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H!' — L'-BOUNDEDNESS OF FIRST ORDER RIESZ TRANSFORMS ON A
LIE GROUP OF EXPONENTIAL GROWTH

PETER SJOGREN AND MARIA VALLARINO

ABSTRACT. Let G be the Lie group R? x RT endowed with the Riemannian symmetric
space structure. Let X, X7, X2 be a distinguished basis of left-invariant vector fields of the
Lie algebra of G' and define the Laplacian A = — (X3 + X? + X3). In this paper we consider
the first order Riesz transforms R; = X;A~'/2 and S; = A~Y/2X;, for i = 0,1,2. We prove
that the operators R;, but not the S;, are bounded from the Hardy space H' to L'.

1. INTRODUCTION

Let G be the Lie group R? x RT where the product rule is the following:
(1, 29,a) - (2], 25,d") = (x1 + azl,zo +axy,ad)  V(ry,xe,a), (2], 25,d) € G.
The group G is not unimodular; the right and left Haar measures are given by
dp(x1,29,a) = a” ! doy dzyda and d\(z1, 29,a) = a* doy dwy da,

respectively. The modular function is thus §(z1, z2,a) = a~2. Throughout this paper, unless

explicitly stated, we consider the right measure p on G and we denote by L? and || - ||, and

(-,-) the LP-space, the LP-norm and the L?-scalar product with respect to the measure p.
The group G has a Riemannian symmetric space structure, and the corresponding metric,

which we denote by d, is that of the three-dimensional hyperbolic half-space. The metric d

is invariant under left translation and it is given by

a+at+at(2? + 1)

2

V(xy1,x9,a) € G,

coshr(xy,z9,a) =

where r(x1,z9,a) = d((xl, xg,a), (0,0, 1)) denotes the distance of the point (x1,z2,a) from

the identity of G. The measure of a hyperbolic ball B,, centred at the identity and of radius
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r, behaves like
rd ifr<1
e ifr>1.

Thus G is a group of exponential growth. In this context, the classical Calderén—Zygmund
theory and the classical definition of the atomic Hardy space H' (see [CW, St]) do not apply.
Recently Hebisch and Steger [HS] constructed a new Calderén—Zygmund theory which holds
in some spaces of exponential growth, in particular on the space (G, d, p) defined above. The
main idea is to replace the family of balls which is used in the classical Calderén—-Zygmund
theory by a family of suitable parallelepipeds which we call Calderén—Zygmund sets and
whose definition appears in [GS] and [HS].

Definition 1.1. A Calderén—Zygmund set is a parallelepiped R = [by — L/2,b1 + L/2] X
[bo — L/2,by + L/2] X [ae™", ae"], where the first two intervals are intervals in R of length L,
a€RY, r>0 and

ar < L <éelar ifr<1,
ae <L <ae® ifr>1.

Given a Calderén-Zygmund set R, we define its dilated set as R* = {x € S : d(z, R) < r}.
There exists a constant Cy such that p(R*) < Cyp(R) and R C B((bl, by, a), COT).

Let R denote the family of all Calderén—Zygmund sets. In [HS] it is proved that every
integrable function on G admits a Calderén-Zygmund decomposition involving the family
R, and that a new Calderén—Zygmund theory can be developed in this context. By using
the Calderén—Zygmund sets, it is natural to define an atomic Hardy space H! on the group
G, as follows (see [V] for details).

We define an atom as a function @ in L' such that

(i) a is supported in a Calderén—Zygmund set R;
(i) [lafls < p(R)7";
(ili) [adp=0.
The atomic Hardy space is now defined in a standard way.
Definition 1.2. The Hardy space H' is the space of all functions f in L' which can be written

as f = >_;Aja;, where a; are atoms and \; are complex numbers such that 3, |A;| < oo.

We denote by || fllm the infimum of >, |A;| over such decompositions.
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The new Calderén—Zygmund theory introduced in [HS] is used to study the boundedness of
some singular integral operators related to a distinguished Laplacian on GG, which is defined
as follows.

