if and only if A ⊗ M∞(C) is positive. Since the
∗-algebra M∞(C) is not unital and is not finitely generated we pre-
fer to replace it with the Teoplitz ∗-algebra T = C〈u, u∗|u∗u = e〉
in the above characterization of complete positivity.
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Theorem 3. For a ∗-algebra A the following conditions are equiv-
alent.

1. A is completely positive.

2. For every n ≥ 1 the equation x∗1x1 + . . . x∗nxn = 0 has only zero
solution x1 = . . . = xn = 0 in A.

3. A⊗ T is positive.

Proof. If x∗1x1 + . . . x∗nxn = 0 for some x1, . . . , xn ∈ A then for a
matrix C ∈ Mn(A) with the first row equal to (x1, . . . , xn) and the
rest rows being zero we have CC∗ = 0. Thus (1) implies (2). If for
some non-zero matrix D ∈ Mn(A) we have DD∗ = 0 and j-row is
not-zero then considering (j, j)-entry in DD∗ we have dj1d

∗
j1 + . . .+

dj1d
∗
j1 = 0. Thus (2) is equivalent to (1).

It is easy to see that the element p = e−uu∗ is a projection in T
and the elements eij = ui−1p(u∗)j−1 for i, j ≤ n satisfy the matrix
units relations and thus generate an algebra isomorphic to Mn(C).
From this it follows that A ⊗ T contains a subalgebra isomorphic
to A⊗M∞(C). Hence the condition that A⊗ T is positive implies
that A is completely positive.

We prove now the converse statement. Assume that A is com-
pletely positive. Since the relation u∗u−e constitutes a Gröbner ba-
sis for T the set {uku∗l|k ≥ 0, l ≥ 0} forms a linear basis for T . Thus
arbitrary x ∈ A⊗T can be written in the form

∑n
i=1,j=1 ai,j⊗uiu∗j,

where ai,j ∈ A. Using the relation u∗u = e we obtain

x∗x =
∑
i≤k

a∗i,jak,l ⊗ ujuk−iu∗l +
∑
i′>k′

a∗i′,j′ak′,l′ ⊗ uj′uk′−i′u∗l
′
=

=
n∑

s=1

n∑
l=1

[
s∑

j=1

n∑
k=s−j+1

a∗j+k−s,jak,l +
l∑

r=1

n∑
i=l−r+1

a∗i,sai+r−l,r

]
usu∗l.

Thus x∗x = 0 would imply that for every 1 ≤ s, l ≤ n:

s∑
j=1

n∑
k=s−j+1

a∗j+k−s,jak,l +
l∑

r=1

n∑
i=l−r+1

a∗i,sai+r−l,r = 0. (4)

For s = 1 and l = 1 we have
∑n

k=1 a∗k,1ak,1 +
∑n

i=1 a∗i,1ai,1 = 0. Since
A is completely positive we have ak,1 = 0 for all 1 ≤ k ≤ n. We
will prove that ak,t = 0 for all k using an induction on t. We have
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already check the base of the induction. So assume that ak,m = 0
for all k and prove that ak,m+1 = 0. Setting s = l = m + 1 in (4)
and using the induction hypothesis we obtain

n∑
k=1

a∗k,m+1ak,m+1 +
n∑

i=1

a∗i,m+1ai,m+1 = 0.

Since A is completely positive we get ak,m+1 = 0 for all 1 ≤ k ≤ n
which proves our induction claim and the theorem.

One can easily show that complete positivity is preserved under
taking sub-direct products, direct limits and taking subalgebras. It
also preserved under making extensions, i.e. if J is a ∗-ideal in A
which, considered as ∗-algebra, is completely positive and such that
A/J is also completely positive then A itself is completely positive.
Indeed, if

∑n
j=1 x∗jxj = 0 in A then passing to the factor algebra A/J

and using its complete positivity we obtain that xj are elements from
J . Using completely positivity of J we conclude that xj = 0 for all
j.

It is an open question whether the tensor product A⊗ B of two
completely positive ∗-algebras is completely positive. Even if we im-
pose a stronger requirement of O∗-representability on B and require
A to be completely positive we are unable to prove that A ⊗ B is
completely positive. Hoverer, it can be easily checked that a tensor
product of two of two O∗-representable algebras is O∗-representable.

There is a priori possibility to obtain new necessary conditions of
C∗-and O∗-representability of ∗-algebra A by taking a tensor prod-
ucts of A⊗B with some representable algebra B and requiring this
product to be positive. Our conjecture is, although, that we obtain
no new necessary condition in this way.

Using Theorem 3 we can simplify the conditions of Theorem 2 in
the following way.

Theorem 4. Let A be a bounded unital ∗-algebra and T be the
Teoplitz ∗-algebra. Then A is C∗-representable if and only if every
x ∈ A ⊗ T with the property that for every ε > 0 there exists y ∈
A⊗ T such that xx∗ + yy∗ = ε(e− uu∗) is zero.

Proof. To prove that A is C∗-representable it is suffices to prove that
R* (A) = {0}. If x ∈ R* (A) then, by Theorem 2, for every ε > 0
there are x1, . . ., xn ∈ A such that xx∗ +

∑n
j=1 xjx

∗
j = εe. Consider
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n × n-matrices X and C with coefficients in A such that the first
row of X is (x, 0, . . . , 0) and the first row of C is (x1, x2, . . . , xn) and
all other rows of X and C are equal to zero.

Since the subalgebra Bn of T with basis eij is isomorphic to
Mn(C). One can identify Bn with Mn(C) and consider the algebra
Mn(A) ' A⊗Mn(C) as a subalgebra of A⊗T . Moreover, after this
identification one has XX∗ + CC∗ = ε(e− uu∗). Thus X = 0 and,
consequently, x = 0.

The necessity of the conditions of the theorem follows easily from
the fact that T is C∗-representable and thus its tensor product with
any C∗-representable algebra A is also C∗-representable.

Corollary 2. Each bounded completely positive ∗-algebra A has a
non-trivial representation in B(H).

Proof. Assume that |e| = 0. Then there are x1, . . . , xm ∈ A such
that e + x1x

∗
1 + . . . + xmx∗m = 1

2
e. Therefore

∑m
j=1 xjx

∗
j + yy∗ = 0

where y = 1√
2
e, which contradicts the complete positivity of A.

Hence |e| 6= 0. For the universal representation π of A, which is a
faithful representation of the enveloping C∗-algebra C∗(A), we have
π(e) 6= 0.

The assumptions of the previous corollary can be weakened. Re-
call that an ideal I of a ∗-algebra A is called endomorphically closed
if f(I) ⊆ I for every ∗-endomorphism f : A → A. An algebra A is
called endomorphically simple if it has only trivial endomorphically
closed ∗-ideals. We will say that a ∗-ideal J of A is square root closed
if for every elements x1, . . . , xn ∈ A equality

∑n
j=1 xjx

∗
j ∈ J implies

that xj ∈ J . This is equivalent to A/J being completely positive.

