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Abstract
In 1959 Buchdahl [13] obtained the inequality 2M/R ≤ 8/9 under

the assumptions that the energy density is non-increasing outwards and
that the pressure is isotropic. Here M is the ADM mass and R the
area radius of the boundary of the static body. The assumptions used
to derive the Buchdahl inequality are very restrictive and e.g. neither
of them hold in a simple soap bubble. In this work we remove both of
these assumptions and consider any static solution of the spherically
symmetric Einstein equations for which the energy density ρ ≥ 0, and
the radial- and tangential pressures p ≥ 0 and pT , satisfy p + 2pT ≤
Ωρ, Ω > 0, and we show that

sup
r>0

2m(r)
r

≤ (1 + 2Ω)2 − 1
(1 + 2Ω)2

,

where m is the quasi-local mass, so that in particular M = m(R).
We also show that the inequality is sharp. Note that when Ω = 1
the original bound by Buchdahl is recovered. The assumptions on the
matter model are very general and in particular any model with p ≥ 0
which satisfies the dominant energy condition satisfies the hypotheses
with Ω = 3.

1 Introduction

The metric of a static spherically symmetric spacetime takes the following
form in Schwarzschild coordinates

ds2 = −e2µ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdϕ2),
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where r ≥ 0, θ ∈ [0, π], ϕ ∈ [0, 2π]. Asymptotic flatness is expressed by the
boundary conditions

lim
r→∞

λ(r) = lim
r→∞

µ(r) = 0,

and a regular centre requires λ(0) = 0. The Einstein equations read

e−2λ(2rλr − 1) + 1 = 8πr2ρ, (1.1)
e−2λ(2rµr + 1)− 1 = 8πr2p, (1.2)

µrr + (µr − λr)(µr +
1
r
) = 8πpT e2λ. (1.3)

Here ρ is the energy density, p the radial pressure and pT is the tangential
pressure. If the pressure is isotropic, i.e., p = pT , a solution will satisfy the
well-known Tolman-Oppenheimer-Volkov equation for equilibrium

pr = −µr(p + ρ). (1.4)

In the case of non-isotropic pressure this equation generalizes to

pr = −µr(p + ρ)− 2
r
(p− pT ). (1.5)

Note that the radial pressure p is monotone in the isotropic case if p+ρ ≥ 0
since µr ≥ 0, cf. (2.2). The quasi-local mass m = m(r) is given by

m(r) =
∫ r

0
4πη2ρ(η)dη, (1.6)

and the ADM mass of a steady state for which the energy density has support
in [0, R] is thus given by M = m(R).

Schwarzschild asked already in 1916 the question: How large can 2M/R
possibly be? He gave the answer 2M/R ≤ 8/9 [25] in the special case of
the Schwarzschild interior solution which has constant energy density and
isotropic pressure. In 1959 Buchdahl [13] extended his result to isotropic
solutions for which the energy density is non-increasing outwards and he
showed that also in this case

2M/R ≤ 8/9.

This is called the Buchdahl inequality and is included in most text books
on general relativity in connection with the discussion of the interior solution
by Schwarzschild, cf. e.g. [26] and [27]. The quantity 2m/r is fundamental

2



for determining the spacetime geometry of a static spherically symmetric
spacetime, cf. equations (2.1) and (2.4). A bound on 2M/R has also an
immediate observational consequence since it limits the possible red shifts
of spherically symmetric static objects.

The assumptions made by Buchdahl are extremely restrictive as pointed
out by Guven and Ó Murchadha [17], e.g. neither of the assumptions hold in
a simple soap bubble and they do not approximate any known topologically
stable field configuration. Moreover, astrophysical models of stars are not
unusually anisotropic. Lemaitre proposed a model of an anisotropic star
already in 1933 [19], and Binney and Tremaine [9] explicitly allow for an
anisotropy coefficient (cf. also [18] and the references therein).

One motivation for this study has its roots in the numerical investigation
of the spherically symmetric Einstein-Vlasov (ssEV) system [7] which admits
a very rich class of static solutions. The overwhelming number of these
have neither an isotropic pressure nor a non-increasing energy density, but
nevertheless 2M/R is always found to be less than 8/9, cf. [7]. There are
sometimes arguments which claim that the monotonicity of ρ is necessary
for the stability of a steady state, cf. e.g. [27], but at least for Vlasov matter
this is not the case by the results presented in [6].

In this work the problem of finding a sharp bound on 2m/r is solved in
full generality in the class of matter models which satisfy

p + 2pT ≤ Ωρ, where Ω, p and ρ are non-negative. (1.7)

We will show that

sup
r>0

2m(r)
r

≤ (1 + 2Ω)2 − 1
(1 + 2Ω)2

,

for any static solution of the spherically symmetric Einstein equations which
satisfies (1.7). The class of matter models defined by (1.7) is very general.
Indeed, a realistic matter model should satisfy the dominant energy con-
dition (DEC) which implies that ρ ≥ 0 and that the inequality (1.7) holds
with Ω = 3. The remaining condition that p is non-negative is a standard as-
sumption for most matter models in astrophysics. Moreover, Vlasov matter
satisfies the conditions in (1.7) with Ω = 1. An interesting feature of Vlasov
matter, in comparison with a fluid model, is that no equation of state which
relates the pressure and the energy density has to be specified. For Vlasov
matter, ρ, p and pT are all determined by a single density function on phase
space, cf. [5] and [24] for more information on Vlasov matter and the EV
system.
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The bound that we obtain for 2m/r is sharp in the sense that an in-
finitely thin shell of matter, with 2m/r equal to the critical value, will sat-
isfy a form of the generalized TOV equation which allows ρ and pT to be
measures (p = 0 here). This is described in detail in the next section. It
should here be pointed out that for the ssEV system the results in [4] show
that there exist regular static solutions with the property that 2M/R takes
values arbitrary close to 8/9 (Ω = 1 for Vlasov matter). These solutions
do approach the infinitely thin shell mentioned above as 2M/R → 8/9. In
section 4 we give an analogy with a classical problem in electrostatics (or
equivalently in Newtonian gravity) which shares the property that the max-
imizer is a measure at the boundary. In the work by Buchdahl, the solution
that maximizes 2M/R is the Schwarzschild interior solution with constant
energy density. This solution has the property that the pressure becomes
unbounded as 2M/R → 8/9, and therefore the solution does not satisfy the
DEC and is not a realistic steady state.

Before finishing this section with a review of previous results, let us point
out that the original motivation for investigating the Buchdahl inequality in
full generality comes from its possible role in understanding the formation
of trapped surfaces. Christodoulou has obtained conditions which guarantee
the formation of trapped surfaces in the case of a scalar field [14], and this
result is crucial for his proof of the weak- and strong cosmic censorship
conjectures [15]. For more information on this see the introduction in [4].