Let Xy, X1, X5 denote the left-invariant vector fields

X(]:Claa X1:aam1 X2:aaa:27

which span the Lie algebra of G. The Laplacian A = —(X2 + X7 + X2) is a left-invariant
operator which is essentially selfadjoint on L?(p). Since A is positive definite and one-to-one
[GQS], its powers A% o € R, have dense domains and are self-adjoint. This makes it possible

to form the the Riesz transforms of the first order associated with A, defined by
Ri:XZ‘A_l/Q and SZ‘:A_I/QXZ‘ i:O,l,Z,

and the Riesz transforms of the second order, defined by

(1.1)
Rij = XZX] A_l and Sij = A_l XZX] and ,I%j = XZ‘A_IX]‘ Z,] = O, ]_, 2.

The boundedness properties of the Riesz transforms associated with the distinguished Lapla-
cian A defined above have been considered by many authors. Actually some results ([GQS,
GS2, S]) have been proved in the context of the affine group of the real line, which is not
the group GG. However, even if the setting is different, the results and the arguments may be
reformulated and applied also to our context, with some slight changes.

For i = 0,1, 2, the operators R; are of weak type 1 and bounded on L? when 1 < p < 2.
This result was obtained in [S] for the operator X A~/2, where A is a distinguished Laplacian
and X is a distinguished vector field, in the context of the affine group of the real line.
Subsquently the result was proved in [HS, Theorem 6.4] in a more general setting including
the group G, as an application of the Calderon—Zygmund theory.

The operators S; are bounded on L?, for i = 0, 1,2. Moreover if i = 1,2, then S; is of weak
type 1 and bounded on L? when 1 < p < 2. This result was proved in [GS2] in the context
of the affine group of the real line and may be generalized to the group GG. The operator Sy
is not of weak type 1 (W. Hebisch, private communication).

Since R; and S; are bounded on LP, for p < 2, by duality it follows that R; and S; are also
bounded on LP when 2 < p < o0.

The Riesz transforms of the second order defined by (1.1) have been studied first in [GQS]
in the context of the affine group of the real line, then in [GS1] in the general setting of NA
groups of rank 1, which includes the group G. The operators T;; are of weak type 1 and
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bounded on L?, when 1 < p < co. The operators R;; and S;; are not of weak type p, for any
1<p<oo.
In this paper we study the H! — L' boundedness of the Riesz transforms on the group G.

Our main results are the following:

(1) the operators R;, i = 0, 1,2, are bounded from H*' to L' (Section 3);
(2) the operators S;, i = 0, 1,2, are not bounded from H' to L' (Sections 4, 5).

In a forthcoming paper, the authors will give analogous boundedness properties of the second-
order operators defined in (1.1). It turns out that the operators T;; are bounded from H®
to L', but that the R;; and S;; are not. The proofs rely on a partition of the operators into
local and global parts.

The problem of the boundedness of the Riesz transforms on the Hardy space H! have been
studied on various Lie groups and Riemannian manifolds. Many results in the literature
concern “doubling spaces”, i.e., measured metric spaces where the volume of balls satisfies
the doubling condition. In this context, the Hardy space H' is defined as in [CW].

In the classical setting of R™, the Riesz transforms are bounded from H' to H' [St, IT1.3].

For a nilpotent Lie group, N. Lohoué and N. Varopoulos [LV] proved that given left-
invariant vector fields X;, « = 1,...,k, which generate the Lie algebra of the group and
the sublaplacian A = —Y°F | X2, the Riesz transforms of the first order R; = X;A™Y/? are
bounded from H' to H'. Subsequently L. Saloff-Coste [SC] generalized this result to all
connected Lie groups of polynomial growth.

On Riemannian manifolds with nonnegative Ricci curvature the Riesz transforms of the
first order VA~Y2 where A is the Laplace-Beltrami operator, are bounded from H' to L'
[B, CL]. Subsequently E. Russ generalized the same results to all Riemannian manifolds
satisfying the doubling condition and the Poincaré inequality [R].

The previous results do not apply to the space (G, d, p) since it is a space of exponential

growth.

Our paper is organized as follows: in Section 2 we find explicit formulae for the kernels
of the Riesz transforms of the first order. In Section 3 we prove the H' — L'-boundedness
of the operators R; as a consequence of a more general boundedness theorem for integral
operators . In Section 4 we prove that the operators S; and Sy are not bounded from H! to

L'. In Section 5 we show the unboundeness from H' to L' of the operator Sj.

