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ON HANKEL FORMS OF HIGHER WEIGHTS, THE
CASE OF HARDY SPACES

MARCUS SUNDHÄLL AND EDGAR TCHOUNDJA

Abstract. In this paper we study bilinear Hankel forms of higher
weights on Hardy spaces in several dimensions (see [10] and [11] for
Hankel forms of higher weights on weighted Bergman spaces). We
get a full characterization of Sp class Hankel forms, 2 ≤ p < ∞
(and 1 ≤ p < ∞ for the case of weight zero), in terms of the
membership for the symbols to be in certain Besov spaces. Also,
the Hankel forms are bounded and compact if and only if the
symbol satisfies certain Carleson measure criterion and vanishing
Carleson measure criterion, respectively.

1. Introduction and main results

Schatten-von Neumann class Hankel forms of higher weights on
Bergman spaces are characterized in [10] and [11]. In the same way,
as for the case of Bergman spaces, Hankel forms of higher weights on
a Hardy space are explicit characterizations of irreducible components
in the tensor product of Hardy spaces under the Möbius group; see [7].

Recall from [10] and [11] the case of weighted Bergman spaces
L2

a(dιν) of holomorphic functions, square integrable with respect to
the measure

dιν(z) = cν(1− |z|2)ν−(d+1) dm(z) ,(1)

where ν > d, cν a normalization constant and dm(z) is the Lebesgue
measure on the unit ball B = {z ∈ Cd : |z| < 1}. The bilinear Hankel
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forms of weight s = 0, 1, 2, · · · are given in [10] by

Hs
F (f1, f2) =

∫
B
〈Ts(f1, f2), F 〉z (1− |z|2)2ν−(d+1) dm(z) .(2)

The transvectant, Ts, is given by

Ts(f1, f2)(z) =
s∑

k=0

(
s

k

)
(−1)s−k ∂kf1(z)� ∂s−kf2(z)

(ν)k(ν)s−k

,

where

∂sf(z) =
d∑

j1,··· ,js=0

∂j1 · · · ∂jsf(z) dzj1 ⊗ · · · ⊗ dzjs ,

and (ν)k = ν(ν +1) · · · (ν +k−1) is the Pochammer symbol. Also, the
Möbius invariant inner product 〈·, ·〉z is given in the following way; for

u, v ∈ �s
(
Cd

)′
, where the tangent space at z is identified with Cd,

〈u, v〉z = 〈⊗sBt(z, z)u, v〉⊗s(Cd)′(3)

where B(z, z) = (1− |z|2)(I − 〈·, z〉z) is the Bergman operator on Cd

and Bt(z, z) is the dual operator acting on the dual space of Cd. The
tensor-valued holomorphic function F is called the symbol correspond-
ing to the Hankel form Hs

F .
Now, let ∂B be the boundary of the unit ball B of Cd. The irre-

ducible components in the decomposition of tensor products of Hardy
spaces H2(∂B) in [7] can be given explicitly as bilinear Hankel forms
of weight s on the Hardy space H2(∂B) by

Hs
F (f1, f2) =

∫
B
〈Ts(f1, f2), F 〉z (1− |z|2)d−1 dm(z) ,(4)

where the transvectant, Ts, is here given by

Ts(f1, f2)(z) =
s∑

k=0

(
s

k

)
(−1)s−k ∂kf1(z)� ∂s−kf2(z)

(d)k(d)s−k

,

where, in fact, this is the limiting case ν = d of (2).
The main results for Hankel forms, Hs

F , defined by (4) are given
below in Theorem A and Theorem B.

Theorem A. Hs
F is (compact) bounded if and only if

dµF (z) = ‖F‖2
z(1− |z|2)2d−1 dm(z)

is a (vanishing) Carleson measure on H2(∂B), with equivalent norms.
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Remark. Note that ‖F‖2
z = 〈F, F 〉z.

Theorem B. Hs
F is of Schatten class Sp, 2 ≤ p < ∞, if and only if

‖F‖pd,s,p =

(∫
B
‖F‖p

z(1− |z|2)pd−d−1 dm(z)

)1/p

< ∞ ,

with equivalent norms.

Remark. If s = 0 we rewrite the Schatten class criterion as∫
B
|(RF )(z)|p(1− |z|2)(p−1)(d+1) dm(z) < ∞ ,(5)

where R =
∑d

i=1 zi
∂

∂zi
is the radial derivative. Theorem B is then

extended to 1 ≤ p < ∞ where (5) is equivalent to ‖F‖pd,0,p < ∞ for
1 < p < ∞.

Remark. Janson and Peetre obtained Theorem A and Theorem B
in the case d = 1, by using paracommutator arguments; see [5]. Our
approach extend their results and provides a different proof of the case
d = 1 they have treated.

Approach. In this paper we use different techniques to deal with the
case of weight zero and the case of weight s = 1, 2, · · · , and they are
therefore treated separately in Section 3 and Section 4, respectively.
In [10] the criteria for boundedness, compactness and Schatten-von
Neumann class for higher weights, on weighted Bergman spaces, are
natural generalizations of the case of weight zero. For Hardy spaces,
as the Example 4.2 shows, the transvectant of various weight does
not behave as in the case of Bergman spaces where the boundedness
properties for the transvectant was necessary in order to generalize
the weight zero case to arbitrary weights. This explains why we, in
this paper, treat the weight zero and nonzero cases separately. The
Hankel forms, on Hardy spaces, of weight zero can be rewritten, us-
ing the radial derivative, into the classical Hankel forms in [12] and
then we use results from [13], [14] and [15] to get the right condi-
tions for the symbols. We have results for Carleson measures which
together with invariance properties give criteria for the boundedness
and compactness for Hankel forms of nonzero weights. The Schatten
class criteria are proved by using interpolation for analytic families of
operators. For this purpose we need results about Hankel forms on
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Bergman-Sobolev-type spaces. The preliminaries in Section 2 gives
the prerequisites we need.

Notation. If ‖ · ‖1 and ‖ · ‖2 are two equivalent norms on a vector
space X, then we write ‖x‖1 ' ‖x‖2, x ∈ X. Also, for two real-valued
functions, f and g, on X we write f . g if there is a constant C > 0,
independent of the variables in questions, such that Cf(x) ≤ g(x).