Corollary 3. Let A be a bounded unital ∗-algebra without non-
trivial endomorphically closed and square root closed ∗-ideals. Then
A is C∗-representable if and only if A is completely positive.

Proof. The necessity is obvious. Since the ∗-radical of a ∗-algebra is
an endomorfically closed and a square root closed ∗-ideal which, by
the previous corollary, does not coincide with A, it must be zero.

Corollary 4. If a unital bounded algebra A is a direct sum of endo-
morfically simple ∗-algebras An, then A is C∗-representable if and
only if A is completely positive.

13



Proof. Let πn be the canonical ∗-homomorphism A → An. By
Lemma 5, for any a ∈ A, there are elements aj ∈ A and c ∈ R
such that ce− a∗a =

∑n
i=1 a∗i ai. Thus ce− πn(a)πn(a)∗ is a positive

element of An. Hence |πn(a)πn(a)∗| < c. Since πn is surjective An is
bounded by Lemma 5. The previous corollary then imply that each
An is C∗-representable and hence the same is true for their direct
sum A.

Theorem 5. A bounded ∗-algebra A is C∗-representable if and only
if there are mappings F : A+ → R and G : A+ → R such that

1. F (aa∗) > 0 for each a 6= 0
2. G(

∑n
i=1 aia

∗
i ) ≥ F (aja

∗
j) for arbitrary elements a1, . . . , an ∈ A

and 1 ≤ j ≤ n.
3. limε→0+ G(εe) = 0 for ε ∈ R.

Proof. If A is not C∗-representable, then there is a nonzero x ∈
R*(A). By Theorem 8, for each ε > 0 one can find x1, . . . , xl ∈ A

such that xx∗+
∑l

i=1 xix
∗
i = εe and thus G(εe) ≥ F (xx∗). From this

we obtain F (xx∗) = limε→0 G(εe) = 0 contrary to the condition 1
of the theorem.

If A is C∗-representable then there is pre-C∗-norm ‖·‖ on A. Put
G(x) = F (x) = ‖x‖. For each positive x in A, F (x) = sup s(x)
where supremum is taken over all states on the enveloping C∗-
algebra C∗(A). For every state s we have s(

∑
i xix

∗
i ) ≥ s(xjx

∗
j)

and, taking supremum, we obtain G(
∑

i xix
∗
i ) ≥ F (xjx

∗
j)

Recall that a Banach ∗-algebra (B, ‖·‖) is called to be an A∗-
algebra provided there exists a second norm ρ(·), not necessarily
complete, which satisfies ρ(xy) ≤ ρ(x)ρ(y) and ρ(x)2 = ρ(x∗x) for
all x, y ∈ A (see [4, p.77]). The second norm is called auxiliary. As
an application to Banach ∗-algebras we will get the following.

Theorem 6. Let (B, ‖·‖) be a unital Banach ∗-algebra. Then the
following are equivalent.

1. B is C∗-representable.

2. B is A∗-algebra.

14



3. There is function f : B+ → R+ such that f(x) = 0 implies that
x = 0 and for arbitrary x1, . . . , xn in B and every 1 ≤ j ≤ n

‖
n∑

i=1

xix
∗
i ‖ ≥ f(xjx

∗
j).

Proof. If B is C∗-representable then it can be identified with a ∗-
subalgebra of a C∗-algebra A with norm |·|. Then by definition B
is a A∗-algebra with auxiliary norm |·|.

Let (B, ‖·‖) be an A∗-algebra with auxilary norm |·| by [4, corol-
lary (23.6)] there exists constant β > 0 such that |x| ≤ β‖x‖ for all
x ∈ B. Thus for arbitrary x1, . . . , xn in B and 1 ≤ j ≤ n we will
have

‖
n∑

i=1

xix
∗
i ‖ ≥

1

β
|

n∑
i=1

xix
∗
i | ≥

1

β
|xjx

∗
j |.

Hence we can take f(x) = 1
β
|x| to see that (3) is fulfilled.

To prove that (3) implies (1) note that by [4, Proposition (22.6)]
every element of B is a linear combination of unitary elements.
Hence B is a bounded ∗-algebra. If we take G(x) = ‖x‖ and
F (x) = f(x) then, by theorem 5, B is C∗-representable.

We apply now Theorem 8 to the group ∗-algebras. Let G be a
discrete group and C[G] its group ∗-algebra. Elements of C[G] could
be considered both as a formal linear combinations of elements of G
with complex coefficients and as a functions from G to C with finite
support. Let P denote the set {

∑n
j=1 fjf

∗
j |n ∈ N, fj ∈ C[G]} which

is a subset of the set of positive definite functions on G with compact
support. Considered as a positive definite function element φ ∈ P
give rise to a cyclic representation πφ in a Hilbert space with cyclic
vector ξ such that φ(s) = (πφ(s)ξ, ξ) for every s ∈ G. By [5, Lemma
14.1.1] for every f ∈ C[G] and φ ∈ P we have that ‖πφ(f)‖ ≤ ‖λ(f)‖
where λ denote left regular representation of C[G]. Since δe ∈ P and
πδe = λ, supφ∈P‖πφ(f)‖ = ‖λ(f)‖. Thus the set P , from one side,
define the norm of the reduced group C∗-algebra C∗

red(G) and, from
the other side, by the next corollary it also defines the norm of group
C∗-algebra C∗(G).

Corollary 5. Let ‖·‖ denote the norm on C∗(G). Then for every
f ∈ C[G] the following formula holds

‖f‖2 = inf
φ∈P

{(φ + ff ∗) ∩ Re}.
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Proof. Clearly P is the set of positive elements of ∗-algebra C[G].
For every f ∈ C[G] norm ‖f‖ is the norm of universal enveloping C∗-
algebra of C[G] and consequently, by Theorem 8, ‖f‖2 = infφ∈P{(φ+
ff ∗) ∩ Re}.

Since G is amenable if an only if reduced norm is equal to uni-
versal enveloping norm for every f ∈ C[G] we obtain the following.

Corollary 6. A discrete group G is non-amenable if an only if there
exists f ∈ C[G] and ε > 0 such that for every g ∈ C[G] element
‖fg‖2
‖g‖2 + ε can not be presented in the form ff ∗+

∑n
j=1 fjf

∗
j for some

fj ∈ C[G]. Here ‖g‖2
2 =

∑m
k=1|αk|2 for the element g =

∑m
k=1 αkwk

with αk ∈ C and distinct wk ∈ G.

In the following example we present a completely positive bounded
∗-algebra which is not C∗-representable. The definitions of the
Gröbner basis, the set of basis words BW and operator RS used
below could be found in the appendix.

Example 1.