In the following, C' denotes a positive, finite constant which may vary from line to line

and may depend on parameters according to the context.
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2. THE CONVOLUTION KERNELS OF THE RIESZ TRANSFORMS

In this section, we compute the convolution kernels of the Riesz transforms of the first

order. First recall that the definition of the convolution of two functions f, g on G is

f o+ g(x) = / fey g doly) VoG

Let V denote the space {Au : u € C*(G)}. In [GS1] it is verified that V' is a dense subspace
of L? and that V C D(A™') € D(A~Y/%). We denote by U, the convolution kernel of A=%/2,
in the sense that A=*/2f = f x U,, for all f € V. Since

1 o0
Afa/Q _ ta/271 —tA dt
I(a/2) / ©

we have that

1 [ee]
U, = /21y, dt
r<a/2>/o et

where p; denotes the heat kernel of A. It is well known [CGGM, Theorem 5.3, Proposition
5.4], [ADY, Formula (5.7)] that

1 r(z) f 2 (2)
= —— 0% (2) ——L—t 32w Ve e
n(r) = gam "W g b rEY
where r(x) denotes as before the distance of x from the identity. Hence,

2

(2)
a dt

_ 1 1 1/2 r(z) /oo o/2-1,-3/2 —
Ualw) = ['(«/2) 8m3/2 o (a) sinhr(z) J, t be

_ 1 2! 1/2( r(z) OOT 23 ()02 % do
- T(a/2) w3/ a )sinhr(x)/o ()" (=) d

a—2
A L P ) VA
sinh r(x)
if « < 3. When a = 1 we get that C; = ﬁ We denote by U = U; the convolution kernel
of A=1/2 given by

1
— () ——— Vx € G.
272 (=) r(z) sinhr(x) v

Since R; = X; A™'/2, we get for all f € V and z € G

Rif(x) = X,(f + U)(x) = / Xoof 2y~ U(y) dp(y)

(2.1) U(z) =

= lim Xiaf(zy™) Uy) dp(y)
=V Jr(y)>e
= —lim Xiyf(zy™) Uly) dp(y)

r(y)>e
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(2.2) = lim flay™) X, U(y) dp(y) ,

e—0
T(y)>e
where the last step follows by integration by parts, as in [S, Section 3]. Thus the convolution
kernel of R; is the distribution pv k;, where k; = X;U. Moreover for f € V and x ¢ suppf

=l/§f(wy)kxy1>dA(y>

/f iy ™) dA(y)

/f ) 8(y) dp(y)

(2.3) / f(y) Ri(z, y) dp(y) ,
where R;(-,-) denotes the integral kernel of R;, related to k; by

We now consider the operators S;. By arguing as in [GS2, page 246-247], it is easy to see
that if f € C°(G), then X;f € D(A™'/?), so that S; is well defined on C°(G). Moreover
for all f € C*(G) and g € V

(Sif.g) = (AT Xif, g) = (X f, A7) = —(f, X; A7'2g) = —(f, Rig) .
Thus by (2.4) we deduce that the integral kernel of S; is given by
(2.5) Si(z,y) = —Ri(y, z) = —(z) k; (2 ) Vx, y € G, x#y.
We now compute k; explicitly. To do so we shall need the following simple lemma.

Lemma 2.1. At any point (x1,z9,a) # (0,0,1) in G, the derivatives of v along the vector
fields X; are given by

a—a"'—a"'(af+x3) _ a—coshr ifi=0
o 2 sinh r(x1,72,a ~  sinhr -
Xir(zy,x9,a) = ( )
L ifi=1,2.

sinhr(z1,z2,a)
Proof. 1t suffices to differentiate the expression
a+at+a (2} + 22)

(2.6) coshr(xy, xg,a) = 5 ,

with respect to X;. For Xy = a0, we obtain
1—a?—a?(2?+13)
5 ;
which gives the result for ¢ = 0. The cases of X; = a0,,, 1 = 1,2, are similar. 0

sinhr(z1, g, a) Xor(x1, 22,a) = a
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By (2.1) and Lemma 2.1 for ¢ = 1,2 and (21, x9,a) # (0,0,1), we get

k’i(ﬂfl,xz,a) = XiU(xlaan a)

1 4! sinhr +r coshr (21, 72, 0)
272 2 sinh? r Th T
2.7) 1 - sinhr +r coshr

X B
2 2 r2 sinh® r

For i = 0 and (z1,x2,a) # (0,0,1) we get

ko(z1, 22, a) = XoU (21, 2, a)
1 _y sinh7 +r coshr
- ﬁ[ r smhr - r2 sinh®r 0T($1,$2,G>i|
1 ya—at—at(2? 4+ 23) sinhr + 7 coshr
B 2_7r2[ r smh’r’ - 2 72 sinh® r }
1 —1+a?+a%a?+ z3) sinhr +r coshr
(28) - —U((xl,xg, a)) + 272 2 r2? sinh®r

3. H' — L'-BOUNDEDNESS OF R;

In this section we prove that the Riesz transforms R; are bounded from H*' to L', for
1=0,1,2.

