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ENVELOPE CROSSING DISTRIBUTIONS FOR GAUSSIAN FIELDS

KRZYSZTOF PODGÓRSKI AND IGOR RYCHLIK

Abstract. The envelope process is an analytical tool often used to study extremes and

wave groups. In an approach to approximate the first passage probability for the underly-

ing response the average number of envelope crossings is used to obtain an upper bound.

Vanmarcke (1975) improved this approximation by accounting for the proportion of empty

excursions of the envelope. Ditlevsen and Lindgren (1988) proposed an accurate approxima-

tion of this proportion by using the Slepian model method. This approximation was further

studied in Ditlevson (1994). In the first part of the paper, we review the approach as well

as give a brief account of the results.

In the second main part of the paper, the method of sampling distribution is applied to

the envelope field that is a generalization of the envelope process. The need of considering

a field rather than a process is particularly important in these applications for which both

spatial and temporal variability has to be taken into account. Here we notice that the

envelope field is not uniquely defined and that its statistical properties depend on a chosen

version. We utilize convienient envelope sampling distributions to decide for a version that

has desired smoothing properties. The spatial-temporal Gaussian sea-surface model is used

to illustrate this approach.

One intrinsically multivariate problem is studying velocities of moving spatial records. It

is particularly important in marine applications as the velocity of the envelope is related

to the rate at which energy is transported by propagating waves. Under the Gaussian

model we derive sampling properties of the envelope velocity measured at the level contours.

By associating the properties of envelope with the properties of group waves we present

differences between statistical distributions of individual waves and waves groups.

1. INTRODUCTION

In his pioneering work Longuet-Higgins (1957) has introduced the decomposition of travel-

ing random waves into the envelope (low frequency varying amplitude) and the carrier (high

frequency oscillations). The envelope is always above the underlying signal and typically

smoothes it out, therefore its average number of crossings is often used to convieniently
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approximate distributions of the global maximum. For marine applications the envelope is

used in connection with statistical analysis of wave crests and wave groups while in fatigue

analysis it is used to obtain fatigue damage approximations through the rainflow method.

The envelope is defined as the norm of the complex process with the underlying signal

as its real component and the Hilbert transform as its imaginary part. The envelope is

typically smoother than the underlying process while at high levels it generally follows its

height. This is due to the fact that the Hilbert transform (if properly defined) is strongly

correlated with the derivative of the signal and thus it is approximately equal to zero at the

extrema. Consequently the high levels are exceeded by the envelope if they are exceeded

by the signal and often vice versa. If this is not the case, then the envelope upcrosses a

level while the underlying signal stays below throughout the entire envelope excursion that

is then described as an empty one. The average number of upcrossing by the process is

used as a standard upper bound for the distribution of the global maximum. If the envelope

upcrossings are adjusted for the empty excursions their average number gives a more precise

upper bound. This is due to smoothness of the envelope which results in an essentially

smaller number of its non-empty, i.e. qualified crossings than the number of the crossings

for the underlying signal. The idea was first explored in Vanmarcke (1975) and later in

Ditlevsen and Lindgren (1988), Ditlevsen (1994), where the Slepian model of the process at

the envelope upcrossing was used to approximate more acurately the proportion of empty

excursions. In Section 3, we review this problem in further detail while presenting Ove

Ditlevsen’s contribution to this application of the envelope.

In analysis of safety of structure subjected to environmental loads one is estimating the

probability that strength of components is larger then the maximal experienced load and that

the material detoriation due to time variable loads is not decreasing its strength. Here the

fatigue damage – cracking – is one of the most important material degradataion processes. In

the past envelope was used to approximate the risk for failure in both cases. For a stationary

Gaussian process the distribution of the envelope is Rayleigh. The Rayleigh variable is

commonly used in prediction of fatigue failure caused by wave induced loads (Gaussian

processes) acting on the offshore structure. In particular, one is approximating the rate of

the fatigue damage growth at a hot spot to be proportional to a moment of the envelope,

where the proportionality constant depends on the structure geometry and material, while
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the order of the moment is material dependent only. This approach was introduced in the

pioneering work of Bendat (1966) who argued that envelope probability density is equivalent

to peak probability density functions for narrow band Gaussian process. In Rychlik (1993)

it was proven that Bendat’s “narrow band” approximation is actually an upper bound for

the damage rate computed by means of the rainflow method for any stationary Gaussian

load. Bendat’s approach has also been extended to any smooth stationary load for which

the upcrossing intensity can be computed. In another fatigue application, Jiao and Moan

(1990) consider wave loads for a typical situations of mixture of swell and wind driven sea.

This leads to Gaussian loads with power spectra having well separated tops, i.e. the signal

is made of a slowly varying load with added high frequency noise. The damage rate of such

process is approximated by a sum of damages caused separately by the noise (narrow-band

approximation was employed) and by the slowly varying part for which peaks were raised

by the height of the envelope of the noise.

Another type of risks in offshore operations is the possibility of undesire responses of the

vessels which can result in capsizing. This events have higher chances to occure if the speed

of the vessel is comparable to the wave velocity and the time spend in a large wave group is

long. Some aspects of this problem can be studied by analyzing the wave group velocity. The

wave groups are defined, not quite precisely, as collections of waves with large ones in the

center accompanied with small vanishing waves at the ends. The wave groups are observed

in empirical data where often a high wave is preceded or succeeded by another wave which

is higher than average. Properties of such groups are important for ocean engineers. For

example, a group of waves can be responsible for a capsize of the ship if she will not regain

stability between oncoming high waves in the group. It is often reported that groups of

waves do more damage than waves of the same size but separated by smaller waves [see, for

example, Burcharth (1980)]. This is partially explained by the fact that energy propagate

with the rate corresponding to the speed of waves groups. For deep water waves this rate is

slower than the speed of individual waves and it can be demonstrated by physical arguments

that for waves having narrow band spectra it is the envelope that is responsible for the

transport of energy.

Despite that in the original work of Longuet-Higgins the envelope was proposed for moving

random surface, most of the future work was done for the envelope of univariate random
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Figure 1. Examples of directional spectra: swell spectrum (left); JONSWAP

spectrum used in examples (right).

processes with the notable exception of Adler (1978,1981), where the definition and some

properties of the bivariate envelope field were discussed. We extend this original work and

focus on applications to studies of Gaussian sea surfaces.

In truly two dimensional set-up where even individual waves are hard to describe in a

formal manner, the notion of wave groups escapes a precise definition. On the other hand the

envelope field is defined in an arbitrary dimension and its properties naturally extend from

the one-dimensional case. Take for example the sea surface given by the swell spectrum shown

in Figure 1, [details on the model of this spectrum can be found in Torsethaugen (1996)].

The difference between dynamics of surface and envelopes can be illustrated by recording

contour movements in two time instants within 5[s]. For each of the field, let us consider the

contours crossing the significant crest height level (the significant wave height, in this case,

is 2.2[m], thus the crossing level or the significant crest height is 1.1[m] above the mean sea

level). For the sea surface, in order to obtain a more transparent picture of the contours

we have also added crossing contours at the level equal to 90% of the significant wave crest.

Several important features can be noticed from the graphs presented in Figures 2 where the

waves are moving from right to left. First, the envelope field is indeed grouping the waves
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Figure 2. Motion of level crossing contours for sea surface (top) and envelop

(bottom) – the principal direction of wave movement is from the right to the

left.

as its contours cover areas in which we observe clearly separated contours of the sea surface.