Acknowledgement. The main results in this paper are the outcome
after the authors visited each other in Göteborg and Opava, respec-
tively. We are therefore grateful to the Mathematical Sciences at
Chalmers University of Technology and Göteborg University and to
the Mathematical Institute at the Silesian University in Opava for
their generous hospitality. We would also like to thank Professor
Genkai Zhang in Göteborg and Professor Miroslav Englǐs in Opava
for useful encouragement and advise.

2. Preliminaries

For α > −d, let A2
α be the Bergman-Sobolev-type space of holo-

morphic functions f : B → C with the property that

‖f‖2
α =

∑
m∈Nd

|c(m)|2 Γ(d + α)m!

Γ(d + |m|+ α)
< ∞ ,

where f(z) =
∑

m∈Nd c(m)zm is the Taylor expansion of f . Then A2
α

is a Hilbert space with the inner product

〈f1, f2〉α =
∑

m∈Nd

c1(m)c2(m)
Γ(d + α)m!

Γ(d + |m|+ α)
,

where fi(z) =
∑

m∈Nd ci(m)zm, i = 1, 2. A2
α has a reproducing kernel,

Kα
w for w ∈ B, given by

Kα
w(z) =

1

(1− 〈z, w〉)α+d
.(6)

If α > 0, then A2
α is the weighted Bergman space L2

a(dια+d), where
dια+d is given by (1). Also, A2

0 is the Hardy space H2(∂B).
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2.1. Decomposition of A2
α ⊗ A2

β. Let G be the group of biholo-
morphic self-maps on B. If g ∈ G with g(z) = 0, then there is a
linear fractional map ϕz on B and a unitary map U ∈ U(d) such that
g = Uϕz. The fractional linear map, ϕz, is given by

ϕz(w) =
z − Pzw − (1− |z|2)1/2Qzw

1− 〈w, z〉
,(7)

where Pz = 〈·, z〉z/‖z‖2 and Qz = I − Pz. The complex Jacobian is
therefore given by Jg = det U · Jϕz , where

Jϕz(w) = (−1)d (1− |z|2)(d+1)/2

(1− 〈z, w〉)d+1
.(8)

The group G acts unitarily on A2
α via the following:

πν(g)f(z) = f(g−1(z))Jg−1(z)ν/(d+1) ,(9)

where ν = α + d, and it gives an irreducible unitary (projective)
representation of G. In addition, for β > −d, the group G acts on the
Hilbert space tensor product A2

α ⊗A2
β by,

(10) πν1(g)⊗ πν2(g)(f1(z), f2(w)) =

f1(g
−1(z))f2(g

−1(w))Jg−1(z)ν1/(d+1)Jg−1(w)ν2/(d+1) ,

where ν1 = α + d, ν2 = β + d, and it gives an unitary (projective)
representation of G. However this is not irreducible and the irreducible
decomposition is given in [7]. In particular, if α + β > −d− s:

A2
α ⊗A2

β '
∞∑

s=0

H2
α+β+2d,s ,(11)

where H2
u,s, u > d− s, is the space of holomorphic functions F : B →

�s(Cd)′ with the property that∫
B
‖F‖2

z (1− |z|2)u−d−1 dm(z) < ∞ ,

where we recall that ‖F‖2
z = 〈F, F 〉z = 〈⊗sBt(z, z)F (z), F (z)〉⊗s(Cd)′ .

The group G acts unitarily on H2
u,s by

πu,s(g
−1)F (z) = ⊗sdg(z)tF (g(z))Jg(z)u/(d+1) ,(12)
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where dg(z) : Tz(B) → Tg(z)(B) is the differential map, and gives an
irreducible unitary (projective) representation of G. Via the transvec-
tant, T α,β

s , defined on A2
α ⊗A2

β by

T α,β
s (f1, f2) =

s∑
k=0

(
s

k

)
(−1)s−k ∂kf1(z)� ∂s−kf2(z)

(α + d)k(β + d)s−k

,(13)

the irreducible components in the decomposition (11) are realized in [7]
as Hankel forms of higher weights (order s):

Hα,β,s
F (f1, f2) = 〈T α,β

s (f1, f2), F 〉α+β+2d,s,2 ,(14)

where 〈·, ·〉u,s,2 is the H2
u,s-pairing, and F ∈ A2

α+β+2d,s.

Remark 2.1. For α = β = 0 in (14) we get the Hankel forms of
weight s on Hardy spaces defined by (4).

The transvectant T α,β
s : A2

α ⊗ A2
β → A2

α+β+2d,s is onto and has an
intertwining property:

T α,β
s (πα+d(g)f1, πβ+d(g)f2) = πα+β+2d,s(g)T α,β

s (f1, f2) .(15)

Hence,

Hα,β,s
F (πα+d(g)f1, πβ+d(g)f2) = Hα,β,s

πα+β+2d,s(g−1)F (f1, f2) .(16)

2.2. Spaces of symbols and Schatten class Hankel forms. Let,
for 1 ≤ p < ∞ and u > d − ps

2
, Hp

u,s be the space of all holomorphic

functions F : B → �s(Cd)′ such that

‖F‖p
u,s,p =

∫
B
‖F‖p

z(1− |z|2)u−d−1 dm(z) < ∞ .

Also, for u ≥ − s
2
, let H∞

u,s be the space of holomorphic functions

F : B → �s(Cd)′ such that

‖F‖u,s,∞ = sup
z∈B

‖F‖z(1− |z|2)u < ∞ .

Then Hp
u,s, for 1 ≤ p ≤ ∞, are Banach spaces.

In [10] and in [11] there are several results about Hp
pν,s for ν > d

and we can use the same arguments as in [10] and [11] to generalize
these results to Hp

u,s. Hence, the results below will be stated without
proofs. The reader is referred to [10] and [11] for more details.
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Lemma 2.2. Let u > max(0, d − s). Then the reproducing kernel of
H2

u,s is, up to a nonzero constant c, given by

Ku,s(w, z) = (1− 〈w, z〉)−u ⊗s Bt(w, z)−1 .

Namely, for any x ∈ �s(Cd)′ and any F ∈ H2
u,s,

〈F (z),x〉⊗s(Cd)′ = c 〈F, Ku,s(·, z)x〉u,s,2

= c

∫
B
〈F, Ku,s(·, z)x〉w (1− |w|2)u−d−1 dm(w) .