General investigations of the Buchdahl inequality have previously been
undertaken by Baumgarte and Rendall [8] and Mars, Mercè Mart́ın-Prats
and Senovilla [21]. These studies concern very general matter models and
they obtain the bound 2m/r < 1. This bound gives little information on the
spacetime geometry since λ →∞ as 2m/r → 1, and in particular it gives no
bound on the red shift of a static body. In [3] shells supported in [R0, R1]
are considered and it is shown that if the support is narrow then a Buchdahl
inequality holds (i.e. 2M/R < 1 − ε, ε > 0). This result is superseded by
the result presented here but some of the ideas in [3] play an essential role
in this work. Guven and Ó Murchadha consider the general case in [17] and
obtain a bound on 2m/r in terms of the ratio of the tangential- and the radial
pressure, which they denote by γ. Their bound degenerates (i.e., 2m/r → 1)
as γ →∞. (Cf. also [10] for a similar analysis which includes a cosmological
constant.) It is interesting to note that γ = ∞ for the maximizing solution in
our work since p = 0 and pT is a Dirac measure at the boundary. Also note
that γ →∞ for the sequence constructed in [4], which in the limit gives an
infinitely thin shell with p = 0 and 2pT = ρ. In this context we mention the
work [16] where an infinitely thin shell is studied. They obtain the bound
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2M/R ≤ 24/25. Note that this value agrees with our bound when Ω = 2.
This is not surprising since their infinitely thin shell satisfies the DEC and
has p = 0 which in our terminology means that Ω = 2. A similar study is
carried out by Bondi [12] in the case Ω = 1.

Furthermore, Bondi [11] investigates (non-rigorously) isotropic solutions
which are allowed to have a non-monotonic energy density. He considers
models for which ρ ≥ 0, ρ ≥ p, or ρ ≥ 3p, and obtains bounds on 2M/R
strictly less than one in the respectively cases. The isotropic condition is
however crucial since these bounds are violated for strongly non-isotropic
solutions as this work shows (cf. also [4], [16] and [12]).

The paper is organized as follows. In the next section we derive our
basic inequality which only involves ρ and we formulate our main results.
The main ideas of the paper are presented in section 3. In section 4 an
electrostatic analogy (or equivalently a Newtonian analogy) is discussed and
the proofs of the theorems are given in section 5.

2 Set up and main results

Let us collect a couple of facts concerning the system (1.1)-(1.3). A conse-
quence of equation (1.1) is that

e−2λ = 1− 2m(r)
r

, (2.1)

and from (1.2) it then follows that

µr = (
m

r2
+ 4πrp)e2λ. (2.2)

Adding (1.1) and (1.2) and using the boundary conditions at r = ∞ gives

µ(r) + λ(r) = −
∫ ∞

r
4πη(ρ + p)e2λdη. (2.3)

In particular if R is the outer radius of support of the matter then

eµ(r)+λ(r) = 1,

when r ≥ R. Hence,

eµ(r) = e−λ(r) =

√
1− 2m(r)

r
, r ≥ R. (2.4)
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The generalized Tolman-Oppenheimer-Volkov equation (1.5) implies that a
solution satisfies

(m + 4πr3p)eµ+λ =
∫ r

0
4πη2eµ+λ(ρ + p + 2pT )dη. (2.5)

Indeed, let S = (m + 4πr3p)eµ+λ. Using (1.5) and (2.3) we get

dS

dr
= 4πr2(ρ + p + 2pT )eµ+λ,

and the claim follows since S(0) = 0.
Let us fix r > 0. Consider (2.5), using (2.3) we get

(m + 4πr3p)e−
R ∞

r 4πη(ρ+p)e2λdη

= e−
R ∞

r 4πσ(ρ+p)e2λdσ

∫ r

0
4πη2e−

R r
η 4πσ(ρ+p)e2λdσ(ρ + p + 2pT )dη,

and we have

m + 4πr3p =
∫ r

0
4πη2e−

R r
η 4πσ(ρ+p)e2λdσ(ρ + p + 2pT )dη.

Since p is non-negative we obtain the inequality

m(r) ≤
∫ r

0
4πη2e−

R r
η 4πσ(ρ+p)e2λdσ(ρ + p + 2pT )dη.

Using again the non-negativity of p and the inequality (1.7) we obtain

m(r) ≤ (1 + Ω)
∫ r

0
4πη2ρe−

R r
η 4πσρe2λdσdη. (2.6)

Note that only ρ, and not p and q, appears in this inequality in view of (2.1).
This is our fundamental inequality.

Let B be the Borel σ−algebra of R+ and let M denote the space of
non-negative σ−finite measures on B such that 2m(r)/r < 1, where m(r) =∫
[0,r] dh(η). Let R > 0 and define the operator FR : M→ R+ by

FR(h) =
∫

[0,R]
e
−

R
[r,R]

dh(η)

η

(
1− 2m(η)

η

)
dh(r). (2.7)

With abuse of notation it will be understood that FR(u), where u is a func-
tion, is the value obtained by applying F to the measure ν where dν = udr.
Now let ρ̄ = 4πr2ρ, and note that the inequality (2.6) can be written

m(r) ≤ (1 + Ω)Fr(ρ̄). (2.8)
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Furthermore, note that by taking p = 0 and 2pT = ρ the inequalities
above become equalities and we can for this special class of solutions define
a form of the generalized TOV equation which is valid whenever 4πr2ρ =
h ∈M,

m(r) = (1 + Ω)Fr(h). (2.9)

This form of the TOV equation will be used to see that the infinitely thin
shell which maximizes 2m/r satisfies the TOV equation in the sense of mea-
sures.

By a steady state we mean a solution of the Einstein equations (1.1)-
(1.3) such that ρ, p and pT are C1 functions on [0,∞). A steady state of
course satisfies the generalized Tolman-Oppenheimer-Volkov equation. For
our purposes it is sufficient that the triplet (ρ, p, pT ) satisfies the integrated
form (2.5) of the generalized TOV equation. We say that (ρ, p, pT ) is an
admissible triplet if: each of these functions is in L1

loc([0,∞); 4πr2), where
4πr2 is the weight, equation (2.5) is satisfied a.e., and there is an Ω ≥ 0 such
that (1.7) holds a.e. The following theorem is our main result.