The result is a consequence of the following boundedness theorem for integral operators.
Note that the hypotheses of the following proposition are the same as those of [HS, Theorem
2.1].

Proposition 3.1. Let T be a linear operator bounded on L* such that T =Y., T;, where

JEL
(i) the series converges in the strong operator topology of L*;
(ii) every T; is an integral operator with integral kernel T);

(iii) there exist positive constants a, A,e and ¢ > 1 such that

(3.1) /G Ty(w,9)| (1+ () dp(z) <A Vy e G

(3.2) / T (z,y) — Ty(z, 2)| dp(z) < A (dd(y, 2))" Vy,z € G.

Then T is bounded from H' to L'.
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Proof. 1t is enough to show that there exists a constant C' such that ||Ta||; < C for any
atom a.

Let R be the support of the atom a centred at the point cg. We estimate the integral of
Ta on R* by the Cauchy-Schwarz inequality:

/R Taldp < |Talls p(R*)2
< O Tas lalls p(R)"?
(3.3) < C |22

It is easy to show that from the estimates (3.1) and (3.2) it follows that

(3.4) sup sup / T(x,y) —T(z,2)|dp(x) < o0,
ReR y,z€R J(R*)e

where T is the integral kernel of T'. Thus the integral of T'a on the complementary set of R*

is estimated as follows:

| mraap< |
*C (R*)c
/

R ' JR
< / IT(2, ) — Tz, cr)| la(y)| dp(y) dp(z)
(R*)cJR

| 7)ol doto)| dpta)

[T = TG ca)l aly) dply) | apta)

= /R ]a(y)]( / yT(x,y)—T(x,cRMdp(w)) dp(y)

(R*)e
<l sup [ [T(a.y) = Tlacn)| dple)
yGR (R*)c
<C.
This concludes the proof of the proposition. O

We now easily obtain the following theorem.
Theorem 3.2. The Riesz transforms R;, for i = 0,1,2, are bounded from H' to L'.

Proof. In the proof of [HS, Theorem 6.4], it is shown that the kernel of the operator R;
satisfies the estimates (3.1) and (3.2). Thus by Proposition 3.1, the operator R; is bounded
from H' to L. OJ
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4. UNBOUNDEDNESS OF S; AND S

In this section we prove that the operators S; and Sy are not bounded from H' to L'. To
do so, we shall define an atom a on G such that the images of a under the Riesz transforms
S;, i = 1,2, are not integrable in a region far from the support of the atom (see Theorem
4.2). By symmetry it suffices to consider the case i = 1.

By differentiating the expression (2.7) of k; along the vector field X5 and applying Lemma
2.1, we obtain that

9 . 13 .
Xk (21,209, @) — _2_;2 0y Xor (i, 2, ) [r sinh ricsci)zl;gj rsinhr) B
(sinh 7 4 r cosh ) (2r sinh® 7 + 372 sinh?r cosh r)
r4 sinh® r ]
(41) _ 1 . 2 2 r2 cosh®r + r2 4+ 2sinh?r + 3r sinhr cosh r
' 2 72 sinh r r3 sinh?r '

We now define three regions I', IV and I'” of G where we shall estimate and integrate the
derivative Xskq, for reasons which will become clear later on. Set

I = {(z1,29,a) € G: 21/4 < w3 < (1+€*) a1, 21 >a>2coshl},

I = {(z1,29,a) €T : xy <21},

(4.2) T ={(z1,x9,a) €T : 21/4+a/2 < 29 < 21 —da/4, x1 > 9a/2, a > 4 cosh1}.
Obviously I' c IV C T

Lemma 4.1. There exist a positive continuous function ® on I'" and a positive constant C'
such that

(1) Xle > Cdin Iw,'
(ii) for any (z1,79,a) in T" and 7 in [0,€?], the point (x1,x9,a) - (0,7,1) is in T" and

®((x1,22,a) - (0,7,1)) > P(21,22,0);

(iii) [ Pdp = o0.
Let E be the parallelepiped (—1/2,1/2) x (—=1/4,0) x (1,2). Then

(4.3) r-e'.ECr.

