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AIRBAG FOLDING BASED ON ORIGAMI MATHEMATICS

CHRISTOFFER CROMVIK AND KENNETH ERIKSSON

Abstract. A new algorithm for folding three-dimensional airbags is presented. The method
is based on Origami mathematics combined with nonlinear optimization.

The airbag is folded to fit into its compartment. Simulating an inflation therefore requires
an accurate geometric representation of the folded airbag. However, the geometry is often
specified in the inflated three-dimensional form, and finding a computer model of the folded
airbag is a non-trivial task. The quality of a model is usually measured by the difference in
area between the folded and the inflated airbags.

The method presented here starts by approximating the geometry of the inflated airbag by
a quasi-cylindrical polyhedron. Origami mathematics is used to compute a crease pattern for
folding the polyhedron flat. The crease pattern is computed with the intention of being fairly
simple and to resemble the actual creases on the real airbag.

The computation of the crease pattern is followed by a computation of the folding. This
is based on solving an optimization problem in which the optimum is a flat folded model.
Finally, the flat airbag is further folded or rolled into its final shape (without using Origami).

The method has been successfully applied to various models of passenger airbags, providing
more realistic geometric data for airbag inflation simulations.

1. Introduction

Simulating a crash when the crash test dummy hits the airbag while it is still expanding
remains a challenge to the industry. This situation is called out-of-position (OOP), reflecting
that the airbag was not designed for occupants that are sitting too close or for some other reason
hit the airbag before it is fully inflated.

The difficulty with an OOP situation compared to an in-position situation is that the inflation
of the folded airbag is much more important. It has to be realistically computed, since it affects
the impact of the dummy. Attaining a realistic simulation means starting with a correct geometry
of the folded airbag and simulating the inflation with correct gas dynamics. Several commercial
software packages exist that can simulate the inflation process of an airbag, e.g., the explicit
Finite Element (FE) code LS-DYNA [5].

This work aims at developing an algorithm for computing an accurate geometry of the flat
folded airbag. Different airbags are folded by different methods and with different numbers and
types of foldings. The airbags are often folded by both machines and humans according to a
folding scheme. Still, the creases are not entirely deterministically positioned. It is very difficult
to control the placement of smaller creases. The folding schemes all assume that the airbag lies
flat and stretched in some direction. In this position, different foldings are executed until the
dimension of the folded airbag is small enough so that it fits into the airbag compartment. The
foldings can be a combination of simple folds, but also roll folds.

Some preprocessors to LS-DYNA, e.g., EASi-FOLDER [4] and OASYS-PRIMER [1] contain software
for folding a (nearly) flat FE airbag mesh. They are capable of executing the type of foldings
that are normally used in production on flat airbags, e.g., roll-fold, z-fold. However, they are not
as accurate when folding an airbag in its three dimensional shape to a flat airbag.

Some airbag models have a simple construction, e.g., the driver model which is made of two
circular layers sewn together. It is essentially two-dimensional. Passenger airbags are often more
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complicated. They are made of several layers sewn together in a three dimensional shape, with
no trivial two-dimensional representation. See Figure 1 for an example.

Figure 1. A CAD model of a passenger airbag.

In the present work, the computation of the geometry of the flat folded airbag is organized
into two steps. First a crease pattern is computed on a polyhedral approximation of the airbag.
Second, a nonlinear optimization problem is formed and solved for the purpose of finding the
flat geometry. The accuracy of the computed approximation is measured by comparing its area
to the area of the inflated model.

2. Crease Pattern

A crease pattern is first designed for a tetrahedron. We present a series of proofs for different
types of polyhedra. The proofs are constructive, and their results can be used to design a crease
pattern for our application.

Flat foldability, meaning that the polyhedron can be flattened using a fixed crease pattern,
is achieved by cutting along the crease lines, folding the resulting object, and then gluing the
cut-up faces back according to the correct connections.

Theorem 2.1. The tetrahedron can be folded flat.

Proof. The proof is organized in a sequence of figures shown in Figure 7, each visualizing the
cutting and folding. Consider the tetrahedron with vertices A, B, C, D as in the figure. Cut up
the triangle BCD of the tetrahedron, with straight cuts from a point E on the face, to the three
vertices B, C, D, respectively, as in the figure.

