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Abstract Properness of a linear error detecting code is a property which in a cer-
tain sense makes the code more appropriate for error detection over a
symmetric memoryless channel than a non-proper one. This property is
related to the undetected error probability of the code, which is a func-
tion of the channel symbol error probability, involving the code weight
distribution. However, relatively few codes are known with their weight
distribution. It is therefore useful to have criteria for properness which
do not depend on the code weight distribution. Here we give sufficient
conditions for interval properness of a q-ary linear error detecting code,
which only involve the code length and the dual code distance. In case of
binary codes our criterion reduces to a criterion known earlier. We also
give examples, mostly on parametric classes of Griesmer codes, where
intervals of properness have been found by help of the new criterion. It
turns out that when the dimension of the Griesmer codes under consid-
eration increases the intervals of properness converge to (0, (q − 1)/q],
i.e., the codes are asymptotically proper.
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1 Introduction

Consider the q-ary linear codes of length n and dimension k, and let C be such a
code of minimum code distance d and weight distribution A0, A1, A2, . . . , An .
An important characteristic of the error detecting performance of C over a sym-
metric memoryless channel with symbol error probability ε is the probability of
undetected error

Pue(C, ε) =

n
∑

i=1

Ai

( ε

q − 1

)i

(1 − ε)n−i, ε ∈

[

0,
q − 1

q

]

. (1.1)

If the undetected error probability of C is the smallest possible in the set of all
q-ary codes of length n and dimension k, C would, of course, be best for error
detection in this set. To find such a code is difficult, since in general one has to
use exhaustive search. Moreover, even if such a code were found, this might not
solve the problem, because usually ε is not known exactly, and a code which is
optimal for ε may not be optimal for the true symbol error probability. In such
a situation, the properties of goodness and properness appear to be reasonable
criteria for estimating the code behavior in error detection. The code C is good
for error detection if it cannot perform worse than it does in the worst channel,
i.e., the channel with ε = (q − 1)/q, or if

Pue(C, ε) ≤ Pue

(

C,
q − 1

q

)

= q−n(qk − 1) for ε ∈

[

0,
q − 1

q

]

. (1.2)

Earlier it was supposed that (1.2) must be true for all linear error detecting codes,
i.e., the codes must be good, which however has been disproved, cf, e.g. [12].

The code C is proper for error detection if Pue(C, ε) is monotonously increasing
in ε. A proper error detecting code performs better on better channels and it is
also good.

To classify codes as proper, non proper but good, or not good, often turns out to
be complicated, and such a classification has been done so far for relatively few
codes. It is worth mentioning that many codes which are known to be optimal or
close to optimal in one sense or other, turn out to be proper, such as Maximum
Distance Separable (MDS) codes, the Hamming codes, some Griesmer codes, the
Maximum Minimum Distance codes and their duals, and some near MDS codes.
Some Cyclic Redundancy-Check (CRC) codes and their duals are proper, while
other CRC codes, including some standardized, are not even good. For relevant
information in this regard we refer to the overview [7].

Sometimes, even if a code C is not good, it might be still interesting to know
if its undetected error probability is an increasing function in some sub-interval
of [0, (q − 1)/q]. We call such a code proper in this sub-interval. Here we are
concerned with intervals of properness of the form [a, (q−1)/q], since in this case
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the undetected error probability of C obeys the natural upper bound in (1.2) for
all ε in the interval of properness.

There are a number of works presenting sufficient conditions for properness and
goodness which are expressed in terms of the basic parameters of the code and
its weight distribution, see for example [4], [5], and [7]. However, the weight
distribution is known for relatively few codes (its computation is an NP-hard
problem, see [2]), and it is therefore desirable to have criteria for properness
which do not depend on it. One such criterion for interval properness of binary
linear codes, found earlier in [8], is the following.