Next, the displacements for the envelope are evidently smaller than for the sea surface –

the envelope appears to move slower than the sea surface. The level crossing contours for

the envelope are more stable, appearing mostly to drift with no rapid change in shape or

size. Note also that waves entering the envelope contours are growing while these which are

leaving are diminishing – expected behavior when the waves group are moving slower then

the individual waves.
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In this paper, we analyze the envelope in a systematic way using statistical properties of

this multivariate field. In Section 2, we outline the foundations of statistical distributions

sampled at the level crossings of random fields that are based on the generalized Rice’s

formula. After that the problem of empty envelope excursions is formulated and Ditlevson’s

contributions is recapitulated. Then we devote some space to discuss the definition of the

multivariate envelope which is not a unique concept. In fact there is certain freedom of

a choice following from the definition of the envelope. Thus we start with a discussion of

choices of the envelope for evolving sea surface. Later we derive some statistical distribution

of properly defined velocities for the envelope. Finally, these distributions are compared

with the analogous distributions obtained for the underlying sea surface in both analytical

and numerical manner. Numerical computations are performed for a Gaussian sea having

a JONSWAP directional spectrum. Our numerical studies are supported by the MATLAB

toolbox WAFO – Wave Analysis in Fatigue and Oceanography – containing a comprehensive

package of numerical subroutines and programs for statistical analysis of random waves. This

toolbox is available free of charge at http//www.maths.lth.se/matstat/wafo.

2. STOCHASTIC FIELDS SAMPLED AT LEVEL CROSSINGS

Stochastic processes serve as probability models of phenomena observed in some contin-

uum, for example in time or in space or sometimes in both. It is often assumed that observed

realizations produced by a model or, as they are often called, sample paths contain all infor-

mation about the model (ergodic property). Vice versa, the theoretical model can provide

with formulas for the statistical distributions extracted from sample paths. However, the

relation between the sample path distributions and the theoretical distributions describing

the model is not always straightforward. For example, complications can arise from the

effect of sampling bias. The name refers to a change of sample distribution for the same

quantity due to a different method of collecting its values. Identifying the sampling distri-

butions appropriate for specific applications is an important issue that is discussed here in

more detail.

Let X(τ ) be a stationary and ergodic random field. The probability that this field has a

(measurable) property A is given by P(X ∈ A). These probabilities are referred to as the

theoretical distribution of X. By the law of large numbers and ergodicity it also represents
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statistical distributions of X(τ + ·) sampled at completely randomly chosen τ over large

region of τ ’s. For this reason it is often called the unbiased sampling distribution. Suppose

now that one is interested in the property A only at the points τ for which |X(τ )| ≤ ǫ,

for small ǫ > 0, i.e. when X ≈ 0. More precisely, if we consider the set {τ : |X(τ )| ≤ ǫ},
and take a sample of its points using uniform distribution over this set, then the obtained

distribution is well approximated by the conditional distribution P (X ∈ A X(0) = 0). It is

a somewhat surprising and often confusing fact that if one samples observations uniformly

from the contour set Cu = {τ ;X(τ ) = u}, u = 0, then this distribution is not asymptotically

equal to P (X ∈ A X(0) = 0). The restriction to contour sets that have a smaller dimension

than the domain of the process introduces the sampling bias. The proper formulas for the

biased sampling distributions are given in (2) and (3). A short account of the theory that

leads to them follows.

In order to discuss biased sampling distributions, first we should answer the question of

how large are the u-level crossing contours Cu in the terms of the measure that parallels

their dimension. In mathematics this measure is referred to as the Hausdorff measure and

the corresponding dimension is called the Hausdorf dimension. For example, the Hausdorff

dimension of a discrete set of points is equal to zero and its Hausdorff measure counts the

number of points in the set, the Hausdorff dimension of a contour line on the plane equals

one with the corresponding Hausdorff measure equal to the length of the line. Alternatively,

we refer to the Hausdorff measure more descriptively as the relative volume of a set A and

denote it by V(A) without indicating explicitely the dependence on the Hausdorff dimension.

The mean sizes of level crossing countour in the terms of their relative volumes is given by

the celebrated Rice formula [Rice (1944),(1945)].

Originally it was formulated as a one dimensional version of the problem, i.e. when X

depends only on one variable, say, t in which the case the contours are made of discrete

points. It states that V(Cu ∩ [0, T ]) (which in this case is simply the number of times X

takes the value u in [0, T ]), when divided by increasing without bound T , with probability

one converges to

(1)

∫

|y|fẊ(0),X(0)(y, u)dy = E
(

|Ẋ(0)| X(0) = u
)

· fX(0)(u),
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where fẊ(0),X(0), fX(0) are the density functions of (Ẋ(0), X(0)) and X(0), respectively. The

above formulation is valid under the assumptions of stationarity and ergodicity of X and is

a combination of the ergodic theorem and the original Rice formula, which stated that the

average number of crossing N(1), i.e. E(N(1)) equals the left hand side of (1).

There is an extension of the above result for the number of times t such that X(t) = u

in [0, T ] and at the same time the process X(t + ·) has a property A (here the property A

may even apply to the entire trajectory of the process s 7→ X(t+ s). Namely, we have with

probability one

(2) lim
T→∞

V(Cu ∩ {t ∈ R : X(t+ ·) ∈ A})
V(Cu)

=
E

(

{X ∈ A}|Ẋ(0)| X(0) = u
)

E
(

|Ẋ(0)| X(0) = u
) ,

where the set {X ∈ A} is identified with its indicator function, i.e. a function that takes one

if argument is in the set and zero otherwise. Consequently, the right hand side represents

the biased sampling distribution when sampling is made uniformly from the u-level contour

Cu. We use the following notation for this distribution

P (X ∈ A Cu)=P (X(t+ ·) ∈ A t ∈ Cu)

and refer to it as the distribution of X on the contour Cu.
The extension to the multivariate case is fairly straightforward. Consider a pair of jointly

stationary stochastic processes V(p), X(p), p ∈ R
k, taking values in R

m and R
n, respec-

tively. Assume that n ≤ k and from now on treat them as fixed. Further let V stand for

the relative volume in R
k of the dimension k − n (as before if k = 3, then V represents the

length of a set if n = 2, the area if n = 1, and V simply counts points in a set in the special

case n = 3). The distribution of V(p) on the contour Cu = {p ∈ [0, 1]k : X(p) = u} is given

by

(3) P(V(p) ∈ A p ∈ Cu)
def
=

E [V {p ∈ Cu : V(p) ∈ A}]
E [V (Cu)]

.

A generalized Rice formula is utilized to compute this distribution. Let X(p) have contin-

uous finite dimensional distributions and denote by fX(0)(u) the density of X(0). Let Ẋ(p)

be the matrix of partial derivatives of X(p) (which are assumed to exist). The generalized

determinant of this matrix is denoted by det (Ẋ(p)). Use of the above notation allows us to
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write a generic form of the Rice formula as

(4) E [V {p ∈ Cu : V(p) ∈ A}] = E
(

{V(0) ∈ A} · det Ẋ(0) X(0) = u
)

fX(0)(u).

Notice that if the joint density of V, X, Ẋ is available, which is always the case in this

paper, the right hand side can be written simply in the form of an integral and the biased

sampling distribution can be written as

(5) P(V(p) ∈ A p ∈ Cu) =

∫

A

∫

f
V,Ẋ,X(v, ẋ,u) · det ẋ dẋdv

∫

f
Ẋ,X(ẋ,u) · det ẋ dẋ

.

See Appendix C for details and further extensions.