Lemma 2.3. Let 1 < p < ∞ and 1/p + 1/q = 1. For u > d− ps
2

and
v > d− qs

2
the following duality

(Hp
u,s)

′ = Hq
v,s

holds, with respect to the H2
u
p
+ v

q
,s-pairing. That is, for any bounded

linear functional, l, on Hp
u,s there exists an element G ∈ Hq

v,s such
that l(F ) = 〈F, G〉u

p
+ v

q
,s,2 for all F ∈ Hp

u,s, and ‖l‖ ' ‖G‖v,s,q.

Lemma 2.4. Let u > −d− s and v ≥ −d− s
2
. If 2 < p < ∞ then

(H2
u+2d,s,H∞

v+d,s)[1− 2
p
] = Hp

(p−2)v+u+pd,s .

Lemma 2.5. Let α, β > −d with α + β > −d − s. Then there is a
constant C(α, β, s, d) > 0 such that

‖Hα,β,s
F ‖S2(A2

α,A2
β) = C(α, β, s, d)‖F‖α+β+2d,s,2 ,

for all holomorphic F : B → �s(Cd)′.

Remark 2.6. By cumputing the norms for F = ⊗sdz1 we can see
that C(α, β, s, d) is continuous in α and β, since for some C(d, s) > 0
we have

C(α, β, s, d)2 = C(s, d)2

s∑
k=0

(
s

k

)
1

(α + d)k(β + d)s−k

.(17)

Lemma 2.7. Let α, β > 0. Then Hα,β,s
F is bounded on A2

α×A2
β if and

only if F ∈ H∞
1
2
(α+β)+d,s

, with equivalent norms.

For α, β ≥ 0 define an operator T̃ α,β
s on S∞(A2

α,A2
β) by

(18) T̃ α,β
s (A)(z) =

s∑
k=0

(
s

k

)
(−1)s−k

(
∂k

w � ∂s−k
ζ A(Kα

w, Kβ
ζ )

)
(z, z)

(α + d)k(β + d)s−k

,
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where Kα
w is the reproducing kernel for A2

α given by (6).

Remark 2.8. If A has rank one then T̃ α,β
s is the transvectant given

by (13).

In the following next two results in this subsection we get use
of Lemma 2.4. Namely, to get the results we need to interpolate
the spaces H2

α+β+2d,s and H∞
1
2
(α+β)+d,s

, where α, β > 0. In fact, by

Lemma 2.4,

(H2
α+β+2d,s,H∞

1
2
(α+β)+d,s

)[1− 2
p
] = Hp

1
2
p(α+β)+pd,s

(19)

Lemma 2.9. Let α, β ≥ 0 and 2 ≤ p ≤ ∞. Then T̃ α,β
s maps

Sp(A2
α,A2

β) into Hp
1
2
p(α+β)+pd,s

boundedly, and if Hα,β,s
F ∈ Sp(A2

α,A2
β),

for α, β > 0 and 2 ≤ p < ∞ or α = β = 0 and p = 2, then
T̃ α,β

s (Hα,β,s
F ) = F .

Using Lemma 2.5, Lemma 2.7 with (19) on one hand and Lemma 2.9
on the other hand we get the following theorem.

Theorem 2.10. Let α, β > 0 and 2 ≤ p ≤ ∞. Then Hα,β,s
F is in

Sp(A2
α,A2

β) if and only if F ∈ Hp
1
2
p(α+β)+pd,s

, with equivalent norms.

Remark 2.11. We want to extend this result to α, β > −1/p, to
include the Hardy case, and need therefore the theory for families of
analytic operators. We use the approach by Bergh-Janson-Löfström-
Peetre-Peller and Theorem 2.12, given below, can be found in [6].

Let X0, X1 be Banach spaces continuously imbedded into a Banach
space X and Y0, Y1 be Banach spaces continuously imbedded into a
Banach space Y .

Theorem 2.12. Let Γ be a bounded holomorphic function on the strip
0 < <(z) < 1, continuous on 0 ≤ <(z) ≤ 1 and taking values in the
space of operators from X0 ∩X1 to Y0 + Y1. Suppose that

1) For any y ∈ R the operator Γ(iy) can be extended to a bounded
operator from X0 to Y0 and supy∈R ‖Γ(iy)‖X0→Y0 = M0 < ∞.

2) For any y ∈ R the operator Γ(1 + iy) can be extended to a
bounded operator from X1 to Y1 and supy∈R ‖Γ(1+iy)‖X1→Y1 =
M1 < ∞.
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Then for any θ ∈ (0, 1) the operator Γ(θ) can be extended to a bounded
operator from X[θ] = (X0, X1)[θ] to Y[θ] = (Y0, Y1)[θ] and

‖Γ(θ)‖X[θ]→Y[θ]
≤ M1−θ

0 M θ
1 .

3. Hankel forms of weight zero

To find the Schatten-von Neumann class Hankel forms of weight
zero on Hardy spaces we shall rewrite H0

F in terms of the small Hankel
operators studied in [12]. The problem then boils down to finding the
relationship between the corresponding symbols.

The Hankel form, HG, in [12] is given by

HG(f1, f2) =

∫
∂B

f1(w)f2(w)G(w) dσ(w) ,(20)

where dσ is the normalized Lebesgue measure on ∂B. Denote by R
the radial derivative, defined as

Rf(z) =
d∑

i=1

zi
∂f

∂zi

(z) ,

where f : B → C is holomorphic. If

Rd := (R + 2d− 1)(R + 2d− 2) · · · (R + d) ,

then for holomorphic functions f1 and f2 we have, by means of Taylor
expansion,

(21)∫
∂B

f1(w)f2(w) dσ(w) = c(d)

∫
B
f1(z)Rdf2(z)(1 − |z|2)d−1 dm(z) .

Lemma 3.1. Let H0
F be given by (4) and HG by (20). Then H0

F = HG

if and only if

RdG(z) = c(d)F (z) .

Proof. Since

H0
F (f1, f2) =

∫
B
f1(z)f2(z)F (z)(1− |z|2)d−1 dm(z)

and

HG(f1, f2) =

∫
∂B

f1(w)f2(w)G(w) dσ(w) ,

then the result follows by applying (21) on f̃1 = f1f2 and f̃2 = G. �
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3.1. Schatten-von Neumann class Sp Hankel forms. In this sub-
section we present sufficient and necessary conditions for Hankel forms
of weight zero to be in Schatten-von Neumann class Sp, 1 ≤ p < ∞
(see Theorem 3.2).

Theorem 3.2. The Hankel form H0
F is of Schatten-von Neumann

class Sp, for 1 ≤ p < ∞, if and only∫
B
|RF (z)|p(1− |z|2)(p−1)(d+1) dm(z) < ∞ .