Theorem 1 Let the binary linear code C have length n and dual code distance
d⊥. If

⌈n

3

⌉

+ 1 ≤ d⊥ ≤
⌊n

2

⌋

, (1.3)

then C is proper for error detection in the interval
[

n + 1 − 2d⊥

n − d⊥
,

1

2

]

. (1.4)

In the present work we extend the above criterion to the case of q-ary linear
codes by proving in Theorem 2 a sufficient condition for properness in intervals
of the type [a, (q − 1)/q], involving only the code length and the dual code
distance. If q = 2 our criterion coincides with that of Theorem 1 above. We also
provide examples where intervals of properness for q-ary linear codes have been
obtained by applying our criterion. Examples 1–4 deal with parametric families
of Griesmer codes and give intervals of properness for their dual codes. As we
will see the intervals of properness approach the interval (0, (q − 1)/q] when the
dimension k of the considered Griesmer codes increases. Thus their dual codes
are asymptotically proper. Note that the duals of the Griesmer codes have small
redundancy which is usually the case with codes used in error detection. In
Example 5 we consider a parametric family of binary cyclic codes, which are
known to be not good, and show that they however are asymptotically proper.

The proof of Theorem 2 is given in Section 2 and the examples in Section 3. The
proof makes use of the well known formula

Pue(C, ε) = qk−n

n
∑

i=0

Bi

(

1 −
qε

q − 1

)i

− (1 − ε)n, (1.5)

which expresses the probability of undetected error of an [n, k]q linear code C
through its dual weight distribution B0, B1, . . . , Bn. We will also make use of
the first order Pless Power Moment of C [15, p. 130],

n
∑

i=d

iAi = qk−1[n(q − 1) − B1]. (1.6)
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2 Main result

Let C be a linear [n, k]q code with dual code distance d⊥. It has been shown
in [14] that when

d⊥ ≥
n(q − 1) + 1

q

the code is proper. We will show below that when the above condition is not
satisfied but d⊥ is still sufficiently large, C is proper in [a, (q − 1)/q], where a is
defined through n, q, and d⊥.

Let A0, A1, . . . , An be the weight distribution of C and B0, B1, . . . , Bn be the
dual weight distribution with B1 = 0. Using (1.1), (1.6), and

[

εi(1 − ε)n−i
]′

= n εi−1(1 − ε)n−i−1 (i/n − ε) , (2.1)

we easily obtain

P ′

ue

(

C,
q − 1

q

)

= q−n+2

(

1

q − 1

n
∑

i=d

iAi −
n

q

n
∑

i=d

Ai

)

= nq−n+1 > 0,

and hence there are intervals of properness for C of the form [a, (q − 1)/q].

Theorem 2 Let the q-ary linear code C have length n and dual code distance
d⊥. If

n(q − 1) + 2

q + 1
< d⊥ <

n(q − 1) + 1

q
, (2.2)

then C is proper in the interval
[

n(q − 1) − d⊥q + 1

n(q − 1) − d⊥q + 1 + d⊥−1
q−1

,
q − 1

q

]

. (2.3)

Proof. We shall show that the derivative of the undetected error probability of
C is a non-negative function of ε in the interval given by (2.3). Using the dual
formula (1.5) and also (1.6) for the dual code we obtain

P ′

ue(C, ε) = n(1 − ε)n−1 −
qk−n+1

q − 1

n
∑

i=d⊥

iBi

(

1 −
qε

q − 1

)i−1

≥ n(1 − ε)n−1 −
qk−n+1

q − 1

(

1 −
qε

q − 1

)d⊥−1
n
∑

i=d⊥

iBi

= n(1 − ε)n−1 − n
(

1 −
qε

q − 1

)d⊥−1

= n(1 − ε)n−1
[

1 − G(ε)
]

,

(2.4)
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where we have denoted

G(ε) =

(

1 − qε

q−1

1 − ε

)d⊥−1
(

1

1 − ε

)n−d⊥

.

