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Abstract

We present an algorithm for folding three-dimensional airbags. The al-
gorithm is based on nonlinear optimization and Origami mathematics.

The airbag is folded to fit into its compartment. A numerical simula-
tion of the inflation requires an accurate geometric representation of the
folded airbag. However, the geometry is often specified in the inflated three-
dimensional form, and a flat folded geometry must be computed.

Our algorithm starts by approximating the geometry of the inflated
airbag by a quasi-cylindrical polyhedron. Origami mathematics is used to
compute a crease pattern for folding the polyhedron flat. The crease pattern
is computed with the intention of being fairly simple and to resemble the
actual creases on the real airbag.

The computation of the crease pattern is followed by a computation of
the folding. This is based on solving an optimization problem in which the
optimum is a flat folded model. We use a Sequential Quadratic Programming
method which is designed for large-scale problems.

Finally, the flat airbag is further folded or rolled into its final shape
(without using Origami).

We test the algorithm on a passenger airbag.
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NUMERICAL FOLDING OF AIRBAGS BASED ON OPTIMIZATION AND
ORIGAMI

CHRISTOFFER CROMVIK

Abstract. We present an algorithm for folding three-dimensional airbags. The algorithm is
based on nonlinear optimization and Origami mathematics.

The airbag is folded to fit into its compartment. A numerical simulation of the inflation
requires an accurate geometric representation of the folded airbag. However, the geometry
is often specified in the inflated three-dimensional form, and a flat folded geometry must be
computed.

Our algorithm starts by approximating the geometry of the inflated airbag by a quasi-
cylindrical polyhedron. Origami mathematics is used to compute a crease pattern for folding
the polyhedron flat. The crease pattern is computed with the intention of being fairly simple
and to resemble the actual creases on the real airbag.

The computation of the crease pattern is followed by a computation of the folding. This
is based on solving an optimization problem in which the optimum is a flat folded model.
Finally, the flat airbag is further folded or rolled into its final shape (without using Origami).

We test the algorithm on a passenger airbag.

1. Introduction

One of the earliest references to airbags in automobiles was the patent by John W. Hetrick in
1953. The idea of using airbags was not entirely new, since it had been used in some airplanes
before. The first airbags were made publically available in some selected vehicle models in the
1970s. Airbags were initially designed to be substitutes for seat belts, but in the 1980s car
designers abandoned that idea and considered the airbag as a supplementary restraint system.

The airbag system mainly consists of three parts: the airbag itself, the inflator unit and the
crash sensor or diagnostic unit. The crash sensor activates the inflation of the airbag depending
on a set of parameters which indicates a crash. One parameter is the deceleration of the vehicle.
The inflator has a pyrotechnic charge consisting of a mixture of chemical compounds. An igniter
starts a reaction which generates an expansion of gas consisting of mostly nitrogen. The airbag
is made of nylon, which has a light weight and is very resistant to stretch.

Computer simulations of crash tests are considered a standard tool for evaluating the safety
of a car. Simulations can be done early in the design phase for a new car, and it is relatively
inexpensive compared to real crash tests. The computer models are often very complex and
requires massive amount of computational time. Both the behavior of the outer structure and
the interior of a car need to be examined to evaluate the crashworthiness. The interior of a car
includes crash test dummies and the restraint systems.

Simulating a crash where the crash test dummy hits an expanding airbag is a challenge to
the industry. This situation is called out-of-position (OOP), reflecting that the airbag is not
designed for occupants that are sitting too close or for some other reason hit the airbag before
it is fully inflated.

The difficulty with an OOP situation compared to an in-position situation is that the inflation
of the folded airbag is much more important. It has to be realistically simulated, since it affects
the impact of the dummy. Attaining a realistic simulation means starting with a correct geometry
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2 C. CROMVIK

of the folded airbag and simulating the inflation with correct gas dynamics. Several commercial
software packages exist that can simulate the inflation process of an airbag, e.g., the explicit
Finite Element (FE) code LS-DYNA [11]. However, these require an accurate description of the
initial geometry.

Different airbags are folded by different methods and with different numbers and types of
foldings. The airbags are often folded by both machines and humans according to a folding
scheme. Still, the creases are not entirely deterministically positioned. It is very difficult to
control the placement of smaller creases. The folding schemes all assume that the airbag initially
lies flat and stretched in some direction. In this position, different foldings are executed until the
dimension of the folded airbag is small enough so that it fits in the airbag compartment. The
foldings can be a combination of simple folds, but also roll folds. This work aims at developing
an algorithm for computing an accurate geometry of the flat folded airbag. Some preprocessors
to LS-DYNA, e.g., EASi-FOLDER [6] and OASYS-PRIMER [3] contain software for folding a (nearly)
flat FE airbag mesh. They are capable of executing the type of foldings that are normally used
in production on flat airbags, e.g., roll-fold, z-fold. However, they are not accurate when folding
an airbag from its three-dimensional shape to a flat airbag.

Figure 1. A CAD model of a passenger airbag.

Some airbag models have a simple geometry, e.g., the driver airbag which is made of two
flat circular layers sewn together at the boundary. It is essentially two-dimensional. Passenger
airbags are often more complicated. They are made of several layers sewn together to form a
three-dimensional shape, with no trivial flat two-dimensional representation. See Figure 1 for an
example of the geometry of a passenger airbag.

In this work we compute the geometry of the flat folded airbag in two steps. First a crease
pattern is computed on a polyhedral approximation of the airbag. Then, a nonlinear optimization
problem is formed and solved. The optimal solution gives the flat geometry. The accuracy of the
computed approximation is measured by comparing its area to the area of the inflated model.

2. Crease Pattern

There is a strong connection between paper folding and airbag folding. Both topics deal with
the folding of thin materials. For paper folding, through a series of foldings, a three-dimensional
object is created from a flat sheet of paper. In the case of airbag folding, the three dimensional
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shape is given, and we want to compute a crease pattern for flattening. For this task we use the
mathematical theory from Origami.

Origami is the art of paper folding and has its origin in Japan. The word Origami comes
from the two words, oru which means “to fold” and kami which means paper [2]. Although
Origami is an ancient art, the interest from a mathematical point of view has increased during
the last century. Specifically, the area of Computational Origami began. Computational Origami
provides a connection between theory and algorithms. One of the pioneers in this field was D.
A. Huffman.

An example of Computational Origami is the work of R. J. Lang. He is the author of the
computer program TreeMaker [10] which lets you compute the crease pattern on a sheet of paper
to fold very complex geometries.

Origami has also found its way to industrial applications. Just to mention a few, Lang
discovered the application of Origami to airbag folding, in cooperation with the company EASi
[8]. You and Kuribayashi considered the application of Origami for a stent used in medicine [19].

Origami is usually connected to folding a square piece of paper into a three dimensional
object. For airbag folding (or polyhedron folding), the problem may seem reversed. Given a
three dimensional shape, find the flat shape. However, the theory of Origami can be applied,
and the key is to apply the theory to each face of the polyhedron.

From now on we assume that the airbag is a polyhedron. We begin by considering a special
shape which we call quasi-cylinder. See Figure 2 for an example of a quasi-cylinder.

Definition 2.1. A quasi-cylindrical polyhedron is a closed cut-off cylinder with a polygonal cross-
section. By gables we refer to the two cross-sections, and the mantle is the surface joining the
two gables.

Figure 2. A quasi-cylinder with a pentagonal gable in gray color.

2.1. Origami Molecules. In an Origami design, certain crease patterns keep reappearing in
different parts of the design. They consist of a polygon with a characteristic crease pattern. If
the polygon is a triangle, the crease pattern is always the same, but for polygons of higher order
there are a number of different crease patterns. The fact that these polygons reappear several
times in the design, makes us think of an Origami design as made up of such polygons. This
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is why they are called “Origami Molecules”. A set of polygons, each with an individual crease
pattern, form a global crease pattern which is the Origami design.

The molecules have certain properties. When folded along the crease pattern, the projection
of its folded form onto a plane forms a stick figure, also called a tree. All the edges of the polygon
fall on a single line after the folding. The latter property is what enables a construction of the
origami design by joining molecules. Also, two molecules sharing an edge, must only have creases
that cross the edge perpendicularly.

The key to understanding how Origami molecules can be used on polyhedra comes from the
fact that if a polygonal side of a polyhedron is divided by non-intersecting diagonals, each sub-
polygon can form a molecule, and hence can be treated almost individually. When each molecule
is folded, all the edges fall on a straight line, and since each neighboring molecule has a common
edge, all edges of the molecules fall on a line.

The problem that remains is how to join the crease patterns of the molecules. This is easy if
the polyhedron is a quasi-cylinderical polyhedron with parallel gables. In that case the molecules
are formed identically on both gables and the crease patterns are joined by creases along the
mantle. This enables a collapse of the gables. The use of diagonals can be interpreted as slicing
the polyhedron.

The simplest molecule is the crease pattern for a triangle, called the “Rabbit Ear Molecule”,
see Figure 3. The crease pattern consists of three creases along the bisectors of the triangle,
forming the ridge in the figure, and an additional set of creases from the point of intersection to
the edges of the triangle. Each additional crease crosses the edge perpendicularly. In the figure,
three additional creases are present, but only one is needed for the molecule to be flattened.

Figure 3. The Rabbit Ear Molecule. The figure to the left shows the unfolded
molecule. Dashed lines are creases and the solid lines mark the edges.

To create a crease pattern for a general polygon, there are at least two algorithms: the Straight
Skeleton [1] and the Universal Molecule [9]. For a convex polygon, the Straight Skeleton is equal
to the medial axis [13] which is constructed by using the angular bisectors.

Here we present a new algorithm, the Skew Skeleton, for computing a crease pattern of a
quasi-cylinder. It is based on the Straight Skeleton.

If the gables of the quasi-cylinder are parallel, and the mantle is perpendicular to the gables,
then the Straight Skeleton can be applied almost directly to form a crease pattern. However, if
the quasi-cylinder is skew, then the crease pattern is no longer derived from bisectors as in the
Straight Skeleton.

In [5] the crease patterns for some polyhedra are described.

2.2. Algorithm for Quasi-Cylinders. This subsection describes the algorithm for computing
the crease pattern for a quasi-cylindrical polyhedron.
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Figure 4. The vertices of the top face, the gable, are denoted u0. The vertices
of the opposite gable are denote ū. The inset vectors are v, and around each
vertex u0 there are four angles α, β, γ, δ.