Theorem 1 Consider any admissible triplet (ρ, p, pT ). Then

sup
r>0

2m(r)
r

≤ (1 + 2Ω)2 − 1
(1 + 2Ω)2

. (2.10)

The arguments leading to Theorem 2 in [3] (and also the arguments in the
proof of Theorem 1 above) imply that the bound (2.10) is sharp in the sense
given by the theorem below. Before stating this theorem let us introduce
the notation ◦

νR for the Dirac measure at r = R.

Theorem 2 Take R > 0, and let

M =
R

2
((1 + 2Ω)2 − 1)

(1 + 2Ω)2
.

Let

ρ =
M

◦
νR

4πR2
,

and let p = 0 and 2pT = Ωρ, then (2.9) holds with h = 4πR2ρ and r = R.

3 Main ideas

The details of the proofs make the main ideas become less transparent so
let us describe them in this section.
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Given a steady state with support in [0, R], R > 0, there is a smallest
r∗ ∈ [0, R], with the property that

2m(r∗)
r∗

= sup
r>0

2m(r)
r

.

We will show that if
2m(r∗)

r∗
>

(1 + 2Ω)2 − 1
(1 + 2Ω)2

, (3.1)

then
Fr∗(ρ̄) <

m(r∗)
1 + Ω

. (3.2)

In view of (2.8) we thus obtain a contradiction and no steady state with the
property (3.1) can exist. To show that (3.1) implies (3.2) is of course the
main difficulty.

We will approximate the given steady state with a sum of step functions.
The precise way this is done is left to the proof. Let r∗ be as above and let

u(r) = χ[r′0,r1]
c1r1

r1 − r′0
+ χ[r′1,r2]

c2r2

r2 − r′1
+ ... + χ[r′N−1,rN ]

cNrN

rN − r′N−1

, (3.3)

where {r0, r1, ..., rN} is a sub-division of the interval [R0, R1], so that r0 = R0

and rN = r∗, and where rk ≤ r′k < rk+1, and χ is the characteristic function.
First we take r′k = rk and choose the constants cj , j = 1, 2, ... so that u
approximates ρ̄ in sup norm. We will then admit the parameters r′k to vary.
Note that

mu(rk)
rk

=
1
rk

k∑
j=0

cjrj ,

independently of the choices of r′j , where mu(r) :=
∫ r
0 udr.

First we consider the first two terms in (3.3) and perform the limit
r′0 → r1 and r′1 → r2 so that the first two step functions become Dirac
measures at r = r1 and r = r2. We then show that the operator F applied
to the new measure is greater than F (u). More precisely we show that

Fr∗(u) < Fr∗(ν2), (3.4)

where
ν2 = c1r1

◦
νr1 + c2r2

◦
νr2 + u2dr,

and

u2(r) = χ[r′2,r3]
c3r3

r3 − r′2
+ χ[r′3,r4]

c4r4

r4 − r′3
+ ... + χ[r′N−1,rN ]

cNrN

rN − r′N−1

. (3.5)
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Recall that ◦
νrj is the Dirac measure at r = rj . Clearly, a Dirac measure ◦

νrj ,
means that there is an infinitely thin shell at r = rj with unit ADM mass
and we will call such a configuration a Dirac shell. The proof of (3.4) is a
consequence of a crucial monotonicity property of F as r′0 → r1 and r′1 → r2.

The next step in our strategy is to show that

Fr∗(ν2) < Fr∗(ν
′
2),

where ν ′2 is the measure obtained by moving the Dirac shell at r = r1 to
r = r2, i.e.,

ν ′2 = (c1r1 + c2r2)
◦
νr2 + u2dr.

It will be seen that the structure of F allows one to continue this process so
that the next step is to replace the step function on the interval [r′2, r3] by
a Dirac shell with weight c3r3 at r = r3 and again show that F applied to
this measure increases the value. Then we move the Dirac shell with weight
c1r1 + c2r2 at r = r2 to r = r3 and thus obtain a Dirac shell at r = r3 with
weight c1r1 + c2r2 + c3r3. This measure thus takes the form

ν ′3 = (c1r1 + c2r2 + c3r3)
◦
νr3 + u3dr,

where

u3(r) = χ[r′3,r4]
c4r4

r4 − r′3
+ χ[r′4,r5]

c5r5

r5 − r′4
+ ... + χ[r′N−1,rN ]

cNrN

rN − r′N−1

.

In this way we obtain the chain of inequalities

Fr∗(hu) < Fr∗(ν
′
2) < Fr∗(ν

′
3) < ... < Fr∗(ν

′
N ),

where

ν ′N =
N∑

j=1

cjrj
◦
νr∗ =: m∗

◦
νr∗ . (3.6)

Now

Fr∗(ν
′
N ) =

2m∗
√

1− 2m∗/r∗

1 +
√

1− 2m∗/r∗
, (3.7)

which follows by using the method in [3], and also from the proof given in
section 5. In view of (2.8) we thus obtain

m∗ <
2(1 + Ω)m∗

√
1− 2m∗/r∗

1 +
√

1− 2m∗/r∗
, (3.8)

and solving for 2m∗/r∗ gives

2m∗
r∗

<
(1 + 2Ω)2 − 1

(1 + 2Ω)2
. (3.9)
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4 An electrostatic analogy

A classical problem in electrostatics is the question how a unit amount of
charge should be spread over a bounded set E ∈ R3 in order to minimize
the Coulomb energy

E(ρ) :=
1
2

∫
E

∫
E

ρ(x)ρ(y)|x− y|2−ndxdy.

Following the exposition in [20] the minimum energy is defined to be
1
2Cap(E)−1, where Cap(E) is the capacity of E, i.e.,

1
2Cap(E)

:= inf
{
E(ρ) :

∫
E

ρ = 1
}
. (4.1)

A minimizing ρ does exist if E is a closed set. It is not a function but
a measure (an equilibrium measure) concentrated on the surface of E. In
particular, if E is a ball or a sphere of radius R then the optimum distribution
for the charge will be

ρ =
1

4πR2

◦
νR. (4.2)

and
Cap(BR) = R. (4.3)

Of course, this problem can equivalently be formulated as a variational prob-
lem for Newtonian gravity but since we wish to stress the relation to capacity
theory which originates from the electrostatic problem we have preferred to
use that formulation.

The analogy with our case should be clear in view of (4.2). Let us also
note that capacity can equivalently be defined as the largest charge that can
be carried by a body (e.g. a ball with radius R) if the voltage drops by at
most one, cf. [2]. This formulation suggests that we in our situation define
the capacity of a ball with radius R to be the largest ADM mass that a
spherically symmetric static body with area radius R can have. Using this
definition we then get in view of Theorem 2 that the capacity is given by

((1 + 2Ω)2 − 1)R
2(1 + 2Ω)2

.