We will now show that G(ε) ≤ 1 for ε in the interval (2.3). For this we use the
substitution

α =
ε

(q − 1)(1 − ε)
(2.5)

which gives

G(ε) = (1 − α)d⊥−1
(

1 + (q − 1) α
)n−d⊥

= G1(α). (2.6)

By using the Bernoulli inequality

(1 + x)β ≥ 1 + βx for |x| < 1 and β ≥ 1,

and also the inequalities
(

1 +
1

x

)x

< e and

(

1 −
1

x

)x

< e−1 for x > 1

we get

G1(α) ≤ (1 − α)d⊥−1(1 + α)(n−d⊥)(q−1)

= (1 − α2)d⊥−1(1 + α)n(q−1)−d⊥q+1

≤ exp{−α2(d⊥ − 1)} · exp{α[n(q − 1) − d⊥q + 1]}

= exp{α(d⊥ − 1)(α0 − α)},

where

α0 =
n(q − 1) − d⊥q + 1

d⊥ − 1
.

Note that we have d⊥ − 1 > 0 above, which is easily seen from the left hand side
of the condition (2.2). Moreover, we have 0 < α0 < 1 since, as one can verify, the
right hand side of (2.2) is equivalent to α0 > 0 and the left hand side to α0 < 1.
Therefore we have

G1(α) ≤ 1 for α0 ≤ α ≤ 1. (2.7)

One can easily see from the substitution in (2.5) that the above inequalities for
α are equivalent to

ε0 ≤ ε ≤
q − 1

q
with ε0 =

n(q − 1) − d⊥q + 1

n(q − 1) − d⊥q + 1 + d⊥−1
q−1

. (2.8)

Using (2.7) in (2.6) gives G(ε) ≤ 1 for ε as in (2.8). Applying this in (2.4) we
conclude that the code C is proper in the interval (2.3). 2
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Corollary. If (2.2) holds and in addition

n(q − 1) − d⊥q + 1

n(q − 1) − d⊥q + 1 + d⊥−1
q−1

≤
d

n
, (2.9)

then C is proper.

Proof. The statement follows from Theorem 2 and the fact that C is proper in
[0, d/n], as seen from (1.1) and (2.1).

Remark 1. It is easily seen that when q = 2, (2.2) and (2.3) become (1.3) and
(1.4), respectively, and the above theorem reduces to Theorem 1.

Remark 2. Let C be a linear [n, k]q code with d⊥ > 1. The third line in (2.4)
shows that P ′

ue(C, ε) ≥ 0 if

J(ε) = (1 − ε)
n−1

d⊥−1 +
qε

q − 1
− 1 ≥ 0. (2.10)

The function J(ε) is convex and J(0) = 0, J ((q − 1)/q) > 0. Thus either
J(ε) > 0 for 0 < ε < (q−1)/q or J(ε) < 0 for 0 < ε < ε and J(ε) > 0 for ε < ε <
(q−1)/q, where ε is the unique solution of the equation J(ε) = 0 in (0, (q − 1)/q).
The first case takes place when J ′(0) = q/(q − 1) − (n − 1)/(d⊥ − 1) ≥ 0, i.e.,
when

d⊥ ≥
n(q − 1) + 1

q
,

and clearly the code is then proper. As mentioned above this condition was shown
to be sufficient for properness earlier in [14]. The second case takes place when
d⊥ < [n(q − 1) + 1] /q, and the code is then proper in the interval [ε, (q − 1)/q],
where ε can be computed by using numerical methods, when the values of q, n,
and d⊥ are fixed.

3 Examples

We now use our results to find intervals of properness for some parametric classes
of linear error detecting codes. As usual, we call a q-ary linear code C of length
n, dimension k, and minimum distance d, an [n, k, d]q code. Since our examples
involve Griesmer codes we recall here that an [n, k, d]q Griesmer code satisfies
the Griesmer bound

n ≥
k−1
∑

i=0

⌈ d

qi

⌉

with equality [13, p. 546]. Given the minimum distance d and the dimension k,
the Griesmer codes have the smallest possible length n, which makes them more
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likely to fit the condition of Theorem 2. Indeed, this is the case in Examples
1–4 below, where we give intervals of properness for codes dual to parametric
Griesmer codes. As we will see, these intervals approach (0, (q − 1)/q], when
the dimension k of the Griesmer codes increases, i.e., the dual Griesmer codes
are asymptotically proper. This and the fact that the dual Griesmer codes have
small redundancy, which is often the case with codes used for error detection,
make our results appear of possible interest for applications.