We assume that the gable is convex. Let {u0
i }ni=1 be vertices of one gable oriented counter

clockwise and let {ūi}ni=1 be the vertices of the other gable oriented so that u0
i and ūi are

connected by an edge on the mantle, see Figure 4. Also, let u0
0 = u0

n and u0
n+1 = u0

1. To each
vertex u0

i there is an inset vector v0
i constrained to lie in the gable. The inset vectors form the

crease pattern. Let αi, βi, γi and δi be the angles around vertex u0
i , i.e.

cosαi =
v0
i · (u0

i−1 − u0
i )

‖v0
i ‖‖u0

i−1 − u0
i ‖

cosβi =
(u0
i−1 − u0

i ) · (u0
i − ū0

i )
‖u0

i−1 − u0
i ‖‖u0

i − ū0
i )‖

cos γi =
(u0
i − ū0

i ) · (u0
i+1 − u0

i )
‖u0

i − ū0
i ‖‖u0

i+1 − u0
i ‖

cos δi =
(u0
i+1 − u0

i ) · v0
i

‖u0
i+1 − u0

i ‖‖v0
i ‖

Each inset vector v0
i is constructed such that

(1) αi + βi = γi + δi.

Let the point of intersection of a pair of inset vectors be w0
i = u0

i + siv
0
i = u0

i+1 + si+1v
0
i+1, with

si, si+1 ≥ 0. Also, let w̄0
i be the orthogonal projection of w0

i onto the line segment (u0
i , u

0
i+1),

and let h0
i = ‖w0

i − w̄0
i ‖. To the left in Figure 5, the distance h is marked with a dashed line.

The algorithm for computing the crease pattern, which we call the Skew Skeleton, terminates
in a finite number of steps. In each iteration, a pair of inset vectors intersect, and a new inset
vector is formed. The crease pattern consists of the inset vectors {vki }, and a set of additional
creases. If a pair of inset vectors intersect, a crease is drawn from the point of intersection to
the edge of the gable. The direction of the crease must be such that the angles around the
intersection of the crease and the edge of the gable fulfill the equivalent to equation (1). In the
triangle to the left in Figure 3, the bisectors correspond to the inset vectors, and the dashed lines
are the additional creases. In this case, all three inset vectors intersect at one point.

When two inset vectors vki , vki+1 intersect, a new inset vector can be computed by extending
the edges of the gable, see Figure 6.
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Figure 5. The arrows are the inset vectors. The left figure shows the first
intersection, and the right shows the second intersection. The distance h is
shown as a dashed line.

When only two inset vectors remains, a crease is drawn to connect them.
The crease pattern is computed identically on both gables. For each pair of additional creases,

one on each gable, a crease is drawn over the mantle to connect the pair.
Algorithm Skew Skeleton
Input: Vertices {u0

i }ni=1 and {ūi}ni=1.
Output: List of creases C.

Set C = ∅.
for k = 0, . . . , n− 3

for i = 1, . . . , n− k
Compute inset vector vki .
Compute distance hki from the point of intersection

line segment (edge of gable).
end
j = argmini {hki }.
Compute lengths sj , sj+1 for intersection of vkj and vkj+1.
Set uk+1

j = wkj = ukj + sjv
k
j .

Add creases (ukj , w
k
j ) and (ukj+1, w

k
j ) to C.

Add crease (w̄kj , w
k
j ) to C.

Set uk+1
l = ukl for l 6= {j, j + 1}.

Renumber the nodes uk+1
l , l = 1, . . . , n− k.

end
Add crease (un−1

1 , un−1
2 ) to C.

It must be noted that the use of the distance h to determine which pair of inset vectors
intersect is not entirely satisfactory. In general the inset vectors vki should be extended as far as
possible before they intersect any other inset vector vli, l ≥ k. However, since all the other inset
vectors depend on which inset vectors are joined previously, this forms a rather tricky criterion.
The algorithm Skew Skeleton does a good job in most cases.

We have assumed that the gable is convex. If this is not the case, a technique called slicing
can be used. Slicing can split the gables into convex parts, and we can treat each part separately.
Slicing will add additional creases along the slice, which may be beneficial if the computed crease
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pattern is supposed to approximate a “physical” one which has a crease in that position. If
slicing is used, the Skew Skeleton algorithm is applied to each part of the gable.
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A B

C D

Figure 6. The figure shows the process of joining inset vectors in the algorithm
for computing the crease pattern. A: The arrows are the inset vectors. One for
each vertex. Their directions depend on the geometry of the polyhedron (not
just the polygonal face). B: Two inset vectors meet before the others. C: A
new inset vector is formed from the two joined inset vectors. D: The process of
joining inset vectors are repeated, this time with one inset vector less.

3. Folding

Given a crease pattern for the polyhedron, the folding problem is only partially solved. To
actually compute the geometry of the flat folded airbag, we need an algorithm which folds the
object according to the crease pattern.

For airbags, there are various alternatives for simulating the folding process. This is specially
due to the fact that the problem is artificial in the sense that it needs not be realistic, e.g., there
is no need to introduce the concept of time. The objective is to create a flat geometry which
is physically possible, not to fold it in a realistic way, although those two objectives may be
coupled.

Our algorithm for folding the polyhedron is based on solving an optimization problem. A
program is formulated such that the optimal solution represents a flat geometry. The target
function, to be minimized, is a sum of rotational spring potentials, one spring over each crease.
The minimal value of a spring potential is found when a fold is completed. The constraints are
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formulated in order to conserve a physically correct representation of the polyhedron. This means
conserving the shape and area and also avoiding self-intersections of the faces of the polyhedron.

To arrive at a suitable model, we examine the problem stepwise through a couple of examples.
Each one is designed to present the problems and possibilities with the optimization approach.

3.1. Example 1. In a first example, we want to simulate the folding action without an unnec-
essarily complex model. We consider an open part of a box involving only a few creases. The
creases are not generated using the crease algorithm described previously.

Physically, we know an optimum exists, and we can also imagine how to fold it. The object
consists of 7 connected patches with n = 11 vertices, see Figure 7. The target function is the sum

Figure 7. The object in Example 1 from two view points. The object is an
open part of a box. The creases are marked with thick lines.

of nc = 7 artificial rotational spring potentials, one over each crease. They are computed using
the scalar product of the (normalized) normals n1

i , n
2
i of the two neighboring patches joined by

a crease i = 1, . . . , nc. The scalar product is 1 when the two patches are parallel, and −1 when
the fold is completed.

The constraints are chosen to conserve the edge lengths li of the edges i = 1, . . . , ne, where
ne = 17. The vertices of edge i are denoted x1

i and x2
i . Let x = (x1

x, x
1
y, x

1
z, . . . , x

n
x , x

n
y , x

n
z ) store

the coordinates of the vertices. The optimization problem can be formulated as,

min
x
f(x) =

nc∑

i=1

n1
i · n2

i

subject to ‖x1
i − x2

i ‖22 − l2i = 0, i = 1, . . . , ne,

(2)

where f : R3n → R. The optimization problem is solved using the subroutine fmincon from
the Matlab Optimization Toolbox [12]. It is an implementation of a medium-scale SQP method
which maintains a dense quasi-Newton approximation of the Hessian. Figure 8 shows a few
iteration snapshots.

The optimization subroutine terminated after 25 iterations. The minimum of the target
function is f∗ = −7. In Figure 9 the difference between the function value and the optimal value
is plotted for each iteration.
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Figure 8. A folding of Example 1 simulated by solving an optimization pro-
gram. From upper left to right: iteration 0, iteration 1, iteration 2, iteration 3,
iteration 4 and iteration 20.

The example shows that a target function based on the scalar products of the normals for
each crease succeeds in executing the folds at least in this example. This indicates that it could
be a possible choice for the application of airbag folding.
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Figure 9. The difference between the value of the current iterate f(x) and the
optimal value f∗ from Example 1.

3.2. Example 2. In a second example, again a box is to be folded. This will take us closer
to the actual application, airbag folding. The crease pattern is computed using the algorithm
discussed in the previous section. The first example demonstrated the use of a rotational spring
potential as the driving mechanism for the folding. This time we are interested in other practical
considerations. For one thing, we are now folding a complete object, in the sense that all
creases are connected, and we have no “free end”. Also, for a realistic application, we want to
fold the object without any surface penetration. This example does not consider any contact
checking, but we have prepared for this by using triangulated surfaces. Dividing the surfaces of
the polyhedron into smaller triangles will enable a more accurate contact checking and also a
more flexible folding process. Surface intersection will most definitely obstruct the folding, and
therefore it is important that the surface is allowed to be somewhat flexible.

This example also uses the triangles to define the surface area constraint.
The crease pattern consists of nC = 32 creases. It splits the faces of the box into smaller

polygons, called patches, see Figure 10.

Figure 10. The box in Example 2. The crease pattern consists of 32 creases.
The polygons are called patches.
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Each patch is triangulated. The resulting optimization program is based on (2), with the
modification that the normal is computed as the average of the normals of the triangles of the
patch. Some of the nodes in the mesh are fixed. As in Example 1, let the coordinates of the
vertices of the mesh {xi}ni=1 be stored in x = (x1

x, x
1
y, x

1
z, . . . , x

n
x , x

n
y , x

n
z ). Let x1

i and x2
i be the

vertices of edge i, i = 1, . . . , ne. Then the optimization problem is

min
x
f(x) =

nC∑

i=1

ai n
1
i · n2

i

subject to hi(x) = ‖x1
i − x2

i ‖22 − l2i = 0, i = 1, . . . , ne
xj = 0, j ∈ J.

(3)

The last constraint fixes a set J of node coordinates: node 1 is fixed to the origin, node 19 is fixed
to the xz-plane, and node 41 is fixed along the x-axis, see Figure 11. This will fix a reference
position for the box, and will not interfere with the folding. The constant ai is equal to 1 or −1.
It is used to control the individual creases.

Figure 11. The meshed box in folding Example 2. The nodes 1, 19, and 41 are marked.

After 97 iterations the optimization routine fmincon stopped when the the number of function
evaluations exceeded a given threshold.