This theorem is a direct consequence of Lemma 3.1 and Theorem 1
in [12] (see also Theorem C in [4]):

Theorem 3.3. Let α > −1 and 1 ≤ p < ∞. Then the Hankel form
HG, defined by (20), is of Schatten-von Neumann class Sp if and only
if ∫

B
|Rd+1G(z)|p(1− |z|2)(p−1)(d+1) dm(z) < ∞ .

3.2. Bounded and compact Hankel forms. In this subsection we
present necessary and sufficient conditions for Hankel forms of weight
zero to be bounded and compact; see Theorem 3.17. First we need
some preliminaries, which basically can be found in [14] and [13]. We
also remark that the one dimensional case of Lemma 3.14 is already
proved (see Corollary 15 in [15]) but since we have not been able to
find an explicit version of this result in several variables we prove this
result.

Once we have results for Carleson measures and BMOA spaces, then
the corresponding results for vanishing Carleson measures and VMOA
spaces will be easily deduced. When necessary we will give brief proofs
for the cases of vanishing Carleson measures and VMOA spaces, but
in most cases these results will only be stated without proofs.

Definition 3.4 (See [14]). Let ζ ∈ ∂B and r > 0 and let

Qr(ζ) = {z ∈ B : d(z, ζ) < r}

where d(z, ζ) = |1 − 〈z, ζ〉|1/2 is the non-isotropic metric on ∂B. A
positive Borel measure µ in B is called a Carleson measure if there
exists a constant C > 0 such that

µ(Q√
r(ζ)) ≤ Crd ,
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for all ζ ∈ ∂B and r > 0, and called a vanishing Carleson measure if

lim
r→0+

µ(Q√
r(ζ))

rd
= 0

uniformly for ζ ∈ ∂B.

Remark 3.5. By Lemma 3.9 below, the definition above concerns
Carleson measures on Hardy spaces H2(∂B). The Hardy space H2(∂B)
consists of all holomorphic functions f : B → C such that

‖f‖H2 = sup
0<r<1

(∫
∂B
|f(rζ)|2 dσ(ζ)

)1/2

< ∞ .

Lemma 3.6 (Theorem 45 in [13]). A positive Borel measure µ in B
is a Carleson measure if and only if, for each (or some) s > 0,

sup
z∈B

∫
B

(1− |z|2)s

|1− 〈z, w〉|d+s
dµ(w) < ∞ .

Remark 3.7. This is a generalization of Theorem 5.4 in [14]: A pos-
itive Borel measure µ in B is a Carleson measure if and only if

sup
z∈B

∫
B
P (z, w) dµ(w) < ∞ ,

where

P (z, w) =
(1− |z|2)d

|1− 〈z, w〉|2d
; z, w ∈ B .

Lemma 3.8 (See [13]). A positive Borel measure µ in B is a vanishing
Carleson measure if and only if, for each (or some) s > 0,

lim
|z|→1−

∫
B

(1− |z|2)s

|1− 〈z, w〉|d+s
dµ(w) = 0 .

Lemma 3.9 (Theorem 5.9 in [14]). A positive Borel measure µ in B
is a Carleson measure if and only if there exists a constant C > 0 such
that ∫

B
|f(z)|2 dµ(z) ≤ C‖f‖2

H2(∂B) ,

for all f ∈ H2(∂B).

Lemma 3.10 (Theorem 5.10 in [14]). Let µ be a positive Borel mea-
sure on B. Then µ is a vanishing Carleson measure if and only if, for
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every sequence {fj} bounded in H2(∂B) such that fj(z) → 0 for every
z ∈ B, we have

lim
j→∞

∫
B
|fj(z)|2 dµ(z) = 0 .

Lemma 3.11 (Theorem 50 in [13]). Let µ be a positive Borel measure
in B. Then the following conditions are equivalent

(a) There is a constant C > 0 such that∫
B
|(Rf)(z)|2dµ(z) ≤ C‖f‖2

H2(∂B) ,

for all f ∈ H2(∂B).
(b) There is a constant C > 0 such that

µ(Q√
r(ζ)) ≤ Cr(d+2) ,

for all ζ ∈ ∂B and r > 0.

Lemma 3.12 (See [13]). Let µ be a positive Borel measure in B. Then
the following conditions are equivalent

(a) For every sequence {fj} bounded in H2(∂B) and fj(z) → 0 for
every z ∈ B, we have

lim
j→∞

∫
B
|(Rfj)(z)|2 dµ(z) = 0 .

(b) If r → 0+, then

µ(Q√
r(ζ))

rd+2
→ 0

uniformly for ζ ∈ ∂B.

Also, we need a result about the radial derivative, which can be
obtained by using Taylor expansion.

Lemma 3.13. Let t > −1 and a > 0. Then∫
B
|(R + a)f(z)|2(1− |z|2)t+2 dm(z) '

∫
B
|f(z)|2(1− |z|2)t dm(z) ,

for all holomorphic f : B → C.

Lemma 3.14. Let t > −1 and a ≥ 0. For any holomorphic function
g : B → C, dµ1(z) = |g(z)|2(1− |z|2)t dm(z) is a (vanishing) Carleson
measure if and only if dµ2(z) = |((R + a)g)(z)|2(1− |z|2)t+2 dm(z) is
a (vanishing) Carleson measure.
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Proof. We only prove equivalence for the Carleson measure case, the
vanishing Carleson measure case then follows by using the same tech-
niques. Also, we may assume that a > 0 since exactly the same
arguments then can be applied on h = g − g(0) instead of g (for
estimating |g − g(0)|; see proof of Theorem 2.16 in [14]), and then
the result follows by using the triangle inequality and the fact that
|g(0)|2(1− |z|2)t dm(z) is a Carleson measure.