Then open up the tetrahedron by rotating the triangular patches BDE, BCE, and CDE
around the axes BD, BC, and CD, respectively, until these triangles become parts of the three
planes through ABD, ABC, and ACD, respectively, as in the figure.

Cut the quadrilateral surface with vertices A, B, E′, D along a straight cut from E′ to A,
and then rotate the resulting triangular faces ABE′ and AE′D around the axes AB and AD,
respectively, until these faces become parts of the two planes ABC and ACD, respectively, as in
the figure.

We choose the point E such that the edge BE′ after rotation coinsides with BE′′ and DE′ with
DE′′′. The condition for this is that ∠ABD+∠DBE = ∠ABC+∠CBE and ∠ADB+∠BDE =
∠ADC + ∠CDE.
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Using this, we may now (partly) restore the surface of the tetrahedron by joining the surfaces
ABE′′ and ABE′′C along the edge BE′′, and the surfaces ADE′′′ and ADE′′′C along the edge
DE′′′.

Finally we rotate the (partly double layered) surface ADE′′′C around the axis AC until it
coincides with the plane through A,B and C as in the figure. To conclude the proof of the flat
foldability of the tetrahedron we now note that the point E′′′ after rotation coincides with E′′.
We may therefore now completely restore the topology of the original tetrahedron by joining the
edges AE′′ and AE′′′ (after rotation) and the edges CE′′ and CE′′′ (after rotation). ¤

Note that the proof is based on cutting and gluing. It does not reveal if there is a continuous
deformation to a flat shape.

Remark 2.1. Concerning the line AE′ we remark that the angles ∠BAE′ and ∠DAE′ satisfy
∠BAE′ + ∠DAE′ = ∠BAD and ∠BAC − ∠BAE′ = ∠CAD − ∠DAE′, as in the figure, and
are thus independent of the plane BCD. We further note that we may also consider rotating
the triangles BDE, BCE and CDE in the opposite direction, again until they become parts of
the planes ABD, ABC and ACD, respectively, as in figure. We now choose the point E so that
∠ABD−∠DBE = ∠ABC−∠CBE and ∠ADB−∠BDE = ∠ADC−∠CDE. Continuing from
the figure we may then again make a straight cut from E′ to A (partly double layered). Again,
when we now rotate around the axes AB and AD as before the (rotated) point E′ will coincide
with E′′ and E′′′ respectively, and we can partly restore the tetrahedron by joining along the
edges. Finally, after rotation around AC we may completely restore the topology of the surface
of the tetrahedron by joining along the edges. Concerning the crease line from A to E′′ we note
that again the angles ∠BAE′ and ∠DAE′ must satisfy the same equations ∠BAE′ + ∠DAE′ =
∠BAD and ∠BAC − ∠BAE′ = ∠CAD − ∠DAE′ as before and therefore must be the same as
above. We therefore conclude that this crease line is independent of both direction of rotation of
the triangles BCE, BDE and CDE, and of the position and orientation of the plane BCD (as
long as the angles at A are unchanged).

We now proceed by cutting the tetrahedron by a plane, see Figure 2. We call the cut-off
tetrahedron a prism type polyhedron.

Theorem 2.2. The prism type polyhedron can be folded flat.

Proof. Consider a tetrahedron ABCD with the crease pattern from the proof of Theorem 2.1.
Cut the tetrahedron with a plane, see Figure 2. In the cut, insert two additional triangular
surfaces, such that the two cutoff parts are closed, but not separated. The “smaller” cutoff part
is a tetrahedron, and the “bigger” part is a prism type polyhedron. Let the vertices of the smaller
tetrahedron be a, b, c, d, where A = a, b lies on the edge AB, c on AC and d on AD.

Remark 2.1 shows that the crease line from A to E′, see Figure 7, is independent of how
the inserted triangular face of the “smaller” tetrahedron is folded. Let it be folded to the
interior of the “smaller” tetrahedron. This means that a crease pattern can be constructed
which will coincide with the crease pattern of the original tetrahedron, i.e., the crease line which
is constructed by drawing a straight line from a to e′ will coincide with the crease line that was
created from the line segment from A to E′ in the proof of Theorem 2.1.