A completely folded box should have an optimal value f∗ = −32. In Figure 13, the function
value is plotted for each iteration. As is shown, most of the progress is halted after just 3
iterations. In Figure 12, the meshed box is shown after 3 iterations and 97 iterations. A reason
for the slow progress may be found in the properties of the Jacobian H of the constraints. The
Jacobian for this example is a square matrix of size 138. The quotient of the smallest and the
largest singular values of H is

σmin(H)
σmax(H)

≈ 2.20× 10−3,

indicating it is non-singular. Since the SQP-method in fmincon uses H to find a direction p
such that Hp = 0, naturally the iteration progress is slow. This example was constructed, but it
still shows that this problem can occur and must be dealt with. A conclusion drawn from this,
is that it may be better to preserve the edge lengths by including the constraints as penalties,
instead of regular equality constraints.
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Figure 12. The meshed box in folding Example 2. To the left the box after 3
iterations using fmincon, and to the right the box after 97 iterations.
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Figure 13. The function value progress for Folding example 2.

3.3. Folding Model. With motivation drawn from previous examples, we will formulate an
optimization problem which will be used for folding the polyhedral airbags. One issue not
addressed before is the problem of surface penetration. Most contact checking routines only
report if and where a contact has occurred. In an optimization environment, such a constraint
works poorly, since it is not continuous. Instead, we seek an alternative continuous constraint.
One possibility is to check the distance to contact, and then require positive distance. A function
reporting also negative “distances” is preferred. It indicates how far the penetration has gone.
We construct this by using tetrahedra to fill the interior of the polyhedron, and then check that
all surface points are outside of all the tetrahedra (except the ones it belongs to).

The crease pattern over a polyhedron induces a subdivision of its surface of polygons called
patches. In addition, the patches are triangulated, and the interior of the polyhedron is meshed
with tetrahedra. Let the nodes of the mesh be {xi}ni=1, and let the indices of the surface nodes
be IS . Let the tetrahedra be {Ki}nKi=1 and set IK = {1, . . . , nK}. Let the four indices of the nodes
of tetrahedron k be Vk(i), i = 1, . . . , 4. The edges of the triangular faces are denoted {Ei}nEi=1,
and the indices of the two nodes of edge e are We(i), i = 1, 2.
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Denote the creases {Ci}nCi=1. The spring potential over each crease Ci is computed using the
scalar product of the normalized normals, n1

i ,n
2
i , of the two neighboring patches. The normals

point outward from the polyhedron.
The folding process of a polyhedron with n nodes (surface and interior mesh nodes) is formu-

lated as the following nonlinear program with f : R3n → R,

min
x
f(x)(4)

f(x) = f1(x) + f2(x) + f3(x)

= km

nK∑

k=1




4∑

1≤i<j≤4

‖xVk(i) − xVk(j)‖ − dVk(i),Vk(j)




2

+
nC∑

i=1

ai n
1
i · n2

i + kp

nE∑

i=1

(
‖xWi(1) − xWi(2)‖ − lWi

)2

,

subject to

vol(Ki) ≥ ε1, i = 1, . . . , nK ,

dist(xi,Kj) ≥ ε2, i ∈ IS , j ∈ IK \ pi,
where dij is the original distance between node xi and xj , li is the original length of edge i and
km, kp are penalty parameters. The constant ai is equal to 1 or −1. The first constraint function,
vol(Ki), is the signed volume of the tetrahedron Ki. The second constraint, dist(xi,Kj), is the
distance from a surface node xi to a tetrahedron Kj , and pi are the tetrahedron indices connected
to node xi. Finally, ε1 and ε2 are small positive constants.

The target function f is composed of three parts: f1 is a penalty function which strives to
keep the tetrahedral mesh as uniform as possible, f2 is the virtual spring potential which drives
the folding, and f3 is a penalty function which keeps the edges of the triangles stiff. The last
one is used to maintain the shape and surface area of the patches.

4. Numerical results

The purpose of this section is to establish some numerical results concerning the folding
mechanism. Before applying the folding to airbags, we want to investigate the effect of different
parameters as well as different crease patterns to the folding performance.

The crease patterns are computed using a Matlab GUI described in the next section. The
mesh was created using TetGen1 [17]. The computation time for computing the crease pattern
is in seconds.

The optimization problem was solved using an SQP algorithm described in [4]. If not stated
otherwise, the following parameters are used in the folding, see (4): km = 10−6, ε1 = 10−8, and
ε2 = 0. If the distance between a node and a tetrahedron is less than 10−2, the pair is included
as a constraint for the QP.

Since there are no guarantees that the optimization routine will terminate at a global minimum
for these folding problems it might be questionable to draw conclusions about the foldability of
a particular model. The optimization routine is a local method, which means that it does not
actively tries to find a global minimum, only a local one. However, when the optimization
terminates without finding a minimum this is (if not stated otherwise) due to the fact that no

1The command line interface was used with the parameters ’qMa0.1C’. The maximum size of the tetrahedra
were constrained to be less than 0.1.
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descent direction is found. This indicates that it cannot find a possible way through, without
severely violating feasibility. The conclusion that we draw from this is that we cannot find a
continuous map from the unfolded object to the flat folded object.

4.1. Edge Penalty. In a first setup, the folding algorithm was applied to a 4× 3× 2 box, with
a crease pattern identical to Example 2. The data for the mesh output is shown in Table 1.

Table 1. The mesh statistics for the box.

Nodes Tetrahedra Faces Creases
159 510 260 32

Different values of the penalty parameter kp for the edge lengths are compared to the number
of iterations required for folding. Also, the surface area of the flat object were compared to the
initial surface area. The result is shown in Figure 14 and Table 2. The optimization routine
stopped if the objective value was within 0.1 of the optimal value f∗ = −32. N/A indicates that
the optimization routine did not converge.
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Figure 14. Iteration progress for different values of the penalty parameter kp,
see (4).

Table 2. The table shows the number of iterations required to fold the box for
different values of the penalty parameter kp. Also, the relative change in surface
area is reported.

kp No. Iterations |A−A0|/A0

1 22 4× 10−3

5 34 1× 10−3

10 48 9× 10−4

50 83 7× 10−4

100 145 2× 10−4

150 N/A N/A

The results indicate that there may be an upper limit to the value of kp for which a complete
fold is attained. In contrast, a low value of kp will result in greater area loss.

4.2. Skewness. In this setup, the box from the previous subsection was tilted symmetrically
such that the gables become skew. We let the parameter α denote the skewness of the polyhedron,
see Figure 4.2.

The polyhedron is a quasi-cylindrical polyhedron with quadrilateral gables, and the crease
pattern algorithm described previously is applicable. This numerical test shows the performance
of the folding algorithm as a function of the skewness angle. Since a change of geometry will
result in a different mesh, the effect of a change in the skewness angle cannot be fully isolated
when it comes to the folding performance.
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α

Figure 15. The titled box with a skewness angle α. The base of the box is still
4× 3. The dotted lines are 2 units long. The gables are the right and left face.

The skewness angle α and the number of iterations required are displayed in the Table 3. As
before, N/A means that the optimization routine did not converge.

Table 3. The table shows the number of iterations required for folding depend-
ing on the skewness angle. Also, the mesh statistics are shown.

Skewness Angle (o) Nodes Tetrahedra Faces No. Iterations
0 159 510 260 48
10 257 761 442 60
20 199 660 324 56
30 231 755 374 59
40 238 792 382 N/A
60 262 875 424 N/A

The conclusions drawn here is that our folding method is not well suited to handle very skew
objects. The crease pattern is correct, but the poor performance is probably due to the mesh
quality. For large values of α, some elements in the mesh are proportionally small and may
obstruct the folding.

4.3. Crease Pattern. In this subsection, we study the effect of different crease patterns to a
particular model A. The model is quasi-cylindrical with gables consisting of 8 vertices. Four
different crease patterns are examined, see Figure 16. They are created using non-crossing
diagonals which split the gables into sub-polygons. The edge penalty parameter was set to
default, kp = 10.

The result of the folding is shown in Table 4. For each crease pattern the mesh statistics
and the number of creases are compared to the number of iterations for convergence. Also, the
relative difference in area between the initial unfolded model and the flat model is reported.

It is difficult to draw any conclusion of the impact of using different crease patterns for the same
model. In this test, it would appear that it has no significant effect on the folding performance.

5. Application to airbag folding

In the previous section, some of the properties of the folding algorithm were tested. We
are now interested in examining its application to airbag folding, since this is our objective for
developing algorithms for crease patterns and folding.
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Figure 16. Model A with different crease patterns. Upper left is A1 (crease
pattern number 1), upper right is A2, lower left is A3 and lower right is A4.

Table 4. The table shows the number of iterations required for the different
crease patterns. Also, the mesh statistics as well as the area loss is shown.

Crease pattern No. Nodes Tetrahedra Faces Creases No. Iterations |A−A0|/A0

1 496 2003 646 80 108 7.1× 10−4

2 627 2422 870 84 103 6.6× 10−5

3 579 2223 804 88 93 1.2× 10−3

4 988 3561 1520 100 114 2.2× 10−4

The airbag model which is considered is a three-dimensional passenger airbag provided by
Autoliv Research. It has nearly the shape of a quasi-cylindrical polyhedron, although its surface
is more curved. The geometry of the airbag is described in CAD-format, and therefore the
first step is to acquire a quasi-cylindrical approximation. It is difficult to list the properties the
approximation must have in order to be a good approximation. Two simple measures are surface
area and “inflated” volume. However these do not describe the shape of the airbag precisely. In
our case, an approximation was made manually, so that the result was satisfactory when it comes
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to the shape. The area and volume were measured: the approximation differed about 0.5% in
area and volume. The polyhedron approximation with the crease pattern that was used can be
found in Figure 17.

Figure 17. Polyhedral approximation of an airbag model together with a com-
puted crease pattern.

Slicing was used twice to create the crease pattern. Two upper “bumps” were sliced, creating
a partition of the gables into three parts. The crease pattern was computed on each part. The
airbag geometry is quasi-cylindrical, and the upper part is wider than the lower part, which
creates a skewness that was discussed in the previous section.

In production, the airbag is flattened in a simple manner. The airbag is just laid out flat,
and stretched in some direction. To resemble this flattening, we did not use any forced creases
(besides the two that split the gables into convex parts).