Assume first that dµ1 is a Carleson measure. Then there is a con-
stant C > 0 such that

∫
Q√r(ζ)

(1− |z|2)2 dµ1(z) ≤ 4r2

∫
Q√r(ζ)

dµ1(z) ≤ 4Cr(d+2) ,

for all ζ ∈ B and r > 0, so that (1 − |z|2)2dµ1(z) satisfies the condi-
tion (b) in Lemma 3.11. Hence, by the triangle inequality, there is a
constant C1 > 0 such that

(∫
B
|((R + a)f)(z)|2(1− |z|2)2 dµ1(z)

)1/2

≤ C1‖f‖H2(∂B) ,(22)

for all f ∈ H2(∂B). By Lemma 3.13 and by the inequality (22),

(∫
B
|f(z)|2 dµ2(z)

)1/2

≤
(∫

B
|((R + a)(fg))(z)|2(1− |z|2)t+2 dm(z)

)1/2

+(∫
B
|((R + a)f)(z)|2(1− |z|2)2 dµ1(z)

)1/2

≤ C2

(∫
B
|f(z)|2 dµ1(z)

)1/2

+ C1‖f‖H2(∂B) ≤ C3‖f‖H2(∂B) ,

for all f ∈ H2(∂B), so that dµ2 is a Carleson measure by Lemma 3.9.
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Assume now that dµ2(z) = |((R + a)g)(z)|2(1 − |z|)t+2 dm(z) is a
Carleson measure. Then, by Lemma 3.13,(∫

B
|f(z)g(z)|2(1− |z|2)t dm(z)

)1/2

≤ C

(∫
B
|((R + a)(fg))(z)|2(1− |z|2)t+2 dm(z)

)1/2

≤ C

(∫
B
|((R + a)f)(z)|2|g(z)|2(1− |z|2)t+2 dm(z)

)1/2

+

(∫
B
|f(z)|2 dµ2(z)

)1/2

,

for all f ∈ H2(∂B). Since dµ2 is a Carleson measure, then∫
B
|f(z)|2 dµ2(z) ≤ C‖f‖H2 ,

for all f ∈ H2(∂B). By Lemma 3.11 it remains to prove that∫
Q√r(ζ)

|g(z)|2(1− |z|2)t+2 dm(z) ≤ Crd+2 .(23)

By Lemma 3.6, (23) is equivalent to that for each (or some) s > 0 it
holds that

sup
w∈B

∫
B

(1− |w|2)s

|1− 〈ζ, w〉|d+2+s
dµ′(ζ) < +∞ ,(24)

where dµ′(ζ) = |g(ζ)|2(1− |ζ|2)t+2 dm(ζ). Now, again by Lemma 3.6,
since dµ2 is a Carleson measure, then for each (or some) s > 0 there
is a constant C > 0 such that∫

B

|((R + a)g)(ζ)|2(1− |ζ|2)t+2

|1− 〈ζ, w〉|d+s
dm(ζ) ≤ C

(1− |w|2)s
,(25)

for all w ∈ B. Let k = [(t + 1)/2] + 1. Then we have the reproducing
property

(R + a)g(z) = c

∫
B

(R + a)g(ζ)

(1− 〈z, ζ〉)d+1+k
(1− |ζ|2)k dm(ζ) .

This implies that

g(z) = c

∫
B

h(〈z, ζ〉)((R + a)g)(ζ)

(1− 〈z, ζ〉)d+k
(1− |ζ|2)k dm(ζ) ,
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where h is a polynomial of degree 1. Hence

|g(z)| ≤ C

∫
B

|((R + a)g)(ζ)|
|1− 〈z, ζ〉|d+k

(1− |ζ|2)k dm(ζ) ,

so that

(26)

|g(z)|2 ≤ C2

(∫
B

dµ(ζ)

|1− 〈z, ζ〉|d+s

)
·
(∫

B

(1− |ζ|2)2k−(t+2)

|1− 〈z, ζ〉|d+2k−s
dm(ζ)

)
.

Since t > −1 we can choose s such that 0 < s < t + 1. By (25) and
Proposition 1.4.10 in [9] we have

|g(z)|2 ≤ C ′

(1− |z|2)t+1
.

Thus, again by Proposition 1.4.10 in [9],∫
B

|g(z)|2(1− |z|2)t+2

|1− 〈z, w|d+2+s
dm(z)

≤ C ′
∫

B

1− |z|2

|1− 〈z, w〉|d+2+s
dm(z) ≤ C ′′

(1− |w|2)s
,

which proves (24). �

Definition 3.15 (See [14]). Let BMOA denote the space of functions
f ∈ H2(∂B) such that

‖f‖2
BMO = |f(0)|2+ sup

Q(ζ,r)

1

Q(ζ, r)

∫
Q(ζ,r)

|f(ξ)−fQ(ζ,r)|2 dσ(ξ) < ∞ ,

where, for any ζ ∈ ∂B and r > 0,

Q(ζ, r) =
{
ξ ∈ ∂B : |1− 〈ζ, ξ〉|1/2 < r

}
,

and

fQ(ζ,r) =
1

Q(ζ, r)

∫
Q(ζ,r)

f(ξ) dσ(ξ) .

VMOA is the closure in BMOA of the sets of polynomials, namely the
space of functions f ∈ H2(∂B) such that

lim
r→0+

sup
Q(ζ,r)

1

Q(ζ, r)

∫
Q(ζ,r)

|f(ξ)− fQ(ζ,r)|2 dσ(ξ) = 0 .

As a direct consequence of Lemma 3.14 we get a generalized version
of (Theorem 5.19) Theorem 5.14 in [14].
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Lemma 3.16. Let k be a positive integer, a1, . . . , ak ≥ 0, and f be
holomorphic on B. Then the following properies are equivalent:

(i) f ∈ (VMOA) BMOA .
(ii) |((R+a1) · · · (R+ak)f)(z)|2(1−|z|2)2k−1 dm(z) is a (vanishing)

Carleson measure.

The classical Hankel form (small Hankel operator) HG on the Hardy
space H2(∂B), as in [12], is bounded if and only if G ∈ BMOA and
HG is compact if and only if G ∈ VMOA; see [2] and [3]. Then, as
a consequence of Lemma 3.16 and Lemma 3.1, we have the following
theorem.

Theorem 3.17. The Hankel form H0
F is (compact) bounded if and

only if

|F (z)|2(1− |z|2)2d−1 dm(z)

is a (vanishing) Carleson measure.

4. The case s = 1, 2, 3, · · ·

In this section we study boundedness, compactness and the class Sp

properties, 2 ≤ p < ∞, for the case s ≥ 1.
As in [10] we have the Besov characterization (see Lemma 4.1 be-

low). However, this lemma does not hold for s = 0.

Lemma 4.1. For any positive integer s,

|f(0)|2 + · · ·+ ‖∂s−1f(0)‖2 +

∫
B
‖∂sf‖2

z

dm(z)

1− |z|2
∼ ‖f‖2

H2 ,

for all f ∈ H2(∂B).