Consider ∗-algebra given by generators and relations

A = C
〈
a, x|a∗a = qaa∗, xx∗ + aa∗ = e

〉
where 0 < q < 1. Clearly, A is bounded. It can be easily checked
that the set S = {a∗a − qaa∗, xx∗ − aa∗ − e} is a Gröbner basis of
A. Thus the set BW consisting of the words containing no subword
a∗a or xx∗ forms a linear basis for A. For arbitrary z in C

〈
a, x

〉
the element RS(z) could be written as

∑n
i=1 αiuix

ki , where ui does
not end with x, ki ≥ 0, αi 6= 0 and ui ∈ BW for all 1 ≤ i ≤ n.

Let t be the minimal length of the words uix
ki . Put J = {j :

|uj| = t}. Denote by F (z) the sum of those αi with i ∈ J such
that uix

ki = ww∗ for some word w. We will prove that F (zz∗) =∑
j∈J |αj|2. Indeed,

RS(uix
kix∗kju∗j) ={

−ui(
∑

1≤s≤ki
xki−saa∗x∗kj−s)u∗j + RS(uiu

∗
j), if ki = kj

−ui(
∑

1≤s≤min(ki,kj)
xki−saa∗x∗kj−s)u∗j , if ki 6= kj

The sum ui(
∑

1≤s≤min(ki,kj)
xki−saa∗x∗kj−s)u∗j contains no words of

length t. Thus computing F (zz∗) it is sufficient to consider only the
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sum −ui(
∑

1≤s≤ki
xki−saa∗x∗kj−s)u∗j + RS(uiu

∗
j). Since both ui and

uj do not end with x the element RS(uiu
∗
j) is a monomial of length

|ui|+ |uj|. Thus, if some monomial RS(uiu
∗
j) in RS(zz

∗) has minimal
length (which is equal to 2t) then i, j ∈ J (in particular |ui| = |uj|).
Equality uiu

∗
j = ww∗ implies ui = uj. Indeed, if ui ends with a or

with x∗ or word uj ends with a∗ or with x∗ then RS(uiu
∗
j) is just

uiu
∗
j (as in free ∗-algebra). Thus using equality uiu

∗
j = ww∗ we can

conclude that ui = uj. Otherwise, write ui = via
∗k and uj = vja

m

where vi does not end with a∗ and vj does not end with a. Thus
RS(uiu

∗
j) = qkmvia

ma∗kv∗j . If m > k then, since uiu
∗
j = ww∗, we

have via
m1 = w and am−m1a∗kv∗j = w∗, for some 1 ≤ m1 < m.

This is a contradiction since w ends with a and a∗ simultaneously.
Similarly if m < k then w = via

ma∗k1 and w∗ = a∗(k−k1)v∗j , for
some (1 ≤ k1 < k). We obtain that w ends with a and a∗ which
is again a contradiction. Thus m = k and w = via

k = vja
k. So

vi = vj and ui = uj. We have proved so far that uiu
∗
j = ww∗ implies

that ui = uj. From this it easily follows that F (zz∗) =
∑

j∈J |αj|2.
Obviously F (aa∗) > 0 if a 6= 0 and

F (
n∑

i=1

aia
∗
i ) ≥ min

i
F (aia

∗
i ),

end clearly F (εe) = ε for ε ∈ R. Thus A is completely positive
∗-algebra. If π is a representation of A in Hilbert space then

‖π(aa∗)‖ = ‖π(a∗a)‖ = q‖π(aa∗)‖,

which implies that ‖π(aa∗)‖ = 0. Thus A is not C∗-representable.
We will end this section by a few remarks on C∗-representability

of finite dimensional algebras. Since C∗-representability for finite
dimensional ∗-algebras is equivalent to positiveness it is natural to
consider C∗-representability of their direct limits and inverse limits.
It is routine to check that positiveness is also equivalent to C∗-
representability for inductive limits of finite dimensional ∗-algebras.
The case of inverse limits is much more complicated and there is no
simple answer up to now. We will content ourself in this paper by
presenting the following example of completely positive ∗-algebra
which has a separating family of ∗-homomorphisms into finite di-
mensional ∗-algebras but which is not faithfully representable even
in pre-Hilbert space.
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Example 2.

Consider a ∗-algebra A = C〈a|a∗a = qaa∗〉, where 0 < q < 1
which can be identified with the subalgebra generated by a in the
algebra C〈a, x|a∗a = qaa∗, xx∗+aa∗ = e〉 from Example 1. Algebra
A is completely positive as a subalgebra in a completely positive ∗-
algebra. It is clearly not C∗-representable. We claim that A has
residual family of homomorphism with finite dimensional images.
Denote by Jk the ∗-ideal generated by ak. Since S = {a∗a − qaa∗}
is a Gröbner basis for A we have that the set of all words in a
and a∗ that contain no subword a∗a is a linear basis for A. Thus
∩k≥3Jk = {0} and, obviously, A/Jk is finite dimensional ∗-algebra
linearly generated by ana∗m where m < k, n < k. This proves our
claim.

3 Generalization of unsrinkability condition and
Gröbner bases. O∗-representability.

C. Lance and P. Tapper (cf. [7, 13]) studied C∗-representability of
∗-algebras Aw generated by x and x∗ with one monomial defining re-
lation w = 0 where w = xα1x∗β1 . . . xαkx∗βk . They conjectured that
Aw is C∗-representable if and only if the word w is unshrinkable, i.e.
w can not be presented in the form d∗du or ud∗d where u and d are
words and d is non-empty. A very appealing feature of this conjec-
ture is that being true it gives a condition of C∗-representability of
a monomial ∗-algebras in terms of its defining relations. It is sig-
nificantly different from other characterizations which require some
additional structures on a ∗-algebra to be present. In [9] the author
proved that a monomial ∗-algebra is O∗-representable if and only if
the defining relations are unshrinkable words. In this section we will
introduce a much more general class of ∗-algebras which is defined
by imposing some conditions on the set of defining relations (see
Definition 6). For this class we will prove O∗-representability. We
also show that several unrelated, at first glance, classes of ∗-algebras
fall in this class.

Denote by F∗ a free associative algebra with generators x1, . . . , xm,
x∗1, . . . , x

∗
m. We do not incorporate the number of generators in the

notations explicitly since it will be always clear from the context.
Algebra F∗ is a ∗-algebra with involution given on generators by
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(xj)
∗ = x∗j for all j = 1, . . . ,m. Forgetting about involution we get

a free associative algebra with 2m generators F2m. The algebra F∗
is a semigroup algebra of a semigroup W of all words in generators
x1, x2, . . . , xm, x∗1, x

∗
2, . . . , x

∗
m.

We have compiled all necessary prerequisites from Gröbner ba-
sis theory of noncommutative associative algebras in the appendix.
Below we will explain how this theory will be applied for ∗-algebras.

A set S ⊆ F of defining relations of an associative algebra A is
called a Gröbner basis if it is closed under compositions (see Ap-
pendix). A Gröbner basis of a ∗-algebra A is a Gröbner basis of A
considered as an associative algebra. We need to put some extra
requirements on a Gröbner basis to make it ”compatible” with the
involution. The main requirement we impose is a generalization of
the notion of unshrinkability of the word (see Definition 6 below).
A set S ⊆ F∗ is called symmetric if the ideal I generated by S in
F∗ is a ∗-subalgebra of F∗. In particular, S is symmetric if S∗ = S.