In the context of the present paper, the process V(p) may represent a velocity measured

at a spatial point p. Velocity can be vector valued or scalar (speed) and thus either m = 2

or m = 1. The process X(p) may represent either the envelope field E(p) or the underlying

sea surface W (p). The distributions of velocities can be considered for sampling on a level

crossing contour of E(p), in which case n = 1 and k = 2. The determinant det Ė is then

equal to ||Ė|| =
√

E2
x + E2

y and V measures the length of the contour on the plane.

A type of biased sampling distributions can be dictated by the nature of the problem in

hand and can be essentially different from the ones discussed in this work. Our presentation

merely illustrate techniques of deriving theoretical forms of distributions sampled at various

cases of contours. The derivation should help to approach problems of finding sampling

distributions on contours in many other multivariate situations of practical interest.

3. GLOBAL MAXIMUM AND EMPTY ENVELOPE EXCURSIONS

In engineering applications such as safety analysis of offshore structures, the distribution

of maximum of a signal X(t) is of interest. The Rice method uses the following upper bound

for the distribution of the maximum

(6) P(MT > u) ≤ P(X(0) > u) + P
(

N+
T (u) > 0

)

≤ P(X(0) > u) + µ+(u) · T,

where MT = max0≤t≤T X(t), N+
T (u) = #{t ∈ [0, T ] : X(t) = u, Ẋ(t) > 0} and the upcrossing

intensity µ+(u) = E
(

N+
T (u)

)

/T . (Here and in what follows #(A) stands for the number of

elements of a set A.) For a stationary process X the celebrated Rice formula states that

µ+(u) = E
(

Ẋ+(0) X(0) = u
)

fX(0)(u),
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where x+ = max(0, x) and fX(0) is the density of X(0). Thus in the Gaussian zero mean

case

µ+(u) =
1

2π

√

λ2

λ0
e
− u2

2λ0 ,

where λi’s are the spectral moments of the process, i.e. if σ is the spectral measure so the

covariance function R(t) = Cov(X(t), X(0)) =
∫ ∞

−∞ eitλdσ(λ), then

λi = 2

∫ ∞

0

λidσ(λ).

The quantity T2 = 2π
√

λ0

λ2
represents the expected (mean) period of X and thus

µ+(u) =
e
− u2

2λ0

T2

with the zero (u = 0) upcrossing intensity being the reciprocal of the period T2. The term

P(X(0) > u) in (6) can be neglected if the level u is large (the most interesting case for

applications) and T is larger than the period T2. In this situation the process typically

crosses the u level more than once, in particular when a group of waves has approached.

Consequently, the second term in (6) becomes a very crude upper bound.

An apparent wave group is difficult to define rigorously although for a narrow band process

(swell) groups of waves are clearly seen in the records. They can be fairly well identified

through subsequent crossings of high level by the envelope that is defined as

E(t) =
√

X2(t) +X2
H(t),

where XH(t) is Hilbert transform of X(t) (see the Appendices for the details). The envelope

E(t) is always above the process X(t) thus we have an obvious relation

P(N+
T (u) > 0) ≤ P(E(0) > u) + P(N+

T (u) > 0),

where N+
T (u) stands for upcrossings of the envelope. The above can be improved using the

number N+
0,T (u) of empty envelope excursions

P
(

N+
T (u) > 0

)

= P(E(0) > u)+P
(

N+
T (u) −N+

0,T (u) > 0
)

≤ P(E(0) > u)+E
(

N+
T (u)

)

−E
(

N+
0,T (u)

)

.

In view of the preceeding comments, the following upper bound may lead to an improvement

over (6):

(7) P(MT > u) ≤ P(X(0) > u) + (ν+(u) − ν+
0 (u)) · T,
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where ν+ and ν+
0 are the envelope intensities of upcrossings and empty upcrossings, respec-

tively.

The intensities of upcrossings of the envelope and its empty excursions can be expressed

using polar coordinates (E(t), θ(t)) of (X(t), XH(t)):

X(t) = E(t) cos θ(t),

XH(t) = E(t) sin θ(t).

Defining Z(t) = E2(t) the intensity ν+(u) of upcrossing of the envelope is given by

ν+(u) = E
(

Ż+(0) Z(0) = u2
)

fZ(0)(u
2).

The density of Z(0) is exponential with the intensity 1/(2λ0) and

fZ(0)(u
2) =

1

2λ0
e
− u2

2λ0 .

The conditional distribution of Ż (0) = 2Ẋ(0)X(0) + 2ẊH(0)XH(0) given E(0) = u and

θ(0) = θ is normal with mean zero and the variance

Var
(

Ż(0) E(0) = u, θ(0) = θ
)

= 4u2λ2(1 − ρ2),

where ρ2 = λ2
1/(λ0λ2) is the squared correlation between the derivative Ẋ(t) of the process

and its Hilbert transform XH(t). The parameter γ =
√

1 − ρ2 is known in the literature as

the spectral width of the process. Here we note that the high correlation of the derivative

and Hilbert transform may lead to the envelope nearly touching process at local extrema of

the process – a “small” value of the Hilbert transform typically will correlate with a zero of

the derivative. Consequentely, one should expect the narrow bandness to be related to the

small rates of empty envelopes excursions at high levels. We also observe independence of

θ(0) and thus

ν+(u) =

√

2π(1 − ρ2)

λ0
· u · e

− u2

2λ0

T2
.

Evaluating ν+
0 (u) that is used in (7) is a more challenging task. One way to approach to

the problem is to applied a generalized Rice formula to obtain sampling distribution of an

envelope excursion to be empty and thus computing ν+
0 (u)/ν+(u). Despite this relatively

straightforward formulation of the problem, the actual computation requires further gener-

alizations of Rice’s formula as compared to the one given in (5). Such an approach is further
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Figure 3. Complex envelope for the “narrow band” (left) and the “broad

band” (right) cases. We observe lower rate of empty envelope excursions for

the “narrow band” case (ρ2 = 0.99) than for the “broad band” case (ρ2 = 0.60).

discussed in Appendix C. Another approach that allows for approximation and simplifica-

tion this computationally difficult problem has been successfully implemented in Ditlevson

and Lindgren (1988). The method is based on the Slepian model at envelope upcrossing that

is described below.

The empty envelope excursions occur at t instants such that E(t) = u and Ė(t) > 0 and

E(s) cos θ(s) < u for s ∈ (t,min{s > t;E(s) ≤ u}) before E(s) goes again under u for s > t,

i.e. when the complex envelope E(t) = X(t) + iXH(t) after leaving the circle of radius u

stays in the half-plane {z;ℜ(z) < u} until its subsequent return inside the circle. In Figure 3

we see examples of the complex envelope with low and high rates of empty excursions.

Let us consider the conditioning of the process around exit of the circle with radius u of the

complex envelope E(t) so the only stochastic contribution to the resulting excursion comes

from the angle φ at which the crossing occurs. There exists the unique interval (φ, φ+ δ) of

the minimal length such that the entire excursion of the envelope is contained between the

tangent lines to the circle set at the angles φ and φ+ δ. Because of the rotational invariance

of the complex envelope distribution under the considered conditioning the distribution of

the angle φ is uniform on interval (0, 2π) while δ is fixed, non-random. Consequently, a

qualified excursion occurs if this interval contains the zero angle, i.e. upon the considered
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conditioning it is equal to δ/(2π). In general the unconditional distribution of δ is very

complicated. In Ditlevson and Lindgren (1988) it is argued that for narrow band processes,

i.e. when the correlation ρ is high, the angular interval (φ, φ+ δ) is approximately equal to

the angular interval of the complex envelope excursion from the circle. Then the problem

can be simplified even further by assuming that for narrow band processes the interval of

the excursion for the process can be well approximated by its mean value eavaluated at the

exit point of the circle. Through this simplification of the problem δ is approximated by the

length of excursion of the averaged process that stochastically depends only on the velocity

of the complex envelope process at the exit time.