Of course, we could also introduce a similar definition as in (4.1) by using
a variational formulation for F instead of E . The following theorem, taken
from [20], is an interesting feature of balls in Rn for the capacity in (4.1).
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Theorem 3 ([20]) Let E ⊂ Rn, n ≥ 3, be a bounded set with Lebesgue
measure |E| and let BE be the ball in Rn with the same measure. Then

Cap(BE) ≤ Cap(E).

This theorem suggests that spherical symmetry might be an important case
also for the compactness ratio ”2M/R” (assuming one has a proper definition
of such a quantity) of more general static objects.

5 Proofs

Proof of Theorem 1. Consider any admissible triplet, so that in particular
0 ≤ 4πr2ρ ∈ L1

loc, and let f := 4πr2ρ. These are the only conditions of
an admissible triplet needed in this section, the remaining conditions have
already been invoked to derive the relations in section 2. We will show that
(3.1) implies (3.2). Hence, assume that there is a r∗ > 0 with the property
that (3.1) holds. By continuity we can choose r∗ so that 2m(r∗)/r∗ is as
close as we wish to the critical value and we choose r∗ so that

(1 + 2Ω)2 − 1
(1 + 2Ω)2

<
2m(r∗)

r∗
<

1
2

(
1 +

(1 + 2Ω)2 − 1
(1 + 2Ω)2

)
:= Q. (5.1)

In what follows we use the notation m∗ := m(r∗). Fix ε > 0. Let h̃ be such
that h̃ = 0 on [0, δ) and h̃ = f on [δ, r∗], δ > 0. Obviously, for a sufficiently
small δ > 0 the difference 0 ≤ mf (r) −mh̃(r) is arbitrary small and since
the integration interval [0, r∗] is finite it holds by a continuity argument that
there is largest δ > 0 such that |Fr∗(h̃)− Fr∗(f)| < ε/2.

Now, since the operator F consists of a composition of integrations, there
is a natural number N, a sub-division {r0, r1, ..., rN}, rj = δ + j(r∗ − δ)/N,
of the interval [δ, r∗], and positive constants {c1, c2, ..., cN} such that the
function h̄ defined by

h̄(r) = χ[r0,r1]
c1r1

r1 − r0
+ χ[r1,r2]

c2r2

r2 − r1
+ ... + χ[rN−1,rN ]

cNrN

rN − rN−1
, (5.2)

satisfies |Fr∗(h̄) − Fr∗(h̃)| < ε/2, and |m∗ − mh̄(r∗)| < ε. Here χS is the
characteristic function, i.e., χS(r) = 1 if r ∈ S, and χS(r) = 0 if r /∈ S.
The condition that the constants cj are positive is technical and it is not
required that f must be positive, only non-negative, but since we only seek
an approximation our positivity condition is easy to satisfy. For technical
reasons we also require that N is taken large, i.e.,

N ≥ 10r∗
(1−Q)δ

. (5.3)
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We now define

h(r) = χ[r′0,r1]
c1r1

r1 − r′0
+ χ[r′1,r2]

c2r2

r2 − r′1
+ ... + χ[r′N−1,rN ]

cNrN

rN − r′N−1

. (5.4)

Here rj ≤ r′j < rj+1. Note that h = h̄ if r′j = rj for all j ∈ N. Moreover note
that ∫ r∗

0
h̄dr =

∫ r∗

0
hdr,

so that the quasi-local mass at r = r∗ given by the energy densities ρ̄ =
h̄/(4πr2), and ρ = h/(4πr2), are the same. The function h, will be the
main object below. As explained in section 3 we will modify h, by varying
the parameters r′j and moving parts of the matter, and finally obtain the
inequality

Fr∗(f) < Fr∗(h̄) + ε < Fr∗(ν
′
N ) + ε, (5.5)

where ν ′N is given by (3.6). The proof is split into four steps.

Step 1.
In the first step we will by a straightforward computation find an expression
for Fr∗(h). Since this computation is crucial and quite lengthy we will present
the main steps. In what follows j and k will always be non-negative integers.

Let c0 = 0, and let k ≥ 1. From (5.4) we get

m(σ) =
j=k−1∑

j=0

cjrj +
ckrk(σ − r′k−1)

rk − r′k−1

, where rk−1 ≤ σ ≤ rk. (5.6)

By defining

Mk :=
j=k∑
j=0

cjrj , k ≥ 1,

we thus get

m(σ) = Mk−1 +
ckrk(σ − r′k−1)

rk − r′k−1

, rk−1 ≤ σ ≤ rk. (5.7)

Next we define
G[h](η) =

∫ ∞

η

h(σ) dσ

σ
(
1− 2m(σ)

σ

) . (5.8)
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Note that this is the main expression in the operator F, cf. equation (2.7).
From (5.4) it thus follows that for r′j−1 ≤ η ≤ rj , j ≥ 1,

G[h](η) =
∫ rj

η

cjrj dσ

(rj − r′j−1)σ
(
1− 2m(σ)

σ

) +
∫ rj+1

r′j

cj+1rj+1 dσ

(rj+1 − r′j)σ
(
1− 2m(σ)

σ

)
+... +

∫ rN

r′N−1

cNrN dσ

(rN − r′N−1)σ
(
1− 2m(σ)

σ

) =: G̃j(η) + Gj+1 + ... + GN .

Here the twiddle over the first term emphasizes that it depends on η whereas
the remaining ones do not. By inserting the expression (5.7) for m we get

G̃j(η) =
∫ rj

η

cjrj dσ

(rj − r′j−1)σ
(
1− 2Mj−1

σ − 2cjrj(σ−r′j−1)

σ(rj−r′j−1)

)
=

∫ rj

η

cjrj dσ(
2cjrjr′j−1 − 2Mj−1(rj − r′j−1)− σ(2cjrj − rj − r′j−1)

) .

Note that the denominator in the integrand is positive in view of (5.8). Let
∆j := rj − r′j−1, we then get

G̃j =
−cjrj

2cjrj −∆j
log

(2cjrjr
′
j−1 − 2Mj−1∆j − rj(2cjrj −∆j)

2cjrjr′j−1 − 2Mj−1∆j − η(2cjrj −∆j)

)
. (5.9)

Analogously we get for the η independent terms

Gj =
−cjrj

2cjrj −∆j
log

( 2cjrjr
′
j−1 − 2Mj−1∆j − rj(2cjrj −∆j)

2cjrjr′j−1 − 2Mj−1∆j − r′j−1(2cjrj −∆j)

)
. (5.10)

Let us now consider the operator F. From the expression (5.4) we have

Fr∗(h) =
1

∆1

∫ r1

r′0

c1r1 exp
(
− G̃1(η)−

N∑
j=2

Gj

)
dη

+
1

∆2

∫ r2

r′1

c2r2 exp
(
− G̃2(η)−

N∑
j=3

Gj

)
dη

+ ...