For the notations u ≺ w, RS(w), BW and order on W used below
we refer the reader to the appendix.

Definition 6. A symmetric subset S ⊆ F∗ closed under composi-
tions is called non-expanding if for every u, v, w ∈ BW such that
u 6= v and ww∗ ≺ RS(uv∗) the inequality w < sup (u, v) holds, i.e.
w < u or w < v. If in addition for every word d ∈ BW the word
dd∗ also belongs to BW then S is called strictly non-expanding.

A ∗-algebra A is called (strictly) non-expanding if it possesses a
Gröbner basis GB which is (strictly) non-expanding.

Lemma 6. A symmetric closed under compositions subset S ⊆ F∗
is non-expanding if and only if for every u, v ∈ BW such that u > v
and |u| = |v| the property uu∗ ≺ RS(uv∗) does not hold.

Proof. Let for some u, v, w ∈ BW , ww∗ ≺ RS(uv∗). Then ww∗ ≤
uv∗ and therefore |w| ≤ |u|+|v|

2
. If |u| 6= |v| then |w| < max(|u|, |v|)

and, consequently, w < sup(u, v). We can assume, henceforth, that
|u| = |v|. Then ww∗ ≤ uv∗ implies that w ≤ u. If u < v then,
clearly, w < v. If u > v then by the assumptions of the Lemma
uu∗ 6≺ RS(uv∗) and, hance, w < u which proves the statement of
the Lemma completely.

Let G ⊆ Wn and T = [1, n] ∩ Z is an interval of positive integers
with n = |G|. An enumeration of G is a bijection φ : G → T
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such that u > v implies φ(u) > φ(v). It is easy to check that
enumerations exist for any given G.

Let H : F∗ → F∗ be a linear operator defined by the rule H(uu∗) =
u for u ∈ W and H(v) = 0 if v is not of the form uu∗ for some word
u.

Fix a set S ⊆ F∗ closed under compositions, an enumeration
φ : BW → N of the corresponding linear basis and a sequence
of positive real numbers ξ = {ak}k∈N. Define a linear functional

T φ
ξ : K → C by putting T φ

ξ (u) = aφ(u) for every word u ∈ BW ,
where K denotes the linear span of BW . Let n = |BW | which can
be infinite and V denote a vector space over C with a basis {ek}n

k=1.

Definition 7. Define 〈·, ·〉ξ to be a sesquilinear form on V defined
by the following rules

〈ei, ei〉ξ = ai,

and
〈ei, ej〉ξ = T φ

ξ ◦ H ◦ RS(uv∗),

where φ(u) = i, φ(v) = j, u, v ∈ BW .

The definition is correct since u and v as above are unique.

Theorem 7. If S is strictly non-expanding then there exists a se-
quence ξ = {ak}k∈N ⊂ N such that the sesquilinear form 〈·, ·〉ξ is
positively defined.

Proof. Let gij = 〈ei, ej〉ξ for i, j ∈ N and let G = (gij)1≤i,j≤∞
denote the Gram matrix. We will use Silvester’s criterion to show,
by induction on m, that am can be chosen such that principal minor
∆m > 0. For m = 1 put a1 = 1 then ∆1 = 1 > 0. Assume that
a1, . . . , am−1 are chosen such that ∆1 > 0, . . . , ∆m−1 > 0.

By definition if u ∈ BW , then u∗u is also in BW . Thus by
Definition 7 we have 〈eφ(u), eφ(u)〉ξ = aφ(u). Take some i ≤ m and
j ≤ m with i 6= j and find unique u, v ∈ BW such that i = φ(u), j =
φ(v). Then uv∗ =

∑
k αkwk for unique αk ∈ C and wk ∈ BW .

Clearly 〈eφ(u), eφ(u)〉ξ is
∑

k αkaφ(hk) where the sum is taken over
those k for which wk is of the form wk = hkh

∗
k for some word hk.

Since S is non-expanding we have that hk < sup (u, v). Hence gij is
a polynomial in variables a1, . . . , am−1. Decomposing determinant
∆m by the m-th row we obtain ∆m = ∆m−1am + pm(a1, . . . , am−1)
for some polynomial pm ∈ C[a1, . . . , am−1]. Since ∆m−1 > 0 it is
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clear that am can be chosen such that ∆m > 0. This completes the
inductive proof.

The space K is obviously isomorphic to V via the map u → eφ(u).
Thus the inner product 〈·, ·〉ξ on V gives rise to an inner product on
K which will be denoted by the same symbol. It is a routine to check
that 〈u, v〉ξ = α(P (u � v∗)), where P : F∗ → F∗ is the projection
on the linear span of positive words W+ = W ∩ F∗+, α : K → C is
a linear functional and � is the operation defined in the appendix.
Let z 7→ Lz denote the right regular representation of A = F∗/I,
i.e. Lz(f) = fz for any z, f ∈ A.

Theorem 8. Let S ⊆ F∗ be strictly non-expanding and let I be the
ideal generated by S in F∗. Then the right regular representation
L of the ∗-algebra A = F∗/I on a pre-Hilbert space (K, 〈·, ·〉ξ) is a
faithful ∗-representation.

Proof. The representation stated in the theorem is associated by the
GNS construction with the positive functional α(P (·)) on A. Thus
it is a ∗-representation. Indeed, as in the GNS construction the set
N = {a ∈ A|α(P (aa∗)) = 0} is a right ideal in A. We can define an
inner product on A/N by the usual rule 〈a+N, b+N〉 = α(P (a∗b)).
It is easy to verify that the right multiplication operators define a
∗-representation of A on pre-Hilbert A/N . The only difference with
classical GNS construction is that this representation could not be,
in general, extended to the completion of A/N .

We will show that this representation is faithful. Take any f =∑n
i=1 ciwi ∈ A, where ci ∈ C, wi ∈ BW . Without loss of general-

ity consider w1 to be the greatest word among wj. Then Lf (w
∗
1)

contains element w1w
∗
1 with coefficient c1. Hence Lf 6= 0.

As a straightforward corollary of Theorem 8 we obtain the fol-
lowing.

Corollary 7. Every strictly non-expanding ∗-algebra is O∗-repre-
sentable.

4 Sufficient conditions of strictly non-expend-
ability. Examples.

In this section we will show that the class of strictly non-expanding
∗-algebras contains several known classes of ∗-algebras. To accom-
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plish this we introduce below several other classes of ∗-algebras (see
Definition 8, Corollary 8, and Theorem 10) and prove that they are
contained in the class of non-expanding ∗-algebras. The definition
given below may look complicated but, in fact, it is much easier to
verify its conditions than the conditions of non-expanding ∗-algebra.
A more thorough look reveals that the conditions of Definition 8 and
in the theorems in this section are algorithmically verifiable. In the
end of the section we will present some concrete examples.

