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SE-412 96 Göteborg
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Abstract

The operation of an industrial semi-batch reactor is modeled and the flow of one re-
actant is investigated. In the reactor a strongly exothermic polymerization reaction
takes place followed by a slightly exothermic reaction, and the objective is to min-
imize the duration of the operation of the process. Various operational as well as
quality and safety related constraints have to be met during the batch. The complete
process model is derived from measurements, first principles, and reasoning about
effects on molecular level.

This work has been performed in cooperation between Akzo Nobel Functional
Chemicals and Chalmers. We have increased the knowledge of one semi batch pro-
cess and tried to improve the production of thickeners by modeling the production
process with the aid of mathematics. A better understanding of the underlying prin-
ciples including the chemical reaction heat, energy transfer and the control system
has been gained.

The process model is simulated using MATLAB and SIMULINK. The optimiza-
tion is made through investigations of manually chosen EO profiles and simulations.

Piecewise constant EO profiles with up to three constant plateaus and varying
levels have been used. Simulations show that a 5 % increase in total batch time is
possible, using a profile with two plateaus as in the original, but with 20 % higher
levels and no delay.

A 10 % shorter batch time than today is possible using a profile with three dif-
ferent plateau levels. However, in this a profile, a large portion of the EO is added
prior to the wanted reaction temperature is reached, which may result in a wors-
ened end product quality. In order to decide which profiles are acceptable, more
research about the effect of the reaction temperature used on the end product qual-
ity is needed.
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1 Introduction

In this work, the operation of an industrial semi-batch reactor is studied and op-
timized. In the reactor a strongly exothermic polymerization reaction takes place
followed by a slightly exothermic reaction, and the objective is to minimize the du-
ration of the batch time. Various operational as well as quality and safety related
constraints have to be met during the batch. The work has been performed in coop-
eration between Akzo Nobel Functional Chemicals and Chalmers.

What in chemical engineering is called optimization of batch reactors, fall under
the mathematical branch of optimization of dynamical systems. Another common
name is optimal control. In the first section we try to unite the chemical and math-
ematical terminology, by first giving an overview of the chemical engineering area
and then describing the mathematics, and dynamic optimization in particular.

Knowledge about cellulose ethers and their chemistry is valuable for understand-
ing for the process model, and we begin with a discussion about this in Section 1.1.
Thereafter follows a short description of batch processes, their use and properties.
The objectives of the thesis conclude the first section. Optimization of batch pro-
cesses is reviewed in Section 2, as well as dynamic optimization in general and typi-
cal dynamic optimization methods.

In Section 3 we describe the process, and the modeling steps towards a final
mathematical model, using first principles and empirical equations. We argue why
some physical aspects are considered and some are discarded at this stage. We also
point out where further investigations can be done in order to increase the accuracy
of the model.

In Section 4, the optimization problem is formulated and the control vector is
parameterized. A manual optimization is performed, by choosing EO profiles and
running simulations, and the results are discussed.

We conclude the work and point out interesting future work in Section 5.

1.1 Cellulose ethers

Cellulose ethers are named after, and based on, cellulose — a natural and renewable
polymer. Cellulose is the most common chemical compound in organic nature and
the chief component of wood and plant fibres.

Cellulose ethers are used as additives in such diverse industries as food, paint, oil
recovery, paper, cosmetics, pharmaceuticals, adhesives, printing, agriculture, ceram-
ics, textiles, detergents and building materials. Cellulose ethers improve the product
quality in these industries and act as thickeners, water retention agents, suspending
aids, protecting colloids, film formers or thermoplastics in such different products as
dispersion paints, drilling muds, ice cream, tablet coatings, wallpaper paste and tile
adhesive.

Cellulose ethers are obtained by reacting cellulose with different substituents
such as for instance methyl, ethyl, and hydroxyethyl. This etherification process
makes the product water soluble.
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Cellulose is a polysaccharide composed of individual anhydroglucose units (AHG)
which are held together by β-1,4 glycoside linkages which make cellulose a long
rigid molecule. The hydrogen bonds within the cellulose molecule give a stiffness
to the single molecule, while the hydrogen bonds between molecules are responsi-
ble for the formation of crystalline areas, which make cellulose non-water soluble
despite its hydrophilic character. These bonds are broken by treatment with sodium
hydroxide. This causes the cellulose fibers to swell through electrostatic repulsion
between the ionized hydroxyl groups, as well as through hydration of these groups.
The structure of the crystalline areas are expanded allowing the hydroxyl groups to
be transformed into alcoholate. This cellulose alcoholate is termed alkali cellulose.

The strong attractive forces between cellulose chains due to interchain hydrogen
bonds will be greatly reduced by alkylating a portion of the -OH groups, thereby pre-
venting hydrogen bonds. Such chemical modification results in significantly changed
characteristics with regard to solubility, surface activity, chemical resistance and en-
zyme resistance. The properties of the end product depend on the length of the
cellulose chain, on the type and amount of substituents as well as the distribution of
substituents along the chain.

By combining these substituents in different ways it is possible to customize the
properties for different applications. For example, the substitution with both ethyl
and hydroxyethyl, resulting in the cellulose ether EHEC (Ethyl HydroxyEthyl Cel-
lulose), gives the product a surface-active character, which stabilizes small air bub-
bles when added to cement and gypsum-based systems. EHEC also improves water
retention, suitable consistency and improved adhesion in these systems. The simpli-
fied chemical structure of EHEC is displayed in Figure 1.

When producing EHEC in a batch reactor, alkali cellulose is reacted first with
ethylene oxide and then with ethyl chloride under pressure and increased tempera-
ture, Figure (2).

1.2 Batch and semi-batch processes

In order to understand the properties of a batch and semi-batch system, we discuss
the differences between continuous and batch processes.

In continuous processes, raw materials are fed and products removed on a con-
tinuous basis. Hence, the conditions within the process are mainly the same over
time. Variations in feed composition, plant utilities, catalyst activities and other
variables occur, but normally these changes are either about an average or exhibit
a gradual change over an extended period of time.

In a batch process, the materials are loaded, the process is initiated, and as the
reactions are completed, the products are removed. Hence, the conditions within
the process are changing. The technology for making a given product is contained in
the product recipe that is specific to that product [37]. The recipes are typically based
on heuristics and experience. By the term semi-batch we means processes in which
some parts are continuous but others are of batch type. For instance, in semi-batch
operation a gas of limited solubility may be fed in gradually as it is used up.
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Figure 1: Possible structural elements of EHEC.

Batch reactors are popular in practice because of their flexibility with respect to
the duration of the chemical reaction and to the kinds and amounts of reactions that
they can process. Generally batch processes are less safe, both for people and the
environment, and the variations are larger than in continuous processes [27]. In in-
dustry, batch and semi-batch reactors are often used in the production of fine chem-
icals, specialties, polymers and other high value products. Batch reactors are typi-
cally used when production volumes are low, when there are many processing steps,
when isolation is required for reasons of sterility or safety, and when the materials
involved are difficult to handle. The plants are often small and flexible, and the raw
material and the products are expensive, but they can also be used in large volumes.
They are primarily employed for relatively slow reactions of several hours duration,
since the down time for filling, emptying and cleaning the equipment may be about
one hour.

Chemical processes are modeled dynamically using differential algebraic equa-
tions (DAEs), consisting of differential equations that describe the dynamic behavior
of the system, such as mass and energy balances, and algebraic equations that de-
scribe physical and thermodynamic relations. Batch systems are difficult to study
numerically due to the fact that steady state is never reached. In addition, chemical
processes are typically nonlinear. In order to improve their performance and safety
conditions, batch reactors generally require knowledge about the dynamic behavior,
for instance through a mathematical description of the kinetics. The development
and validation of detailed dynamic models are often quite expensive, and there is,
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Figure 2: Chemical reactions when producing ethyl hydroxy ethylcellulose, EHEC

in contrast to continuous processes which have been rigorously studied, a limited
availability of detailed dynamic models. For bulk chemicals, the cost of developing
models is rarely taken. Instead, the operators use experience to adjust the process
periodically. Verwater-Lukszo [37] addresses this issue.

Make it work and don’t worry about why is a common way of thinking in indus-
try. Another philosophy is Don’t change anything that is functioning, otherwise you will
end up with problems. The background to these attitudes is that process engineers
normally assume that nothing changes in the process. But in real life this is not the
case. Contaminants and impurities resulting from chemical side reactions, unreacted
starting materials, and so on, are difficult to avoid, and may dramatically change the
properties of the product. These contaminants vary from batch to batch. On top of
this, equipment gets old. Stops and disturbances in production cost tremendously
and compared to new investments, process optimization is a more cost effective way
to enhance production.

1.3 Objectives

The objectives in this thesis are two-fold: first, to increase the knowledge and accep-
tance in chemical industry for using mathematics in the daily work. We try to do
this by showing that also small models can be used to gain knowledge about a semi-
batch process. The semibatch process considered works reasonably well today, and
the temperature and pressure profiles are more or less based on experience. Mea-
surements during batches show that the existing equipment has some difficulties to
follow the current set point profiles, especially during the second temperature rise.
Also, measurements on the resulting product have shown that the prevailing set-
tings gives a product with larger variations of the properties between batches than
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wanted. If the temperature can be better controlled the variation between batches
can be decreased, with a more homogeneous product as a result. In this work, we
investigate how different flow profiles affect the total batch time, without changing
the slopes in the set temperature profile and keeping the existing equipment. To do
this we formulate a mathematical model of the process.