+
1

∆N

∫ rN

r′N−1

cNrN exp
(
− G̃N (η)

)
dη. (5.11)
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Since the only dependence on η in the integrand is in G̃j we thus obtain

Fr∗(h) =
c1r1 exp

(
−

∑N
j=2 Gj

)
∆1

∫ r1

r′0

exp
(
− G̃1(η)

)
dη

+
c2r2 exp

(
−

∑N
j=3 Gj

)
∆2

∫ r2

r′1

exp
(
− G̃2(η)

)
dη

+ ...

+
cNrN

∆N

∫ rN

r′N−1

exp
(
− G̃N (η)

)
dη. (5.12)

The first two terms in this expression can be written as(c1r1e
−G2

∆1

∫ r1

r′0

e−G̃1(η)dη +
c2r2

∆2

∫ r2

r′1

e−G̃2(η)dη
)
e−

PN
j=3 Gj . (5.13)

As explained in section 3 the idea is to show that Fr∗(h) is dominated by
Fr∗(ν2), where ν2 is the measure

ν2(r) = c1r1
◦
νr1 +c2r2

◦
νr2 +χ[r′2,r3]

c3r3

r3 − r′2
+ ...+χ[r′N−1,rN ]

cNrN

rN − r′N−1

, (5.14)

and then to show that Fr∗(ν2) < Fr∗(ν ′2) where

ν ′2(r) = (c1r1 + c2r2)
◦
νr2 +χ[r′2,r3]

c3r3

r3 − r′2
+ ...+χ[r′N−1,rN ]

cNrN

rN − r′N−1

. (5.15)

The measure ν ′2 can thus be thought of as a modified h where c1 and c2

have been replaced by c′1 = 0 and c′2 = (c1r1 + c2r2)/r2 respectively, and
where the limit r′1 → r2 has been carried out. Note that the quasi-local
mass generated by ν ′2 and h are the same, i.e., mν′2

(r∗) = mh(r∗). In order
to show that Fr∗(h) < Fr∗(ν ′2), the terms in the bracket in (5.13) must be
dominated by(

lim
r′0→r1

c1r1e
−G2

∆1

∫ r1

r′0

e−G̃1(η)dη + lim
r′1→r2

c2r2

∆2

∫ r2

r′1

e−G̃2(η)dη
)
, (5.16)

which in turn must be dominated by

lim
r′1→r2

c′2r2

∆2

∫ r2

r′1

e−G̃′
2(η)dη. (5.17)
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Here G̃′
2 denotes the G−function which corresponds to the measure ν ′2. The

structure of F (h) revealed in (5.12) then shows that this procedure can be
continued: we define the measures ν3 and ν ′3 by

ν3(r) = (c1r1+c2r2)
◦
νr2 +c3r3

◦
νr3 +χ[r′3,r4]

c4r4

r4 − r′3
+ ...+χ[r′N−1,rN ]

cNrN

rN − r′N−1

,

ν ′3(r) = (c1r1 + c2r2 + c3r3)
◦
νr3 + χ[r′3,r4]

c4r4

r4 − r′3
+ ... + χ[r′N−1,rN ]

cNrN

rN − r′N−1

,

and we show that Fr∗(ν ′2) < Fr∗(ν3) < Fr∗(ν ′3). In this way we obtain a
chain of inequalities

Fr∗(h̄) < Fr∗(ν
′
2) < Fr∗(ν

′
3) < ... < Fr∗(ν

′
N ),

where ν ′N is the Dirac measure at r = rN = r∗ with mν′N
(r∗) = mh̄(r∗). Let

us now compute the sum of the two terms in the bracket in (5.13). We use
the following notation

T1 =
c1r1e

−G2

∆1

∫ r1

r′0

e−G̃1(η)dη, (5.18)

and
T2 =

c2r2

∆2

∫ r2

r′1

e−G̃2(η)dη. (5.19)
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We have from (5.9)∫ r1

r′0

e−G̃1(η)dη =
∫ r1

r′0

(2c1r1r
′
0 − r1(2c1r1 −∆1)

2c1r1r′0 − η(2c1r1 −∆1)

) c1r1
2c1r1−∆1 dη

=

(
2c1r1r

′
0 − r1(2c1r1 −∆1)

) c1r1
2c1r1−∆1(

1− c1r1
2c1r1−∆1

)
(2c1r1 −∆1)

×
[
−

(
2c1r1r

′
0 − η(2c1r1 −∆1)

)1− c1r1
2c1r1−∆1

]r1

r′0

=

(
2c1r1r

′
0 − r1(2c1r1 −∆1)

) c1r1
2c1r1−∆1

c1r1 −∆1

×
{(

2c1r1r
′
0 − r′0(2c1r1 −∆1)

)1− c1r1
2c1r1−∆1

−
(
2c1r1r

′
0 − r1(2c1r1 −∆1)

)1− c1r1
2c1r1−∆1

}
=

(
2c1r1r

′
0 − r1(2c1r1 −∆1)

)
c1r1 −∆1

×
{(2c1r1r

′
0 − r′0(2c1r1 −∆1)

2c1r1r′0 − r1(2c1r1 −∆1)

) c1r1−∆1
2c1r1−∆1 − 1

}
. (5.20)

Furthermore, from (5.10) we have

e−G2 =
(2c2r2r

′
1 − 2M1∆2 − r2(2c2r2 −∆2)

2c2r2r′1 − 2M1∆2 − r′1(2c2r2 −∆2)

) c2r2
2c2r2−∆2 .