More precisely, the complex process E(t) conditionally on Z(0) = u2, θ(0) = θ, Ż (0) = ż is

equivalent to conditioning on X(0) = u cos θ, Y (0) = u sin θ, 2u(Ẋ(0) cos θ + Ẏ (0) sin θ) = ż.

Thus it corresponds to the distribution of a bivariate Gaussian process E(t) with the mean

m(t; u, θ, ż) and covariance structure Σ(t, s; θ) depending neither on u nor on ż. Let us

define a residual process

Eθ(t) = E(t) − m(t; u, θ, ż).

The Slepian model at the upcrossing of level u by E(t) is thus described by

Y(t; u) = m(t; u,Θ, Ż ) + Eθ(t),

where Θ is distributed uniformly on [0, 2π), while Ż is independent of Θ and of residual

process Eθ(t), and Ż when divided by 2u
√

λ2(1 − ρ2) has the Rayleigh distribution.

Assuming that δ in the proportion δ/(2π) of empty envelope excursions has been approx-

imated by the excursion time of the regression process m(t; u,Θ, Ż ) in the Slepian model,

Ditlevson and Lindgren (1988) using Taylor expansions of this process have obtained

(8)
ν+

0 (u)

ν+(u)
≈

∫ u
“√

1+ǫ2/4−ǫ/2
”

−u
“√

1+ǫ2/4−ǫ/2
”

φ(η)



1 −
√

2π
Φ

(

γπ u
2−η2+ǫuη

u
− 1

2

)

γπ u
2−η2+ǫuη

u



 dη,

where φ and Φ are the standard normal density and distribution function, respectively while

ǫ = (λ3 − 3λ2λ1 + 2λ3
1)/(λ2 − λ2

1)
3/2 is the skewness parameter of the spectrum. If the

skewness is moderate, i.e. when we may assume that ǫ ≈ 0, then the formula takes a simpler



14 K. PODGÓRSKI AND I. RYCHLIK

form

(9)
ν+

0 (u)

ν+(u)
≈ 2

∫ u

0

φ(η)



1 −
√

2π
Φ

(

γπ u
2−η2

u
− 1

2

)

γπ u
2−η2

u



 dη.

Further approximations can be obtained by Taylor expansions of the normal distribution

function Φ.

4. ENVELOPE FIELD FOR SEA SURFACE

Sea surface. Throughout the paper we assume that the sea surface is modeled by a homo-

geneous Gaussian field defined uniquely by its (continuous) directional spectrum for which

one can take, for example, a JONSWAP spectrum. A brief account of the terminology and

notation for general Gaussian fields is given in Appendix A. In oceanography coordinates

of τ corresponds to spatial and temporal coordinates, i.e. τ = (x, y, t), while for the sea

surface instead of X(τ ) we use the notation W (x, y, t).

The problem with spectra for the sea surface is that they are degenerated in the full three

dimensional space. This is due to the dispersion relation which reduce dimension of the

spectral domain by one. Namely, the spectral measure σ is given by the unitary spectral

density S through

σ(A) =

∫ ∞

−∞

∫ π

−π

1A(λ(ω, θ)) · S(ω, θ)dωdθ,

where 1A(x) = 1 if x ∈ A and zero otherwise and the dispertion relation for deep waters is

given by

λ(ω, θ) =

(

ω2

g
cos θ,

ω2

g
sin θ, ω

)

.

Here g is the gravity acceleration.

The symmetry relation σ(λ) = σ(−λ) translates to

(10) S(T (ω, θ)) = S(ω, θ),

where

(11) T (ω, θ) =







(−ω, θ − π) if θ ∈ [0, π],

(−ω, θ + π) if θ ∈ [−π, 0).

The above transformation can be interpreted more intuitively if we consider R×(−π, π] as the

union of two polar coordinate systems one corresponding to positive ω, [0,∞)× (−π, π], and



ENVELOPE CROSSING DISTRIBUTIONS FOR GAUSSIAN FIELDS 15

other, the anti-system (−∞, 0] × (−π, π], corresponding to negative ω. The transformation

T takes a point from one system to the “anti-system” and then rotates it there by π.

Because of the symmetry relation (10) the unitary spectrum is uniquely related to the

physical spectrum S̃(ω, θ), ω > 0, which is more frequently seen in engineering literature, by

S̃(ω, θ) = 2S(ω, θ), ω > 0.

Further, the set Λ+ described in Appendix A corresponds in the reduced domain to Γ+ =

λ
−1(Λ+) and a choice of Λ+ ⊆ R

3 is equivalent to a choice of Γ+ ⊂ R× (−π, π] such that the

intersection T (Γ+)∩Γ+ has zero area (zero Lebesgue measure) and T (Γ+)∪Γ+ = R×(−π, π].

For the purpose of computations continuous models are typically approximated by their

discretized versions. The general discrete model is defined in Example 1 of Appendix A. The

discretized sea surface is obtained by taking atoms λj corresponding to the centers of cells ωj

and θj of a certain grid of R × (−π, π] that is symmetric with respect to the transformation

T . Then

σ(λj) = S(ωj, θj)∆ωj∆θj ,

where S is the unitary spectral density and ∆ωj, ∆θj are increments over a cell of the grid

of ω’s and θ’s.

Versions of envelope field. Note that because of the symmetry of σ the statistical distri-

butions of W (or its Hilbert transform when considered individually) do not depend on the

choice of Λ+. However, one has to bear in mind that the choice of Λ+ affects distributional

properties of the envelope. For example, the values of spectral moments λijk are affected by

Λ+ and, as a result, also the joint distributions of W , Ŵ . In a given application it maybe

important to choose Λ+ in such a way that the envelope process will possess natural or

desirable properties. While in general there are infinitely many such choices some additional

symmetries of random sea surface suggest the following “natural” one

(12) Λ+ =
{

(x1, x2, x3) ∈ R
3 : x3 ≥ 0

}

.

Following Appendix B the Hilbert transform of the discretized process W has the form

Ŵ (τ ) =
∑

λj∈Λ+

√

2σ(λj)Rj sin(λT
j τ + ǫj).
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The Hilbert transform has the same unitary spectrum and thus the same distribution as the

original field W . Also evaluated at the same fixed point (p, t) the two random variables

W (p, t) and Ŵ (p, t) are independent. However stochastic fields W and Ŵ are dependent.

For example, the covariances between derivatives of W and Ŵ are given through the spectral

moments of W as, for example,

Cov(Ŵx,W ) = λ100 = −Cov(Ŵ ,Wx).

We have already remarked that these covariances are affected by a choice of Λ+ and thus so

is the dependence structure of W and Ŵ .

The real envelope process E(p, t) is defined as

(13) E(τ ) =

√

W (τ )2 + Ŵ (τ )2,

or in the discretized version

E(τ ) =

√

√

√

√

√





∑

λj∈Λ+

√

2σ(λj)Rj cos(λT
j τ + ǫj)





2

+





∑

λj∈Λ+

√

2σ(λj)Rj sin(λT
j τ + ǫj)





2

.

Note, that the envelope field is positive and always stays above the sea surface. It is also

depending on a choice of Λ+ because of the dependence between W and Ŵ . The following

two subsections illustrate importance of the choice of Λ+.