The second objective with this work is of an academic nature, namely to provide
an overview of the methods that can be used for applying dynamic optimization
to an industrial example in the chemical batch industry. We focus on model based
process optimization, in which the optimization is performed using a mathemati-
cal model of the process, and neither process optimization by control optimization
(which is when the control system is optimized around a stable working point) nor
process optimization performed through multivariate analysis and design of exper-
iments, are discussed.
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2 Process optimization

2.1 Optimization of batch reactors in the process industry

Starting as a technology in applications, mainly through operations research in the
sense of optimizing complex systems and phenomena, optimization gradually be-
came an area of academic interest in the time period after World War 2. Especially
mathematicians, physicians and economists contributed to the foundations. In the
process systems engineering, on the contrary, it has evolved from an academic in-
terest into a technology that has and continues to make a significant impact in in-
dustry. The increased competition in industry makes process optimization a natural
choice for reducing production costs, improving product quality and reducing prod-
uct variability. Often the objective in optimization of batch and semi-batch reactors
is economic in nature, for instance reducing operational costs. Typically, operational
decisions such as temperature and feed flow rates are determined from the opti-
mization problem, and various operational constraints are considered. Often when
polymerization is done in semi-batch reactors this results in the consideration of
multiple objective functions that are conflicting and non-commensurate in nature
[11, 14, 24, 26, 39]. The practice of, and optimization challenges in, batch chemical
industry is addressed by Bonvin et al. [6]. Overviews of the research on optimization
of batch reactors until 1998 can be found in Rippin [30] and Bonvin [5]. Generally, the
industry has a limited acceptance for optimization based techniques for the determi-
nation of operational profiles: to develop and validate detailed dynamic models is
often considered too expensive to be motivated.

Optimization of a batch reactor can be performed in different stages. When de-
signing an industrial process, it is important to compute the optimal operating con-
ditions (typically in laboratory in advance [26]) required to produce products with
specific properties: a recipe. The next step is to implement these conditions in an
optimal way in the industrial unit for a safe, stable and efficient production, making
sure that the effect of disturbances is repressed.

If information about the product and process is given during the production,
this data can be used to perform an on-line optimization. There may be problems,
partly because of the lack of accurate online sensors for the measurements of the
properties [26, 32]. If uncertainties are present these have to be taken care of [13, 25,
31, 33, 34]. When models are available, for instance MPC or NMPC (Model Predictive
Control/nonlinear MPC) can be used to improve the production.

In other processes, the verification of the quality of the end product is possible
only after the entire batch has been processed; for instance, this is the case when the
reaction occurs under high pressure, fast reactions or other extreme conditions. Then
online optimization is impossible, and off-line optimization is the choice. A model
or a simulator, maybe made beforehand for other purposes, can be used to optimize
the process off-line, with the advantage that the process never need to be stopped or
the ordinary scheme interrupted.

Two different types of models are used in the literature: shortcut models, used for
determining the reactor temperature profile, and detailed models, used for optimiz-
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ing the operating conditions for an already designed batch reactor. Typically systems
with one phase present are studied, mostly liquid [2, 12], or systems in which only
one reactant is present in the gas phase [17, 18]. In our case, three phases are present,
which makes the problem much more complicated.

Batch reactors are used on laboratory, pilot and production scale. Many results
about the optimization of batch reactors can be found in the open literature on labo-
ratory scale, in different areas: distillation [7, 22], crystallization [10, 9], free-radical
polymerization [39], polymerization [11], etoxylation, and in food industry [15]; fed-
batch fermentation and thermal sterilization. Some work concerns isothermal re-
actions [36]. A typical problem is that to find an optimal temperature profile that
minimizes the time, which also is the problem in this work, under the constraints of
known reaction rates and mass balance. Another common optimization problem is
the maximal yield problem. Some applications of optimization of batch reactors to
pilot or production scale are found in [1] and [35]. In the latter reference, experimen-
tal results are given for a small pilot plant with focus on an improved temperature
control. Others report applications to production scale reactors, but do not present
results for the operation of the reactor [16, 20]. For production scale reactors, sim-
plified models of the kinetics are typically used, possibly in combination with mass
balances [1, 20].

In Abel et al. [1] the conventional reactor temperature T0 is constant and it is as-
sumed that the reactor content has already been heated to the temperature T0 prior
to the feeding phase, in contrast to our study, where also heating the reactor con-
tent is taken into account in the mathematical model. Moreover, they study a non-
equilibrium two-phase system with all reactions taking place in liquid phase. Here
we deal with three phases, and it is not known where the reactions take place. As in
our work, the dynamics of the cooling system is neglected, meaning that we assume
that the control system is fast enough in order to implement the new trajectories. Of
course, this has to be checked. In Abel et al. sensitivity information for the objective
function and the constrained states with respect to the free optimization variables is
given simultaneously in each iteration from the integration program used. In this
study, we do not have access to this information.

Other articles more similar to our study are Khuu et al. [18] and [17], where the
EO reaction with nonylphenol is studied. The reaction takes place in liquid phase
with nitrogen and EO in gas phase. Also here, the reactor content is preheated to
the reaction temperature before EO is added. The kinetics are well known from
the literature, and the reactor pressure is directly affected by the EO concentration,
which makes the pressure modeling simpler than in our case. Compared to our
work, differences are that the heat loss to the surroundings is taken into account in
their model by a linear term, and that they use a simultaneous method for solving
the optimization problem; see Section 2.3 for a description of this methodology.

In contrast to optimization of continuous processes, where one single set of op-
timal operating conditions is determined, optimization of batch and semi-batch sys-
tems requires the calculation of time dependent trajectories, due to the dynamic be-
havior. Hence, optimization of these reactors requires the use of dynamic optimiza-
tion techniques.
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2.2 Dynamic optimization

Before we discuss solution methods of dynamic optimization, it is useful to present
a classification of problem types. This classification of optimization problems is in-
dependent of the solution methods, which are discussed in the next section.

Optimization problems can first be classified in terms of continuous or discrete
variables. For continuous problems an important distinction is whether the problem
is differentiable or not. Another important distinction, for both types of problems,
is whether the problem is convex or nonconvex, since the latter may give rise to
local minima different from the global optima. Discrete/continuous optimization
problems can be represented in the following general algebraic form:

minimize f(x, y), (1a)

s.t. h(x, y) =0, (1b)
g(x, y) ≤0, (1c)

x ∈ X, y ∈{0, 1}m, (1d)

where f is the objective function, h(x, y) = 0 are the equations that describe the per-
formance of the system (material balances, production rates, etc.), and g(x, y) ≤ 0
are the inequalities that define the specifications or constraints for feasible plans and
schedules. The variables x ∈ R

n are continuous and generally correspond to state
variables with some limitations described by X , while y ∈ R

m are the discrete vari-
ables, which generally are restricted to take on 0-1 values to define for instance the
assignments of equipment and sequencing of tasks. When the problem includes
uncertainty, this gives rise to stochastic optimization problems. If the system (1b)
describes a dynamic model, in discrete problems this gives rise to multi period opti-
mization problems, while for the case of continuous problems this gives rise to opti-
mal control problems that generally involve DAE systems. In Biegler and Grossman
[4] a general review on optimization in process systems engineering is provided,
emphasizing nonlinear programming (NLP), mixed-integer nonlinear programming
(MINLP), dynamic optimization, and optimization under uncertainty.

A general continuous optimal control problem, with the control variable u, and
state variable x, is written as follows:

minimize f =

∫ tf

0

L(x(t), u(t), t)dt + φ(x(tf )), (2a)

s.t. h

(

dx

dt
(t), x(t), u(t), t

)

=0, (2b)

g(x(t), u(t), t) ≤0, (2c)
x(t) ∈ X, u(t) ∈U, (2d)

x(0) ∈ X0, x(tf ) ∈Xf , (2e)
t ∈ [0, tf ]. (2f)

For optimal control problems, a distinction is whether the final time tf is free or fixed
(known beforehand). Assuming the duration of the process to be finite (otherwise
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the optimization is carried out in an infinite-dimensional space), the free end time
problem can be transformed into a sequence of fixed end time problems by, instead
of having one objective function f and one constraint function h, having a sequence
of cost functions fk and constraint functions hk, parameterized by the duration k.
Similarly, we have to assume that we have a sequence of subsets Uk, and so on.

Minimum-time problems are optimal control problems in which it is required to
go from some initial state to some terminal state in a minimum amount of time:

minimize tf , (3a)

s.t. h(ẋ(t), x(t), u(t), t) =0, (3b)
g(x(t), u(t), t) ≤0, (3c)

x ∈ X, u(t) ∈U, (3d)
x(0) ∈ X0, x(tf ) ∈Xf , (3e)

t ∈ [0, tf ]. (3f)

This is the type of optimization problem we have in this work.

2.3 Dynamic optimization methods

A continuous optimal control problem such as (2) can be solved either by Calcu-
lus of variations (indirect methods) or by applying some level of discretization that
converts the problem into a discretized problem (direct methods) [3]. If the optimiza-
tion will be performed in combination with an existing simulator, a direct sequential
method is the first choice.

2.3.1 Indirect methods

The variational approach, resulting in indirect methods, is based on the solution of
the first order necessary conditions for optimality, that are obtained from Pontrya-
gin’s Maximum Principle [29]. For problems without the inequality constraints, (2c),
the optimality conditions can be formulated as a set of differential-algebraic equa-
tions, and solving these equations require the attention to the boundary conditions.
Normally, the state variables are given as initial conditions and the adjoint variables
as final conditions, whence the result is a Two Point Boundary Value Problem (TP-
BVP). For problems with bounds like (2c), the additional multipliers and comple-
mentary conditions result in a combinatorial problem which is difficult to solve even
for small problems. This TPBVP can be solved with different approaches, includ-
ing single shooting, invariant embedding, multiple shooting, or some discretization
method such as collocation on finite elements or finite differences; see the survey [8]
for more information.

2.3.2 Direct methods

In direct methods, the problem is parameterized by a finite number of parame-
ters, transforming the continuous optimization problem to a discretized optimiza-
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tion problem. These methods use NLP solvers, and can be divided into two groups;
sequential and simultaneous strategies. A general drawback of both is that the qual-
ity of the solution depends on the discretization.

Sequential methods are also called Control Vector Parametrization (CVP) [1]. The
control vector u is discretized (into piecewise constant, piecewise linear or piecewise
polynomial), and the dynamic equation ẋ = f(x, u) is solved explicitly in each op-
timization step, with well-known integration, which means that also a non-optimal
solution is feasible. Figure 3 illustrates the iterations between the NLP solver and
the DAE solver.