The difficulty for the Hardy spaces are explained by this exam-
ple, where it is shown that we can find f1, f2 ∈ H2(∂B) such that
Ts(f1, f2) /∈ H1

d,s:

Example 4.2. This example is based on the proof of Theorem II
in [8]. First consider the case when s = 1 and d = 1. Let

f1(z) =
∞∑

k=1

1

k
z2k

and f2(z) = 1 .

Then f1, f2 ∈ H2(∂D) and since the series f1(z) is lacunary then

‖T1(f1, f2)‖1,1,1 =

∫
D
|f ′1(z)| dm(z) = ∞ .
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This is a consequence of a result about lacunary series by Zygmund;
see [8]. Namely, if nk+1/nk > λ for some λ > 1, and if h(z) =∑∞

k=0 ckz
nk satisfies ∫ 1

0

|h′(reiθ)| dr < ∞

for some θ, then
∑∞

k=0 |ck| < ∞.
In the general case, d ≥ 1 and s = 1, 2, · · · , we just change f1 into

f1(z) =
∞∑

k=1

1

k
z2k

1 ,

and still let f2(z) = 1. Then

‖Ts(f1, f2)‖d,s,1 =

∫
B
(1− |z1|2)s/2(1− |z|2)s/2−1

∣∣∣∣∂sf1

∂zs
1

(z)

∣∣∣∣ dm(z)

≥
∫

B
(1− |z|2)s−1

∣∣∣∣∂sf1

∂zs
1

(z)

∣∣∣∣ dm(z) .

By Theorem 2.17 in [14] there is a constant C > 0 such that∫
B
(1− |z|2)s−1

∣∣∣∣∂sf1

∂zs
1

(z)

∣∣∣∣ dm(z) ≥ C

∫
B

∣∣∣∣∂f1

∂z1

(z)

∣∣∣∣ dm(z)

and the right hand side of the inequality above is infinite, as we can
see in the initial case (s = 1, d = 1).

4.1. Boundedness and compactness. Criteria for boundedness and
compactness are given in Theorem 4.5 and Theorem 4.7, respectively.
To prove these theorems we need some lemmas.

For holomorphic F : B → �s(Cd)′ we consider the norm ‖F‖CM

given by

‖F‖2
CM = sup

w∈B

∫
B

(1− |w|2)d

|1− 〈z, w〉|2d
dµF (z) ,(27)

where dµF (z) = ‖F‖2
z(1− |z|2)2d−1 dm(z).

Lemma 4.3. Let F : B → �s(Cd)′ be holomorphic and let k be a
nonnegative integer. If the measure dµF (z) = ‖F‖2

z(1−|z|2)2d−1 dm(z)
is a Carleson measure, then there is a constant Ck > 0 such that∫

B
‖∂kf‖2

z dµF (z) ≤ Ck‖F‖2
CM‖f‖2

H2 ,

for all f ∈ H2(∂B).
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Proof. Clear if k = 0. Assume k is a positive integer. If f ∈ H2(∂B)
then ∂kf ∈ H2

d,s, by Lemma 4.1. Hence, by the reproducing property
in Lemma 2.2 and by Lemma 7.1 in [10],

‖∂kf‖z .
∫

B

(1− |z|2)s/2(1− |w|2)s/2−1

|1− 〈z, w〉|d+s
‖∂kf‖w dm(w)

Let 0 < ε < 1. Then, by Proposition 1.4.10 in [9],

‖∂kf‖2
z .

∫
B

(1− |w|2)ε−1

|1− 〈z, w〉|d+ε
‖∂kf‖2

w dm(w) ,

and hence, by Lemma 4.1,∫
B
‖∂kf‖2

z dµF (z)

.
∫

B
(1− |w|2)ε−1‖∂kf‖2

w

(∫
B

dµF (z)

|1− 〈z, w〉|d+ε

)
dm(w)

. ‖F‖2
CM

∫
B
‖∂kf‖2

w

dm(w)

1− |w|2
∼ ‖F‖2

CM‖f‖2
H2 .

�

We need to consider subspaces of H2
u,s, u > d−s, namely B2

u,s which
consists of elements F = ∂sf , where f : B → C is holomorphic and
‖F‖u,s,2 < ∞.

Lemma 4.4. Let

X =

{
S ∈ H2

3d,s : ‖S‖3d,s,2 = sup
‖∂sf‖d,s,2=1

|〈∂sf, S〉2d,s,2|
}

.

Then (B2
d,s)

′ ' X, with respect to the pairing 〈∂sf, S〉2d,s,2. That is,

for any bounded linear functional, l, on B2
d,s there is an element S ∈ X

such that l(∂sf) = 〈∂sf, S〉2d,s,2 and ‖l‖ ' ‖S‖3d,s,2.

Proof. Let l ∈ (B2
d,s)

′. Extend l to l̃ ∈ (H2
d,s)

′ with ‖l̃‖ = ‖l‖ and

l̃(∂sf) = l(∂sf), by Hahn-Banach Theorem. Then, by Lemma 2.3,

there is an element S ∈ H2
3d,s with ‖l̃‖ ' ‖S‖3d,s,2 so ‖l‖ ' ‖S‖3d,s,2.

In this sense we can imbedd (B2
d,s)

′ continuously in H2
3d,s and can

therefore be viewed as a subspace of H2
3d,s. Hence,

(B2
d,s)

′ '
{

S ∈ H2
3d,s : ‖S‖3d,s,2 = sup

‖∂sf‖d,s,2=1

|〈∂sf, S〉2d,s,2|
}

,
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with respect to the pairing 〈∂sf, S〉2d,s,2. �

Now we can prove the criterion for boundedness.

Theorem 4.5. The Hankel form Hs
F is bounded if and only if

dµF (z) = ‖F‖2
z(1− |z|2)2d−1 dm(z)

is a Carleson measure, with equivalent norms.

Proof. First assume that dµF is a Carleson measure. It suffices to
prove that, for k > 0,∣∣∣∣∫

B

〈
∂kf1 ⊗ ∂s−kf2, F

〉
z
(1− |z|2)d−1 dm(z)

∣∣∣∣ . ‖F‖CM‖f1‖H2‖f2‖H2 .