Proof. For any (z1,x9,a) in T

atalta (22122 al22  ala?
coshr(xy, xg,a) = 5 (21 + 23) > — L> 5 > cosh 1,
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and

a+at+at(2? + 1)
2

Thus for any (1, T2, a) in I we have that r(z1, 22, a) > 1 and, since ¢” < 2 coshr < C'a™ ' 22,

<Cat

coshr(xy, z9,a) =

r(zy,x2,a) < C log(cf1 :1:%) )

By the formula (4.1) it is clear that X5k, is positive on I and that for all (xy, 9, a) in '

1 1 1 1 1
Xoky (21, 29,a) > Ca ' oy @ ( + + + )
2k1 (21,2, 0) 2 "2 coshr \r sinh?r | 7 sinh*r | #3 sinh®r 2 sinh?r

1

r cosh®r

a ! X1 o

>C .
~ log(a7ta) (a7t 2p)?

We define ®(z1,x9,a) = a1z . The condition (i) is verified. Let (z1,x2,a) be a

log(a=1 %) (a1 2%)3

point in I and 7 in [0,e?]. Then (z1,79,a) - (0,7,1) = (z1, 79+ aT,a). Since (z1,7s,a) is in

> Cata s

[V, we have 1 > a > 2cosh1 and x1/4 < 7o < T3+ a7 < 11 + ae* < (1 +e?)z;, so that
(x1,29,a) - (0,7,1) is in T. Moreover,

1
log(a=" 21) (a~* 27)?

as required in (ii). To prove (iii), we integrate ® over I' and obtain

00 z1—b5a/4 d
/@dp:/ / / -1 xlf: 2 dx?dxl_a
r 4 coshl J9a/2 Jx1/4+a/2 1Og a- xl) (a xl) a

o da
=C 1 do, =2
Lcoshl /9a/2 alx 2 2 log(ail ‘Il) o a

= C/ / da
4 cosh1 81a/4u logu

>C

(w1, 22,a) - (0,7,1)) =a 21 (z2+aT) > Oz, 29,0),

da

4 cosh1 @ log a

=00.
Given (z1,x9,a) € T and (y1,y2,0), (21, 22, ¢) € E we have that

(w1,72,a) - (y1,92,0) " - (21, 20,¢) = (ml +ab Nz — 1), w0 +ab (2 — yz),abflc) ,
where ab™'c > 4 cosh1/2 = 2 cosh 1 and

1 +ab 2z —y1) >9a/2 —ab™t-2-1/2>Tab™' /2 > 2ab~" > ab'c.
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Moreover

Ty +ab Nz — 1) > a1 /44 a/2 —ab ' /4

T + ab™!
N 4

b=z —
S 1 +a 4(21 Y1) 7

—ab'/4+a/2 —ab~' /4

and
Ty +ab Nz — ) < 71 — ba/4+ab /4
=2, —2ab~ /2 +2ab' /2 — 5a/4 + abt /4
<z +ab Mz —y).
Thus the point (21,72, a) - (y1, Y2, b) ™ - (21, 22, ¢) is in [, proving (4.3). O
Theorem 4.2. The operators S; and Ss are not bounded from H' to L*.

Proof. By symmetry, it is enough to treat the case of S;. We shall construct an atom a such
that Sya does not belong to L'. Let R be the parallelepiped (— e*log2/2,e*log2/2) x ( —
e?log2/2,e?log2/2) x (1/2,2); it is easy to check that R is a Calderén-Zygmund set centred
at the identity. Now let F be the parallelepiped defined in Lemma 4.1 and consider the right
translate £ of E by the point exp(o X3) = (0,0, 1) for some o > 0, i.e.,

E7=FE-(0,0,1) = {(y1,y2 + bo,b) : (y1,42,0) € E}
C(=1/2,1/2) x (= 1/4+0,20) x (1,2).

With ¢ = 1/4, E and E? are disjoint and contained in R.