NLP SOLV ER DAE SOLV ER

Solves ẋ = f(x, u, t)

Parameters u

Objective function

value

Figure 3: In sequential methods, each iteration the NLP solver sends values of the control
parametrization to the DAE solver, which solves the equation ẋ = f(x, u). This produces a
value of the objective function which is used by the NLP solver to find the optimal parameters
in the control parametrization.

The accuracy of the numerical interpolation used in solving the problem is di-
rectly related to the accuracy of the optimization problem [28]. Advantages of these
methods are that they can handle rather large problems without large scale opti-
mization techniques, and that a non-optimal solution is feasible. These methods run
into problems, if the optimization algorithm requires gradient information, because
standard DAE solvers are not usually written to provide parametric sensitivities of
the solution, or, if provided, they might not be accurate enough for highly nonlinear
models. An existing simulator may well be used to solve the DAE [2].

In simultaneous methods all variables are discretized, and the dynamic equa-
tion is solved implicitly, simultaneously with the optimization problem. This results
in large nonlinear optimization problems that require specialized methods. The si-
multaneous methods couple the DAE to the optimization problem, and the DAE is
solved only once at the optimal point. An advantage of these methods is that they are
applicable to general problems. The methods are advantageous for problems with
path constraints and also for problems where instabilities occur for a range of inputs,
since they are able to suppress unstable nodes by enforcing the appropriate bound-
ary conditions. A disadvantage is the need to solve large nonlinear problems. The
fact that the control variables are discretized at the same level as the state variables
rises questions about the convergence to the solution of the original continuous opti-
mization problem. In Biegler et al. [3] references to a number of studies, where this is
discussed, can be found and also references where it is shown that the Karush-Kuhn-
Tucker (KKT) conditions of the simultaneous NLP can be made consistent with the
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optimality conditions of the variational problem. Nevertheless, these consistency
properties do not guarantee convergence to the solution to the infinite dimensional
optimal control problem. A review of simultaneous methods can be found in [8].
Examples of methods that can be used to solve the NLP are Sequential Quadratic
Programming (SQP) [12], single shooting, multiple shooting [21] and direct shooting
method (which is a bridge between direct and indirect methods), invariant embed-
ding, global orthogonal collocation, orthogonal collocation on finite elements [7, 39],
and moving finite elements [3].

2.3.3 Other methods

Simulated annealing [10, 22], which is a form of stochastic optimization proposed by
Kirpatrick et al. [19], is an attractive global optimization method due to its simplicity.
It can surmount the problems of being trapped into local minima since the search in
the solution space for global optimum is random. The random nature of the opti-
mization means that some ’uphill’ moves are allowed in the course of minimization
of an objective function. In addition, no derivatives are needed for the optimization
and this reduces or even eliminates the problem of non-convergence. However, the
use of simulated annealing can in continuous optimization be very time consuming.

Work has also been done in which Artificial Neural Network (ANN) models are
combined with prior qualitative knowledge [23]. A disadvantage with ANN is that
the network can only be used for one product. Also training of the network demands
a large amount of input and output data with variations. In reality, these variations
are avoided, which means that old process data does not contain enough outliers.
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3 Modeling and simulation

In order to optimize the batch time, we need a mathematical description of the pro-
cess. The plant managers want the model to be simple and at the same time to
capture the most important physical aspects of the process; it should also be easy
to include more advanced physical properties if needed. In this work, the model is
used to study different strategies for the process, in the meaning of shortest possible
time, keeping safety and other conditions within certain limits.

A chemical process can mathematically be described by heat and mass balances,
resulting in a differential-algebraic equation (DAE) system. For this we need a de-
scription of the process, which follows in Section 3.1. In Section 3.2 we set up the
DAE system, consisting of mass and heat balances and equations that describe the
control system, including constraints. In the text, we motivate why some aspects are
regarded while some are not. The main approximation is the averaging of the reactor
content, whose effect is discussed below and in Section 3.6.

3.1 Process description

Akzo Nobel uses a semi batch reactor when producing EHEC, which is used as thick-
ener in water based systems. The production occurs under high pressure in a stirred
reactor, with exothermal reactions. First, ground cellulose and aqueous NaOH are
loaded into the empty reactor and stirred. The NaOH reacts with hydroxyl groups
of the cellulose molecule, forming alkali cellulose. Ethyl chloride (EC) is then loaded
until a sufficiently high pressure is reached.

The first reaction step starts when liquid EO is added by spraying, according to
the schematic in Figure 4, in which the scaled mass flow of EO added to the reactor is
plotted over time. An initial addition of EO, at constant high level for a short period

ṁEO

t

Figure 4: The EO addition profile according to which the process is run today at Akzo Nobel.
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of time (the first plateau), starts the batch. This is followed by a second plateau at
a lower level but for a longer time period. The resulting reaction, mainly between
alkali cellulose and EO, is strongly exothermal, which means that heat is produced.
Efficient stirring is essential for a satisfactory product distribution, as well as heat
transfer from the reactor.

Simultaneously as the first EO plateau starts, the temperature is raised from the
starting temperature T0 to the first reaction temperature T1, see Figure 5. Just before
this temperature is raised, the second EO plateau starts. The temperature is held
constant at temperature T1 for a certain time, by cooling the reactor. Then the tem-
perature is raised again and when temperature T2 is reached, the EC-reaction domi-
nates, also producing heat. After some time the temperature is lowered, by cooling
through the jacket and the condenser, and the reactor is unloaded and cleaned. The
product is then cleaned and further processed.

Treactor

t
T0

T1

T2

t0 t1 t2 t3 t4 = tf

Figure 5: The temperature profile according to which the process is run today at Akzo Nobel.

The participating reactions are exothermal, thereby causing the need for cooling
during the reaction steps, but also heating is necessary during temperature rises:
from T0 to T1 and from T1 to T2 of the batch cycle. Today one batch takes a couple of
hours to run, including loading and unloading.

Today the system is run according to old ’hands-on’ experience and it works
reasonably well. Comparisons between batches are regularly made with the aid of
multivariate analysis, considering temperatures, pressure, product quality etc. The
deviations are larger than wanted.

Investigations regarding chemical reactions and reaction rates have been made,
but no detailed investigation regarding reaction heat. Data is available in the form
of snapshots for every 15 seconds. Batch data is available for several years back,
including measurements on reactor temperatures (measured at three locations; the
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average is used), reactor pressure, temperatures (in and out of) and flow through the
jacket and the condenser, the mass of added materials, values of controllers, etc.

Below the system controlling the reactor temperature is described, followed by
a discussion about the phases inside the reactor and the reactions occurring in the
reactor.

3.1.1 The temperature control system

The temperature in the reactor is controlled by two separate systems: the condenser
and the jacket. The water in the jacket is circulated through a cold water inlet,
through a heat exchanger to the reactor jacket, passing by an outlet where surplus
water can be removed to keep pressure constant on the way back to the cold water
inlet, cf. Figure 6. The flow through the jacket system, Fjacket , is kept constant at a
high level with a pump. In the heat exchanger steam is used as heating agent and the
temperature of the cold, so called raw, water varies slightly during the year. The flow
in the jacket is much higher than in the condenser. PID-regulators control the tem-
perature of the jacket flow and the flow through the condenser, and the temperature
and the pressure in the reactor is measured.

Heat

exchanger

Cold water inlet
Condenser

Jacket flow

Reactor

Surplus water outlet

Pump

Figure 6: A process schematic, showing the jacketed reactor with the condenser to the left.
The jacket system consists of the reactor jacket, outlet, pump, inlet and heat exchanger.
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Typical profiles of set temperature, measured reactor and jacket temperatures, as
well as measured reactor pressure, and calculated concentrations of EO and EC are
shown in Figure 7.
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Figure 7: An example of profiles from a typical real batch, with scaled axes. The concentra-
tions of cEO and cEC is calculated and the other variables are measured.

3.1.2 Phases in the reactor

The reactor is constructed such that when the pressure is raised (mainly by adding
EC), only temperature and pressure is measurable and the phases in the reactor can
only be estimated theoretically.

As mentioned above, the reactor temperature is measured at three different places,
and the temperatures differ somewhat. Below the condenser the temperature is a
few degrees lower than at the other two places. This temperature decrease can be
described by the following. The state of the system is chosen such that the con-
densation of gases in the condenser is effective. Assuming that no solid material is
transported into the condenser, this means that in the condenser, both liquid and gas
are present. Part of the gas condenses, causing a pressure drop, thereby leaving en-
ergy (heat of condensation) to the condenser wall, and the condensate pours down
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toward the stirred reactor. As the drops enter the stirred reactor material, it (possi-
bly first absorbs into the cellulose particles, after which it) vaporizes again, which
requires energy from the surroundings, causing a temperature decrease. By stirring
the reactor, this temperature decrease slowly evens out through the material.

Hence, at least close to the condenser, all three phases (gas, liquid and solid) are
present. This affects two things: where the reactions take place, and the time scale
of heat transfer from the reaction to the surroundings. These, in turn, affect the local
reaction rate and concentrations, as well as the local temperature.

3.1.3 Chemical reactions

In this process, alkali cellulose [the result of Reaction (4), shown below], is reacted
with EO, resulting in a chain of ethylene oxide (EO) molecules with an alcoxylate ion
at the end, represented in Reaction (5). Ethyl chloride (EC) then reacts either with
this alcoxylate ion or directly with alkali cellulose, according to Reactions (6) and (7).
Different lengths of the EO-chain give different properties of the end product; the
temperature in the reactor, in turn, determines the length of the chain. The reactions
are described by:

Cellulose − OH + OH− −→ Cellulose − O− + H2O (4)

Cellulose − O− + nEO −→ Cellulose − O − (EO)−n (5)

Cellulose− O − (EO)−n + EC −→ Cellulose − O(EO)n − Et + Cl− (6)

Cellulose− O− + EC −→ Cellulose − O − Et + Cl− (7)

Reaction (4) initializes the reaction, Reaction (5) is a propagation reaction, and Reac-
tions (6) and (7) terminate the reaction chain.

We assume Reactions (4)–(7) to be the dominating reactions. Other bi-reactions,
like EO reacting with other EO-molecules or with water molecules, are neglected.