A few iteration snapshots of the airbag folding are shown in Figure 18. The end result was
acquired after about 200 iterations. The surface area of the flat folded polyhedron was found to
be within 0.5% of the surface area of the unfolded polyhedron.
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Figure 18. The figures show iteration snapshots from the folding of the poly-
hedron approximation from Figure 17. The upper left shows the unfolded poly-
hedron, the upper right: 40 iterations, the lower left: 60 iterations, and the
lower right: 200 iterations.

As an effect of contact prevention, the number of constraints for each subproblem (QP) in the
optimization routine increases, see Figure 19.

6. Software

Both the crease pattern generation and folding procedure are implemented in software. The
subroutines for computing the crease pattern are written in Matlab. They are organized around
a Graphical User Interface (GUI), see Figure 20, which is also capable of displaying the folding
result and exporting files in LS-DYNA format.

The triangular and tetrahedral mesh are generated using TetGen [17].
The optimization method is described in [4]. It is implemented in the program foldopt and

written in FORTRAN 90. All the linear algebra is performed using high performance BLAS2

and LAPACK3 for efficiency. In particular, ACML4 has been used. The solution of the augmented

2Basic Linear Algebra Subroutines implemented in Fortran 77. See http://www.netlib.org
3Linear Algebra PACKage implemented in Fortran 77. See http://www.netlib.org.
4AMD Core Math Library. See http://developer.amd.com/acml.aspx
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Figure 19. The number of constraints included in the optimization subproblem
for each iteration.

Figure 20. Graphical User Interface.

system is obtained using a shared-memory multiprocessing parallel direct sparse solver PARDISO
3.0 [18, 15, 16, 14].
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The optimization routine foldopt is shared-memory parallel, using OpenMP5 directives. Finite
differences are used to compute the derivatives. Estimations of proper interval lengths can be
found in [7]. Both the computation of the numerical derivatives of the gradient of the target
function and the Jacobian of the constraints are threaded to run in parallel on a shared-memory
processor.

Communication between the Matlab GUI and foldopt is done through the use of ASCII text
files. The output from the GUI and TetGen is sent to foldopt. The files store the mesh, pointers
from creases to adjacent patches, and data indicating if the normals of the adjacent patches should
point in the same or opposite direction. The output, node coordinates and connectivity, from
foldopt can be imported to the GUI and in OpenDX.

In foldopt, all the penalty parameters in (4) are user-settable. Feasibility and progress of
the iteration are used as the termination criteria for the nonlinear program. A maximal number
of iterations can also be set. For each QP, primal and dual feasibility as well as duality gap are
used as termination criteria.
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A LOW-STORAGE SEQUENTIAL QUADRATIC PROGRAMMING METHOD

CHRISTOFFER CROMVIK

Abstract. A Sequential Quadratic Programming method is formulated which only requires
access to the first order derivatives of the objective function and the constraints. It is a low
storage method based on the L-BFGS update of the Hessian. Convergence is proved under
certain assumptions, and some numerical results are provided.

1. Introduction

We consider the nonlinear program of the following form:

min
x

f(x)

subject to h(x) = 0

g(x) ≥ 0,

(1)

where f : Rn → R, h : Rn → Rp and g : Rn → Rm.
The algorithm presented is a Sequential Quadratic Programming (SQP) method designed for

large-scale problems. Several SQP methods with successful implementations have been devel-
oped, but the earliest reference is in the work of Wilson [20] in 1963. Boggs and Tolle [1] provides
a survey of the early and recent developments of various SQP-methods.

SQP has the advantage that only one main optimization problem needs to be solved in contrast
to penalty based algorithms. SQP does not require feasible iteration points which is advantageous
for nonlinear constraints, and the method usually experiences fast convergence near the solution
due to its derivation from Newton’s method. Practically, SQP appear to be particularly favorable
when the constraints are highly nonlinear.

SQP methods have been successfully applied to small and medium scale problems (n < 1000),
however it has not been thoroughly examined for large-scale problems. One of the reasons for
this is that when inequality constraints are present either a direct strategy for determining the
active constraints must be used or a Quadratic Problem (QP) needs to be solved at each major
iteration. The QP is often the most time consuming part of an SQP code.

Early works with SQP methods were developed to use secant updates, e.g., the BFGS-update,
for Hessian approximations. Recent developments though have been targeted to use the exact
Hessian to achieve faster convergence. In some cases the Hessian is available or it can be computed
sufficiently fast by using algorithmic differentiation (AD), see [7].

In the algorithm presented here, we will not use the explicit Hessian. Instead we will use
an approximation using secant-updates. This is justified for large problems where the Hessian
is dense. With an approximation also comes the possibility of using a positive definite matrix.
This will lower the computational burden, since the QP solved at each iteration will be a convex
problem.

2. Algorithm

The SQP method presented in what follows is an inequality constrained QP (IQP) method.
This means that a quadratic subproblem is solved at each major iteration and all the constraints

1
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from (1) are included in the QP. The alternative method to IQP is equality constrained QP
(EQP) method. A QP with only equality constraints is much easier to solve, but it is not clear
how to decide which constraints should be included as equalities at each iteration.

In the following subsections, the SQP method is described. In short, at each iteration a QP is
solved, and the solution of this subproblem will give a step in the primal and the dual variables.
Using a line search, the variables are updated.

2.1. Local SQP. We present a local SQP method where “local” indicates that it requires start-
ing points to be sufficiently close to the minimum to converge. In Subsection 2.4, a merit function
is formulated which enables convergence from remote starting points.

The Lagrangian function for problem (1) is

L(x, λh, λg) = f(x)− λT
hh(x)− λT

g g(x)

where λh ∈ Rp and λg ∈ Rm are the Lagrange multipliers, and h(x) = [h1(x), . . . , hp(x)]T,
g(x) = [g1(x), . . . , gm(x)]T. Let I(x∗) = {j : gj(x∗) = 0} be the set of active (inequality)
constraints at the optimal solution x∗.

Definition 1. Given the optimal point x∗ and the active set I(x∗), the linear independence
constraint qualification (LICQ) holds if the set of active constraint gradients

{∇hi(x∗),∇gj(x∗), i = 1, . . . , p, j ∈ I(x∗)}
is linearly independent.

If LICQ holds at the optimal solution, then the first order necessary optimality conditions,
also known as the KKT-conditions, state that there exists multipliers [λ∗h, λ

∗
g] such that

(2)
∇xL(x∗, λ∗h, λ

∗
g) = 0

(λ∗g)jgj(x
∗) = 0, j = 1, . . . ,m

for an optimal solution x∗. A local Sequential Quadratic Programming method (SQP) can be
derived from Newton’s method applied to the system of equations

(3) F (x, λh, λg) =



∇xL(x, λh, λg)

hi(x)
gj(x)


 = 0

with i = 1, . . . , p, j ∈ I(x∗). Note that, usually, the active constraints at the optimal solution,
I(x∗), are not known.

Let A denote the Jacobian of the active constraints I(x∗), i.e.,

A(x) = [∇hi(x),∇gj(x)]T, i = 1, . . . , p, j ∈ I(x∗).

Also, let
c = [hi(x), gj(x)]T, i = 1, . . . , p, j ∈ I(x∗)

and
λ = [(λh)i, (λg)j ]T, i = 1, . . . , p, j ∈ I(x∗).

Let xk be the solution at iteration k, and Ak = A(xk), ck = c(xk), ∇fk = ∇f(xk). Then, a
Newton direction to (3) with [xk+1, λk+1] = [xk, λk] + [pk, qk] is given by

(4)
[
Wk −AT

k

Ak 0

] [
pk
pλ

]
=

[ −∇fk +ATλk
−ck

]

where Wk = ∇2
xL(xk, λk) is the Hessian of the Lagrangian. Setting λk+1 = λk + qk in equation

(4) gives

(5)
[
Wk −AT

k

Ak 0

] [
pk
λk+1

]
=

[ −∇fk
−ck

]
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The Newton direction is well defined if the Jacobian in (4) (the KKT-matrix) is nonsingular.
This holds if the constraint Jacobian Ak has full row rank, and if pTWkp > 0 for all p 6= 0 such
that Akp = 0.

The solution (pk, λk+1) to equation (5) is equal to the primal and dual optimal solution of the
following Quadratic Problem (QP):

min
p

1
2p

TWkp+∇fT
k p

subject to Akp+ ck = 0
(6)

Instead of estimating the active set I(x∗), we include all the constraints in the QP:

min
p

1
2p

TWkp+∇fT
k p

subject to Hkp+ hk = 0
Gkp+ gk ≥ 0

(7)

where Hk = [∇hT
1 (xk), . . . ,∇hT

p (xk)]T, Gk = [∇gT
1 (xk), . . . ,∇gT

m(xk)]T.
As was mentioned in the introduction, we will use an approximation Bk of the Hessian Wk.

The approximation is constructed from secant updates and it is positive definite.

2.2. Quadratic Problem. In each SQP iteration problem, the QP in (7) is solved. From now
on, we will drop the subscript k, and we will only treat inequality constraints. Setting B = Wk,
d = ∇fk, A = Gk, and b = gk, we get

min
p

1
2p

TBp+ dTp

subject to Ap+ b ≥ 0
(8)

where A ∈ Rm×n, b ∈ Rm. We use a primal-dual interior-point solver to solve (8). Since the
approximated Hessian B is chosen to be positive definite, (8) is a convex program. As with SQP,
the method can be derived from Newton’s method applied to the first order optimality conditions
for (8). Introducing slack variables y = Ax+ b, and Lagrange multipliers λ, the conditions are

B x−AT λ+ d = 0
Ax− y + b = 0

yi λi = 0, i = 1, ...,m
y ≥ 0
λ ≥ 0

(9)

The first equation is for Lagrangian stationarity, the second for primal feasibility, and the third
one for complementarity slackness. The optimality conditions can be formulated as a constrained
nonlinear system of equations

(10) F (x, λ, y) =



B x−AT λ+ d
Ax− y + b
Y Λ e


 = 0, λ, y ≥ 0

where

Λ = diag(λ1, ..., λm), Y = diag(y1, ..., ym), e = [1, ..., 1]T
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The idea behind the primal-dual interior-point algorithm is to solve (10) with an augmented
right hand side. Instead of solving F = 0, the solution is obtained by solving

(11) F (xτ , λτ , yτ ) =




0
0
τ e


 , λτ , yτ > 0

where τ ≥ 0. The solution (xτ , λτ , yτ ) is said to be on a central path. When τ → 0, com-
plementarity will hold for the solution, and it will be optimum. Let µ be a measure of the
complementarity condition (yiλi = 0) in (9),

µ =
yTλ

m

and introduce σ ∈ (0, 1), such that τ = σµ. The parameter σ is called a centering parameter.
At each iteration, we set the right hand side set to

(12) F =




0
0

σ µ e


 ,

and solve the system using a modification of Newton’s method. The Newton step is found by
solving the system of equations

(13)



B −AT 0
A 0 −I
0 Y Λ







∆x
∆λ
∆y


 =



−rd
−rb
−rσ




with

(14) rd = B x−AT λ+ d, rb = Ax− y + b, rσ = ΛY e− σ µ e.
If σ = 1, the step is called centering, because if (12) is solved exactly, λiyi = µ. When σ → 0,
the iterates are forced along a path to optimality. The next iterate is found by a line search

(15) (xk+1, λk+1, yk+1) = (xk, λk, yk) + θk (∆xk,∆λk,∆yk)

with θk chosen such that the iterates remain in the interior of the domain, i.e., λk, yk > 0.
The following theorem shows convergence under the very strong assumption that the step

length θk is bounded from below. The proof is based on the proof for linear problems, see [18].