“Narrow-band” example. The following example is often used to illustrate the envelope for

narrow band processes. Assume that Λ+ contains only two atoms λ − δ, λ + δ at which

spectrum is defined as σ(λ − δ) = σ(λ + δ) = 1/2. We have

W (τ ) = R1 cos
[

(λ + δ)Tτ + ǫ1
]

+R2 cos
[

(λ − δ)Tτ + ǫ2
]

= 2R1 cos(λT
τ + ǭ) cos(δTτ + ǫ̃) +

+(R2 − R1) cos
[

(λ − δ)Tτ + ǫ2
]

Ŵ (τ ) = R1 sin
[

(λ + δ)Tτ + ǫ1
]

+ R2 sin
[

(λ − δ)Tτ + ǫ2
]

E(τ ) =

√

(R1 − R2)2 + 4R1R2 cos2(δTτ + ǫ̃),

where ǭ = (ǫ1 + ǫ2)/2 and ǫ̃ = (ǫ1 − ǫ2)/2.
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Since |R1 −R2| is small relatively to R1 with large probability, we often observe

W (τ ) ≈ 2R1 cos(λT
τ + ǭ) cos(δTτ + ǫ̃)(14)

E(τ ) ≈ 2R1| cos(δTτ + ǫ̃)|.(15)

It is easy to callculate that the squared correlation between the x-derivatives of the process

and its Hilbert transform is ρ2 = 1
1+δ2

1
/λ2

1

.

If we assume that |δ| is essentially smaller than |λ|, then the signal W (τ ) is a cosine wave

corresponding to the high frequency |λ|, modulated by a cosine amplitude having the low

frequency |δ|. If the atoms are on the horizontal axis, i.e. λ = (λ1, 0, 0) and δ = (δ1, 0, 0),

then this “narrow band” case results in ρ2 ≈ 1. We see that the envelope coincides with the

low frequency varying amplitude. This simple example illustrates the usual interpretation

of the envelope as a process which is governing slow frequency modulation of amplitudes of

high frequency components in the signal.

We conclude this example with analysis what can happen if we choose a different version

of the envelope. Clearly, for the two atoms λ − δ, λ + δ, in the full spectral domain there

exist the two “anti-atoms” δ − λ, −λ − δ, and we can choose Λ+ in such a way that now

δ − λ, λ + δ belong to it. It is easy to notice that this time ρ2 = 1
1+λ2

1
/δ2

1

. Under the

assumption that |δ| is relatively small as compared to |λ| we obtain in this “narrow band”

case and for atoms on the horizontal axis ρ2 ≪ 1 as it would be for the “broad band” case

with the original choice of Λ+. Moreover the rest of the above discussion of the envelope

remains valid except that now we switch δ with λ. Consequently, now the envelope will

by modulated by high frequency |λ| and thus its usual interpretation as the low frequency

component fails completely. We also note that this envelope would result in a higher rate of

empty excursions as compared with the previous choice of Λ+ (see Figure 3).

Crossings intensity in the principal wave direction. Let us consider the intensity of up-

crossings of a u-level by the envelope in the direction y = 0. We note that the intensity

crossing is dependent on a chosen direction on the plane although we will not indicate it in
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our notation and thus we will “reuse” the notation ν+(u) for this intensity. Thus

ν+(u) = E(E+
x (0)|E(0) = u) · u

λ000
e
− u2

2λ000 ,

=

√

λ200

2π

√

1 − ρ2 · u

λ000
e
− u2

2λ000 , u > 0,

where ρ2 = λ2
100/(λ000λ200) [see also Lindgren (1989)]. The highest intensity is reached for

the level u =
√
λ000 often called the reference level for the envelope, and is equal

ν+
max =

√

λ200

2π · e · λ000

√

1 − ρ2.

We observe that the intensity of envelope crossing in the direction y = 0 depends on the

choice of Λ+ only through λ100 and in such a way that larger |λ100| (larger the squared

correlation ρ2) corresponds to lower crossing intensity. If one is interested in an envelope

that is smoother than the sea surface and following closer to the local extremes, then a

reasonable choice of Λ+ is the one that minimizes crossing intensity and thus maximizes the

spectral functional

λ100 = 2

∫

Λ+

λ1dσ(λ) = 2

∫

Γ+

ω2

g
cos θ · S(ω, θ)dωdθ.

Clearly, the choice will depend on the form of a spectrum in hand. For example, consider a

spectrum having symmetry properties similar to these exhibited in Figure 1 (right) by the

JONSWAP spectrum used in the examples. Considering the symmetry given by (10), it is

rather obvious that the choice of Γ+ = {(ω, θ) : θ ∈ (−π
2
, π

2
], ω ∈ R} is the optimal in such a

situation.

For comparison, the natural choice corresponding to (12), i.e. taking Γ+ = {(ω, θ) : θ ∈
(−π, π), ω > 0} will result in λ100 smaller by

−4

∫

ω>0

∫

θ∈(−π,−π/2]∪(π/2,π]

ω2

g
cos θ · S(ω, θ)dωdθ.

This is essentially negligible if we deal with directional spectra obtained by quickly vanishing

spreading functions, since such spectra are, for all practical purposes, equal to zero for

θ ∈ (−π,−π/2] ∪ (π/2, π]. However this condition will no longer be true if, for example,

there will be an additional swell portion of the spectrum corresponding to these values of

azimuth θ.
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Table 1. VERSIONS OF ENVELOPE IN TERMS OF Λ+ and Γ+.

Λ+ Γ+ Comment

x1 > 0 θ ∈ (−π
2
, π

2
] Maximizes ρ2, minimizes crossing intensity

x2 > 0 θ ∈ (0, π] Maximizes crossing intensity, ρ2 = 0

x3 > 0 ω > 0 Natural choice for the sea surface.

Finally, consider Λ+ = {(x1, x2, x3), x2 ≥ 0}. If spectrum S is symmetric with respect to θ,

then λ100 is equal to zero. Thus the maximal intensity of envelope crossings (at level
√
λ000)

is equal to
√

1
2πe

√

λ200/λ000. For comparison, the intensity crossing of the sea surface at the

reference level zero is given by 1
2π

√

λ200/λ000, thus the ratio of these intensities is equal to
√

2π/e ≈ 1.52. This envelope no longer represents wave groups because by our definitions

there would be 50% more wave groups than waves. Recall also that ρ represents correlation

of the derivative of process with its Hilbert transform and thus in this case the envelope will

no longer follow the extrema of the process. We conclude that such a choice of Λ+ does not

carry with itself properties that are typically atributed to the envelope.

5. DISTRIBUTIONS OF WAVE AND ENVELOPE VELOCITIES

In this section we show how the theory of sampling distributions based on a generalized

Rice formula can be utilized to compute the velocity distributions for waves and waves groups

that are represented here by the envelope field.

In the simple “narrow band” example, where the relations (14) and (15) were found,

the velocities are esasy to define. In the special case λ − δ = (ω2
1/g, 0, ω1) and λ + δ =

(ω2
2/g, 0, ω2), where ω1 = ω− δ and ω2 = ω + δ for some δ > 0 and using the approximation

(14) we obtain that the high frequency modulation speed, i.e. the speed of individual waves,

is given by

VW = g
ω

ω2 + δ2
,

while by (15) the envelope is propagating with the speed

V = g
1

2ω
.

This illustrative example demonstrates that the speed ratio VW/V = 2
1+δ2/ω2 < 2 and is

approximately equal to 2 if δ2 ≪ ω2. In order to extend this result to the velocities for
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more general spectra such as, for example, JONSWAP spectra, one needs to formally define

the velocities for moving surfaces and then analyze their statistical distributions using, for

example, Rice’s formula.