The term T1 can thus be written

T1 =
c1r1

∆1

(
2c1r1r

′
0 − r1(2c1r1 −∆1)

)
c1r1 −∆1

×
{(2c1r1r

′
0 − r′0(2c1r1 −∆1)

2c1r1r′0 − r1(2c1r1 −∆1)

) c1r1−∆1
2c1r1−∆1 − 1

}
×

(2c2r2r
′
1 − 2M1∆2 − r2(2c2r2 −∆2)

2c2r2r′1 − 2M1∆2 − r′1(2c2r2 −∆2)

) c2r2
2c2r2−∆2 . (5.21)
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A very similar calculation shows that

T2 =
c2r2

∆2

(
2c2r2r

′
1 − 2M1∆2 − r2(2c2r2 −∆2)

)
c2r2 −∆2

×
{(2c2r2r

′
1 − 2M1∆2 − r′1(2c2r2 −∆2)

2c2r2r′1 − 2M1∆2 − r2(2c2r2 −∆2)

) c2r2−∆2
2c2r2−∆2 − 1

}
. (5.22)

The aim is to obtain the inequality Fr∗(h̄) ≤ Fr∗(ν ′2). Since h and ν ′2 are
identical for r ≥ r3 it follows from (5.12) that it is sufficient to obtain the
estimate T1 + T2 ≤ T

ν′2
1 + T

ν′2
2 , where T

ν′2
1 and T

ν′2
2 are the corresponding

terms for ν ′2. Clearly T
ν′2
1 = 0 since c′1 = 0, and T

ν′2
2 is the expression (5.17)

which in view of (5.22) and the fact that M1 = 0 in this case since c′1 = 0 is
given by

T
ν′2
2 = lim

r′1→r2

T ′2, (5.23)

where

T ′2 =
c′2r2

∆2

(
2c′2r2r

′
1 − r2(2c′2r2 −∆2)

)
c′2r2 −∆2

×
{(2c′2r2r

′
1 − r′1(2c′2r2 −∆2)

2c′2r2r′1 − r2(2c′2r2 −∆2)

) c′2r2−∆2
2c′2r2−∆2 − 1

}
. (5.24)

Here c′2 = (c1r1 + c2r2)/r2. The expressions for T1, T2 and T ′2 will now be
simplified. Let us introduce the notation

bk =
r′k−1

rk
, k = 1, 2, ...

which implies that
∆k = rk(1− bk).

Let us consider the term T2. By dividing both the numerator and the de-
nominator by 2c2r

2
2, the first factor in the expression (5.22) can be written

c2r2

∆2

(
2c2r2r

′
1 − 2M1∆2 − r2(2c2r2 −∆2)

)
c2r2 −∆2

=
c2r2

1− b2

(
b2 − M1(1−b2)

c2r2
− (1− 1−b2

2c2
)
)

c2r2
2c2r2

− 1−b2
2c2

=
c2r2

1− b2

(
(1− b2)( 1

2c2
− c1r1

c2r2
− 1)

)
1
2 −

1−b2
2c2

=
c2r2(1− 2c1

r1
r2
− 2c2)

c2 − (1− b2)
. (5.25)
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The second factor can be simplified in a similar way(2c2r2r
′
1 − 2M1∆2 − r′1(2c2r2 −∆2)

2c2r2r′1 − 2M1∆2 − r2(2c2r2 −∆2)

) c2−(1−b2)
2c2−(1−b2) − 1

=
(b2 − c1r1

c2r2
(1− b2)− b2(1− 1−b2

2c2
)

b2 − c1r1
c2r2

(1− b2)− (1− 1−b2
2c2

)

) c2−(1−b2)
2c2−(1−b2) − 1

=
(( b2

2c2
− c1r1

c2r2
)(1− b2)

(1− b2)( 1
2c2

− c1r1
c2r2

)

) c2−(1−b2)
2c2−(1−b2) − 1

=
( b2 − 2c1

r1
r2

1− 2c1
r1
r2
− 2c2

) c2−(1−b2)
2c2−(1−b2) − 1. (5.26)

In conclusion T2 can be written

T2 =
c2r2(1− 2c1

r1
r2
− 2c2)

c2 − z2

{( 1− 2c1
r1
r2
− z2

1− 2c1
r1
r2
− 2c2

) c2−z2
2c2−z2 − 1

}
, (5.27)

where we have introduced the notation

zk = 1− bk, k = 1, 2, ...

Simplifying T1 and T ′2 in a similar way leads to the following expressions

T1 =
c1r1(1− 2c1)

c1 − z1

{( 1− z1

1− 2c1

) c1−z1
2c1−z1 − 1

}(1− 2c1
r1
r2
− 2c2

1− 2c1
r1
r2
− z2

) c2
2c2−z2 , (5.28)

and

T ′2 =
(c1r1 + c2r2)(1− 2c1

r1
r2
− 2c2)

c2 + c1
r1
r2
− z2

{( 1− z2

1− 2c1
r1
r2
− 2c2

) c2+c1
r1
r2
−z2

2c2+2c1
r1
r2
−z2 − 1

}
.

(5.29)
Note that the expression for T ′2 is obtained from (5.27) by putting c1 = 0
and replacing c2 by c2 + c1r1/r2 in accordance with the previous discussion.

Step 2.
In this step we show that Fr∗(h̄) < Fr∗(ν2) by showing that F is monotone
as r′0 → r1 and r′1 → r2, i.e., as z1 → 0 and z2 → 0. Let us define

A(z, c) =
1

c− z

{( 1− z

1− 2c

) c−z
2c−z − 1

}
, (5.30)

18



and
B(z, c) =

(1− 2c

1− z

) c
2c−z

, (5.31)

where z ∈ [0, 1/10], and c ∈ (0, Q/2). Recall the definition of Q in (5.1).
These are the fundamental functions in the expressions for T1 and T2, namely

T1 = c1r1(1− 2c1)A(z1, c1)B
( z2

1− 2c1r1/r2
,

c2

1− 2c1r1/r2

)
, (5.32)

and

T2 =
c2r2(1− 2c1

r1
r2
− 2c2)

1− 2c1r1/r2
A

( z2

1− 2c1r1/r2
,

c2

1− 2c1r1/r2

)
. (5.33)

Let us now see that the domain of definition of the functions A and B is
relevant. Since r∗ is the smallest r with 2m∗/r∗ = Q we have in view of
(5.1) c1r1 + c2r2 < r2Q/2, and since Q < 1, Qc1r1 + c2r2 < r2Q/2, which
implies that

c2r2 <
Q

2
r2(1− 2c1r1/r2),

and thus
c2/(1− 2c1r1/r2) < Q/2.

Since c1 < Q/2 it follows that the second argument in A and B in (5.32) and
(5.33) is less than Q/2, i.e., c ∈ (0, Q/2). To see that the first argument in
the functions A and B belong to [0, 1/10] we first check that the condition
(5.3) implies that

δ + (r∗ − δ)/N
δ + 2(r∗ − δ)/N

≥ 9 + Q

10
.

The inequality above can be written

(8 + 2Q)(r∗ − δ)
10N

≤ (1−Q)δ
10

,

which clearly is satisfied if

N ≥ 10r∗
(1−Q)δ

.