Theorem 2.1. Suppose there is a real number t > 0 and an integer K such that for all k ≤ K,

t ≤ θk ≤ 1

Then after k ≤ K iterations, the following holds:

‖rkd‖ ≤ (1− t)k‖r0
d‖,

‖rkb ‖ ≤ (1− t)k‖r0
b‖,

γk ≤ (1− t̄)kγ0

where

γk = (λk)Tyk

t̄ = (1− σ + σt)t ≤ 1
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Proof. From (14), (15), and (13) we have

rk+1
d = Bxk+1 −ATλk+1 + d

= Bxk −ATλk + d+ θk(B∆xk −AT∆λk)

= rkd − θkrkd = (1− θk)rkd
rk+1
b = Axk+1 − yk+1 − b

= Axk − yk − b+ θk(A∆xk −∆yk) = (1− θ)rkb
Also

γk+1 = (λk + θk∆λk)T(yk + θ∆yk)

= (λk)Tyk + θk((λk)T∆yk + (∆λk)Tyk) + (θk)2(∆λk)T∆yk

Multiplying the third equation in (13) by eT, we get

(λk)T∆yk + (∆λk)Tyk = σµm− (λk)Tyk

and from (13) and (14),

(∆λk)T∆yk = (∆λk)T(Λk)−1(−rkσ − Y k∆λk)

= (∆λk)T(Λk)−1(−ΛkY ke+ σµe− Y kλk)

= (∆λk)TY ke+ σµm− (∆λk)T(Λk)−1Y k∆λk

= σµm− 2(∆λk)T(Λk)−1Y k∆λk ≤ σµm
where the last inequality follows since yk and λk are positive. Summing up

γk+1 = (λk)Tyk + θ(σµm− λk)Tyk + (θk)2σµm = (1− (1− σ + σθk)θk)γk

Using the bound on θk, we get

‖rkd‖ ≤(1− t)‖rk−1
d ‖ ≤ · · · ≤ (1− t)k‖r0

d‖
‖rkb ‖ ≤(1− t)‖rk−1

b ‖ ≤ · · · ≤ (1− t)k‖r0
b‖

γk ≤(1− t̂)γk−1 ≤ · · · ≤ (1− t̂)kγ0

¤

To accelerate convergence, we use an idea taken from [12], where an algorithm for solving LPs
is formulated. It is based on a predictor-corrector step. At each iteration, two steps are carried
out, instead of just the one for (13): one predictor step which tries to reduce the complementarity
by setting σ low and one corrector step which moves to the center of the domain by setting σ
high. The reason for using a corrector step is that the next iterate will be at a more favorable
position for the next iteration. We want µ → 0, however if λiyi = 0 for some i, this might
interfere with the progress in the next iteration.

The predictor step is computed by setting σ = 0 in (13),

rσ = ΛY e

The step length parameter θp is chosen such that λ, y > 0. A measure of the complementarity
condition after the predictor step is

µp = (λ+ θp∆λ)T (y + θp∆y)/m
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If this value is low compared to µ, centering is hardly needed and hence σ should be set small.
Vice versa, if µp is not low compared to µ, σ is set high, and a centering step is taken. For
example the choice used in [12]

σ =
(
µp
µ

)3

has the desired effect.
A corrector step is obtained by using the information from the predictor step and expanding

the expression for µ which gives rσ = ∆Y∆Λ e.
A complete step is obtained by combining the predictor, the corrector and the centering step

and solve

(16)



B −AT 0
A 0 −I
0 Y Λ







∆x
∆λ
∆y


 =



−rd
−rb
−rσ




with rσ = −Y Λ e+ ∆Y∆Λ e+ σµe.
The matrix in the linear system (16) can be reduced to a 2 by 2 block matrix C by eliminating

∆y. The resulting system is called the augmented system,

(17)
[ −B AT

A Λ−1Y

] [
∆x
∆λ

]
=

[
rd

−rb − Λ−1rσ

]

with ∆y = Λ−1 (−rσ − Y∆λ). The system can be reduced one step further by eliminating ∆λ,

(18) (B +ATΛY −1A) ∆x = −rd +ATΛY −1 (−rb − Λ−1rσ)

with ∆λ = ΛY −1 (−rb − Λ−1rσ − A∆x). Although (18) is of smaller size than (17) and also
positive definite, (17) may be preferable if sparsity is exploited. Adding the matrix ATΛY −1A
to the Hessian could destroy the sparse structure. The matrix in the augmented system, C, is
symmetric and also quasi-definite [17]. A quasi-definite matrix T can be written as

(19) T =
[ −E V T

V F

]

where E and F are positive definite matrices. A Cholesky factorization T = LDLT could be used
for this system since T is symmetric. The matrix L is lower triangular, and D is block-diagonal,
with blocks of size 1 or 2. Since both E and D are positive definite, no pivoting is required for
stability during the factorization phase. This means that we could do a static reordering before
the factorization phase to reduce the fill-in in L.

2.3. Inconsistent QP. Even for well conditioned problems, the QP in (7) can be infeasible.
This is due to the linearization of the constraints. A step can still be computed by solving the
augmented QP

min
p,t

1
2
pTBkp+∇fkp+Mt2

subject to Hkp+ hk = 0
Gkp+ gk + te ≥ 0

(20)

where t ∈ R is an additional variable, and M is a big number.
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2.4. Merit Function. The SQP method formulated previously is only locally convergent. When
the starting point is far from the solution, a merit function can be used. It should determine
if a potential next iterate is acceptable given the objective function and the constraints. We
use a non-differentiable l1-penalty function. It is an exact penalty function, meaning that for a
sufficiently large penalty parameter ρ ≥ ρ̄, an optimal point of the penalty function is equal to
an optimal point of the constrained problem. The l1-penalty function for the problem with both
equality and inequality constraints is

Φ1(x, ρ) = f(x) + ρ

(
p∑

i=1

|hi(x)| −
m∑

i=1

min{0, gj(x)}
)

= f(x) + ρ
(‖h(x)‖1 + ‖g+(x)‖1

)
(21)

Although, the l1- penalty function is not differentiable everywhere, it has a directional derivative,
see, e.g., Boggs [1],

D(Φ1(x, ρ); d) = ∇f(x)Td− ρ (‖h(x)‖1 + ‖g+(x)‖1
)

An Armijo line search criterion together with backtracking is used to determine if the the next
iterate is accepted. The line search may not fulfill Wolfe’s condition, but it can be corrected by
using a damped update of the quasi-Newton update (Damped BFGS), see [14] or [13].

Damped BFGS

Let sk = xk+1 − xk, yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1)
Set rk = θkyk + (1− θk)Bksk,
where

θk =
{

1 if sT
k yk ≥ 0.2 sT

kBksk
(0.8 sT

kBksk)/(sT
kBksk − sT

k yk) if sT
k yk < 0.2 sT

kBksk
Update Bk using rk instead of yk.

A consequence of using an exact penalty function in a SQP method, is that steps that make
good progress towards the solution may be rejected by the merit function. This phenomenon is
called the Maratos effect, [11]. It can be avoided by using a second order correction step, [4],
which reduces the constraint violation, or a watchdog technique, [3], which accepts some iterates
to increase in the merit function. We use a second order correction step described in [13]. At
each iteration, if the unit step pk is not accepted, a correction wk is added such that

(22) Akwk + c(xk + pk) = 0

where A is the Jacobian of the active constraints c. Since (22) is an under-determined system,
we choose the minimum-norm solution.

2.5. Large-Scale. For problems with a large number of variables or constraints, solving the sys-
tems of equations could be time consuming. If the Hessian of the Lagrangian and the Jacobian
of the constraints are sparse, a linear algebra solver which exploits the structure should be used.
If the Hessian is not sparse, and the problem is large-scale, a low-storage approximation could be
used. A popular method for solving large unconstrained problems is low-storage quasi-Newton
methods, e.g., the limited memory BFGS (L-BFGS) [10]. Instead of forming the Hessian explic-
itly, a small number, r, of secant vectors are stored and used to update the approximation of the
Hessian. However the SQP method needs an explicit expression for the Hessian approximation
in (17).
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It turns out that the L-BFGS update of the Hessian can be written in a compact form [2]. Let
Bk be the approximation of the Hessian of a function f at iteration k. Assuming k ≥ r, then

Bk =B0 +
[
B0Sk Yk

] [
STk B0Sk Lk
LTk −Dk

]−1 [
STk B0

Y Tk

]

=B0 +M B−1MT

(23)

where
Sk =

[
sk−r . . . sk−1

]
, si = xi+1 − xi

Yk =
[
yk−r . . . yk−1

]
, yi = ∇f(xi+1)−∇f(xi)

(Lk)ij =
{
sTk−m+i−1yk−m+j−1, i > j
0

and B0 is the initial Hessian approximation. Usually, B0 = ξI with some positive constant ξ. The
solution to the augmented system can be obtained by using the Sherman-Morrison-Woodbury
formula for the inverse

C−1 =
( [ −ξI AT

A Λ−1Y

]

︸ ︷︷ ︸
=K

+
[
M
0

]

︸ ︷︷ ︸
=U

[
B−1MT 0

]
︸ ︷︷ ︸

V T

)−1

=K−1 −K−1U(I + V TK−1U)−1V TK−1

(24)

If K = LDLT is available, the factorization of (I+V TK−1U) is inexpensive, since it is a 2r×2r
matrix. The main cost is factorizing K which is now sparse given sparse constraints. This idea
is used in the interior-point algorithm found in [19].