There is a variety of ways to introduce velocity for dynamically changing surface [see

Baxevani et al. (2003)]. Here for simplicity we focus on the velocity describing the motion

of a contour level in the specified direction given by an azimuth α. We define this velocity

by the equations

(16)





Ex Ey

− sinα cosα



Vα = −





Et

0



 ,

where the first equation in the system guarantees that the motion following Vα stays on

the same envelope level and in this sense describes motion of the constant level contours,

while the second equation implies that the velocity points always in the direction α. If α is

constant, then the motion is along a straight line. Further assume that α = 0, i.e. that we

are interested in the constant direction coinciding with the principle direction of waves. It

follows from (16) and (13) that the velocity V0 = (V, 0) is given by

(17) V = −Wt ·W + Ŵt · Ŵ
Wx ·W + Ŵx · Ŵ

.

Here we obtain the statistical sampling distributions of the velocity V for general spec-

tra and discuss how they are influenced by different sampling schemes. Three cases are

considered:

a) unbiased sampling,

b) sampling at the points of u-level crossings of the envelope field crossection in the

principal wave direction, i.e. at the crossings of E(x, 0, 0),

c) sampling at the u-level crossings contours of the envelope field, i.e. at the countours of

E(x, y, 0).

Let us define C0
u = {x ∈ R : E(x, 0, 0) = u} and C1

u = {(x, y) ∈ R
2 : E(x, y, 0) = u}. It

follows from the generalization of Rice’s formula presented in (2) that the distributions in
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b) and c) are different and given by

P
(

V (x, 0, 0) ∈ A x ∈ C0
u

)

=
E

({

− Wt·W+Ŵt·Ŵ
Wx·W+Ŵx·Ŵ

∈ A
}

Ex E = u
)

E
(

Ex E = u
) ,

P
(

V (x, y, 0) ∈ A (x, y) ∈ C1
u

)

=
E

({

− Wt·W+Ŵt·Ŵ
Wx·W+Ŵx·Ŵ

∈ A
}

√

E2
x + E2

y E = u
)

E
(

√

E2
x + E2

y E = u
)

.

Note that the above distributions are expressed in the terms of complex functions of multi-

dimensional Gaussian vectors with coordinates W, Ŵ ,Wt, Ŵt,Wx, Ŵx in the cases a), b) and

additionally Wy, Ŵy in the case c). However straightforward although tedious calculations

[see Appendix C and Baxevani et al. (2003)] lead to the following general template for the

considered envelope velocity distributions

(18) −1

a

(

b+
√
a · c− b2 · X

Y

)

,

where the constants are given by

a = λ200(1 − ρ2),

b = λ101 − λ100λ001/λ000,

c = λ002 − λ2
001/λ000,

and variables X and Y are independent, X having the standard normal distribution while

the distribution of Y is

a) the standard normal,

b) the Rayleigh distribution,

c) given by a complex but explicit density that is expressed in (27) of Appendix C by the

means of Bessel functions.

In the above, λijk are spectral moments of W (p, t) as defined by (21) in Appendix A.

Additionally for the part c) it assumed (as in all our examples) thet the directional spectrum

is symmetric with respect to the principal wave direction and thus λ010 = λ011 = λ110 = 0.

For comparison, the velocity of the sea surface has the same template (18) but with the

constants a = λ200, b = λ101, and c = λ002. Notice that for JONSWAP spectra and for the

second choice in Table 1 (λ100 = 0) the template constants a and b for the waves coincide

with the ones for the envelope. Thus statistically velocities of the envelope and of individual
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Figure 4. Distributions of velocities in the direction y = 0 for envelope field

and sea surface sampled at: the contours (left); and the crossing points along

y = 0 (right).

waves are centered at the same values which again demonstrates how counterintuitive things

can go for certain choices of the envelope.

It is interesting that the considered velocity under the both biased sampling distributions

on u-level contours does not depend on the level u, i.e. they are the same independently of

the elevation at which the velocity is measured.

6. EXAMPLES

In this section we consider the directional Gaussian sea surface obtained from the JON-

SWAP spectrum S̃(ω, θ) = S(ω)D(ω, θ), where

S(ω) = g2 α

ω5
e−1.25ω4

p/ω
4

ρψ(ω),

with ψ(ω) = e−(ω−ωp)2/(2σ2ω2
p), where σ is a jump function of ω:

σ =







0.07 if ω/ωp ≤ 1,

0.09 if ω/ωp > 1.

and α is a scale, ρ controls the shape, and ωp is the peak frequency. The spreading function is

given by D(ω, θ) = G0 cos2c(θ/2). The alternative data driven parameters can be introduced
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by the relations [see Goda (1990)]:

α = βJH
2
1/3ω

4
p,

βJ =
0.06238(1.094− 0.01915 log ρ)

0.23 + 0.0336ρ− 0.185(1.9 + ρ)−1
,

ωp = 2π
1 − 0.132(ρ+ 0.2)−0.559

T1/3

,

where H1/3 is the significant waves height, T1/3 their average period. The following values

of the parameters where assumed in the computed examples: H1/3 = 7[m], the peak period

2π/ωp = 11[s], ρ = 2.3853, c = 15. The spectrum is shown in Figure 1 (right). For the

envelope we have chosen Λ+ given in (12) which corresponds to Γ+ = [0,∞) × (−π, π].

In Figure 4 (left), we present the unbiased and biased sampling distributions of velocities

both for the envelope and for the sea surface. The solid lines represent the unbiased densities

and the dashed-dotted ones corresponds to the biased sampling densities. We see that the

biased sampling distribution which are more important for applications, are more concen-

trated around its center. The group velocity is smaller than that of individual waves as it

is observed in the real life records. The peaks are at −5.58[m/s] and −10.98[m/s]. Thus

waves are roughly twice as fast as groups, the result in agreement with conclusions of the

“narrow banded” example.

CONCLUSION

It is important to realize that even for studying the statistical properties of sea surface, i.e.

of W (x, y, t), in the direction along y = 0 the envelope field E(x, y, t) is a different concept

from the envelope process defined for one dimensional record W (x, 0, t), the latter often used

in ocean engineering for analysis of wave movements. Moreover, even studying the envelope

field along the line y = 0 leads to different sampling distributions than studying it along

the crossing contours. It shown in our computations of the distribution of velocities for the

classical one dimensional envelope and in our case the resulting distributions are presented in

Figure 4 (right). As we can observe, the distributions are not identical, the one dimensional

record distributions are slightly more peaky.

We have seen that from the formal point of view the multidimensional envelope is not

essentially harder to study than its one-dimensional counterpart. Thus for the sea surface
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which is a three dimensional field, it is more appropriate but also manageable to study

effectively such “fully” dimensional objects and concepts as wave contours, envelope contours,

or vector velocities. In this work we demonstrate this for few simple examples. Through

similar approach one can tackle many other important “multidimensional” problems.

Appendix A. Gaussian fields

Here we present some basic definitions and properties for the Gaussian sea model (for more

details see Baxevani et al. (2003) and references therein). Let {X(τ )}τ∈R3 be a stationary

Gaussian field, where τ = (p, t) = (x, y, t) is a point in R
3. The covariance function

R(τ ) = Cov(Xτ0+τ , Xτ0
) can be written in the form

(19) R(τ ) =

∫

R3

exp(iλT
τ )dσ(λ),

where σ(λ) is a finite measure on Borel sets of R
3 called the spectral measure of X(τ ).