Reaction (4) is very fast and occurs before EC is completely added to the reactor.
In addition, the reaction between alkali cellulose and EC is very slow at low temper-
atures in the beginning of the process. Thus, the following reactions are not affected
by the rate of this reaction and we consider the addition of EO as the starting time
for the model.

3.2 Mass and heat balances

In this section we state the differential algebraic equations needed to describe the
system, by formulating heat and mass balances. The equations are valid for all t ∈
[0,∞).

We start with an overall mass balance over the reactor, with units kg:

mtot(t) =
∑

All
Substances i

mi(0) +

∫ t

0

ṁEO,add(τ) dτ. (8)
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In this equation, the first term in the right-hand side represents the initial mass, and
the second term describes the (mass) addition to the reactor. As mentioned above,
only ethylene oxide (EO) is added to the reactor and nothing is removed from the
reactor during a batch.

3.2.1 Overall heat balance

We also need an overall heat balance, with units kJ/s, over the reactor:

1

V

∂

∂t

∑

All
Substances i

mi(t)CV,i(Tr(t))Tr(t) = Qin(t) − Qout(t) + Qreact(t). (9)

The left-hand side describes the accumulation term which is the sum of accumulated
heat in each substance in the reactor. The reactor volume V is constant over the batch
time and the pressure P is changing over time, which is why we use the heat capacity
CV (T ) instead of CP (T ) (which is used when the pressure is constant). Values of
CV [kJ/mol, K] are not available for most species, whereas values of CP are. For
ideal gases, the heat capacity CV depends only on the temperature, and CV (T ) =
CP (T ) − R, where R is the ideal gas constant. For solids, CV (T ) = CP (T ) holds.
Empirical equations, giving the temperature dependence of CP (T ), are available for
many pure species in Perry’s Chemical Engineers’ Handbook, [27]; they often take
the form

CP,i(T ) = Ai + BiT + CiT
2 + DiT

−2.

We do not know exactly which substances are present in the reactor because of
the bi-reactions occurring, cf. Section 3.1.3. We also do not know much about the
phases in the reactor, and even less about the properties of these substances. Values
of the heat capacity are known for many pure substances, such as EO and EC and
NaOH(aq), but as soon mixing is regarded, these values change somewhat. The
heat capacity for pure cellulose depend, among other things, on the density (for
instance fibres or ground powder of different sizes) and the moisture content. Hence,
using temperature dependent heat capacities for each present substance is a rather
complicated way to express the system.

To make a simple model of the system, we treat the system globally, hence regard-
ing the material inside the reactor as one homogeneous (mass) average compound,
with material properties being the average of the compounds’. The average is taken
over the whole reactor including the condenser. In order to make a simple model, we
need to find approximate, steady state, values for the properties of this average com-
pound, such as heat capacity CP , heat transfer coefficients kcond and kjacket, through
trials and parameter estimation; see Section 3.5. For a more thorough discussion
about the effects of the averaging, see Section 5.

As temperature and pressure of this average compound, we use the (time vari-
able) average reactor temperature and reactor pressure, which can be approximated
by the measured values in the real reactor. This averaging gives a simpler accumu-
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lation term:

∂

∂t
(mtot(t)CP,totTr(t)) = Qin(t) − Qout(t) + Qreact(t)

= QEO,add(t)−Qjacket(t)−Qcond(t)+Qreact(t). (10)

Developing the left-hand side, assuming CP,tot is constant, gives

∂

∂t
(mtot(t)CP,totTr(t)) = CP,totTr(t)

∂

∂t
mtot(t) + CP,totmtot(t)

∂

∂t
Tr(t). (11)

Inserting this into Equation (9) gives

∂

∂t
Tr(t) =

1

CP,totmtot(t)
[−ṁtot(t)CP,totTr(t)+

QEO,add(t) − Qjacket(t) − Qcond(t) + Qreact(t)]. (12)

3.2.2 Heat transfer through addition of EO

EO is added to the reactor by spraying at temperature Tadd. We assume that EO va-
porizes immediately as it enters the reactor, which can be described by two effects:
vaporization, followed by a temperature rise of the gas from the addition temper-
ature Tadd to the reactor temperature Tr. We discard the pressure change due to
vaporization; this is acceptable since the pressure changes are very fast (more or less
instant) and in this first model we only consider phenomena in time scales larger
than about 1 minute. The heat content in the EO-addition is given by Equation (13)
below, where ṅadd is the molar flow of EO to the reactor, in mole/min:

QEO,add(t) = ṅadd(t)[∆HEO
vap (Tadd) + Cgas

P,EO(Tr)Tr(t) − Cgas
P,EO(Tadd)Tadd]. (13)

The heat of vaporization, ∆HEO
vap , is given by Equation (14) below, in units kJ/mole,

with constants in Table 1, and the specific heat for EO, Cgas
P,EO , in units kJ/mole, K ,

is given in Reaction (15), where the constants are given in Table 2, from [38]:

∆HEO
vap (T ) = A(1 −

T

B
)C , (14)

Cgas
P,EO(T ) = a0 + a1T + a2T

2 + a3T
3 + a4T

4. (15)

Table 1: Constants used in Equation (14) for vaporization of EO, where T is given in Kelvin.

A 36.474
B 469.15
C 0.3770
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Table 2: Constants used in Equation (15) to calculate the specific heat for gaseous ethylene
oxide. T is given in Kelvin.

a0 30.8271 10−3

a1 −7.6041 10−6

a2 3.2347 10−7

a3 −3.275 10−10

a4 9.7271 10−14

3.2.3 Jacket heat transfer

Heat is transported from and to the reactor through the jacket and from the reactor
through the condenser. The heat transfer from gas phase to a wall differs a lot from
the transfer from a liquid phase to a wall, as well as from the transfer from a solid
phase to a wall. Since we do not know the relations between the different phases in
the reactor, or even which phases are present, as above we treat the content as one
average compound. Trials at the laboratory, made by Akzo Nobel prior to this study,
have shown that an about three times larger amount of EC added to the cellulose,
compared to what is used in the process today, is needed to visually observe any
liquid phase. Consequently, we assume that all EC and EO is either absorbed by the
cellulose or in the gas phase in the reactor.

We estimate the overall heat transfer coefficient k from real batches in a pilot
reactor, for the jacket transfer and for the condenser transfer; see Section 3.5 for a
further description of the parameter estimation. The jacket is regarded as an ideal
tube reactor. Since the flow through the jacket is very high, and the temperature dif-
ference between inflow temperature and outflow temperature is less than 5K (com-
pared to 50K over one batch), this means that the average temperature T jacket =
(Tin + Tout)/2 can be used as an approximation.

The heat transfer Qjacket from the homogeneous average compound material to
the jacket water can be described through a heat balance over the jacket, treating the
jacket as a point sink in the reactor. The water flow through the jacket is constant:
Fjacket = 100 m3/h. Compared to the chosen accuracy in time, the heat transfer
through the wall is fast enough to be neglected. By the same reason, we also assume
that no heat is accumulated in the reactor wall. Hence, the temperature of the water
flowing in the jacket is Twater,bulk = T jacket, which can be measured and controlled
within certain limits. Using an overall heat transfer coefficient, kjacket , and letting
Ajacket be the heat transfer area (the reactor surface area excluding the condenser),
we get Equation (16) below (the units are kJ/s):

Qjacket = kjacketAjacket(Treactor(t) − Twater,bulk(t))

= kjacketAjacket(Treactor(t) − T jacket(t)). (16)
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3.2.4 Condenser heat transfer

The corresponding situation for heat transfer through the condenser wall is slightly
more complex. From the reactor point of view, we treat the condenser as a point
sink in the reactor, in the same manner as treating the reactor content as one homo-
geneous compound. But from the condenser point of view, we need to regard the
large temperature difference, up to 90K , between in- and outflow temperatures of
the condenser, as follows.

The flow of water through the condenser, Fcond, varies over time (we assume
incompressible liquid), while the temperature of the water coming in to the system,
Tcond,in is constant and known. As above, we assume that no heat is accumulated in
the condenser wall, thus getting

Qcond = kcondAcond(Tgas,bulk − Twater,bulk)

= kcondAcond(Treactor(t) − T cond(t)), (17)

where kcond is the estimated overall heat transfer coefficient, and Acond is the heat
transfer area, (that is, the effective condenser area. To deal with the fact that both
kcond and T cond are unknown, we treat the water side of the heat exchanger as a tube
of flowing water, see Figure 8, and use the average temperature as the condenser
temperature. In future work, we recommend that other averages, such as logarith-
mic, are studied also. It therefore follows that

T cond =
Tcond,in + Tcond,out

2
. (18)

A heat balance over the condenser, using Equations (17) and (18), gives a new
expression for the temperature out of the condenser:

0 = FcondCP (Tcond,in − Tcond,out) + Qcond

=⇒

Tout =
(2FcondCP − kcondAcond)Tcond,in + 2kcondAcondTreactor

2FcondCP + kcondAcond

. (19)

This expression is then used in Equation (17), together with Equation (18).

3.2.5 Reaction heat

Since the reactions involved are exothermal, heat is produced. The amount of this
heat is given by:

Qreaction(t) = ∆HEOrEO(t) + ∆HECrEC(t). (20)
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Tin

Tout length, L

Temperature, T

Figure 8: The temperature of incoming water to the condenser may differ a lot from the out-
going water temperature. Without a thorough investigation of the condenser, we do not know
the temperature profiles along the length of the condenser, at any of the sides. This uncertainty
is handled by using the average temperature.

In this equation, ∆Hi is the heat of reaction for reaction i in [kJ/mol min]. Trials have
been done in a pilot reactor, to establish the reaction heat ∆Hi for the two reactions
and the overall specific heat CP,tot of the reactor content. The temperature indepen-
dent values are estimated while regarding the reactor content as one homogenous
average compound. It should be pointed out that the pilot reactor differs from the
industrial reactor in the temperature control system: there is no condenser present
in the former.