We call a subset S ⊆ F reduced if for every s ∈ S and any word
w ≺ s no word ŝ′ with s′ ∈ S is contained in w as a subword. If
S is closed under compositions then S being reduced is equivalent
to RS(s) = s for every s ∈ S. If the set S is closed under composi-
tions then one can obtain reduced set S ′ closed under compositions
generating the same ideal by replacing each s ∈ S with RS(s).

Definition 8. A symmetric reduced subset S ⊆ F∗ is called strictly
appropriate if it is closed under compositions and for every s ∈ S
and every word u ≺ s such that |u| = deg(s) the following conditions
hold.

1. The word u is unshrinkable.

2. If u 6= ŝ, ŝ = ab, and u = ac for some words b, c and nonempty
word a then for any s1 ∈ S such that there is word w ≺ s1, w 6=
ŝ1, |w| = |ŝ1| either word ŝ1 does not contain u as a subword
or ŝ1 and u do not form a composition in such a way that
ŝ1 = d1ad2 and u = ad2d3 with some nonempty words d1, d2, d3.

A ∗-algebra A is called strictly appropriate ∗-algebra if it possesses
a strictly appropriate Gröbner basis.

We will use the following simple combinatorial facts proved in [8,
Lemma 2]. For every two words u and v in ∗-semigroup W such
that uv∗ = ww∗ for some word w either u = v or v = udd∗ for some
d ∈ W or u = vcc∗ for some c ∈ W depending on whether |u| = |v|
or |u| < |v| or |u| > |v|.

If S = S∗ is a closed under composition subset of F∗ such that ŝ is
unshrinkable for every s ∈ S then u ∈ BW if and only if uu∗ ∈ BW .

In the following theorem for a word w ∈ W of even length w =
w1w2, |w1| = |w2| we will denote H0(w) = w1.

Theorem 9. Every strictly appropriate set S ⊆ F∗ is non-expanding.
If in addition S = S∗ then S is strictly non-expanding.
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Proof. Let u, v ∈ BW be such that u > v and |u| = |v|.
1. If uv∗ ∈ BW then uu∗ ≺ RS(uv∗) implies uu∗ = uv∗ and,

hence, u = v which is a contradiction.
2. Now let uv∗ 6∈ BW . There are words p, q ∈ BW and element

s ∈ S such that uv∗ = pŝq. Moreover, since u, v ∈ BW none of
them can contain ŝ as a subword. Hence ŝ = ab with nonempty
words a and b such that u = pa and v∗ = bq. Write down s =
αŝ +

∑k
i=1 αkwi + f , where wi ∈ W , α, αi ∈ C, and deg(f) < deg(s)

and |ŝ| = |wi| for all i ∈ {1, . . . , k}. Assume that for some integer i
word pwiq belongs to BW and pwiq = uu∗. If the middle of the word
pwiq comes across wi, i.e. max(|p|, |q|) < |u|, then wi = cd, u = pc,
and w∗ = dq with some nonempty words c, d. Hence pc = q∗d∗. If
|c| ≤ |d| then d∗ = gc for some word g and so wi = cd = cc∗g∗

which contradicts unshrinkability of wi. If |c| > |d| then pc = q∗d∗

implies c = gd∗ for some word g and we again see that wi = gd∗d is
shrinkable. Thus max(|p|, |q|) ≥ |u|. If |p| > |u| then |u| = |p|+|a| >
|u| which is impossible, hence |v| = |b|+ |q| > |u|.

3. Let uv∗ = pŝq and s = αŝ +
∑

i αiwi + f as above and
uu∗ ≺ RS(pwiq) for some i. Since uu∗ < pwiq < uv∗ word pwiq
begins with u. If ŝ = ab such that pa = u, bq = v∗ then wi begins
with a. Therefore ŝ and wi begin with the same generator. Since
pwiq 6∈ BW there is s1 = α1ŝ1 +

∑
j βjuj + g ∈ S where ui ∈ W ,

α1, βi ∈ C, and deg(g) < deg(s1) such that pwiq = p1ŝ1q1 for some
words p1, q1. If we assume that for some j word uu∗ ≺ RS(p1ujq1)
then H0(p1ujq1) = u since p1ujq1 < uv∗. The word ŝ1 can not be
a subword in the first half of the word pwiq since H0(p1ujq1) =
H0(pwiq) = u and assuming the contrary we see that ŝ1 and uj

are both subwords of u in the same position, hence they must be
equal ŝ1 = uj. The word ŝ1 can not contain subword wi because of
condition 2 in the definition of strictly appropriateness. Obviously,
ŝ1 can not be a subword in q because q ∈ BW . Thus either wi and ŝ1

intersect (in the specified order) or ŝ1 and wi intersect in such a way
that ŝ1 = d1ad2 and wi = ad2d3. But this contradicts the strictly
appropriateness of S. So we have proved that S is non-expanding.
The fact that for any word g ∈ BW word gg∗ lies in BW follows
from the remark preceding the theorem (see also [8, lemma 2]).

The following is a simplification of the preceding theorem which
is easier to verify in examples.
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Corollary 8. Let S ⊆ F∗ be symmetric and closed under composi-
tions. If for every s ∈ S and every word u ≺ s such that |u| = deg(s)
the word u is unshrinkable and words ŝ and u begin with different
generators then S is non-expanding. If in addition S = S∗ then S
is strictly non-expanding.

Example 3.

Let L be a finite dimensional real Lie algebra with linear basis
{ej}n

j=1. Then its universal enveloping algebra U(L) is a ∗-algebra
with involution given on generators as e∗j = −ej. We claim that this
∗-algebra is non-expanding. Indeed M = {eiej−ejei− [ei, ej], i > j}
is a set of defining relations for U(L). It is closed under compositions
(see example in [2] or use PBW theorem). Thus the set S = {e∗j +
ej, 1 ≤ j ≤ n} ∪M is also closed under compositions (we consider
e∗1 > e∗2 > . . . > e∗1 > e1 > . . . > en) since e∗j and ekel do not
intersect for any j, k, l. It is easy to see that S is symmetric. Thus
S is non-expanding by corollary 8. However, S 6= S∗ and S is not
strictly non-expanding.

Theorem 10. Let S ⊆ F∗ be a symmetric closed under compositions
reduced subset such that the following conditions are satisfied.

1. For every s ∈ S every word w ≺ s with |w| = deg(s) is un-
shrinkable.

2. For every s1, s2 ∈ S and every word u ≺ s1 with |u| = deg(s1)
the words u and ŝ2 do not form a composition.

Then S is non-expanding. If in addition S = S∗ then S is strictly
non-expanding.

Proof. Consider u, v ∈ BW such that u > v and |u| = |v|. We will
prove that uu∗ 6≺ RS(uv∗). Assume the contrary. Then there is a
sequence of words {qi}n

i=1 such that q1 = uv∗, qn = uu∗ and for every
1 ≤ i ≤ n − 1 there is si ∈ S and words ci, di, ui ∈ W such that
ui ≺ si, ui 6= ŝi, |ui| = |ŝi| and qi = ciŝidi, qi+1 = ciuidi.