This is a direct consequence of Lemma 4.1 and Lemma 4.3, since∣∣∣∣∫
B

〈
∂kf1 ⊗ ∂s−kf2, F

〉
z
(1− |z|2)d−1 dm(z)

∣∣∣∣
≤

∫
B
‖∂kf1‖z‖∂s−kf2‖z‖F‖z(1− |z|2)d−1 dm(z)

≤
(∫

B
‖∂kf1‖2

z

dm(z)

1− |z|2

)1/2

·
(∫

B
‖∂s−kf2‖2

z dµF (z)

)1/2

≤ Cs,k‖F‖CM‖f1‖H2‖f2‖H2

for some constant Cs,k > 0.
Now assume that Hs

F is bounded. Let Gw = π2d,s(ϕw)F where the
action g → π2d,s(g) is defined in (12), and the fractional linear map is
defined in (7). Since ϕ−1

w = ϕw, then by (16),

Hs
Gw

(f1, f2) = Hs
F

(
πd(ϕw)f1, πd(ϕw)f2

)
,(28)

where g → πd(g) is the unitary action on H2(∂B) defined in (9).
Since π2d,s(ϕw) is unitary on H2

2d,s (or even on L2
2d,s; the space of

measurable F with ‖F‖2d,s,2 < ∞) then

‖π2d,s(ϕw)F‖2
3d,s,2 =

∫
B
‖F‖2

z(1− |ϕw(z)|2)d(1− |z|2)d−1 dm(z)

=

∫
B

(1− |w|2)d

|1− 〈z, w〉|2d
‖F‖2

z(1− |z|2)2d−1 dm(z) .

Hence we can make the following reformulation of ‖F‖CM :

‖F‖CM = sup
w∈B

‖Gw‖3d,s,2 .(29)
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It follows by (28) that ‖Hs
Gw
‖ = ‖Hs

F‖ and hence Hs
Gw

is bounded
for any w ∈ B. Define, TGw(∂sf) = 〈∂sf, Gw〉2d,s,2 on B2

d,s. Then
TGw(∂sf) = Hs

Gw
(f, 1), and by Lemma 4.1,

|TGw(∂sf)| ≤ ‖Hs
Gw
‖ · ‖f‖H2 . ‖Hs

Gw
‖ · ‖∂sf‖d,s,2 ,

so TGw : B2
d,s → C is a bounded linear functional on B2

d,s. Hence, by
Lemma 4.4 and Lemma 4.1,

‖Gw‖3d,s,2 ' sup
‖∂sf‖d,s,2=1

|〈∂sf, Gw〉2d,s,2|

= sup
‖∂sf‖d,s,2=1

∣∣Hs
Gw

(f, 1)
∣∣

≤ sup
‖∂sf‖d,s,2=1

‖Hs
Gw
‖ · ‖f‖H2

. ‖Hs
Gw
‖ = ‖Hs

F‖ ,

so by (29),

‖F‖CM . ‖Hs
F‖ .

�

Before we can prove the criterion for compactness we need one more
lemma.

Lemma 4.6. Let F : B → �s(Cd)′ be holomorphic, and Fr(z) =
F (rz) for 0 < r < 1. If dµF (z) = ‖F‖2

z(1 − |z|2)2d−1 dm(z) is a
vanishing Carleson measure, then

‖Fr − F‖CM → 0 , as r → 1− .

Proof. If dµF (z) is a vanishing Carleson measure, then

lim
|w|→1−

∫
B

(1− |w|2)d

|1− 〈z, w〉|2d
dµF (z) = 0 .

Hence, this lemma is a direct consequence of the fact that∫
B

(1− |w|2)d

|1− 〈z, w〉|2d
dµFr(z) .

∫
B

(1− |rw|2)d

|1− 〈z, rw〉|2d
dµF (z)

and dominated convergence. �

Theorem 4.7. The Hankel form Hs
F is compact if and only if

dµF (z) = ‖F‖2
z(1− |z|2)2d−1 dm(z)

is a vanishing Carleson measure.
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Proof. First, assume that dµF (z) is a vanishing Carleson measure.
Then, by Theorem 4.5 and Lemma 4.6,

‖Hs
Fr
−Hs

F‖ . ‖Fr − F‖CM → 0

as r → 1−. Hence, it suffices to prove that Hs
Fr

is compact. But since
Fr can be approximated in Carleson norm by its Taylor polynomials

P
(r)
N and Hs

P
(r)
N

has finite rank, then Hs
Fr

is clearly compact (see the

proof of the sufficiency in Theorem 1.1(b) in [10]).
Now assume that Hs

F is compact. As in the proof of Theorem 4.5,
let Gw = π2d,s(ϕw)F . Then dµF (z) is a vanishing Carleson measure
if and only if, for any sequence {wn} ⊂ B such that |wn| → 1− as
n →∞,

lim
n→∞

‖Gwn‖3d,s,2 = 0 .(30)

Again, as in the proof of Theorem 4.5, by Lemma 4.4,

‖Gwn‖3d,s,2 = sup
‖∂sf‖d,s,2=1

∣∣Hs
Gwn

(f, 1)
∣∣

= sup
‖∂sf‖d,s,2=1

∣∣Hs
F

(
πd(ϕwn)f, πd(ϕwn)1

)∣∣
The action g → πd(g) is unitary on H2(∂B) and {πd(ϕwn)1} is a
sequence in H2(∂B) converging weakly to 0. Since Hs

F is compact,
then there is a sequence {cn} of positive number converging to 0 such
that ∣∣Hs

F

(
πd(ϕwn)f, πd(ϕwn)1

)∣∣ ≤ cn‖f‖H2 .

By Lemma 4.1,

‖Gwn‖3d,s,2 . cn → 0

as n →∞, which proves (30). �

4.2. Schatten-von Neumann class. In this subsection we prove
Theorem B for s ≥ 1. For this purpose we prove two more general
results; Theorem 4.12 (valid for s ≥ 1) and Theorem 4.13 (valid for
s ≥ 0), and then Theorem B follows by letting α = β = 0. The main
idea is to use the interpolation theorem for families of analytic oper-
ators. To do this we first need to rewrite Hankel forms on Bergman-
Sobolev-type spaces to forms on Hardy spaces.
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For t ∈ C, we define the radial fractional derivative of order t by

(1 + R)tf(z) =
∑

m∈Nd

(1 + |m|)tc(m)zm ,

where f(z) =
∑

m∈Nd c(m)zm is the Taylor expansion of f . The follow-
ing lemma follows by using Taylor expansion and Stirling’s formula.

Lemma 4.8. If 2<(t) + α > −1 then

‖f‖2
α '

∫
B
|(1 + R)tf(z)|2(1− |z|2)2<(t)+α dm(z) ,

for all holomorphic functions f : B → C.