For problems with very many inequality constraints the algorithm could be computationally
expensive even with a sparse Hessian and sparse constraints. However, since the SQP method
linearizes the problem and solves a QP at each iteration, only the near active constraints at the
current iterate need to be chosen to be included in the QP instead of all constraints. This avoids
a potentially expensive QP and reduces the number of evaluations of the constraints.
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2.6. Algorithm. Summing up, we formulate the SQP algorithm below.

L-BFGS SQP
Set η ∈ (0, 0.5). Choose initial point x0.
Evaluate f0, ∇f0, g0, G0.
Initialize B0 = I.
for k = 0, 1, . . .

if termination criterion fulfilled
stop

Compute pk and (λk+1, µk+1) by solving (7).
Set ρk such that pk is a descent direction for Φ1.
if Φ1(xk + pk, ρk) ≤ Φ1(xk, ρk) + ηDΦ1(xk, ρk)

xk+1 = xk + pk
else

Compute second order correction wk using (22).
if Φ1(xk + pk + wk, ρk) ≤ Φ1(xk, ρk) + ηDΦ1(xk, ρk)

xk+1 = xk + pk + wk
else

Set αk = 1.
while Φ1(xk + αkpk, ρk) > Φ1(xk, ρk) + ηαkDΦ1(xk, ρk)

Set αk = αk/2
end
Set xk+1 = xk + αkpk

Compute the Jacobian of the active constraints Gk+1 at xk+1.
Add sk = αkpk and yk = ∇xL(xk+1, λk+1, µk+1)−∇xL(xk, λk+1, µk+1)
to the damped L-BFGS representation. Bk → Bk+1.

end

2.7. Convergence. For a full BFGS approximation with a damped update we can get super-
linear convergence, see Powell [16]. For L-BFGS with a damped update we would expect linear
convergence, as is the case for unconstrained problems. A proof of this can be constructed from
Boggs [1] and Kelley [9].

For the remainder we make the following assumptions.

Assumption 1.
(a) The sequence {Bk} ∈ Rn×n is uniformly positive definite. In particular there exists a β1

such that pTBkp ≥ β1‖p‖2 for all k.
(b) The sequence {Bk} is uniformly bounded, i.e. there exists a β2 such that ‖Bk‖ ≤ β2.
(c) The sequence {B−1

k } exists and is uniformly bounded, i.e., there exists a β3 such that
‖B−1

k ‖ ≤ β3.
(d) The constraints are of equality type ck ∈ Rm with Jacobian Ak ∈ Rn×m.
(e) The Jacobian of the constraints Ak has linearly independent rows.

Under the assumptions presented, the solution to (4) with Wk replaced by an approximation
Bk is

(25) qk =
[
AkB

−1
k AT

k

]−1 [
ck −AkB−1

k ∇xL(xk, λk)
]

and

(26) pk = −B−1
k ∇xL(xk, λk+1)
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The optimal dual variables λ∗ are given by

(27) λ∗ = − [
A∗K(A∗)T

]−1
A∗K∇f∗

for any nonsingular matrix K that is positive definite on the null space of A∗. After a step qk,
the dual iterate is

λk+1 =
[
AkB

−1
k AT

k

]−1 [
ck −AkB−1

k ∇fk
]

=T (xk, Bk)
(28)

With K = B−1
k in (27) gives

(29) λ∗ = T (x∗, Bk)

and therefore
λk+1 − λ∗ =T (xk, Bk)− T (x∗, Bk)

=
[
AkB

−1
k AT

k

]−1
AkB

−1
k (Bk − L∗) (xk − x∗) + wk

(30)

where wk ≤ κ‖xk − x∗‖2 for a constant κ. For the convergence in x we have

xk+1 − x∗ =xk − x∗ −B−1
k [∇xL(xk, λk+1)−∇xL(x∗, λ∗)]

=B−1
k

[
(Bk − L∗)(xk − x∗)−AT

k (λk+1 − λ∗)
]

+O
(‖xk − x∗‖2

)

=B−1
k Vk(Bk − L∗)(xk − x∗) +O

(‖xk − x∗‖2
)

(31)

where
Vk = I −AT

k

[
AkB

−1
k AT

k

]−1
AT
kB
−1
k

Defining the projection matrix

Pk = I −AT
k

[
AkA

T
k

]−1
Ak

we have
VkPk = Vk

and hence

(32) ‖xk+1 − x∗‖ ≤ ‖B−1
k ‖‖Vk‖‖Pk(Bk − L∗)(xk − x∗)‖+O

(‖xk − x∗‖2
)

For a SQP method with full quasi-Newton updates, this can be used to prove super-linear
convergence. For L-BFGS, we cannot expect super-linear convergence. However the update has
the bounded deterioration property, [6], which can be used to prove linear convergence. The
proof of the bounded deterioration property follows from [9] and [6].

Assumption 2. The Hessian of the Lagrangian L(x∗, λ∗) is positive definite.

Theorem 2.2. Let Assumptions 1 and 2 hold. Let Ek = B−1
k −∇2

xxL
∗ denote the error of the

Hessian approximation and assume ‖E0‖ ≤ δ0. Let ek = xk − x∗ and hk = λk − λ∗. Assume
that no damping is required, i.e., θk = 1 for all k. Also, assume ‖x0 − x∗‖ < δ0. Then

(33) ‖Ek+1‖ ≤ ‖Ek‖+ ρ (‖ek‖+ ‖ek+1‖+ ‖hk+1‖)
where ρ is a small constant. Furthermore there is a γ such that

‖Ek‖ ≤ γ ∀k
and hence the method has linear local convergence.
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Proof. By assumption 2, we can assume ∇2
xxL

∗ = I. Let us first consider the full BFGS
when each update is used in the approximation. Remembering that sk = xk+1 − xk, yk =
∇xL(xk+1, λk+1)−∇xL(xk, λk+1), the BFGS update can be written as

(34) B−1
k+1 =

(
I − sky

T
k

yT
k sk

)
B−1
k

(
I − yks

T
k

yT
k sk

)
+
sks

T
k

yT
k sk

First, yk is

(35) yk =
∫ 1

0

∇2
xxL(xk+tsk, λk+1)sk dt = sk+

∫ 1

0

(∇2
xxL(xk + tsk, λk+1)− I) sk dt = sk+Λ1sk

where

(36) Λ1 =
∫ 1

0

(∇2
xxL(xk + tsk, λk+1)− I) dt

and ‖Λ1‖ ≤ k1(‖ek‖ + ‖ek+1‖ + ‖hk+1‖), where hk+1 = λk+1 − λ∗ and k1 is a constant. Using
this, we get

(37)
sky

T
k

yT
k sk

=
sks

T
k + sk (Λ1sk)T

sT
k sk + (Λ1sk)T

sk
=
sks

T
k

sT
k sk
− Fk

where

Fk =
sks

T
k s

T
kΛ1sk/(sT

k sk)− sksT
kΛ1

sT
k sk + sT

kΛ1sk

and
‖Fk‖ ≤ m1‖Λ1‖ ≤ m1k1 (‖ek‖+ ‖ek+1‖+ ‖hk+1‖)

for a constant m1.
Furthermore

sks
T
k

yT
k sk

=
sk (yk − Λ1sk)T

yT
k sk

=
sky

T
k

yT
k sk
−Gk

where

Gk =
sk (Λ1sk)T

yT
k sk

and
‖Gk‖ ≤ m2‖Λ1‖ ≤ m2k1 (‖ek‖+ ‖ek+1‖+ ‖hk+1‖)

with a constant m2. With wk = sk/‖sk‖, the error in the Hessian can be written as

Ek+1 =B−1
k+1 − I

=
(
I − wkwT

k + Fk
)
B−1
k

(
I − wkwT

k + FT
k

)
+ wkw

T
k − Fk −Gk − I

=
(
I − wkwT

k

)
(Ek + I)

(
I − wkwT

k

)
+ wkw

T
k +Hk − I

=
(
I − wkwT

k

)
Ek

(
I − wkwT

k

)
+Hk

(38)

where
Hk = −Fk −Gk + FkB

−1
k

(
I − wkwT

k + FT
k

)
+

(
I − wkwT

k

)
B−1
k FT

k

We prove the theorem inductively. Assume ‖E0‖ ≤ δ0, ‖e0‖ ≤ δ0, ‖h0‖ ≤ δ0, where δ0 is chosen
small enough such that by (32) and (30),

‖e1‖ ≤ σ‖e0‖
‖h1‖ ≤ σ‖e0‖
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with 0 ≤ σ < 1. Let also

δ0

(
1 +

ρ(1 + 2σ)
1− σ

)
< γ

We consider the first t iterations, where t is the number of pairs of secant vectors stored for the
L-BFGS approximation. In this case the L-BFGS update is the same as the full BFGS, and we
have

‖H0‖ ≤ ρ (‖e0‖+ ‖e1‖+ ‖h1‖)
for a constant ρ, and

‖E1‖ ≤ ‖E0‖+ ρ (‖e1‖+ ‖e0‖+ ‖h1‖)
≤ ‖E0‖+ ρ(1 + 2σ)‖e0‖
≤ δ(1 + ρ(1 + 2σ)) < γ

Now assume ‖Ej−1‖ ≤ γ and

‖ej‖ ≤ σ‖ej−1‖
‖hj‖ ≤ σ‖ej−1‖ ∀j ≤ t

Then
‖Hj−1‖ ≤ ρ (‖ej−1‖+ ‖ej‖+ ‖hj‖)

and
‖Ej‖ ≤ ‖Ej−1‖+ ρ(‖ej‖+ ‖ej−1‖+ ‖hj‖)

≤ ‖Ej−1‖+ ρ(1 + 2σ)‖ej−1‖
≤ ‖Ej−1‖+ ρ(1 + 2σ)σj−1‖e0‖
≤ ‖Ej−1‖+ ρ(1 + 2σ)σj−1δ0

≤ ‖E0‖+ δ0ρ(1 + 2σ)
j∑

i=1

σi−1

≤ δ0
(

1 + ρ(1 + 2σ)
1− σj
1− σ

)
< γ

Next we consider the case of ‖El‖ when l > t. In this case, the Hessian approximation from
L-BFGS is not equal to the full BFGS update. The L-BFGS updates an initial approximation
B0 at each iteration. We assume B0 is constant for all iterations k. The approximation Bk+1

is not only generated from the current Bk, but with secant pairs sj , yj which are generated by
previous approximations Bj , j ≤ k. This means that we have

‖El−j‖ ≤ γ
‖el−j+1‖ ≤ σ‖el−j‖
‖hl−j+1‖ ≤ σ‖el−j‖, j = 1, . . . , t− 1

If we assume that at each iteration, the initial approximation B0 = Bl−t+1 is chosen such that

‖El−t+1‖ ≤ δ0
then the same analysis as for the first t iterations can be applied to prove that

‖El‖ ≤ γ
and

‖El+1‖ ≤ ‖El‖+ ρ (‖el‖+ ‖el+1‖+ ‖hl+1‖)
¤
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Using the merit function, convergence from remote starting points can be shown, see, e.g.,
Boggs [1].