Let us consider the function a := p(R)™! (1 g—1 EJ). It is obvious that a is supported in the
Calderén—Zygmund set R and ||a|| < p(R)™'. Moreover [adp = p(R)™* (p(E) — p(E?)) =
0. Thus a is an atom. We now compute Sja outside the support of a. For all z ¢ E U E7

Sla /Sl (y)
= p(R)™ /E Si(e.9) doly) — (R [ Sile)doly).
0,0,1)

Changing variable y = v - (0,0, 1) in the last integral, this transforms into

p(R)™ /E Su(z,9) dply) — p(R)~ / Si(z,v- (0,0, 1)) dp(v)
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— p(R)l/E [Si(z,y) = Si(z,y - (0,0,1))] dp(y) -
By (2.5) we know that
Si(z,y) — 54 (m, y- (0,0, 1)) = §(x) ( —ky(x'y) + k(2 tyexp(o Xg)))
d ki (2 y exp(t Xa))

g a t=T7(z,y)

= 8(2) 0 Xaky (27 y exp(r(z, y) Xa)) |

= 6(x)

for some 7(x,y) in (0,0). It follows that for all x ¢ EU E°
(4.4) Sia(z) = p(R) o é(x) / Xoki (2 y exp(7(z,y) X)) dp(y) -
E

To prove that Sia is not in L, we integrate |Sia| in the region ET'~!, where I is defined by
(4.2). Tt is easy to check that if z € ET™!, then # ¢ F'U E?, so that we can apply (4.4) in
the region £ T'"! and obtain

/EF—I |Sia(z)| dp(z) = p(R) " 0 /

ET-1

=p(R)o /FEI

Ifr € TE™! and y € E, then zy € I, in view of (4.3). Since 0 < 7(z,y) < 0 < €%, by

5@ [ ot yexptr(z.9) X)) do(w)| dn(e)

[ e (yexp(r(z. ) X)) dp(w)] dp(o).

Lemma 4.1 the point zy exp(7(z,y) Xz) is in I and
Xoky (zy exp(7(z,y) Xz)) > C @(zyexp(r(z,y) X)) > C (zy) .

Hence, applying Fubini’s theorem and using w = xy instead of =, we get
[ 1sa@dp) = comyto [ [ o) o) dpt
ET-1 re-1 Je
—cony o |

E

>Cp(R) o /

E

aply) / L w)dpl)
aply) / & (w) dp(uw)

Lemma 4.1 (iii) implies that this integral diverges. O
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5. UNBOUNDEDNESS OF Sy

To prove that the operator Sy is not bounded from H' to L!, we follow the same idea as
in the previous section. The only difference is that we consider the derivative of the kernel
ko along the vector field Xy in a different region of G.

We first compute the derivative of the expression (2.8) for ky along the vector field Xj:
1 et 1 1—a?—a??+23) sinhr +7r coshr
© 272 rsinhr 272 2 r2 sinh® r
sinhr + r coshr

Xoko(ivh T2, a)

(a7 4+ a (2} + 23)]

Y r2 sinh® r
1 —1+a?+a (2t +2d)a—at—al(z?+23)
272 2 2 sinhr
" [ (2coshr + r sinh7)r? sinh? ro
4 sinh® r
(sinhr 4 r coshr)(2r sinh® 7 + 372 sinh® r cosh )
B 4 sinh® r ]
1 at 1 1-3a2-3a2?+ 23) sinhr +r coshr
~ 272 rsinhr 272 2 r2 sinh® r
1 la—at—a(al+ x%)]Q
* on2 ¢ 4
(5.1) " 272 cosh? +72 + 2 sinh? 7 + 37 sinhr coshr .
73 sinh® r

We shall estimate and integrate the function Xykg in the regions
QO = {(z1,22,0) € G: 23+ 23 < a*/4, a > 4 cosh1},
(5.2) Q= {(21,29,0) € G: 22+ 12 <a®/64, a > 42 cosh1}.