Let j be the greatest with the property that ŝj intersects the
middle of qj. Such an index j exists because j = 1 satisfies this
property and we are making our choice within a finite set. Clearly
j < n since otherwise un−1 would be a subword in uu∗ intersecting its
middle and thus would be shrinkable, which contradicts assumption
1 of the theorem. Thus for every i ∈ {j +1, . . . , n− 1} word ŝi does
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not intersect the middle of the word ci−1ui−1di−1. But ŝi could not
be situated in the first half of this word because otherwise the first
half of the word qi would be strictly less than u and, consequently,
qn < uu∗ which is a contradiction. Thus ŝi is a subword in the right
half of the word qi. If uj and ŝi does not form a composition for every
i ∈ {j + 1, . . . , n − 1} then uj is a subword in uu∗ intersecting its
middle and, thus, shrinkable. This contradicts assumption 1 of the
theorem. Hence uj and ŝk intersect for some k ∈ {j + 1, . . . , n− 1}
contrary to assumption 2 of the theorem. This proves that uu∗ 6≺
RS(uv∗) and finishes the proof of the theorem.

Examples.
1. Let S = {wj}j∈< be a symmetric set consisting of unshrinkable

words. Since compositions of any two words are always zero this set
is closed under compositions. The other conditions in the definition
of strictly non-expanding set is obvious. Thus ∗-algebra

C
〈
x1, . . . , xn, x

∗
1, . . . , x

∗
n|wj, j ∈ <

〉
is O∗-representable.

2. Consider in more detail the simplest example of monomial
∗-algebras Ax2 = C〈x, x∗|x2 = 0, x∗2 = 0〉.

It was proved in [13] that ∗-algebra C〈x, x∗|xp = 0, x∗p = 0〉
is C∗-representable for every integer p ≥ 1. We will show that
among the representations of Ax2 given by Theorem 8 there is a
∗-representation in bounded operators. It is an open problem for
arbitrary Aw = C〈x, x∗|w = 0, w∗ = 0〉 with unshrinkable word w.

It can be easily verified that BW consists of the words uk =
x(x∗x)k, vk = x∗(xx∗)k, am = (xx∗)m, bm = (x∗x)m where k ≥
0, m ≥ 1. Obviously BW+ consists of the words am and bm (m ≥
1). If z, w ∈ BW then zw∗ ∈ W+ if and only if z and w belong
simultaneously to one of the sets {ak}k≥1, {bk}k≥1, {uk}k≥0, {vk}k≥0.
Moreover,

uku
∗
t = ak+t+1, vkv

∗
t = bk+t+1, ama∗n = an+m, bmb∗n = bn+m.

Consider the following ordering

u0 < u1 < . . . < a1 < a2 < . . . < v0 < v1 < . . . < b1 < b2 < . . . .

Denote α(am) = αm, α(bm) = βm then the Gram matrix of the inner
product defined in theorem 7 is diag(A, A′, B, B′) where A, A′, B, B′
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are Hankel matrices A = (αi+j−1)ij, A′ = (αi+j)ij, B = (βi+j−1)ij,
B′ = (βi+j)ij. Note that Y ′ obtained from Y by cancelling out the
first column (here Y stands for A or B).

Thus the question of positivity of the form 〈·, ·〉 is reduced to
the question of simultaneous positivity of two Hankel matrices C
and C ′ where the second is obtained from the first by cancelling
out the first column. We will show that such matrices A, A′, B, B′

could be chosen to be positive and such that B = A and that the
representation in theorem 8 is in bounded operators.

Let f : [0, 1] → [0, 1] be continuous function f(x) > 0 for all
x ∈ [0, 1]. Let

αm =

∫ 1

0

tm+1f(t)dt

be the moments of the measure with density f(t). It is well known
that the moment matrix A = (αi+j−1)

n
i,j=1 is positively defined. But

then A′ is the moment matrix of the measure with density tf(t) and
thus is also positively-defined. We can put B = A.

To prove that the representation is in bounded operators we need
only to verify that the operator Lx of multiplication by x is bounded.
Obviously, xuk = 0 and xam = 0 for all k ≥ 0 and m ≥ 1. Moreover,
||xvk||2 = 〈ak+1, ak+1〉 = α2(k+1), ||vk||2 = α(b2k+1) = β2k+1 = α2k+1.
Analogously, ||xbk||2 = α2k+1 and ||bk||2 = α2k. Thus Lx is bounded
if there is a constant c ≥ 0 such that for all k ≥ 1

α2(k+1) ≤ cα2k−1, α2k+1 ≤ cα2k.

We have

α2k =

∫ 1

0

t2k+1f(t)dt ≤
∫ 1

0

t2kf(t)dt = α2k−1

and

α2k+1 =

∫ 1

0

t2k+2f(t)dt ≤
∫ 1

0

t2k+1f(t)dt = α2k.

Thus ||Lx|| ≤ 1. This proves that Ax2 is C∗-representable.
3. The ∗-algebra given by the generators and relations:

C
〈
a1, . . . , an|a∗i aj =

∑
k 6=l

T kl
ij ala

∗
k; i 6= j

〉
,

with T kl
ij = T̄ lk

ji is strictly non-expanding by Corollary 8. Indeed,
no two elements from defining relations form a composition and the
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greatest word of any relation begins with some aj and all other words
begin with some a∗k. Hence this ∗-algebra is O∗-representable. Note
that if the additional relations a∗i ai = 1 +

∑
k,l T

kl
ii ala

∗
k are imposed

we obtain algebras allowing Wick ordering (see [6]).
4. Let S ⊂ CW (x1, . . . , xn) be closed under compositions then a

∗-algebra

A = C〈x1, . . . , xn, x
∗
1, . . . , x

∗
n| S ∪ S∗〉

is sometimes called ∗-double of B = C〈x1, . . . , xn| S〉. By by Corol-
lary 9 below A is non-expanding. For finite dimensional algebra B
this already follows from Corollary 8. Indeed, if S satisfies addi-
tionally the property that the greatest word of every relation begins
with the generator different from the beginnings of other longest
words of this relation then A is strictly non-expanding by corol-
lary 8 since S ∪ S∗ is, clearly, closed under compositions. In par-
ticular, let B be a finite dimensional associative algebra with linear
basis {ek}n

k=1. Then its ”table of multiplication”, i.e. the relations
of the form eiej −

∑
ck
ijek = 0, where ck

ij are the structure con-
stants of the algebra B, forms a set of defining relations S with the
greatest words of length 2 and others of length 1. Thus ∗-algebra
AC〈x1, . . . , xn, x

∗
1, . . . , x

∗
n| S ∪ S∗〉 is the ∗-double of B. In other

words, A is a free product B1 ∗ B2, where B1 ' B2 ' B and in-
volution is given on the generators by the rules b∗ = φ(b) for any

b ∈ B1 and c∗ = φ−1(c) for any c ∈ B2 with φ : B1 → B2 being any
fixed isomorphism. The resulting ∗-algebra A does not depend on
the choice of φ.