3. Numerical Results

The first set of test problems are taken from the Hock and Schittkowski collection of test
problems [8]. The set contains nonlinear constrained test problems of smaller sizes.

The second set of test problems are taken from the application of airbag folding [5].
The performance of the L-BFGS approximation is compared to full BFGS. The tests should

not be considered as real benchmarks for the software. The problems are small-scale, and the
algorithm was primarily designed for large-scale problems. The full BFGS is expected to perform
better, but the question if L-BFGS is comparable in speed. For larger problems, full BFGS, is
not an option, due to the dense Hessian approximation. The performance of an SQP method
with full BFGS approximation has been evaluated several times, see, e.g., Powell [16]. However,
L-BFGS in the context of SQP, has not been thoroughly tested.

For all test problems, the optimization routine terminates if certain criteria are fulfilled. Fea-
sibility, first order optimality, and descent is checked. When the minimum value is known, it is
also checked.
Test 1. The test problems are taken from the Hock and Schittkowski collection [8]. The
low-storage SQP method is compared to the same method with a full BFGS update and also
compared to fmincon from the MATLAB Optimization Toolbox. The result is shown in Table 1.

Problem n m L-BFGS SQP BFGS SQP fmincon
hs26 3 1 11 15 5
hs100 7 4 35 10 25
hs118 15 60 16 11 13

Table 1. The number of iterations required for the Hock and Schittkowski
collection. n is number of variables, and m is the number of constraints (equality
and inequality). The L-BFGS SQP used 5 secant vectors.

Test 2. The test problems are from the application of folding, see [5]. In short, we are given a
crease pattern over a polyhedron, and we want to fold the polyhedron by minimizing the potential
of the rotational springs. Constraints are set to conserve the edge lengths.

The crease pattern divides the the faces of the polyhedron into smaller polygons, called
patches. Each patch has been triangulated. A rotational spring connected to each crease. Their
potentials are computed using the scalar product of the (normed) normals n1

i , n
2
i of the two

neighboring patches joined by a crease i, i = 1, . . . , nc. The coordinates of the mesh are {xi}ni=1.
Let x1

i and x2
i be the vertices of edge i, i = 1, . . . , ne. Then the optimization problem is:

min
x
f(x) = min

x

nc∑

i=1

n1
i · n2

i

subject to g2i−1(x) = ‖x1
i − x2

i ‖22 ≤ (1 + ε)l2i , i = 1, . . . , ne

g2i(x) = −‖x1
i − x2

i ‖22 ≤ −(1 + ε)l2i , i = 1, . . . , ne.

(39)

where ε > 0 and li is the original length of edge i.
Three folding problems are tested, fold3, fold4, fold5. Table 2 shows a comparison of the

algorithms.
The method used in the subroutine fmincon is similar to the reference method “BFGS SQP”,

but another merit function is used, see [15]. Instead of one penalty parameter a vector is used
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Problem n m L-BFGS 3 SQP L-BFGS 5 SQP L-BFGS 7 SQP BFGS SQP fmincon
fold3 30 64 31 29 28 20 10
fold4 48 104 25 10 10 7 11
fold5 66 144 50 47 61 39 64

Table 2. The number of iterations required for the two folding problems. n is
number of variables, and m is the number of inequality constraints. The number
after L-BFGS is the number of secant vectors.

with one component for each constraint. In practice, this is sometimes preferable, however there
are no convergence proofs for this variant.
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E-mail address: christoffer.cromvik@chalmers.se



AIRBAG FOLDING BASED ON ORIGAMI MATHEMATICS

CHRISTOFFER CROMVIK AND KENNETH ERIKSSON

Abstract. A new algorithm for folding three-dimensional airbags is presented. The method
is based on Origami mathematics combined with nonlinear optimization.

The airbag is folded to fit into its compartment. Simulating an inflation therefore requires
an accurate geometric representation of the folded airbag. However, the geometry is often
specified in the inflated three-dimensional form, and finding a computer model of the folded
airbag is a non-trivial task. The quality of a model is usually measured by the difference in
area between the folded and the inflated airbags.

The method presented here starts by approximating the geometry of the inflated airbag by
a quasi-cylindrical polyhedron. Origami mathematics is used to compute a crease pattern for
folding the polyhedron flat. The crease pattern is computed with the intention of being fairly
simple and to resemble the actual creases on the real airbag.

The computation of the crease pattern is followed by a computation of the folding. This
is based on solving an optimization problem in which the optimum is a flat folded model.
Finally, the flat airbag is further folded or rolled into its final shape (without using Origami).

The method has been successfully applied to various models of passenger airbags, providing
more realistic geometric data for airbag inflation simulations.

1. Introduction

Simulating a crash when the crash test dummy hits the airbag while it is still expanding
remains a challenge to the industry. This situation is called out-of-position (OOP), reflecting
that the airbag was not designed for occupants that are sitting too close or for some other reason
hit the airbag before it is fully inflated.

The difficulty with an OOP situation compared to an in-position situation is that the inflation
of the folded airbag is much more important. It has to be realistically computed, since it affects
the impact of the dummy. Attaining a realistic simulation means starting with a correct geometry
of the folded airbag and simulating the inflation with correct gas dynamics. Several commercial
software packages exist that can simulate the inflation process of an airbag, e.g., the explicit
Finite Element (FE) code LS-DYNA [5].

This work aims at developing an algorithm for computing an accurate geometry of the flat
folded airbag. Different airbags are folded by different methods and with different numbers and
types of foldings. The airbags are often folded by both machines and humans according to a
folding scheme. Still, the creases are not entirely deterministically positioned. It is very difficult
to control the placement of smaller creases. The folding schemes all assume that the airbag lies
flat and stretched in some direction. In this position, different foldings are executed until the
dimension of the folded airbag is small enough so that it fits into the airbag compartment. The
foldings can be a combination of simple folds, but also roll folds.

Some preprocessors to LS-DYNA, e.g., EASi-FOLDER [4] and OASYS-PRIMER [1] contain software
for folding a (nearly) flat FE airbag mesh. They are capable of executing the type of foldings
that are normally used in production on flat airbags, e.g., roll-fold, z-fold. However, they are not
as accurate when folding an airbag in its three dimensional shape to a flat airbag.

Some airbag models have a simple construction, e.g., the driver model which is made of two
circular layers sewn together. It is essentially two-dimensional. Passenger airbags are often more
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complicated. They are made of several layers sewn together in a three dimensional shape, with
no trivial two-dimensional representation. See Figure 1 for an example.

Figure 1. A CAD model of a passenger airbag.

In the present work, the computation of the geometry of the flat folded airbag is organized
into two steps. First a crease pattern is computed on a polyhedral approximation of the airbag.
Second, a nonlinear optimization problem is formed and solved for the purpose of finding the
flat geometry. The accuracy of the computed approximation is measured by comparing its area
to the area of the inflated model.

2. Crease Pattern

A crease pattern is first designed for a tetrahedron. We present a series of proofs for different
types of polyhedra. The proofs are constructive, and their results can be used to design a crease
pattern for our application.

Flat foldability, meaning that the polyhedron can be flattened using a fixed crease pattern,
is achieved by cutting along the crease lines, folding the resulting object, and then gluing the
cut-up faces back according to the correct connections.

Theorem 2.1. The tetrahedron can be folded flat.

Proof. The proof is organized in a sequence of figures shown in Figure 7, each visualizing the
cutting and folding. Consider the tetrahedron with vertices A, B, C, D as in the figure. Cut up
the triangle BCD of the tetrahedron, with straight cuts from a point E on the face, to the three
vertices B, C, D, respectively, as in the figure.

Then open up the tetrahedron by rotating the triangular patches BDE, BCE, and CDE
around the axes BD, BC, and CD, respectively, until these triangles become parts of the three
planes through ABD, ABC, and ACD, respectively, as in the figure.

Cut the quadrilateral surface with vertices A, B, E′, D along a straight cut from E′ to A,
and then rotate the resulting triangular faces ABE′ and AE′D around the axes AB and AD,
respectively, until these faces become parts of the two planes ABC and ACD, respectively, as in
the figure.

We choose the point E such that the edge BE′ after rotation coinsides with BE′′ and DE′ with
DE′′′. The condition for this is that ∠ABD+∠DBE = ∠ABC+∠CBE and ∠ADB+∠BDE =
∠ADC + ∠CDE.
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Using this, we may now (partly) restore the surface of the tetrahedron by joining the surfaces
ABE′′ and ABE′′C along the edge BE′′, and the surfaces ADE′′′ and ADE′′′C along the edge
DE′′′.

Finally we rotate the (partly double layered) surface ADE′′′C around the axis AC until it
coincides with the plane through A,B and C as in the figure. To conclude the proof of the flat
foldability of the tetrahedron we now note that the point E′′′ after rotation coincides with E′′.
We may therefore now completely restore the topology of the original tetrahedron by joining the
edges AE′′ and AE′′′ (after rotation) and the edges CE′′ and CE′′′ (after rotation). ¤

Note that the proof is based on cutting and gluing. It does not reveal if there is a continuous
deformation to a flat shape.