Now, make an identical copy of the crease pattern on the inserted triangular face belonging to
the prism. Folding the original tetrahedron with its inserted triangular faces is possible by the
construction of the crease pattern. Let the two polyhedra be separated by moving the tetrahedron
in the plane. By the foldability of the tetrahedron, both the smaller tetrahedron and the prism
can be folded flat. ¤

Next, we cut the prism type polyhedron by a plane, see Figure 3. We call the cut-off prism a
box type polyhedron.
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Figure 2. A tetrahedron is cut, and in the cut two additional interior triangular
faces are created. Identical crease patterns are created on both interior faces,
and the tetrahedron is separated into two parts: a smaller tetrahedron and a
prism. The flat foldability of the prism follows from the foldability of the tetra-
hedron.

Theorem 2.3. The box type polyhedron can be folded flat.

Proof. Let the prism from the cut-off tetrahedron, with its crease pattern, be cut by a plane,
see Figure 3. In the cut insert one additional quadrilateral surface which is only connected to
the prism by its four vertices. Along the inserted surface put a crease line γ. Its position is only
determined by the position of the upper and lower face of the prism. When the prism (with its
cut) and the additional inserted surface are folded, there will be a gap along the sides of the
prism, see Figure 4. Let the crease line on the side of the original prism be called ξ. Also, let
the point where the crease γ meets ξ unfolded be called p1, see Figure 4. The gap can be closed
by forming two triangles: from a point p, see Figure 4, somewhere along ξ, to the intersection
where ξ meets the inserted surface p2, to B respectively C.

Note that the lengths Cp1 and Cp2 are the same, as well as the lengths Bp1 and Bp2, and
the length Cp is shared by both the gap and the new triangles. Let C1 and C2 be positioned
according to Figure 4. If the point p is chosen such that ∠C1Cp1 +∠p2Cp = ∠C1CC2 +∠C2Cp,
then the new triangles are an identical match to the gap. By Theorem 2.2, the prism is foldable,
so the full construction is foldable, and since the cut does not influence its foldability, and its
gap is filled, therefore the box type polyhedron is flat foldable. ¤

In the proof of Theorem 2.3, a prism was cut off the polyhedron. The process of cutting off a
prism can be repeated to create other types of polyhedra.

Definition 2.1. A quasi-cylindrical polyhedron is a closed cut-off cylinder with a polygonal
cross-section.

Theorem 2.4. Convex quasi-cylindrical polyhedra are flat foldable.

Proof. This follows by the proof of Theorem 2.3. In each step, cut off a prism from the polyhe-
dron, until the result forms the given shape.

¤
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Figure 3. The prism from Figure 2 is cut, and in the cut, an additional interior
quadrilateral surface is created. The flat foldability of the box type polyhedron
follows from the foldability of the prism and the tetrahedron.

Figure 4. The left figure shows the gap around the inserted additional surface
from the cut. The right figure shows the same object from above.

Airbags are usually quasi-cylindrical. There are cases, e.g. non-convex polyhedra, for which
the technique for generating a crease pattern does not work. These situations might be avoided
by slicing the polyhedron, and computing a crease pattern for each part.

Theorem 2.4 provides an algorithm for designing a crease pattern. Given a quasi-cylindrical
polyhedron, we can extend it gradually using prisms until it reaches the shape of a tetrahedron.
In each step, we apply the theory for flat foldability, creating a working crease pattern.

3. Folding

For airbags, there are various alternatives for simulating the folding process. This is specially
due to the fact that the problem is artificial in the sense that the folding need not be realistic,
e.g., there is no need to introduce the concept of time. The objective is to create a flat geometry
which is physically correct, not to fold it in a realistic way.

Our algorithm for folding the polyhedron is based on solving an optimization problem. A
program is formulated such that the optimal solution represents a flat geometry. The target
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function, to be minimized, is a sum of rotational spring potentials, one spring over each crease.
The minimal value of a spring potential is found when a fold is completed. The constraints
are formulated in order to conserve a physically correct representation of the polyhedron, which
means conserving the area and avoiding any self-intersections of the faces of the polyhedron.