The process X(τ ) has the following spectral representation

(20) X(τ ) =

∫

R3

exp(iλT
τ )dζ(λ),

where the process ζ(λ) is complex valued with zero mean, orthogonal increments, and such

that E(|ζ(λ)|2) = σ(−∞,λ]. Additionally, since X(τ ) is real, we have the following sym-

metry ζ(A) = ζ(−A). Therefore it is often more convienient to represent the process and its

covariance as follows

X(τ ) = 2ℜ
(∫

Λ+

cos(λT
τ )dζ(λ)

)

− ζ({0}),

R(τ ) = 2

∫

Λ+

cos(λT
τ )dσ(λ) − σ({0}).

where Λ+ is any set in R
3 such that −Λ+ ∩ Λ+ = {0} and −Λ+ ∪ Λ+ = R

3. An example of

such a set is

Λ+ =
{

(x1, x2, x3) ∈ R
3 : x3 > 0

}

∪
{

(x1, x2, 0) ∈ R
3 : x2 > 0

}

∪
{

(x1, 0, 0) ∈ R
3 : x1 ≥ 0

}

.

When selecting Λ+ it is often more convienient to consider a weaker but sufficient condition

σ(−Λ+ ∩ Λ+) = 0.
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The spectral moments λijk, if they are finite, are defined as

(21) λijk = 2

∫

Λ+

λi1λ
j
2λ

k
3 dσ(λ),

where λ = (λ1, λ2, λ3). The variance of the field can be expressed in terms of spectral

moments as the zero moment λ000 decreased by the weight σ(0) of the spectral measure at

zero. If i+j+k is even, then λijk does not depend on a choice of Λ+ because of the symmetry

of σ. However for odd i+ j + k, different Λ+ can, in general, lead to different λijk which is

important when the distribution of the envelope field is discussed.

Example 1. Assume that the spectral measure σ is discrete, i.e. has discrete support at

points {λj} = {(λ1j , λ2j, λ3j)}, j ∈ N, of which none is equal to zero, with masses σ(λj). For

a real valued random field the support of σ has to be symmetric, i.e. if λj is in the support,

then also −λj is in the support and both frequencies have equal masses σ(λj) = σ(−λj). It

follows directly from the spectral representation (20) that

X(τ ) =
∑

λj∈Λ+

√

2σ(λj)Rj cos(λT
j τ + ǫj).

Here (Rj) and (ǫj) are two independent sequences of independent identically distributed

random variables, the first one distributed according to the Rayleigh density

(22) f(r) = re−r
2/2, r > 0

and the second one distributed uniformly on [0, 2π].

If none of λj ’s is not on the line x3 = 0, one possible choice for Λ+ is

Λ+ =
{

(x1, x2, x3) ∈ R
3 : x3 ≥ 0

}

.

By (19), the covariance of this field is a sum of cosines

R(τ ) =
∑

λj∈R3

σ(λj) cos(λT
j τ ) = 2

∑

λj∈Λ+

σ(λj) cos(λT
j τ ).

Example 2. If the covariance function R(τ ) decreases sufficiently fast at infinity, so that
∫

R3 |R(τ )|dτ <∞, then σ has a density S(λ) and the covariance function can be represented

as its Fourier integral

(23) R(τ ) =

∫

R3

exp(iλT
τ )S(λ)dλ.
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The spectral density S(λ) is real, non-negative, bounded and symmetric, i.e. S(λ) = S(−λ)

for all λ ∈ R
3. In this case it is sufficient to consider Λ+ that has zero volume (zero Lebesgue

measure) when intersected with −Λ+.

Appendix B. Envelope field

In this appendix we discuss the envelope field following Adler (1978). Let X(τ ) have a

representation given by (20). We define a stochastic measure

ζ̂(A) = −iζ(A ∩ Λ+) + ζ(A ∩ {0}) + iζ(A ∩ −Λ+),

where Λ+ is as discussed in the previous appendix.

Note Varζ̂(A) = Varζ(A) = σ(A). Thus the process defined by

X̂(τ ) =

∫

R3

exp
(

iλT
τ
)

dζ̂(λ)

has the same covariance function as X(τ ). In the Gaussian case they have the same dis-

tributions. Moreover, ζ̂ satisfies the symmetry ζ̂(A) = ζ̂(−A) and thus X̂(τ ) is also a real

process.

Let XH(τ ) = X̂(τ ) − ζ({0}). The complex envelope process E(τ ) is defined by

E(τ ) = X(τ ) + iXH(τ ),

and the (real) envelope process is defined by

E(τ ) = |E(τ )| =
√

X2(τ ) +X2
H(τ ).

To study statistical distributions of the envelopes the covariances between processes X(τ ),

X̂(τ ) and their derivatives have to be computed. The following simple property can be

convieniently utilized for this purpose. Let complex functions f(λ), g(λ) be square integrable

with respect to σ(·). Define

f̂(λ) =



















−i · f(λ) : λ ∈ Λ+,

f(0) : λ = 0,

i · f(λ) : λ ∈ −Λ+.

Then
∫

f(λ)dζ̂(λ) =

∫

f̂(λ)dζ(λ)
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and

Cov

[
∫

f(λ)dζ̂(λ),

∫

g(λ)dζ(λ)

]

=

∫

f̂(λ)ḡ(λ)dσ(λ).

The two-dimensional process Y(τ ) = (X(τ ), X̂(τ )) is a jointly stationary Gaussian vector

process such that

Cov
[

X̂(ν + τ ), X(ν)
]

= σ({0}) − 2

∫

Λ+

sin(λT
τ )dσ(λ).

In a similar manner one can obtain the covariances between the derivatives. For example,

Cov

[

∂X̂

∂τ1
(τ ), X(τ )

]

= 2

∫

Λ+

λ1dσ(λ) = λ100 = −Cov

[

X̂(τ ),
∂X

∂τ1
(τ )

]

.

Appendix C. Generalized Rice formula and sampling distributions

In the following a sketch of the argument for the generalized Rice formula as given in (5)

is presented. We start with recalling the notion of generalized determinant that is used in

the formulations of multivariate Rice formulas.

The generalized determinant is a standard concept in the algebraic setup. Here, we present

it in a manner mostly convenient for the discussion of the generalized Rice formula. Let A

be a matrix mapping R
k onto R

n, where we assume n ≤ k. Let N = {τ : Aτ = 0}. The

space R
k has the following orthogonal decomposition

R
k = N + N⊥.

The dimensions of N and N⊥ are k−n and n, respectively. The matrix A restricted to N⊥

can be viewed as a non-singular linear mapping from the n dimensional space N⊥ to R
n.

Consider the n × n matrix AN⊥ of this restriction of A in an arbitrary orthogonal basis in

N⊥. The regular determinant det AN⊥ is uniquely defined except for the sign. The positive

generalized determinant of A is defined as det A = |det AN⊥|. In this paper, for the clarity

of notation, det A is often written as det(A).

The generalized determinant can be computed using methods for computing the regular

determinant in terms of the following formula

det A =
√

det AAT .
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Consider a set E of full volume in N⊥. Then the matrix A transforms it to the full volume

set AE in R
n. The generalized determinant is equal to the proportion of the volumes of

these two sets

det A = Vn(AE)/Vn(E),

where Vn stands for the relative volume of dimension n in the underlying linear space.

If we take the orthogonal sum F = E + C of two sets E ⊆ N⊥ and C ⊆ N , then

Vk(F ) = Vn(E) · Vk−n(C). Consequently, for each set C in N , we have

(24) Vn−k(C) = det A · Vk(F )

Vn(AE)
= det A · Vk(F )

Vn(AF )
.

For a vector x, let |x|m stand for the maximal absolute value of the coordinates of x.