In view of (5.3) we thus have for j ≥ 1,

r′j
rj+1

≥ rj

rj+1
≥ r1

r2
=

δ + (r∗ − δ)/N
δ + 2(r∗ − δ)/N

≥ 9 + Q

10
, (5.34)
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so that zk = 1− r′k−1/rk ≤ (1−Q)/10 for all k. It follows that

z2

1− 2c1r1/r2
<

z2

1−Q
≤ 1

10
,

which proves our claim, i.e., z ∈ [0, 1/10].
It is clear that these facts hold in general, i.e., not only for the terms T1

and T2 but at any step in our chain of inequalities since
∑k

j=1 cjrj < rkQ/2.
We can of course also express the term T ′2 in a similar way but it is not
useful here. By construction the functions A and B are continuous in the
domain of definition, in particular they are continuous along the lines z = c
and z = 2c.

Lemma 1 For any c ∈ (0, Q/2) the functions A(·, c) and B(·, c) are de-
creasing in z, z ∈ [0, 1/10].

Proof of Lemma 1. Monotonicity of A. Let us introduce the new variables

β =
2c− z

c
and k =

c

1− 2c
. (5.35)

We thus have that

0 < k ≤ Q

2(1−Q)
, and β ≤ 2.

We now express A in terms of these variables and by abuse of notation we
denote this function again by A. Since

1− z

1− 2c
= 1 +

2c− z

1− 2c
= 1 + kβ,

it follows that
A(β, k) =

1 + 2k

k

{
(1 + kβ)

β−1
β − 1

}
. (5.36)

We now want to show that ∂βA ≥ 0 since ∂zβ is negative. A straightforward
computation gives after some rearrangements

∂βA =
(1 + kβ)

β−1
β

(1− β)2β2(1 + kβ)

[
− β2(1 + kβ) + β2(1 + kβ)

1
β

+(β − 1)(1 + kβ) log (1 + kβ) + (1− β)2kβ
]
. (5.37)

Let us denote the factor in square brackets by Ψ. Adding the first and the
last term in this expression gives

Ψ(β, k) = β2(1+kβ)
1
β +(β−1)(1+kβ) log (1 + kβ)−β2−kβ(2β−1). (5.38)
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Let
γ =

log (1 + kβ)
β

, (5.39)

which is well defined also when β = 0 since limβ→0 γ = k. Since

kβ =
2c− z

1− 2c
,

it follows that kβ < 1/(1−Q), and since kβ is positive as long as 2c ≥ 1/10
a rough estimate gives

kβ ≥ −1/10, (5.40)

by the condition that z ≤ 1/10. We will below distinguish between the two
cases 0 ≤ β ≤ 2, and β < 0. In both cases γ > 0, or more precisely, in the
former case we have γ ∈ [log (1 + 2k)/2, k], and in the latter case γ ∈ (0, k].
By using the relation

kβ = eγβ − 1,

Ψ takes the form

Ψ(β, γ) = −1 + 2β + β2(eγ − 1) + eγβ [(β − 1)βγ − 2β + 1]. (5.41)

By expanding the exponential functions using the formula ex = 1 + x/1! +
x2/2! + ... and collecting the terms corresponding to different powers in γ
gives

Ψ(β, γ) = β2
∞∑

j=3

[ 1
j!
−βj−2

( 1
(j − 1)!

− 1
j!

)
+βj−1

( 1
(j − 1)!

− 2
j!

)]
γj . (5.42)

Note that the lower orders of γ vanish. We denote the factors in square
brackets by Φj , and these can thus be written as

Φj(β) =
1
j!

(
1− (j − 1)βj−2 + (j − 2)βj−1

)
. (5.43)

We now claim that

Φj(β) =
(1− β)2

j!
(1 + 2β + 3β2 + ... + (j − 2)βj−3), j ≥ 3. (5.44)

This statement is easily shown by an induction argument. First, if j = 3 we
have from (5.43) that

Φ3 =
1
3!

(1− 2β + β2) =
1
3!

(1− β)2,
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so the claim is true for j = 3. Assume now that for any positive integer
P ≥ 2,

(1− βP (P + 1) + βP+1P ) = (1− β2)(1 + 2β + 3β2 + ... + PβP−1). (5.45)

We then have by (5.45)

(1− βP+1(P + 2) + βP+2(P + 1))
= (1− β2)(1 + 2β + 3β2 + ... + PβP−1)

+βP (P + 1)− 2(P + 1)βP+1 + βP+2(P + 1)
= (1− β2)(1 + 2β + 3β2 + ... + PβP−1) + βP (P + 1)(1− β)2

= (1− β2)(1 + 2β + 3β2 + ... + (P + 1)βP ),

and the claim (5.44) follows. In conclusion we have shown

∂βA = (1 + kβ)
−1
β

∞∑
j=3

1
j!

[1 + 2β + 3β2 + ... + (j − 2)βj−3]γj . (5.46)

Note that the lower orders of γ have vanished. Now, 1 + kβ > 0, since
kβ ≥ −1/10, and γ > 0, so in the case β ≥ 0, it follows immediately that
∂βA ≥ 0. Let us therefore consider the remaining case β < 0. First we note
that β < 0 implies that z > 2c. Now, since z ≤ 1/10 this means that β is
only negative if c is small, i.e., c < 1/20. Therefore, since γ ≤ k we get

γ ≤ k =
c

1− 2c
< 1/18. (5.47)

From the inequality (cf. [1])

| log (1− x)| < 3x

2
, 0 < x ≤ 1/2,

we have
|γβ| = | log (1− k|β|)| < 3k|β|/2 ≤ 3/20, (5.48)

where the last inequality followed from (5.40). Let us now estimate the sum
in (5.46). For this we use that

1
4!

+
γ

5!
+

γ2

6!
+ ... <

1
4!

(1 + γ + γ2 + ...) =
1
4!

1
(1− γ)

<
1
20

,

by (5.47), together with the formula

1 + 2x + 3x2 + ... =
1

(1− x)2
, −1 < x < 1.
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We drop the non-negative terms except for the first one and obtain

1
3!

+
1
4!

(1 + 2β)γ +
1
5!

(1 + 2β + 3β2)γ2 +
1
6!

(1 + 2β + 3β2 + 4β3)γ3 + ...

≥ 1
3!
−

[
2γ|β|

( 1
4!

+
γ

5!
+

γ2

6!

)
+ 4(γ|β|)3

( 1
6!

+
γ

7!
+

γ2

8!
+ ...

)
+ ...

]
≥ 1

3!
− 1

20

[
2γ|β|+ 4(γ|β|)3 + 6(γ|β|)5...]

≥ 1
3!
− 1

20

[
1 + 2γ|β|+ 3(γ|β|)2 + 4(γ|β|)3 + ...]