In order to describe the reaction heat in Equation (20), we also need expressions
for the reaction rates. Reaction rates are available from test trials in laboratory scale
and pilot scale, with concentrations in [mol/mol AGU ], where AGU is a short-hand
for anhydroglucose unit:

∂cEO

∂t
=− rEO′ = −kEO(T )cEO, (21a)

∂cEC

∂t
=− rEC′ = −kEC(T )cECcRO− . (21b)

We use the subscript EO for Reaction (5), and subscript EC for Reaction (6). The cj :s
are total concentrations in the reactor, which means that the formulas do not reveal
or consider where reactions take place, or if the molecules have to be transported
in liquid or inside a porous particle. By RO− we mean an activated cellulose ion,
see Reaction (4). The reaction constants kEO(T ) and kEC(T ) are derived from the



3.3 Control system 23

Arrhenius equation, where T is the reaction temperature:

kEO(T (t)) = A1e
−

E1
T (t) , (22a)

kEC(T (t)) = A2e
−

E2
T (t) . (22b)

The entities Ai and Ei, i = 1, 2, are constants and the activation energies for the
reactions, respectively.

3.3 Control system

The control system of the reactor consists of a jacket, in which the temperature is
controlled against the reactor temperature, and a condenser. The cooling effect of
the condenser is controlled by varying the flow through the condenser while the
temperature of the inflowing water is constant, and this flow is controlled against
the reactor pressure. See Figure 9.

Heat

exchanger

Cold water inletCondenser

Jacket flow

Reactor
PID

Condenser

PID

Jacket

Surplus water outlet

Pump

Figure 9: The control system of the process includes two PID controllers. The jacket PID
controller consists of a ’master and slave system’ and controls the inlet temperature and the
heat exchanger.
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3.3.1 PID Controller

In the process, sampled versions of a PID controller are used in controlling the jacket
temperature and the condenser flow. The control algorithm, with the set point value
r, controlled variable y and control variable u, is

u = K

(

βr − y +
1

TI

∫

(r − y) dt − TD

dy

dt

)

. (23)

The set point factor β is a constant that is rarely used in this process (that is, it is
usually set to 1), unless the auto-tuning program in the system sets it. The inclusion
of the factor β allows the loop to be made faster without causing big overshoots
at set point changes. In Equation (23), all variables are expressed in percents. The
units of the parameters TI and TD are given in seconds, which also is the unit for the
integration and the derivation in the formula.

In the condenser, u = FCond/FCond,Max, and y = PReactor/PMax, and in the jacket
u = TJacket/T0 and y = TReactor/T0, where T0 is a reference temperature; here we
use T0 = Treactor,Max.

In the process, the gains K , TI , and TD of the PID controllers vary over time as
shown in Figure 10. In this first model, due to limited time, we use constant gains,
which results in some errors, see Section 3.6.

3.3.2 Jacket

An advanced control system, consisting of ’master and slaves’ controllers, controls
the jacket input temperature, involving a steam heat exchanger and a raw (cold) wa-
ter inlet. PID controllers are used for both the heat exchanger and the raw water in-
let. In this first model, we implement only one PID controller, the master controller
and use the technical limits from the heat exchanger and the raw water mixing as
constraints on the jacket flow. This approximation results in errors, but these errors
are small enough to allow us to consider that the approximation captures the most
important physical aspects of the process, such that the model can be used for opti-
mization, see Section 3.6. In future models, the other PID controllers should also be
regarded. These constraints concern maximal allowed changes in the jacket temper-
ature (temperature derivatives), as well as limits on the temperature:

m ≤
∂Tjacket

∂t
≤ M, (24a)

c ≤ Tjacket ≤ C. (24b)

3.3.3 Condenser

Generally, pressure reacts very fast to changes in a state of the system, and therefore
heat transfer due to condensation is very effective.

Here, the condenser is used only for cooling, and hence, during the heating se-
quences of the batch only the jacket is used. The condenser system is controlled by
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Figure 10: In the real process, the gains of the controllers vary over time. For the jacket,
the scaled ’master’ PID controller is shown in the upper three graphs. In our model we use
constant gains.

the pressure in the reactor; moreover, the condenser functions as a safety control: if
the reactor pressure changes too fast the condenser flow starts until the temperature
increase has diminished.

As above we use technical limits on the flow as constraints on the condenser flow.
These constraints concern maximal allowed changes (derivatives) in the flow, as well
as limits on the maximal and minimal flow:

l ≤
∂Fcond

∂t
≤ L, (25a)

0 ≤ Fcond ≤ D. (25b)

3.3.4 Set point curves

At this stage the set point curves are implemented as functions of the EO addition.
The set point temperature Tset and the set point pressure Pset are raised from the
initial set point curves simultaneous with the start of the addition of EO. The slopes
are given before-hand for both set point curves and are not affected by the optimiza-
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tion at this stage, but could very well be optimized in the future. Also the second set
point raise is determined to start at the end time of the EO addition, see Figure 11.
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Figure 11: Construction of the set point curves Tset and Pset from the EO addition curve.

3.4 Pressure

Reactor pressure is used in the condenser controller as the controlled variable y in
Equation (23), and therefore we need an expression for this variable.

As a first try, the pressure is obtained assuming an ideal gas where the free gas
volume is the volume of the reactor reduced by the volume of cellulose and the
volume of NaOH(aq):

PEK
ideal =

nECRT

Vreactor − VNaOH(aq)−VCellulose

. (26)

We use values for the specific volume of pulp fibres (0.62 10−3 m3/kg), the density of
NaOH(aq) (taken from [27]) and assume no extra effects in volume in alkalization,
Reaction (4). At higher temperatures, this calculated pressure is about 33 % too low
compared to the measured reactor temperature, which can be seen in Figure 12. It
should be mentioned that the model behind the figure contains no PID controller, but
a preset flow through the condenser is used. To get a better pressure model, resulting
in Equation (27a), we perform a deeper analysis of the vapor–liquid equilibrium in
the reactor, which now follows.
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Figure 12: Results from MATLAB using the ideal gas law to calculate pressure, and no con-
troller for the condenser.
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After loading the ground cellulose (a very fine powder), the reactor is evacuated
to about 5 kPa. This amount of gas is neglected in the calculations, since most of the
gases are inert.

After the addition of NaOH(aq), EC is added. The amount is larger than the cor-
responding vapor pressure, which is why part of the EC must be in liquid form. In
laboratory trials at Akzo Nobel, it has been seen that an amount about three times
larger than used in the process is needed to be able to visually recognize any liquid
(at normal pressure) in the cellulose. Hence, a large part of the liquid EC must be
absorbed in the cellulose particles. This probably affects the vapor–liquid equilib-
rium. Observe that EC and NaOH alone are immiscible. This change in the amount
of EC available for pressure build up is assumed to be linear in the amount of EC
molecules in the reactor. The effect is assumed present also when modeling the EO
pressure, see Equation (27b).

In the alkalization process, the structures of the crystalline areas of cellulose are
expanded, allowing the hydroxyl groups to be transformed into alcoholate, see Fig-
ure 15, which increases the number of polar groups in the cellulose chain. We sug-
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Figure 15: When cellulose (a) is treated with NaOH the crystalline areas are expanded, result-
ing in alkali cellulose (b).

gest that this expansion makes it possible to increase the absorption of EC, which
is a polar molecule, whereby the vapor–liquid equilibrium of EC is affected. As the
EO reaction progresses EO molecules add to the cellulose chain reacting with the
alcoholate ions, forcing the chains further apart; see Figures 16 and 17 below. We
assume also this expansion to affect the vapor-liquid equilibrium of EC linearly in
the progress of the EO-reaction.
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Figure 16: During the EO-reaction, the cellulose chains are forced further apart (compare with
Figures 15 and 17), thereby increasing the ability to absorb EC molecules.

Hence, the pressure is modeled in the following way:

PReactor = PEO + PEC , (27a)

PEO = P o
EO(T )(α1nEO + β1), (27b)

PEC = P o
EC(T )(α2nEC + β2)(γ1λEO + δ1), (27c)

where P o
i is the vapor pressure for species i, with values of the constants given in

Table 3, on the form
P o

i = 10(A+ B
T+C

). (28)

Table 3: Constants used in Equation (28) for vapor pressure. (Temperature is given in Kelvin
and pressure in mmHg; 1 mm Hg = 133.322368 Pa.)

A B C
EO 7.26969 −1114.78 −29.849
EC 7.13047 −1097.60 −27.141

In Equation (27c), the function λEO(t) ∈ [0, 1] describes the progress of the EO-
reaction:

λEO(t) =
nEO,reacted(t)

nmax
EO,reacted

. (29)

The variables nEC and nEO in Equation (27) describe the number of moles of EC
and EO, respectively, in the reactor, and are given by mass balances for substance
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Figure 17: At the end of the EO-reaction the cellulose chains are far apart, compared to in
Figure 16, and the ability to absorb EC molecules is high.

i = EO, EC:

ni(t) = ni,loaded(t) − ni,reacted(t) =
mi,loaded(t)

Mi

−

∫ t

0

ri

mcell

MAGU

dt. (30)

Since EO contributes to the pressure only when present in the reactor, β1 = 0 and
γ1 = 0 hold in Equation (27). The constants α2 and β2 are obtained by linear regres-
sion, using data from times when only EC is present in the reactor, that is, before
EO is added. When this is made, the constants α1 and δ1 are obtained by linear
regression, using data from several batches and the whole batch duration.

In order to fully describe the system and to calculate the pressure in the reactor,
mass balances for the involved substances are needed:

∂nEO

∂t
= ṅEO add − ṅEO,reacted = ṁEO add

1

MEO
− kEO(T )nEO, (31a)

∂nEC

∂t
= −rEC

MAGU

MEC

= −kEC(T )nECnRO−

MNaOH

MAGU

, (31b)

∂nRO−

∂t
= −rEC

MAGU

MNaOH

= −kEC(T )nECnRO−

MEC

MAGU

. (31c)
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The initial values are given as

nEO(0) = 0, (32a)

nEC(0) = cEC,0
MAGU

MEC

, (32b)

nRO−(0) = cRO−,0
MAGU

MNaOH

= cNaOH,0
MAGU

MNaOH

. (32c)

Summing up, the pressure is modeled using physical aspects at the molecular
level and depend on the reactor temperature, the amount of EO and EC in the re-
actor, as well as on the progress of one of the involved reactions. The mathematical
description is given by Equations (27)–(32).