Example 1. In [3], a family of [ n, k, d ]q Griesmer codes has been constructed
with parameters

n =

r
∑

i=1

ai

qk − qui

q − 1
, k, d =

r
∑

i=1

ai (q
k−1 − qui−1) ,

where
1 ≤ ai ≤ q − 1 and 1 ≤ ur < ur−1 < . . . < u1 ≤ k − 1 .

Using that n = d q/(q − 1) we compute

d −
n(q − 1) + 2

q + 1
=

d − 2

q + 1
> 0

and

n(q − 1) + 1

q
− d =

1

q
.

This shows, by Theorem 2, that the duals of the Griesmer codes with d > 2 are
proper in the interval









1

1 +
d − 1

q − 1

,
q − 1

q









.

Moreover, the binary dual codes are proper, by the Corollary. Indeed, one can
easily see that since the dual code distance of the Griesmer codes under consid-
eration equals 2, the condition (2.9) is satisfied in the binary case.

Note that the above interval of properness tends to (0, (q − 1)/q], when the
dimension k of the Griesmer code increases. Thus if we know a lower bound
of the symbol error probability of a particular channel, we can find a dual code
which is practically proper for this channel by choosing a sufficiently large k.
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Example 2. The existence of
[

q4 + q2 − q, 5, q4 − q3 + q2 − 2q
]

q
Griesmer

codes for any prime power q ≥ 3 has been shown in [11]. Because

d −
n(q − 1) + 2

q + 1
=

q3(q − 1)q(q − 3) − 2

q + 1
> 0

and

n(q − 1) + 1

q
− d =

q + 1

q
,

Theorem 2 implies that the dual codes are proper in the interval








1

2 +
q4 − q3 − 2q

q2 − 1

,
q − 1

q









.

These codes are also asymptotically proper, since the left hand end-point of the
interval approaches zero when q increases. Some numerical results follow below.

Example 2: numerical results

Code parameters Interval of properness for the dual code
[87, 5, 57]3 [0.125000, 0.666667]
[268, 5, 200]4 [0.070093, 0.750000]
[645, 5, 515]5 [0.044610, 0.800000]
[2443, 5, 2093]7 [0.022430, 0.857143]
[4152, 5, 3632]8 [0.017055, 0.875000]
[6633, 5, 5895]9 [0.013391, 0.888889]
[14751, 5, 13409]11 [0.008870, 0.909091]
[28717, 5, 26507]13 [0.006298, 0.923077]
[65776, 5, 61664]16 [0.004118, 0.937500]
[83793, 5, 78863]17 [0.003639, 0.941176]
[130663, 5, 123785]19 [0.002900, 0.947368]
[280347, 5, 268157]23 [0.001965, 0.956522]

Example 3. Ternary Griesmer codes with parameters

n = (3k − 1)/2 − 30, k ≥ 4, d = 3k−1 − 21

have been characterized in [9]. The parameters satisfy the condition of Theorem
2, since

d −
n(q − 1) + 2

q + 1
=

3k−1

4
− 6.25 > 0
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and

n(q − 1) + 1

q
− d = 1.

The dual codes are then proper in the interval









1

1 +
3k−1 − 22

6

,
2

3









,

and also asymptotically proper, when k → ∞.

Example 4. In [10] has been shown the existence of q-ary Griesmer codes with
parameters

[

n = vk − 3vµ+1, k, d = qk−1 − 3qµ
]

,

where
k − 2

2
≥ µ ≥ 1, q ≥ 5, and vℓ =

qℓ − 1

q − 1
for any integer ℓ ≥ 0.