=
1
3!
− 1

20(1− γ|β|)2
≥ 1

3!
− 202

20 · 172
> 0. (5.49)

In the second last inequality we used (5.48) and in the last (5.40). Thus
∂βA > 0 also in the case when β < 0, and the monotonicity of A(·, c)
follows. Let us now turn to the monotonicity of B(·, c).

Monotonicity of B. We express B in the variables k and β and, by abuse
of notation, get

B(β, k) = (1 + kβ)
−1
β .

As in the case of the function A the claimed monotonicity follows if we can
show

∂βB ≥ 0.

We have

∂βB =
(1 + kβ)

−1
β

β2(1 + kβ)
[(1 + kβ) log (1 + kβ)− kβ].

Using the variable γ defined in (5.39) we can write the factor in square
brackets as

[(1 + kβ) log (1 + kβ)− kβ] = γβeγβ − (eγβ − 1).

By letting a = γβ we have a function of one variable and it is elementary
to show the non-negativity of this expression for any a. This completes the
proof of the lemma.

2

Step 3.
In this step we show that F (ν2) < F (ν ′2). Hence, we want to show that

0 ≤ lim
z2→0

T ′2 − lim
z2→0

(
lim

z1→0
T1

)
− lim

z2→0
T2 =: T̄ ′2 − T̄1 − T̄2.
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We have from (5.27)-(5.29)

T̄1 = r1

(√
1− 2c1

1− 2c1r1/r2
− 1− 2c1√

1− 2c1r1/r2

)√
1− 2c′2,

T̄2 = r2

(√
1− 2c1r1/r2 −

√
1− 2c′2

)√
1− 2c′2,

and
T̄ ′2 = r2

(
1−

√
1− 2c′2

)√
1− 2c′2.

Hence

T̄ ′2 − T̄1 − T̄2 =
√

1− 2c′2

[
r2(1−

√
1− 2c1r1/r2)

−r1

√
1− 2c1

1− 2c1r1/r2
(1−

√
1− 2c1)

]
. (5.50)

Define
κ := 1− r1

r2
, so that κ ∈ (0, 1),

then √
1− 2c1r1/r2 =

√
1− 2c1

√
1 +

2c1κ

1− 2c1
.

The factor in square brackets above can be written

Γ : = r2

(
1−

√
1− 2c1

r1

r2

)
− r1

√
1− 2c1

1− 2c1
r1
r2

(1−
√

1− 2c1)

= r2

(
1−

√
1− 2c1

√
1 +

2c1κ

1− 2c1

)
−r1

1√
1 + 2c1κ

1−2c1

(1−
√

1− 2c1)

=
r2√

1 + 2c1κ
1−2c1

[√
1 +

2c1κ

1− 2c1
−
√

1− 2c1

(
1 +

2c1κ

1− 2c1

)
−(1− κ)(1−

√
1− 2c1)

]
=

r2√
1 + 2c1κ

1−2c1

[√
1 +

2c1κ

1− 2c1
− κ√

1− 2c1
+ κ− 1

]
=

r2√
1− 2c1(1− κ)

[√
1− 2c1(1− κ)− κ−

√
1− 2c1(1− κ))

]
.
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Let us introduce the notation

Γ(c1, κ) :=
√

1− 2c1(1− κ)− κ−
√

1− 2c1(1− κ)), (5.51)

so that

T̄ ′2 − T̄1 − T̄2 = r2

√
1− 2c′2

1− 2c1(1− κ)
Γ(c1, κ).

We want to show that the right hand side is non-negative for any admitted
choice of the parameters c1, c2 and κ. Since Γ(0, κ) = 0 the statement follows
since ∂c1Γ > 0. Indeed, we have

∂Γ
∂c1

= (1− κ)
[ 1√

1− 2c1
− 1√

1− 2c1(1− κ)

]
,

which is positive since κ ∈ (0, 1). Hence T̄ ′2 − T̄1 − T̄2 > 0.

Step 4.
At this stage it is clear that by repeating the arguments we obtain

Fr∗(h̄) < Fr∗(ν
′
2) < Fr∗(ν

′
3) < ... < Fr∗(ν

′
N ),

where ν ′N is the Dirac measure at r = rN = r∗ with mν′N
(r∗) = mh(r∗). An

appropriate method for computing Fr∗(ν ′N ) is given in [3]. However, we can
also use the formula (5.29) with c1 = 0, c2 = mh(r∗)/r∗ and z2 = 0, and we
get with m′

∗ := mh(r∗)

Fr∗(ν
′
N ) = r∗(1−

2m′
∗

r∗
)
{ 1√

1− 2m′
∗

r∗

− 1
}

=
2m′

∗

√
1− 2m′

∗
r∗

1 +
√

1− 2m′
∗

r∗

. (5.52)

The inequalities (2.8) and (5.5) then gives

m∗ <
2(1 + Ω)m′

∗
√

1− 2m′
∗/r∗

1 +
√

1− 2m′
∗/r∗

+ ε, (5.53)

Using that |m∗ −m′
∗| < ε we get

m∗ <
2(1 + Ω)m∗

√
1− 2m∗/r∗

1 +
√

1− 2m∗/r∗
+ o(ε), (5.54)
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and solving for 2m∗/r∗ gives

2m∗
r∗

<
(1 + 2Ω)2 − 1

(1 + 2Ω)2
+ o(ε). (5.55)

Since ε > 0 is arbitrary this contradicts our assumption on 2m∗/r∗, which
completes the proof of Theorem 1.

2

Proof of Theorem 2. The proof is a direct consequence of the discussion
leading to (2.9) and the formula (5.52), cf. also [3]. Indeed, let

2M

R
=

(1 + 2Ω)2 − 1
(1 + 2Ω)2

.

The formula (5.52) with r∗ = R and m∗ = M gives

FR(ν ′N ) =
2M

(1 + 2Ω)
(
1 + 1

1+2Ω

) =
M

(1 + Ω)
, (5.56)

and the proof of Theorem 2 is complete.

2
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[21] M. Mars, M. Mercè Mart́ın-Prats and J.M.M. Senovilla,
The 2m ≤ r property of spherically symmetric static spacetimes,
Phys. Lett. A 218, 147 (1996).

[22] G. Rein, Static shells for the Vlasov-Poisson and Vlasov-Einstein
systems, Indiana University Math. J. 48, 335–346 (1999).

[23] G. Rein, A. D. Rendall, Compact support of spherically sym-
metric equilibria in non-relativistic and relativistic galactic dynam-
ics, Math. Proc. Camb. Phil. Soc. 128, 363–380 (2000)

[24] A. D. Rendall, An introduction to the Einstein-Vlasov system,
Banach Center Publ. 41, 35–68 (1997).
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