Considering A = Ẋ(τ 0), ǫ > 0, C ⊂ N , and E = {τ ∈ [0, 1]k : |Ẋ(τ 0)τ |m < ǫ/2},
equation (24) can be written as

Vn−k(C) = det Ẋ(τ 0) ·
Vk(F )

ǫn
.

Let C = {τ ∈ [0, 1]k : X(τ ) = u0}. For small ǫ > 0, one can find the points τ ǫi ,

i = 1, . . . , Nǫ on the contour C such that the set {τ ∈ [0, 1]k : |X(τ )−u0|m < ǫ/2} is closely

approximated by Fǫ =
⋃Nǫ

i=1 Fi, where

Fi = {τ ∈ [0, 1]k : |Ẋ(τ i)(τ − τ i)|m < ǫ/2}.

(The sets are approximated by each other, in the sense that their symmetric difference has

the volume converging to zero when ǫ converges to zero.)

Clearly, each Fi can be orthogonally decomposed around τ i into Fi = Ei+Ci as discussed

above. Then, for small ǫ, the pieces Ci = C∩Fi of the contour C can be linearly approximated

by Ci’s so that

Vn−k(Ci) ≈ Vn−k(Ci) = det Ẋ(τ ǫi) ·
Vk(Fi)
ǫn

.
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For ǫ > 0 small enough and for τ ∈ Fi, one can approximate Ẋ(τ ) by Ẋ(τ ǫ
i). Thus

Vn−k(C) =

Nǫ
∑

i=1

Vn−k(Ci) ≈
Nǫ
∑

i=1

Vn−k(Ci)

=

Nǫ
∑

i=1

det Ẋ(τ ǫ
i) ·

Vk(Fi)
ǫn

=
1

ǫn

Nǫ
∑

i=1

∫

Fi

det Ẋ(τ ǫ
i) dτ

≈ 1

ǫn

Nǫ
∑

i=1

∫

Fi

det Ẋ(τ ) dτ ≈ 1

ǫn

∫

Fǫ

det Ẋ(τ ) dτ

≈ 1

ǫn

∫

{τ∈[0,1]k:|X(τ)−u0|m<ǫ/2}

det Ẋ(τ ) dτ .

Assuming that X(τ ) has the density fX(τ)(x), taking expectations from boths sides of the

above approximation and by letting ǫ converge to zero we obtain a multivariate version of

Rice’s formula

E (Vn−k(C)) = lim
ǫ→∞

1

ǫn
E

(
∫

{τ∈[0,1]k:|X(τ)−u0|m<ǫ/2}

det Ẋ(τ ) dτ

)

= lim
ǫ→∞

1

ǫn

∫

{x∈[0,1]n:|x−u0|m<ǫ/2}

∫

[0,1]k
E

(

det Ẋ(τ ) X(τ ) = x
)

fX(τ)(x) dτ dx

=

∫

[0,1]k
E

(

det Ẋ(τ ) X(τ ) = u0

)

fX(τ)(u0) dτ .

For a stationary case we get simply

(25) E (Vn−k(C)) = E
(

det Ẋ(0) X(0) = u0

)

fX(0)(u0).

The above argument can be generalized to obtain (4) and some further generalizations.

Computing the mean number of empty envelope excursions is an example where such general-

izations find applications. Using the notation of Section 3, let us defne X(τ ) = (E(τ1), E(τ2)),

for τ = (τ1, τ2). The process and its envelope is jointly described by V(·) = (E(·), θ(·)). The

intensity of the empty envelope excursions described in the language of a generalized Rice

formula is then given by

ν+
0 (u) =

∫ ∞

0
E

(

{V(·) ∈ A} det Ẋ(0, τ) X(0, τ) = u
)

fX(0,τ)(u), dτ

where u = (u, u) and the property Ameans that there is an empty envelope excursion started

at zero and concluded at τ , i.e. {V(·) ∈ A} = {E(s) > u,E(s) cos θ(s) < u, s ∈ (0, τ)}.
We also note that det Ẋ(0, τ) = |Ė(0) · Ė(τ)|. It is still an open mathematical problem

to provide with the theoretical results that would formalize the argument sketched above
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so it would apply to the above results. However, this example illustrate that the approach

through such generalization of the classical Rice formula can lead to quite general tools for

computing sampling distribution problems for fairly complex stochastic models. It should

be mentioned that the above complex integral can be approximated numerically either by

general Monte Carlo methods, or assisted by some analitycal tools as in Ditlevson’s work

where the Slepian models was used.

In another application of the generalized Rice’s formula, we have studied the statistical

distributions for the envelope field. The intensities of the contour crossings are now defined

as the lengths of the contour lines relatively to the rectangualar area in which they are

contained. It follows from generalized Rice’s formula that the avarege ratio of this length to

the area is given by

µu = E
(√

E2
x + E2

y |E(0) = u
) u

λ000

e−u
2/(2λ000), u > 0.

For consistency of the terminology we will still refer to this ratio as the intensity of the

crossings. After some calculations involving the covariances between W , Ŵ , Wx, Wy, Ŵx,

and Ŵy [see also Baxevani et al. (2003) for mathematical details], one can obtain that this

intensity is given by

µu = E

(

√

X2
1 +X2

2

)

u

λ000

e−u
2/(2λ000), u > 0,

where (X1, X2) is a Gaussian vector with variances λ200 −λ2
100/λ000, λ020 −λ2

010/λ000, respec-

tively, and the covariance equal to λ110 − λ100λ010/λ000. This functional form is identical to

the intensity of crossing along a line although constants are different. In the special case of

the sea surface we obtain some simplifications. First, it is usually assumed that the coordi-

nates system for W (τ ) is taken in such a way that λ110 = 0. Moreover, for spectra S(ω, θ)

exhibiting symmetry with respect to θ (which is the case for the spectra shown in Figure 1)

we have also λ010 = 0. Consequently, X1 and X2 are independent Gaussian with variances

λ200 − λ2
100/λ000 and λ020, respectively and the formula for E

(

√

X2
1 +X2

2

)

can be written

more explicitely in terms of Legrende eliptical integral E(k) =
∫ π/2

0

√

1 − k2 sin2 x dx as

follows

(26) E

(

√

X2
1 +X2

2

)

=

√

2

π
· a4

1

a3
2E

(

√

1 − a2
1/a

2
2

) ,
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where a1 = min(λ200 − λ2
100/λ000, λ020) and a2 = max(λ200 − λ2

100/λ000, λ020).

We conclude with some derivation for the distribution of the velocity V for the envelope

field when sampled on the contours. This distribution is explicitely given by the specifing

the density of random variable Y in (18) as

(27) fY (y) =

√
C1

4πC2
· y2 · e− y2

2
(1−C1)

(

K0

(

y2

2
C1

)

+K1

(

y2

2
C1

))

where K0 and K1 are modified Bessel functions of the second kind and the constants are

defined as

C1 =
λ200 − λ2

100

λ020λ000

,

C2 = E

√

Z2
x +

Z2
y

C1
.

Thus the constant C2 can be written explicitely using (26). The above formula for the density

follows easily from the following form of the sampling distribution that is a consequence of

λ010 = λ110 = λ011 = 0 and can be obtained by using similar arguments as in Baxevani et

al. (2003):

P
(

V (x, y, 0) ≤ v (x, y) ∈ C1
u

)

=
E

(

{

−1
a

(

b+
√
a · c− b2 · Zt

Zx

)

≤ v
}

√

Z2
x +

Z2
y

C1

)

E
√

Z2
x +

Z2
y

C1

,

where Zx, Zy, and Zt are independent standard normal random variables.
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