To deal with a general algebra B we need the following stronger
result.

Theorem 11. Let S = S∗ be a closed under compositions subset of
a free ∗-algebra F∗ with generators x1, . . . , xn, x∗1, . . . , x

∗
n such that

for any s ∈ S the following properties holds.

1. ŝ ∈ G or ŝ ∈ G∗ where G = W (x1, . . . , xn) is a semigroup
generated by x1, . . . , xn.

2. for any u ≺ s such that |u| = |ŝ| words u and ŝ both lie in the
same semigroup G or G∗.

Then S is strictly non-expanding.
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Proof. Let X = {x1, . . . , xn} and X∗ = {x∗1, . . . , x∗n}. As always W
will denote the semigroup W (X ∪ X∗). If some word w = y1 . . . yt

where yr ∈ X ∪X∗ contains subword ŝ for some s ∈ S then w = pŝq
for some words p and q in W . Let s = ŝ −

∑n
i=1 αiwi ( αi ∈ C,

wi ∈ W ). The substitution rule ŝ → s̄ (see the appendix) replaces
subword w with

∑
i αipwiq. The conditions of the theorem ensure

that all words wi such that |wi| = |ŝ| are in the same semigroup
either in G or in G∗. Since decomposition RS(w) =

∑
j βjuj, where

uj ∈ BW , uj = z
(j)
1 . . . z

(j)
kj

with z
(j)
r ∈ X ∪X∗ (1 ≤ r ≤ kj) can be

obtained by several subsequent substitutions considered above we
see that for any j such that |uj| = |w| and for all 1 ≤ r ≤ t both

generators z
(j)
ir

and ykr are in the same set either X or X∗.
Let u, v ∈ BW , u > v and |u| = |v|. Assume that uu∗ ≺ RS(uv∗).

Without loss of generality we can assume that the word u = z1 . . . zk

ends with symbol from X, i.e. zk ∈ X. Then uu∗ = z1 . . . zkz
∗
k . . . z∗1 .

By the first part of the proof v∗ begins with a generator x∗l from the
set X∗. If uv∗ 6∈ BW then there exists s ∈ S such that uv∗ = pŝq for
some words p and q. Since u, v ∈ BW , ŝ intersects both u and v∗.
Hence ŝ contains zkx

∗
l as a subword. This contradicts assumption 1

of the theorem. Thus uv∗ ∈ BW and RS(uv∗) = uv∗. Clearly,
uv∗ = uu∗ implies u = v. Obtained contradiction proves that S is
non-expanding. Since for every s ∈ S, ŝ is unshrinkable and S = S∗

we have that for any d ∈ BW word dd∗ is in BW . Thus S is strictly
non-expanding.

It could be shown using Zorn’s lemma that for any algebra A and
any its set of generators X there is a Gröbner basis S corresponding
to X with any given inductive ordering of the generators. It is easy
to check that S ∪ S∗ satisfies assumptions of Theorem 11, thus, we
have the following.

Corollary 9. If B is a finitely generated associative algebra then
its ∗-double A = B ∗ B is strictly non-expanding ∗-algebra. Hence
A has a faithful ∗-representation in pre-Hilbert space.

Below we give some known examples of ∗-doubles which have
finite Gröbner bases.

5. We present an example of O∗-algebra which is not C∗-repre-
sentable. Consider the ∗-algebra:

28



Q4,α = C
〈
q1, . . . , q4, q

∗
1, . . . , q

∗
4| q2

j = qj, q
∗2
j = q∗j , for all 1 ≤ j ≤ 4,

4∑
j=1

qj = α,
4∑

j=1

q∗j = α
〉
.

which is the *-double of the algebra

Bn,α = C〈q1, . . . , q4| q2
j = qj,

∑
j

qj = α〉

This algebra has the following Gröbner basis:
S = {q1q1−q1, q2q2−q2,−q3q2−2q1−2q2−2q3+α+2αq1+2αq2+

2αq3−α2− q1q2− q1q3− q2q1− q2q3− q3q1, q3q3− q3,−q3q1q2− 3α +
5α2−2α3+q2(6−10α+4α2)+q3(6−10α+4α2)+q1(8−13α+5α2)+
(3−2α)q1q2+(6−4α)q1q3+(6−4α)q2q1+(6−4α)q2q3+(3−2α)q3q1+
q1q2q1 + q1q2q3 + q1q3q1 + q2q1q3 + q2q3q1)}. More detailed treatment
of this algebra can be found in [12, 1]. Note that when α = 0 the
∗-algebra Q4,0 = B4,0 ∗B4,0 has only zero representation in bounded
operators (see [1]). Thus for this ∗-algebra only representations in
unbounded operators could exist.

6. That the generators in the previous example are idempotents is
not important for O∗-representability, we can consider the following
example:

T3,α = C
〈
q1, q2, q3, q

∗
1, q

∗
2, q

∗
3| q3

j = qj, q
∗3
j = q∗j for 1 ≤ j ≤ 3,∑

j

qj = α,
∑

j

q∗j = α
〉
.

It is the ∗-double of the algebra C〈q1, q2, q3| q3
j = qj,

∑
j qj = α〉. We

will find its Gröbner basis. We have the following set of relations
{q3

1 − q1, q
3
2 − q2, q

3
3 − q3, q1 + q2 + q3 − α}. From these relations

it follows that this algebra is generated by q1 and q2. Thus we
can consider the following equivalent set of relations: {q3

1 − q1, q
3
2 −

q2, (α − q1 − q2)
3 − (α − q1 − q2)}. Introduce the following order

on the generators q2 > q1. All relations are already normalized, i.e.
all leading coefficients are equal to 1. The greatest words in these
relations are q3

1, q3
2 and q2

1q2. Thus we have no reductions. The
first and the third relations form two compositions. From one side
they intersect by the word q1. And the result of this composition
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is (q3
1 − q1)q1q2 − q2

1((α − q1 − q2)
3 − (α − q1 − q2)). On the other

hand they intersect by the word q2
1. The result of this composition is

(q3
1−q1)q2−q1((α−q1−q2)

3−(α−q1−q2)). Another composition is
formed by the third and the second relations. Their greatest words
intersect by the word q2. Result of this composition is ((α − q1 −
q2)

3 − (α − q1 − q2))q
2
2 − q2

1(q
3
2 − q2). Hence we have three new

relations. After performing reductions we will have the following
set of relations:

S = {q3
1 − q1,−q2

2q1 +3αq2
1 +3αq2

2 +α3 + q1(−1− 3α2)+ q2(−1−
3α2) + 3αq1q2 − q1q

2
2 − q2

1q2 + 3αq2q1 − q2q
2
1 − q1q2q1 − q2q1q2, q

3
2 −

q2,−q2q1q2q
2
1 +−α3+9α5−q2

1(−3α−37α3)−q2
2(3α−27α3)−q2(−1+

6α2 + 27α4) − q1(18α2 + 30α4) − (−12α − 45α3)q1q2 − 27α2q1q
2
2 −

(1 + 30α2)q2
1q2 + 9αq2

1q
2
2 − (6α− 18α3)q2q1 − (1 + 3α2)q2q

2
1 − (−2 +

15α2)q1q2q1 + 3αq1q2q
2
1 + 3αq2

1q2q1 − q2
1q2q

2
1 − (−1 + 9α2)q2q1q2 +

6αq1q2q1q2 − q2
1q2q1q2 − 3αq2q1q2q1 + q1q2q1q2q1}

Some of these relations do form compositions but all of them
reduce to zero. Hence it is a Gröbner basis. Thus T3,α is O∗-
representable for every complex parameter α.