As a direct consequence of Lemma 4.8 we have the following lemma.

Lemma 4.9. Let α > −d. Then

‖f‖H2 ' ‖(1 + R)α/2f‖α ,

for all holomorphic functions f : B → C.

By Lemma 4.9 the Hankel forms Hα,β,s
F given by (14), defined on

A2
α ×A2

β, can be regarded as forms defined on H2(∂B)×H2(∂B) via

H̃α,β,s
F (f1, f2) := Hα,β,s

F

(
(1 + R)α/2f1, (1 + R)β/2f2

)
.(31)

Namely, as a direct consequence of Lemma 4.9, using (31), we have
the following result.

Lemma 4.10. Let α, β > −d and p ∈ {2,∞}. Then

‖H̃α,β,s
F ‖Sp(H2,H2) ' ‖Hα,β,s

F ‖Sp(A2
α,A2

β) .

Remark 4.11. We can extend (31) to complex numbers α and β. In
this case, if <(α),<(β) > −d then

‖H̃α,β,s
F ‖Sp(H2,H2) = ‖H̃<(α),<(β),s

F ‖Sp(H2,H2)

for p ∈ {2,∞}, by unitary operators.

Theorem 4.12. Let 2 ≤ p < ∞ and α, β > −1/p. Then H̃α,β,s
F ∈

Sp(H
2, H2) if F ∈ Hp

1
2
p(α+β)+pd,s

and

‖H̃α,β,s
F ‖Sp(H2,H2) . ‖F‖ 1

2
p(α+β)+pd,s,p .



HANKEL FORMS OF HIGHER WEIGHTS ON HARDY SPACES 23

Proof. Put α1 = α − p−2
2p

, β1 = β − p−2
2p

, α2 = α + 1
p

and β2 = β + 1
p
.

Clearly α1, β1 > −1/2 and α2, β2 > 0. We will use interpolation
for the analytic families of operators. For this purpose consider, for
0 ≤ <(z) ≤ 1, the forms H̃αz ,βz ,s

F , given by (31), where αz = α1 +
z(α2 − α1) and βz = β1 + z(β2 − β1). Now we can define the analytic
family of operators, {Γ(z)}, on the strip 0 ≤ <(z) ≤ 1 into operators
from the intersection H2

α1+β1+2d,s ∩H∞
1
2
(α2+β2)+d,s

into S2 + S∞, where

Γ(z)F = H̃αz ,βz ,s
F . Consider <(z) = 0: By Remark 4.11, Lemma 4.10

and Lemma 2.5, if F ∈ H2
α1+α2+2d,s then

‖H̃αz ,βz ,s
F ‖S2 = ‖Hα1,β1,s

F ‖S2 ' ‖F‖α1+β1+2d,s,2 .

Consider <(z) = 1: By Remark 4.11, Lemma 4.10 and Lemma 2.7, if
F ∈ H∞

1
2
(α2+β2)+d,s

then

‖H̃αz ,βz ,s
F ‖S∞ = ‖Hα2,β2,s

F ‖S∞ . ‖F‖ 1
2
(α2+β2)+d,s,∞ .

Now we claim that there is a constant C(d, s) such that

‖Γ(z)F‖S2 ≤ C(d, s)‖F‖α1+α2+2d,s,2(32)

for 0 ≤ <(z) ≤ 1 and for all F ∈ H2
α1+α2+2d,s. Accepting temporarily

the claim, since S2 ⊂ S∞ continuously and since

H2
α1+β1+2d,s ∩H∞

1
2
(α2+β2)+d,s

⊂ H2
α1+β1+2d,s

continuously, then Γ is bounded on the strip 0 ≤ <(z) ≤ 1. Hence we
can apply the interpolation theorem for the analytic families of oper-
ators (see Theorem 2.12). We obtain, for fixed 0 < θ < 1, that Γ(θ)
is bounded from (H2

α1+β1+2d,s,H∞
1
2
(α2+β2)+d,s

)[θ] into (S2,S∞)[θ]. Put

θ = (p− 2)/p. Using Lemma 2.4 we get(
H2

α1+β1+2d,s,H∞
1
2
(α2+β2)+d,s

)
[1− 2

p
]
= Hp

1
2
p(α+β)+pd,s

,

and hence

‖Hα,β,s
F ‖Sp . ‖F‖ 1

2
p(α+β)+pd,s,p ,

since αθ = α and βθ = β when θ = (p− 2)/p.
Now we go back to the claim (32). We may assume that z is real,

and we therefore put z = θ ∈ [0, 1]. By Lemma 4.10,

‖Γ(θ)F‖S2(H2,H2) = ‖Hαθ,βθ,s
F ‖S2(A2

αθ
,A2

βθ
) ,
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and since αθ > α1 > −1/2, βθ > β1 > −1/2 then

‖Hαθ,βθ,s
F ‖S2(A2

αθ
,A2

βθ
) ≤ C(d, s)

√
s!‖F‖αθ+βθ+2d,s,2

≤ C(d, s)′‖F‖α1+β1+2d,s,2 ,

by Lemma 2.5, where C(d, s) is the constant in (17). �

Theorem 4.13. Let 2 ≤ p < ∞ and α, β ≥ 0. Then F ∈ Hp
1
2
p(α+β)+pd,s

if Hα,β,s
F ∈ Sp(H

2, H2) and

‖F‖ 1
2
p(α+β)+pd,s,p . ‖Hα,β,s

F ‖Sp(H2,H2) .

Proof. Consider T̃ α,β
s defined by (13). By Lemma 2.9 it remains to

prove that T̃ 0,0
s (H0,0,s

F ) = F if H0,0,s
F ∈ Sp(H

2, H2) for 2 ≤ p < ∞.

Let H0,0,s
F ∈ Sp and let Fr(z) = F (rz), for r ∈ (0, 1). Since H0,0,s

F is
compact then ‖F‖2

z(1 − |z|2)2d−1 dm(z) is a vanishing Carleson mea-
sure, by Theorem 4.7, and hence ‖Fr − F‖CM → 0 as r → 1−, by
Lemma 4.6. Then Fr → F pointwise and also, by Theorem 4.5, we
have ‖H0,0,s

Fr
−H0,0,s

F ‖S∞ → 0 as r → 1−. Hence, by Lemma 2.9,

T̃ 0,0
s (H0,0,s

F ) = lim
r→1−

T̃ 0,0
s (H0,0,s

Fr
) = lim

r→1−
Fr = F .

�
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