The crease pattern over a polyhedron induces a subdivision of polygons called patches. In
addition, the patches are triangulated, and the interior of the polyhedron is meshed with tetra-
hedra. Let the nodes of the mesh be {xi}n

i=1, and let the indices of the surface nodes be IS .
Let the tetrahedra be {Ki}nK

i=1 and set IK = {1, . . . , nK}. Let the four indices of the nodes of
tetrahedron k be Vk(i), i = 1, . . . , 4. The edges of the triangular faces are denoted {Ei}nE

i=1, and
the indices of the two nodes of edge e are We(i), i = 1, 2.

Denote the creases {Ci}nC
i=1. The spring potential over each crease Ci is computed using

the scalar product of the normals, n1
i ,n

2
i , of the two neighbouring patches. The normals point

outward from the polyhedron, and the scalar product is 1 when the two patches are parallel, and
−1 when the fold is completed.

The folding process of a polyhedron with n nodes (surface and interior mesh nodes) is formu-
lated as the following nonlinear program with f : R3n → R,

min
x

f(x)

f(x) = f1(x) + f2(x) + f3(x)

= km

nK∑

k=1




4∑

i=1

4∑

j=i+1

‖xVk(i) − xVk(j)‖ − dVk(i),Vk(j)




2

+
nC∑

i=1

n1
i · n2

i + kp

nE∑

i=1

(
‖xWi(1) − xWi(2)‖ − lWi

)2

,

subject to

vol(Ki) ≥ ε1, i = 1, . . . , nK ,

dist(xi,Kj) ≥ ε2, i ∈ IS , j ∈ IK \ pi,

where dij is the original distance between node xi and xj , li is the original length of edge i
and km, kp are penalty parameters. The first constraint function is vol(Ki) which is the signed
volume of the tetrahedron Ki. The second constraint is dist(xi,Kj), which is the distance from
a surface node xi to a tetrahedron Kj , and pi are the tetrahedron indices connected to node xi.
Finally, ε1 and ε2 are small positive constants.

The target function f is composed of three parts. f1 is a penalty function which strives to
keep the tetrahedral mesh uniform. f2 is the virtual spring potential which drives the folding.
f3 is a penalty function which keeps the edges of the triangles stiff. This is used to maintain the
shape and surface area of the patches.

4. Numerical Example

In section 2, a theory for computing a crease pattern was discussed. To demonstrate its
practical use, and also to demonstrate the folding algorithm, a numerical experiment is presented.
From a CAD-drawing, an airbag shaped polyhedron was constructed. The surface area of the
approximation differs about 0.5% to the original area. An in-house optimization solver was used
to solve the optimization problem in section 3. It is a Fortran 90 implementation of a low-storage
Quasi-Newton SQP method [6, 3, 2], that can handle a few thousand variables and constraints.
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The crease pattern was generated by slicing off two upper “bumps”, see Figure 5, from the
airbag approximation. The crease pattern for these parts were computed separately from the
rest of the polyhedron, and the complete crease pattern was formed by joining the parts.

Figure 5. Polyhedral approximation of an airbag model together with a com-
puted crease pattern.

The polyhedron approximation with its crease pattern was meshed using TetGen [7]. The
visual result (solution) from the optimization progress is shown in Figure 6 for different iteration
snapshots.

It was found that the surface area of the flat folded polyhedron was within 0.5% of the surface
area of the unfolded polyhedron.

Acknowledgement. The authors would like to thank Prof S. Larsson and Dr B. Pipkorn for
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E-mail address: christoffer.cromvik@chalmers.se

Department of Mathematical Sciences, Chalmers University of Technology, SE–412 96 Göteborg,
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Figure 6. The figures show iteration snapshots from the folding of the polyhe-
dron approximation from Figure 5. The upper left shows the unfolded polyhe-
dron, the upper right: 40 iterations, the lower left: 60 iterations, and the lower
right: 200 iterations.
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Figure 7. Supporting figure for the proof of Theorem 2.1. The proof follows
the figures from left to right beginning at the top.
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