Remark 2.1. Concerning the line AE′ we remark that the angles ∠BAE′ and ∠DAE′ satisfy
∠BAE′ + ∠DAE′ = ∠BAD and ∠BAC − ∠BAE′ = ∠CAD − ∠DAE′, as in the figure, and
are thus independent of the plane BCD. We further note that we may also consider rotating
the triangles BDE, BCE and CDE in the opposite direction, again until they become parts of
the planes ABD, ABC and ACD, respectively, as in figure. We now choose the point E so that
∠ABD−∠DBE = ∠ABC−∠CBE and ∠ADB−∠BDE = ∠ADC−∠CDE. Continuing from
the figure we may then again make a straight cut from E′ to A (partly double layered). Again,
when we now rotate around the axes AB and AD as before the (rotated) point E′ will coincide
with E′′ and E′′′ respectively, and we can partly restore the tetrahedron by joining along the
edges. Finally, after rotation around AC we may completely restore the topology of the surface
of the tetrahedron by joining along the edges. Concerning the crease line from A to E′′ we note
that again the angles ∠BAE′ and ∠DAE′ must satisfy the same equations ∠BAE′ + ∠DAE′ =
∠BAD and ∠BAC − ∠BAE′ = ∠CAD − ∠DAE′ as before and therefore must be the same as
above. We therefore conclude that this crease line is independent of both direction of rotation of
the triangles BCE, BDE and CDE, and of the position and orientation of the plane BCD (as
long as the angles at A are unchanged).

We now proceed by cutting the tetrahedron by a plane, see Figure 2. We call the cut-off
tetrahedron a prism type polyhedron.

Theorem 2.2. The prism type polyhedron can be folded flat.

Proof. Consider a tetrahedron ABCD with the crease pattern from the proof of Theorem 2.1.
Cut the tetrahedron with a plane, see Figure 2. In the cut, insert two additional triangular
surfaces, such that the two cutoff parts are closed, but not separated. The “smaller” cutoff part
is a tetrahedron, and the “bigger” part is a prism type polyhedron. Let the vertices of the smaller
tetrahedron be a, b, c, d, where A = a, b lies on the edge AB, c on AC and d on AD.

Remark 2.1 shows that the crease line from A to E′, see Figure 7, is independent of how
the inserted triangular face of the “smaller” tetrahedron is folded. Let it be folded to the
interior of the “smaller” tetrahedron. This means that a crease pattern can be constructed
which will coincide with the crease pattern of the original tetrahedron, i.e., the crease line which
is constructed by drawing a straight line from a to e′ will coincide with the crease line that was
created from the line segment from A to E′ in the proof of Theorem 2.1.

Now, make an identical copy of the crease pattern on the inserted triangular face belonging to
the prism. Folding the original tetrahedron with its inserted triangular faces is possible by the
construction of the crease pattern. Let the two polyhedra be separated by moving the tetrahedron
in the plane. By the foldability of the tetrahedron, both the smaller tetrahedron and the prism
can be folded flat. ¤

Next, we cut the prism type polyhedron by a plane, see Figure 3. We call the cut-off prism a
box type polyhedron.
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Figure 2. A tetrahedron is cut, and in the cut two additional interior triangular
faces are created. Identical crease patterns are created on both interior faces,
and the tetrahedron is separated into two parts: a smaller tetrahedron and a
prism. The flat foldability of the prism follows from the foldability of the tetra-
hedron.

Theorem 2.3. The box type polyhedron can be folded flat.

Proof. Let the prism from the cut-off tetrahedron, with its crease pattern, be cut by a plane,
see Figure 3. In the cut insert one additional quadrilateral surface which is only connected to
the prism by its four vertices. Along the inserted surface put a crease line γ. Its position is only
determined by the position of the upper and lower face of the prism. When the prism (with its
cut) and the additional inserted surface are folded, there will be a gap along the sides of the
prism, see Figure 4. Let the crease line on the side of the original prism be called ξ. Also, let
the point where the crease γ meets ξ unfolded be called p1, see Figure 4. The gap can be closed
by forming two triangles: from a point p, see Figure 4, somewhere along ξ, to the intersection
where ξ meets the inserted surface p2, to B respectively C.

Note that the lengths Cp1 and Cp2 are the same, as well as the lengths Bp1 and Bp2, and
the length Cp is shared by both the gap and the new triangles. Let C1 and C2 be positioned
according to Figure 4. If the point p is chosen such that ∠C1Cp1 +∠p2Cp = ∠C1CC2 +∠C2Cp,
then the new triangles are an identical match to the gap. By Theorem 2.2, the prism is foldable,
so the full construction is foldable, and since the cut does not influence its foldability, and its
gap is filled, therefore the box type polyhedron is flat foldable. ¤

In the proof of Theorem 2.3, a prism was cut off the polyhedron. The process of cutting off a
prism can be repeated to create other types of polyhedra.

Definition 2.1. A quasi-cylindrical polyhedron is a closed cut-off cylinder with a polygonal
cross-section.

Theorem 2.4. Convex quasi-cylindrical polyhedra are flat foldable.

Proof. This follows by the proof of Theorem 2.3. In each step, cut off a prism from the polyhe-
dron, until the result forms the given shape.
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Figure 3. The prism from Figure 2 is cut, and in the cut, an additional interior
quadrilateral surface is created. The flat foldability of the box type polyhedron
follows from the foldability of the prism and the tetrahedron.

Figure 4. The left figure shows the gap around the inserted additional surface
from the cut. The right figure shows the same object from above.

Airbags are usually quasi-cylindrical. There are cases, e.g. non-convex polyhedra, for which
the technique for generating a crease pattern does not work. These situations might be avoided
by slicing the polyhedron, and computing a crease pattern for each part.

Theorem 2.4 provides an algorithm for designing a crease pattern. Given a quasi-cylindrical
polyhedron, we can extend it gradually using prisms until it reaches the shape of a tetrahedron.
In each step, we apply the theory for flat foldability, creating a working crease pattern.

3. Folding

For airbags, there are various alternatives for simulating the folding process. This is specially
due to the fact that the problem is artificial in the sense that the folding need not be realistic,
e.g., there is no need to introduce the concept of time. The objective is to create a flat geometry
which is physically correct, not to fold it in a realistic way.

Our algorithm for folding the polyhedron is based on solving an optimization problem. A
program is formulated such that the optimal solution represents a flat geometry. The target
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function, to be minimized, is a sum of rotational spring potentials, one spring over each crease.
The minimal value of a spring potential is found when a fold is completed. The constraints
are formulated in order to conserve a physically correct representation of the polyhedron, which
means conserving the area and avoiding any self-intersections of the faces of the polyhedron.

The crease pattern over a polyhedron induces a subdivision of polygons called patches. In
addition, the patches are triangulated, and the interior of the polyhedron is meshed with tetra-
hedra. Let the nodes of the mesh be {xi}ni=1, and let the indices of the surface nodes be IS .
Let the tetrahedra be {Ki}nKi=1 and set IK = {1, . . . , nK}. Let the four indices of the nodes of
tetrahedron k be Vk(i), i = 1, . . . , 4. The edges of the triangular faces are denoted {Ei}nEi=1, and
the indices of the two nodes of edge e are We(i), i = 1, 2.

Denote the creases {Ci}nCi=1. The spring potential over each crease Ci is computed using
the scalar product of the normals, n1

i ,n
2
i , of the two neighbouring patches. The normals point

outward from the polyhedron, and the scalar product is 1 when the two patches are parallel, and
−1 when the fold is completed.

The folding process of a polyhedron with n nodes (surface and interior mesh nodes) is formu-
lated as the following nonlinear program with f : R3n → R,

min
x
f(x)

f(x) = f1(x) + f2(x) + f3(x)

= km

nK∑

k=1




4∑

i=1

4∑

j=i+1

‖xVk(i) − xVk(j)‖ − dVk(i),Vk(j)




2

+
nC∑

i=1

n1
i · n2

i + kp

nE∑

i=1

(
‖xWi(1) − xWi(2)‖ − lWi

)2

,

subject to

vol(Ki) ≥ ε1, i = 1, . . . , nK ,

dist(xi,Kj) ≥ ε2, i ∈ IS , j ∈ IK \ pi,
where dij is the original distance between node xi and xj , li is the original length of edge i
and km, kp are penalty parameters. The first constraint function is vol(Ki) which is the signed
volume of the tetrahedron Ki. The second constraint is dist(xi,Kj), which is the distance from
a surface node xi to a tetrahedron Kj , and pi are the tetrahedron indices connected to node xi.
Finally, ε1 and ε2 are small positive constants.

The target function f is composed of three parts. f1 is a penalty function which strives to
keep the tetrahedral mesh uniform. f2 is the virtual spring potential which drives the folding.
f3 is a penalty function which keeps the edges of the triangles stiff. This is used to maintain the
shape and surface area of the patches.

4. Numerical Example

In section 2, a theory for computing a crease pattern was discussed. To demonstrate its
practical use, and also to demonstrate the folding algorithm, a numerical experiment is presented.
From a CAD-drawing, an airbag shaped polyhedron was constructed. The surface area of the
approximation differs about 0.5% to the original area. An in-house optimization solver was used
to solve the optimization problem in section 3. It is a Fortran 90 implementation of a low-storage
Quasi-Newton SQP method [6, 3, 2], that can handle a few thousand variables and constraints.
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The crease pattern was generated by slicing off two upper “bumps”, see Figure 5, from the
airbag approximation. The crease pattern for these parts were computed separately from the
rest of the polyhedron, and the complete crease pattern was formed by joining the parts.

Figure 5. Polyhedral approximation of an airbag model together with a com-
puted crease pattern.

The polyhedron approximation with its crease pattern was meshed using TetGen [7]. The
visual result (solution) from the optimization progress is shown in Figure 6 for different iteration
snapshots.

It was found that the surface area of the flat folded polyhedron was within 0.5% of the surface
area of the unfolded polyhedron.
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Figure 6. The figures show iteration snapshots from the folding of the polyhe-
dron approximation from Figure 5. The upper left shows the unfolded polyhe-
dron, the upper right: 40 iterations, the lower left: 60 iterations, and the lower
right: 200 iterations.
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Figure 7. Supporting figure for the proof of Theorem 2.1. The proof follows
the figures from left to right beginning at the top.