5 APPENDIX: Noncommutative Gröbner bases.

For the convenience of the reader we review some relevant facts
from noncommutative Gröbner bases theory (see [16, 2]) with some
straightforward reformulations.

The reader should keep in mind that a Gröbner basis is just a
special set of defining relations of a given algebra and thus is a subset
of a free algebra. The main advantage of having a Gröbner basis for
an algebra is that one can algorithmically solve the equality problem,
i.e. one can decide for a given two noncommutative polynomial in
the algebra generators if they represent the same element of the
algebra or not.

The Gröbner basis always exists whatever system of generator
one chooses but the procedure to find a Gröbner basis does not
always terminate.

Below we will present only those aspects of the Gröbner bases
theory which are necessary for this paper. Let Wn denote the free
semigroup with generators x1, . . . , xn. For a word w = xα1

i1
. . . xαk

ik
(where i1, i2, . . ., ik ∈ {1, . . . , n}, and α1, . . ., αk ∈ N ∪ {0}) the
length of w, denoted by |w|, is defined to be α1 + . . .+αk. Let Fn =
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C〈x1, . . . , xn〉 denote the free associative algebra with generators
x1, . . . , xn. We will sometimes omit subscript n. Fix the linear
order on Wn such that x1 > x2 > . . . > xn, the words of the same
length ordered lexicographically and the words of greater length are
considered greater. Any f ∈ Fn is a linear combination

∑k
i=1 αkwi

of distinct words w1, w2, . . ., wk with complex coefficients αi 6= 0 for
all i ∈ {1, . . . , k}). Let f̂ denote the greatest of these words, say wj.
The coefficient αj we denote by lc(f) and call leading coefficient.

Then denote f̂ − (αj)
−1f by f̄ . The degree of f ∈ Fn, denoted by

deg(f), is defined to be |f̂ |. The elements of the free algebra F can
be identified with functions f : W → C with finite support via the
map f →

∑
w∈W f(w)w. For a word z ∈ W and an element f ∈ F

we will write z ≺ f if f(z) 6= 0.

Definition 9. We will say that two elements f, g ∈ Fn form a
composition w ∈ W if there are words x, z ∈ W and nonempty word
y ∈ W such that f̂ = xy, ĝ = yz and w = xyz. Denote the result of
the composition βfz−αxg by (f, g)w, where α and β are the leading
coefficients of f and g respectively.

If f and g are as in the preceding definition then f = αxy + αf̄
and g = βyz+βḡ and (f, g)w = αβ(f̄ z−xḡ). We will also say that f
and g intersect by y. Remark that there may exist many such y for
a given f and g, and the property ”intersect” is not symmetrical. It
is also obvious that (f, g)w < w. Notice that two elements f and g
may form compositions in many ways and f may form composition
with itself.

The following definition is due to Bokut [2].

Definition 10. A subset S ⊆ Fn is called closed under compositions
if for any two elements f , g ∈ S the following properties holds.

1. If f 6= g then the word f̂ is not a subword in ĝ.

2. If f and g form a composition w then there are words aj, bj

∈ Wn, elements fj ∈ S and complex αj such that (f, g)w =∑m
j=1 αjajfjbj and ajfjbj < w, for j = 1, . . . ,m.

Definition 11. A set S ⊆ F is called a Gröbner basis of an ideal
I ⊆ F if for any f ∈ I there is s ∈ S such that ŝ is a subword in
f̂ . A Gröbner basis S of I is called minimal if no proper subset of
S is a Gröbner basis of I.
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If S is closed under compositions then S is a minimal Gröbner
basis for the ideal I generated by S (see [2]). Henceforth we will
consider only minimal Gröbner bases. Thus we will say that S is a
Gröbner basis of an associative algebra A = F/I if S is closed under
composition and generates I as an ideal of F . Let GB be a Gröbner
basis for A and let ĜB = {ŝ|s ∈ GB}. Denote by BW (GB) the

subset of those words in Wn that contain no word from ĜB as a
subword. It is a well known fact that BW (GB) is a linear basis for
A. Henceforth we will write simply BW since we will always deal
with a fixed Gröbner basis.

If S ⊆ F is closed under compositions and I is an ideal generated
by S then each element f +I of the factor algebra F/I is the unique
linear combination of basis vectors {w + I}w∈BW

f + I =
n∑

i=1

ci(wi + I).

We can define an operator RS : F → F by the following rule
RS(f) =

∑n
i=1 ciwi. The element RS(f) can be considered as a

canonical form of the element f in the factor algebra F/I. Com-
puting canonical forms we can algorithmically decide if two elements
are equal in F/I.

For example for a finite dimensional Lie algebra L with linear
basis {ei}i∈M and structure constants Ck

ij ([ei, ej] =
∑

k Ck
ijek) the

set of relations eiej−ejei−
∑

k Ck
ijek with i > j constitute a Gröbner

basis for the universal enveloping associative algebra U(L) and the
canonical form is given by the PBW theorem.

Clearly RS is a retraction on a subspace K in F spanned by BW .
We can consider a new operation on the space K: f �g = RS(fg) for
f , g ∈ K. Then (K, +, �) becomes an algebra which is isomorphic
to F/I.

Each element s ∈ S in a Gröbner basis could be considered as a
substitution rule f̂ → f̄ which tells us to replace each occurrence
of the subword f̂ with f̄ . The canonical form RS(f) can be com-
puted step by step by performing all possible substitutions described
above. The order in which the substitutions performed is not essen-
tial, only a finite number of substitutions could occur. From this it
follows that if w ≺ RS(u) for some words w and u then w < u. For
example, take algebra A = C〈a, b|ba = qab〉 for some complex q.
Then considering b > a we obtain that S = {ba− qab} is a Gröbner
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basis for A. We have only one substitution rule ba → qab. To ob-
tain the canonical form of b2a we compute b(ba) → q(ba)b → q2b2a.
Thus RS(b2a) = q2b2a. Much more complicated examples can be
found in Section 4 of the present paper.
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