3.5 Parameter Estimation

Data from ten batches has been used to estimate parameters. Process data has been
available for every minute; see Table 4 for a list of data used.

Table 4: Data available

Description Variable Unit

Time t min
Reactor pressure P kPa
Reactor temperature Tr K or ◦C
Loaded NaOH mNaOH kg
Loaded EO mEO, add kg
Loaded EC mEC kg
Flow jacket Fjacket m3/h
Temperature in, jacket Tjacket,in K
Temperature out, jacket Tjacket,out K
Flow condenser Fcond m3/h
Temperature out, condenser Tcond,out K
Temperature in, condenser =
temperature, cold water Tcond,in K

3.5.1 Estimation of concentrations

The concentrations can not be measured in the reactor, but an estimation of the con-
centrations, ci, and the reaction rates, ri, has been made by Akzo Nobel prior to this
study, using a discretization of Equation (21). Assuming that nothing is added or
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removed during a time step ∆j = [tj−1, tj] , the discretization gives the following:

cEO(tj) = cEO(tj−1)e
−kEO(tj), (33a)

cEC(tj) =
(cEC(tj−1) − cRO−(tj−1)cEC(tj−1)

cEC(tj−1) − cRO−(tj−1)ekEC(tj)(cRO−(tj−1)−cEC(tj−1))tj
, (33b)

cRO−(tj) =
(cRO−(tj−1) − cEC(tj−1))cRO−(tj−1)

cRO−(tj−1) − cEC(tj−1)e
kEC(tj )(cEC(tj−1)−cRO−(tj−1))tj

. (33c)

Here we assume that the addition of EO is made instantly at the discretization times
tj−1, that is cEO(tj−1) includes added EO during the last time interval ∆j−1.

These equations are used together with process data (the reactor temperature) to
calculate the concentrations, when comparing the mathematical model to the real
process data in Figure 7.

3.5.2 Estimation of reactor pressure

When estimating the reactor pressure, Pr, data from three different batches has been
used. The number of moles of substance i, i = EO, EC present in the reactor, ni(tj),
are calculated at each time step using Equations (33) and the measured reactor pres-
sures Pj and temperatures Tj .

3.5.3 Estimation of heat transfer coefficients

To estimate kjacket, the heat transfer coefficient of the jacket, we state equations for
the heat flow over the jacket and from the reactor to the jacket:

Q = FwCP,w(Tout − Tin),

Q = kAr(Tjacket − Treactor),

where the reactor area is known to be approximately Ar = 20 m2. The flow through
the reactor is high enough, Fw = 100 m3/h, and the temperature difference between
inflow temperature and outflow temperature is less than 5K (compared to 50K over
one batch), to approximate the jacket temperature as the out temperature. A heat
balance assuming no accumulation term gives

Q = kAr(Tout − Tr),

which implies that

k =
FwCP,w(Tout − Tin)

Ar(Tout − Tr)
.

This estimation of k has been tabulated; Figure 18 shows an example of one batch.
As can be seen, the kjacket is not constant as expected, and one reason can be that the
calculation is made without taking into account any delays (no accumulation term):
in the derivation of k we assumed that Q is constant, which is not the case. The
addition of ’cold’ EO (Tadd < Tr) involve a cooling of the reactor content as well as
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Figure 18: The bolded graph shows the estimation of kjacket at different times. The set tem-
perature Tset (dotted graph) and the EO addition ṁEO (thin graph) is also shown.

a vaporization of the liquid EO to gaseous EO, which requires energy. Both these
actions change the reactor temperature faster than what can be detected from data
available, which in Figure 18 is seen in that k is not constant. Data from times where
no EO is added and the condenser is not used ha been used to calculate an average
from three batches.

The value of heat transfer coefficient k for the condenser is estimated likewise;
see Figure 19. The coefficient is available only during those parts of the batch where
the condenser is used. As can be seen, nor kcond is constant during the batch. As for
the jacket, one reason can be that the calculation is made without taking into account
any delays. When the condenser is used, heat is withdrawn both through the jacket
and the condenser at the same time, and in addition EO is added (with the effects
discussed above), which makes the estimation even less accurate. To model the heat
transfer coefficients with higher accuracy, more data is needed, as well as additional
experiments. At this stage this is what we use, but it would be interesting to study
this more thoroughly.
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Figure 19: The bold graph shows the estimation of kcond at times when the condenser is used.
The set temperature Tset (dotted graph) and the EO addition ṁEO (thin graph) is also shown.

3.6 Simulation results and discussion

The mathematical description of the batch reactor used in this work is given by the
equations in Sections 3.2–3.4. These equations have been implemented in SIMULINK,
a software package in MATLAB. In the figures below showing simulations, 0.1 time
units have been added prior to the starting time for EO addition, to make the figures
easier to read. Data has been compared to real process data by converting the EXCEL
files (with process data) from Akzo Nobel to MATLAB.

In SIMULINK a PID controller is described by a differential equation,

u(t) = up(t) + ui(t) + ud(t)

= Ke(t) +
K

Ti

∫ t

0

e(t) dt + KTd

de(t)

dt
,

where the output u is the sum of a proportional term up, an integral term ui, and a
derivative term ud, cf. Equation (23), K is the proportional gain of the PID controller,
e(t) is the error between the reference and feedback inputs, and Td is the derivative
time of the controller.
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In discrete terms the derivative gain is defined as Kd = Td/T and the integral
gain is defined as Ki = T/Ti, where T is the sampling period and Ti is the integral
time of the PID controller.

In the mathematical model, not all parameters are known, or the estimated val-
ues do not give curves in agreement with real process data when implemented in
SIMULINK and MATLAB; compare Figure 20 with Figure 7 on page 16. Trials have
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Figure 20: The figure shows a simulation where the PID parameter TI,jacket = 1.0 min. As
can be seen the jacket temperature Tj does not follow the real jacket temperature in Figure 7
on page 16.

been made in SIMULINK to find values of CP,tot, ∆HEO , ∆HEC , Kjacket, TI,jacket,
and TD,jacket that make the model agree with the real process data as well as pos-
sible. Table 5 shows the estimated and the used model values. We argue that the
errors that remain when using the values in Table 5 are small enough to capture the
most important physical aspects of the process, such that the model can be used for
optimization. Figure 21 shows a simulation with the parameter values as is shown
in Table 5. The figure should be compared to a typical real batch, such as Figure 7
on page 16. As can be seen, all simulated curves but the jacket temperature follow
the real curves quite well. The simulated jacket temperature rises in the beginning,
as does the real jacket temperature, but then, during the time interval of 0.3–0.7 time
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Table 5: Comparison between estimated values and values that makes the mathematical
model agree with the real process data.

Constant Estimated value Value used in SIMULINK

CP,tot (kJ/mole, K) 6 5.5
∆HEO (kJ/mole) 150 150
∆HEC (kJ/mole) (small) 0
kjacket (W/m2, K) 700 900
kcond (W/m2, K) 500 600
Kjacket (–) 3.00 3.00
TI,jacket (min) 1–1.33 0.10
TD,jacket (min) 0 0

units, it does not fall far enough compared to the real jacket temperature. This error,
in turn, affects all the other variables in this time interval: the simulated reactor tem-
perature is somewhat lower than the real one, the simulated pressure is somewhat
higher than the real one, and there are twitches in the simulated concentrations cEO

and cEC which are not present in the real concentrations. This error is possibly due
to two major things: first, in the simulations we use constant PID parameter values
instead of time variable ones, and second, the heat transfer between the reactor con-
tent and the jacket water is modeled with rather low accuracy, see Section 3.5.3. In
this work, the focus has been on making a simple model to use as a start for further
modeling work, and this is why we have chosen to use these approximated values.
The relation between the effects of the approximations is difficult to say anything
about without further information. In the future, these things should be looked fur-
ther into.
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Figure 21: A simulation in SIMULINK with parameter values given in Table 5.
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4 Optimization and analysis

4.1 Formulation as an optimization problem

We want to minimize the total batch time and hence use the complete model in Sec-
tion 3 to formulate the dynamic minimum time problem, Equation (3). It has the
form

minimize tf , (34a)

subject to h(ẋ(t), x(t), u(t), t) =0, (34b)
g(x(t), u(t), t) ≤0, (34c)

x ∈ X, u(t) ∈U, (34d)
x(0) ∈ X0, x(tf ) ∈Xf , (34e)

t ≥0. (34f)

In this formulation, the system equations h are given by the model in Section 3,
including the constraints.

The overall heat balance, given by Equations (9)–(22), can be summarized by

Ṫr = f1(Tr, nEO, nEC , nRO− , Tj, Fcond, t, ṁEO,add), (35)

since ni = ci
mCell,0

MAGU
; the PID controllers for the jacket and the condenser, Equa-

tion (23), can be rewritten as

Ṫj = f2(Tr, nEO, nEC , nRO− , Tj, Fcond, t, ṁEO,add), (36)

Ḟcond = f3(Tr, nEO, nEC , nRO− , t, ṁEO,add). (37)

The reactor pressure is described mathematically by Equations (27a)–(32), and
these equations can be summarized as

ṅEO = f4(Tr, nEO, t, ṁEO,add), (38)
ṅEC = f5(Tr, nEC , nRO− , t), (39)

ṅRO− = f6(Tr, nEC , nRO− , t). (40)

In these equations, all variables Tr, nEO, nEC , nRO− , Tj , Fcond, ṁEO,add are functions
of the time t. Initial values are known and are included in the description of X0 in
Equation (34) for all these equations.