Because

d −
n(q − 1) + 2

q + 1
=

qµ(qk−1−µ−3) + 4

q + 1
> 0

and
n(q − 1) + 1

q
− d =

3

q
,

the dual codes are proper in the interval









1

1 +
qk−1 − 3qµ − 1

3(q − 1)

,
q − 1

q









and they are also asymptotically proper.

Example 5. [1] and [16] consider a parametric class of q-ary irreducible cyclic
codes C(q, r, t, s) with positive integer parameters such that q is a prime power,
r ≥ 1, t > 1, s > 1, and s|qr + 1. The dimension k and the length n of the code
C(q, r, t, s) are

k = 2rt, n =
q2rt − 1

s
,
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and its non-zero weights and the weight distribution are

τ1 = (q − 1)
q2rt−1 + (−1)t(s − 1)qrt−1

s
, Aτ1 = n,

τ2 = (q − 1)
q2rt−1 − (−1)tqrt−1

s
, Aτ2 = n(s − 1).

These codes and their duals have been studied in [6], where the following has
been proved:

• C(3, r, t, 2), C(3, 1, 2, 4), and their duals are proper.

• The remaining codes and their duals are not good.

Below we make use of Theorem 2 to give intervals of properness for the non-
good dual codes C⊥(q, r, t, s). When t is even, the minimum code distance of
C(q, r, t, s) is τ2. The inequalities in (2.2) hold in this case, because

d −
n(q − 1) + 2

q + 1
=

(q − 1)qrt−1(qrt − q − 1) − 2s + q − 1

(q + 1)s

≥
(q − 1)qrt−1(qrt − q − 1) − 2(qr + 1) + q − 1

(q + 1)s

>
(q − 1)qrt−1(qrt − q − 1) − (qrt − q − 1) − 4

(q + 1)s

=
((q − 1)qrt−1 − 1)(qrt − q − 1) − 4

(q + 1)s
> 0

and
n(q − 1) + 1

q
− d =

(q − 1)(qrt − 1) + s

qs
> 0.

By Theorem 2, the non-good codes C⊥(q, r, t, s) with t even are proper in the
interval















1

1 +

q2rt−1 − qrt−1 −
s

q − 1

qrt+1 − qrt − q + s + 1

,
q − 1

q















.

When t is odd, the minimum code distance of C(q, r, t, s) is τ1. In the same
manner as above we can show that even in this case

d −
n(q − 1) + 2

q + 1
>

((q − 1)qr(t+1)−1 − 1)(qr(t−1) − q − 1) − 4

(q + 1)s
> 0

and
n(q − 1) + 1

q
− d =

(q − 1)[qrt(s − 1) − 1] + s

qs
> 0.
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Thus the non-good codes C⊥(q, r, t, s) with t odd are proper in the interval








1

1 +
q2rt−1 − qrt−1(s − 1) − s/(q − 1)

qrt+1(s − 1) − qrt(s − 1) − q + s + 1

,
q − 1

q









.

4 Conclusions

Goodness and properness are properties characterizing the behavior of linear
codes in error detection. These properties are related to the code probability
of undetected error, thus to the weight distribution of the code. However, the
weight distribution is only known for relatively few codes, and therefore criteria
for goodness and properness which do not depend on it are highly appreciated.
Such a criterion for a binary linear code to be proper on sub-intervals has been
found earlier in [8]. In the present work we extend this to the case of q-ary
linear codes. Our criterion is expressed in terms of the length and the minimum
distance of the dual code. It reduces to the binary criterion when q = 2. We
have applied our criterion to parametric classes of codes and have found intervals
of properness for their dual codes. For some classes the intervals of properness
increase when some parameters become larger, which makes the codes practically
proper. Even for some non-good codes we have found sufficiently large intervals
of properness, which might make these codes of practical interest.
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