Additional constraints, natural [(34d) and (34e)] or given from the process [(34c)]
as discussed in the modeling section, are that

0 ≤ Tr, (41a)
c ≤ Tj ≤ C, (41b)

m ≤
∂Tj

∂t
≤ M, (41c)

0 ≤ Fcond ≤ D, (41d)

l ≤
∂Fcond

∂t
≤ L, (41e)
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0 ≤ nEO ≤ nEO,max, (41f)
0 ≤ nEC ≤ nEC,max, (41g)
0 ≤ nRO− ≤ nRO−,max. (41h)

We want to minimize the total batch time for the process, which from the process
manager’s point of view is from loading to emptying the reactor. In this study, we
consider the reactions starting with the addition of ethylene oxide, including the heat
transfer from the reactor, but not loading, preheating, cooling and emptying. We
define the end of the batch as the time tf characterized by the concentration of EC
dropping below a limit c0

EC . We optimize the operation by finding an optimal way
of adding the ethylene oxide to the reactor (ṁEO, add(t)). This can mathematically be
written as, cf. Equation (3):

minimize tf , (42a)

subject to h(ẋ(t), x(t), u(t), t) =0, (42b)
g(x(t), u(t), t) ≤0, (42c)

x ∈ X, u(t) ∈U, (42d)
x(0) ∈ X0, x(tf ) ∈Xf , (42e)

t ≥0, (42f)

where x⊤ = (Tr, Tj, Fcond, nEO, nEC , nRO−), the differential algebraic equations (42b)
are given by Equations (35)–(40) (including initial values x(0) ∈ X0), and the con-
straints (42c) are given by Equations (41).

The optimal control vector profile u, which in this case is the function ṁEO,add(t),
can be determined by using a control vector parametrization approach for the solu-
tion of the dynamic optimization problem. This means that the optimization is per-
formed on two levels, one level where the optimization is performed, and one level
where the DAE is solved, see Figure 3.

4.2 Manual optimization

To gain information about our system and at the same time improving the batch
time, a manual optimization is performed, using SIMULINK, MATLAB. Below, we
describe the details of this optimization.

The function ṁEO,add(t) is parameterized by dividing the batch time into J =
150 equal time elements and assuming the flow rate to be constant in each of these
elements. To prevent too fast changes in flow rate (which originates from limited
capability of pumps etc.), two adjacent elements are not allowed to differ more than
a preset value, α:

ṁEO,add(t) = mj , t ∈ [tj−1, tj), j = 1, . . . , J

|mj − mj−1| ≤ α, j = 2, . . . , J.

To prevent too high temperatures and too large temperature gradients, which are
not allowed in the real process, but is accepted by MATLAB in simulations, a penalty
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is added to the objective function:

fobj = tf + P. (43)

As a first step, used in the simulations below, a discontinuous penalty is used, namely

P (Tr) =

{

p, |Tset − Tr| ≥ β,
0, otherwise,

(44)

where p ≫ 0. It should be mentioned that when performing an automatic optimiza-
tion, a continuous penalty is preferred, for instance the following

P (Tr) = p max{0, |Tset − Tr| − β}. (45)

The penalty P is added in those simulations where the control system does not man-
age to keep the reactor temperature close enough to the set point temperature Tset.
The constant β is determined by the ability of the PID controllers to control the reac-
tor temperature and a large value means that the jacket is good at controlling the re-
actor temperature. Since a DAE system is just a model of the real system, it contains
errors, and the constant β is also used as an additional error control of the reactor
heat transfer and the control system. If the error in the control system and/or the
reactor heat transfer is large and the simulated system is able to control the reactor
temperature, a small value of the constant β in Equations (44) and (45) decreases the
risk of escalating reactor temperature in the real reactor.

In this study, the focus has been on finding a mathematical model for the batch
time, and initially not on the quality of the end product. Still, we need to use in-
formation about the end product quality to determine which profiles are acceptable:
if a large portion of the EO is added prior to the wanted reaction temperature is
reached, this may result in a worsened product quality. Below, this is judged by the
user. Since, prior to this study, there is a lack of knowledge about how the quality
is affected by different temperature profiles, adding this to the mathematical model
would have been to comprehensive. The acceptable size of the portion of EO added
prior to the wanted reaction temperature and how the quality is affected by the re-
action temperature are interesting future research topics. To get a proper objective
function, the quality should be added to the optimization problem, for instance as a
penalty in the objective function just as large temperature gradients above.

Below we use the objective function defined by Equation (43), including a discon-
tinuous penalty according to Equation (44) with p = 10. This means that an objective
function value above 10 has been penalized. For the original EO profile in Figure 21,
this objective function value is fobj = 0.61.

In each step in the manual optimization, we change as little as possible, to clearly
notice the effects. We compare each simulation with the original profile used in
the process today. All simulations have in common that the slopes and the plateau
values of the set point curves Tset and Pset (see Section 3.3.4 for definitions) are the
same as in the original profile. The starting time for the second set point rise is
determined by the end of the EO addition. A reason for not allowing changes in
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slopes for the set point curves, is that if the reactor temperature (or pressure) rises too
fast, there is a potential risk for escalating reactor temperature, which is not wanted;
it is even dangerous. Of course, varying the set point curves would be interesting
to include in a future optimization. The different profiles are tested according to the
following scheme.

1. To start with, we fix the starting time of the EO addition to equal the start of
the first set point rise.

(a) We test some basic profiles, which are small variations of the original.

(b) Using the shape of the original profile with two plateaus with different
levels, we investigate how the levels of the plateaus affect the batch time:

• keeping the first plateau level as the original, varying only the second
plateau,

• varying both plateau levels proportionally; and

• varying both plateau levels separately. Only a small number of pro-
files have been tested — a more thorough investigation of trial pro-
files is recommended.

2. We relax the starting times for the rise of the set point curves by delaying the
start of the EO addition.

(a) The levels of the plateaus are constant, while the delay is varied.

• Using the original profile.

• Using a profile with three plateaus.

(b) Both the plateau levels and the delay are varied.

• Using a profile with one plateau.

• Using the original profile with two plateaus.

4.3 Results and discussion

Several simulations have been run manually, with various EO addition profiles ac-
cording to the scheme above. The result is shown and discussed here.

1. The start of the EO addition is fixed to the starting time for the first set point
rise.

(a) From the beginning we know that some of the tested basic profiles are not
wanted, since they result in a worsened end product quality according to
the discussion above. Still, we gain information from these simulations.
In most of these simulations, which are found in Appendix A, the plateau
levels are the same as the original profile. All we can conclude from these
simulations is that a piecewise constant function profile with two or three
descending levels tends to result in a short batch time.
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(b) Using a profile with two plateau levels as the original and varying only
the second plateau level, the second plateau level is possible to raise up to
70 % higher than the original one without an added penalty in the objec-
tive function due to control system limitations: levels above 70 % higher
than the original is penalized. A 50 % higher level gives the batch time
0.61, which is the same as the original. A 30 % higher level results in a
batch time of 0.59, which is an improvement compared to the original.

The batch times for simulations in which the two plateau levels are varied
proportionally, are shown in Table 8, with the delay = 0.00. As can be
seen, using for instance a 20 % rise in the plateau levels, it is possible to
shorten the batch time to 0.58 time units, which is an improvement of 5 %
compared to the original profile. According to these simulations nothing
is gained by raising the levels further.

An example of simulations where the two plateau levels have been varied
separately is shown in Figure 22. The profile that resembles the original
profile, but both plateaus have higher levels (14% and 20 %, respectively).
The resulting objective function value is 0.58, also 5% better than the orig-
inal one. As mentioned above, more trials are recommended varying the
two plateau levels separately.

2. Relaxing the starting time for the rise of the set point curves by delaying the
start of the EO addition, we have performed several simulations, shown below.

(a) Two series of simulations have been performed in which only the delay is
varied, one using the original EO profile and one using the same profile as
in Figure 23 with three levels; see Table 6. We conclude that the batch time

Table 6: Objective function values for different simulations.

Delay (time units) Profile as original Profile as in Figure 23
0.00 0.61 0.55
0.05 0.65 0.60
0.10 0.69 0.63
0.15 0.74 0.65
0.20 0.78 0.69

increases when delaying the original profile, and that using the profile
with three plateaus, it is possible to decrease the batch time, with delays
up to 0.05 time units. However, the quality must be taken into account,
since a portion of the EO is added prior to the reactor temperature reaches
the wanted reaction temperature. To determine whether a delayed profile
is actually useful, information about the quality must be known. Figure 24
shows a simulation using the original profile with 0.05 time units delay.

(b) Combinations of variations in delay and variations in levels using only
one plateau is shown in Table 7. It is seen that for those simulations
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Figure 22: The figure shows a simulation where both the first and the second plateaus have
higher levels than in the original profile.

in which the penalty is not activated, the batch time decreases with in-
creasing levels, which is natural since higher concentrations of EO in the
reactor results in a higher reaction rate according to Equation (21). But
increasing the EO addition too much results in a too large heat produc-
tion for the control system to handle, which is seen in that the objective
function value is penalized and fobj > 10. For all level rises, increasing
the delay naturally increases the batch time. For the two smallest level
rises (1.25 and 1.30) some of the batch times are smaller than the original
profile, but one must keep the quality in mind; in order to to determine
whether these profiles give acceptable quality, more research is needed.

Combinations of variations in delay and variations in levels using the
shape of the original profile is shown in Table 8. In these simulations,
the relation between the plateau levels is the same as the original. Here
the control system can handle all simulated profiles, but only simulations
without delay result in a shorter batch time than the original. As men-
tioned above, using the original profile without delay the system can han-
dle levels up to 70 % higher than the profile used today without escalating
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Figure 23: The figure shows a simulation where the EO ’batch plateau’ is instantly followed
by a second, somewhat lower, plateau level and a third, even lower level. Here the EO ad-
dition is delayed 0.05 time units after the set point temperature and pressure risings. The
corresponding objective function value is fobj = 0.60.

reactor temperatures, with a decrease of 5 % of the original batch time.
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Figure 24: The figure shows a simulation with original EO profile, but where the EO addition
is delayed 0.05 time units. The corresponding objective function value is fobj = 0.65.

Table 7: Objective function values for different simulations using EO profiles with one single
plateau.

Level rise l = New levels
Original levels

Delay (time units) 1.25 1.30 1.40 1.50 1.60
0.00 0.57 0.56 10.58 10.55 10.54
0.05 0.60 0.57 10.62 10.58 10.56
0.10 0.63 0.60 10.62 10.62 10.60
0.15 0.67 0.64 0.64 10.65 10.64
0.20 0.71 0.68 0.68 10.69 10.67
0.25 0.76 0.72 0.72 10.73 10.71
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Table 8: Objective function values for different simulations, using the shape of the original
EO profile but with varying levels and delays.

Level rise l = New levels
Original levels

Delay (time units) 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.75
0.00 0.61 0.60 0.58 0.58 0.58 0.58 0.58 0.58 10.58
0.05 0.65 0.63 0.62 0.62 0.62 0.61 0.61 0.60
0.10 0.69 0.68 0.66 0.66 0.66 0.64 0.64 0.62
0.15 0.74 0.72 0.71 0.71 0.69 0.68 0.68 0.66
0.20 0.78 0.77 0.75 0.75 0.73 0.72 0.72 0.70
0.25 0.83 0.81 0.80 0.79 0.78 0.76 0.76 0.74
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5 Conclusions and future work

5.1 Conclusions

In this work we have studied a semi-batch reactor in which EHEC, ethyl hydroxy-
ethyl cellulose, is produced. We have formulated a mathematical model describing
the reactor, including the condenser and the jacket. Also the control system has
been modeled. The model includes heat and mass balances of the reactor, a pres-
sure model, models of PID controllers and heat and mass balances for the jacket
and the condenser. Technical limitations, for instance maximal and minimal jacket
temperature changes due to limitations in the heat exchanger, have been modeled
as constraints. Uncertainties are not included in the model, but we mention several
sources of error in the text.

The system equations have been implemented in SIMULINK, MATLAB and the
model predicts the process variables rather well over time. During the EO addition
the model is not able to reproduce the jacket temperature to the desired accurateness,
but the other variables have acceptable predictions.

The mathematical model has been used to formulate an optimization problem,
where the total batch time is to be minimized under the constraints of the differential
algebraic equation system and other constraints originating from the process, for
instance limited pump capabilities. A manual optimization is performed, in which
a discontinuous penalty is used for those simulations where the control system does
not manage to keep the reactor temperature close enough to the set point curve. For
automatic optimization a continuous penalty should be used instead. The quality of
the end product also affects which profiles are acceptable, but it is not known exactly
how.

Piecewise constant EO profiles with up to three constant plateaus and varying
levels have been used, and simulations show that a 5 % increase in total batch time
is possible, using a profile with two plateaus as in the original, but with 20 % higher
levels and no delay.

A 10 % shorter batch time than today is possible, using a profile with three dif-
ferent plateau levels. However, in this a profile, a large portion of the EO is added
prior to the wanted reaction temperature is reached, which may result in a wors-
ened end product quality. In order to decide which profiles are acceptable, more
research about the effect of the reaction temperature used on the end product qual-
ity is needed.

It is highly probable that further investigations, and especially automatic opti-
mization, can show profiles resulting in even shorter batch times.

5.2 Future work

Below interesting future research areas, discussed in the main text, are listed, which
all aims at decreasing the errors in the model. Which area to prioritize strongly
depends on what the model should be used for, and recommendations are therefore
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difficult to make. The research areas regarding the modeling are listed starting inside
the reactor and ending with the control system.

Regarding the modeling, future recommended work includes studies on the phases
inside the reactor as well as on the heat transfer between the reactor content and the
jacket flow. Different phases inside the reactor give rise to very different behavior
and heat transfer. In order to better control the errors regarding the reactor contents
and the heat transfer to the wall it is necessary to gain more knowledge about the
phases.

Also the condenser, the total jacket system and the control system are interesting
to study more thoroughly. In both the jacket and condenser heat transfer, non steady-
state balances including heat accumulation in the reactor material are interesting
next steps in developing the model and decreasing the errors.

Also the delay effects discussed in the estimation of the heat transfer coefficients
in Section 3.5.3, and visible in Figures 19 and 18, are interesting future research top-
ics. These effects are related to the phases inside the reactor.

It would be interesting in the future to find temperature dependent values of
average properties such as ∆Hi and CP,tot, which today are quite uncertain. Work
on this has already started.

Concerning optimization, we first recommend that the quality of the end product
is included in the objective function of the optimization problem, following a proper
mathematical modeling of this entity. From the heuristic improvement (which we
call manual optimization in the text) performed in this work, it is hard to tell which
profile is the best.

It would also be interesting to study the impact of different set point curves, both
pressure and temperature, on the total batch time in optimization.

Performing a complete optimization to find a solution to the dynamic optimiza-
tion problem formulated in Section 4.2, using for instance the control vector paramet-
rization approach for the solution, can give useful, and perhaps unexpected, profiles
and would be very interesting.
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A Initial simulations with basic EO profiles

We start with two simulations where the same levels as in the original profile is used,
but only one plateau (and hence a duration differing from the original), starting with
a simulation with a plateau level as the first plateau, and then a simulation with the
second plateau level. Thereafter a simulation follows, where the EO-profile has a
constant slope, starting at the second plateau level and ending at the ’batch’ plateau
level in the original profile. A profile with three different constant levels has also
been investigated below.

Figure 25 shows the simulation where EO is added at a constant level being the
same as the ’batch plateau’ level in the original profile. This is in reality not wanted,
since the reactor temperature is too low for too long, which results in a bad end prod-
uct quality. It can also be seen, in the upper left graph, that the control system does
not manage to keep the reactor temperature close enough to the set point tempera-
ture. This is also seen in the objective function value, fobj = 10.57, since the penalty
p = 10 is activated.

Figure 26 shows the simulation where EO is added at a constant level being the
same as the second plateau level in the original profile. The figure shows that the
control system is able to manage a profile like this. The objective function value is
fobj = 0.57, which is slightly better than the original value. In reality this profile is
not wanted, since the reactor temperature is too low during a too long time period
of the EO addition, which means that a too large part of the EO is added at low
temperatures, which in turn gives a bad quality to the end product. This effect ought
to be added to the optimization problem, either as a constraint or as a penalty in the
objective function.

We next investigate some profiles with levels different from those in the original
profile. In the simulation in Figure 27, a profile with three different levels is used: the
first original plateau level followed by a second, constant level equal to the original
but shorter duration, and a third, somewhat lower level than the original second
plateau level. As in the original profile, the reactor temperature is allowed to reach
the wanted temperature before the second level starts. The objective function value
is 0.62, which is just above the value for the original EO profile, and hence nothing
is gained using this profile.

Figure 28 shows a simulation where EO is added with a constant slope, starting
at the lower second plateau level and ending at the ’batch plateau’ level in the orig-
inal profile. At the beginning of the EO addition, the reactor temperature is too low
for too long, which gives a bad and uneven quality to the end product. In the sim-
ulation it seems as the system almost manages the profile, but regarding the errors
present in the model, the reactor temperature is close to being non useful (the reactor
temperature rises very fast while the jacket temperature is the lowest possible). The
objective function value is fobj = 10.59, confirming the conclusion that this is not a
recommended profile.

Now we investigate some profiles where the interval of no addition is removed.
The length of the removed interval is 0.11 time units, which implies that a good
guess is that we will save at least this time; the total batch time should be 0.11 time
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units shorter than for the original profile. A disadvantage of these profiles is that
the reactor temperature is lower than wanted during a large part of the batch, which
affects the quality in a bad way.

Figure 29 shows a simulation where the EO ’batch plateau’ is immediately fol-
lowed by the second plateau level, that is, the original profile where the interval
with no addition is removed. The objective function value is fobj = 0.55, which is
better than the original objective function value, but we do not gain all the saved
time. This is due to the lower reactor temperature during a part of the second, lower
plateau, which results in a lower reaction rate, and a worsened quality.

The objective function value, using a profile as in Figure 30, where the EO ’batch
plateau’ is instantly followed by a second, somewhat lower, plateau level and a third,
even lower level, is fobj = 0.55. As above, this profile is really not wanted, due to
the worsened end product quality.

All simulations and the corresponding objective function values are given in Ta-
ble 9.

Table 9: Objective function values for different simulations.

Simulation (Figure) Objective function value Worsened quality

25 10.57 yes
26 0.57 yes
27 0.62
28 10.59 yes
29 0.55 yes
30 0.55 yes

Two profiles of the manually tested ones give the shortest batch time, 0.55 which
is 10 % lower than today, given in Figure 29 and 30. As discussed above, neither of
these simulations are preferred, because of bad end product quality. All we conclude
from this small investigation is that a piecewise constant function profile with two
or three descending levels gives shorter batch time, and at the same time results in a
worsened end product quality.



57

0 0.5 1
0

0.5

1

T
se

t (
:)

, T
re

ac
to

r (
−

)

Time

0 0.5 1
0

0.5

1

Time 

T
ja

ck
et

0 0.5 1
0

0.5

1

Time

m
do

t E
O

,a
dd

 (
:)

 C
E

O
 (

−
)

0 0.5 1
0

0.5

1

Time

C
E

C

0 0.5 1
0

0.5

1

Time

P
se

t (
:)

,P
re

ac
to

r (
−

)

0 0.5 1
0

0.5

1

Time

F
C

on
d

Figure 25: The figure shows a simulation where EO is added at a constant level being the
same as the ’batch plateau’ level in the original profile.
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Figure 26: The figure shows a simulation where EO is added at a constant level being the
same as the second plateau level in the original profile.
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Figure 27: The figure shows a simulation where the EO ’batch plateau’ is followed by a second,
somewhat lower, plateau level and a third, even lower level. As in the original profile, the
reactor temperature is allowed to reach the wanted temperature before the second level starts.
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Figure 28: The figure shows a simulation where EO is added with a constant slope, starting at
the second plateau level and ending at the ’batch plateau’ level in the original profile.
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Figure 29: The figure shows a simulation where the EO ’batch plateau’ is instantly followed
by the second plateau level, that is, the original profile where the interval with no addition is
removed.
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Figure 30: The figure shows a simulation where the EO ’batch plateau’ is instantly followed
by a second, somewhat lower, plateau level and a third, even lower level, c.f. Figure 27.