Lemma 5.1. There exist a positive continuous function W on €' and a positive constant C
such that

(1) Xok’o Z CV in QI,'

(i) for any (z1,x9,a) in Q' and T in [0,1], the point (x1,x2,a) - (0,0,€7) is in ' and
\I/((:cl,a:g,a) . (O,O,eT)) > CV(xy,x9,0);
(iii) f, Udp=o0.
Let F be the parallelepiped (—1/16,1/16) x (—=1/16,1/16) x (1,+/2). Then

(5.3) Q-F'.FCqQ.
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Proof. Note that for all (xy, z9,a) in &
cosh 1 < g < coshr(zy,x9,a) < Ca,

so that r(zq,x2,a) > 1 and, since e” < 2coshr < C'a, we have r < C' loga.
It is easy to show that in the region 2" all the summands which appear in the last expression
in (5.1) are positive and that for all (zy,x9,a) in @/
a™! C
>

Xok >C .
oko(z1,22,0) 2 r sinhr — a? loga

We define ¥(zy, z9,a) = m. The condition (i) is satisfied.
Let (z1,x92,a) € Q" and 7 € [0,1]. It is easy to check that the point (z1,25,a)-(0,0,e7) =
(1, 22,ae") is in . Moreover,
1 1
a?e? log(ae™) —  a?loga

\I/((xl,xg,a) . (O,O,eT)) = = CVU(zy,x9,0a),

as claimed in (ii). To prove (iii), we integrate W over 2 and obtain

o 1 d
/\I}dp:/ 5 // dxldx2—a
Q 4v/2 cosh1 @ IOg a x%+x%§a2/64 a

Nyt
44/2 cosh 1 a lOgCL a

= 0.

Given (x1,72,a) € Q and (y1,¥s,b), (21, 22,¢) € F we have that (z1,72,a) - (y1,y2,0)"" -
(21, 22,¢) = (z1+ ab™ (21 — y1), 22 + ab™ (20 — y2),ab~'¢) , where ab~'¢ > 4 cosh 1 and

[ml +ab t(z1 —)]* + [352 +ab™ (22 — o)]”

<24+ a3+a*b 2z — )P+ aPb (20 — yo)? + 2ab i (21 — 1) + 2ab (20 — 1)

< a®/64 + a*(1/8)* + a®(1/8)* + 2alx1|/8 + 2alxy|/8

< a*(1/64+1/32 +1/16)

< a*/8

< (ab™'c)?/4.

Thus (21, Z2,a) - (Y1, y2,0) ™" - (21, 22,¢) € @ and (5.3) is proved. O

Theorem 5.2. The operator Sy is not bounded from H' to L'.
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Proof. Following closely the proof of Theorem 4.2, we shall construct an atom a such that
Soa does not belong to L!. With R as in the proof of Theorem 4.2, we let F be the
parallelepiped defined in Lemma 5.1 and consider the right translate F'° of F' by the point
exp(o Xp) = (0,0,€7), i.e.,

F7=F-(0,0,e%) = {(y1,y2,a€e’) : (y1,%2,0) € F'}
= (—1/16,1/16) x (—1/16,1/16) x (¢7,¢”V/2).
With o = (log2)/2, F' and F? are disjoint and contained in R.

Let us consider the atom a := p(R)™! (lF — lFa). We compute Spa outside the support
of a. Forall x ¢ F'U F°

Spalx) = / Sol. ) aly) dp(y)

—p(R)‘l/FSo(x,y)dp(y)—p(l’i’)‘1 So(z,y) dp(y)

FO‘

which, by the change of variable y = v - (0,0, €e”) in the last integral, transforms into

= p(R)‘l/F [So(,y) = So(w,y - (0,0,¢7))] dp(y) -
By (2.5) we know that

So(z,y) — So(z,y - (0,0,e7)) = 8(x) (— ko(z™'y) + ko(z ™'y exp(o Xy)))

d
7
= d(x) 0 Xoky (x_ly exp(7(z,y) XO)) ,

= d(x)

ko (x ™'y exp(t Xo))

t=T(z,y)

for some 7(x,y) in (0,0). It follows that for all = ¢ F'U F°

(5.4) Suale) = p(R) " o 6a) [ Kako(o™yexp(r(,) Xo)) dos).

To prove that Spa is not in L', we integrate Spa in the region F Q1. It is easy to verify that
if € FQ, then x ¢ F U F°, so that we can apply (5.4) and obtain

[ Iswa@]dt@) = ol [

FQ-1

=p(R) "o /QF_I

d(z) ’ /FXoko (x_ly exp(7(z,y) Xo)) dp(y)‘ dp(z)

/FXOkO (zy exp(7(z,y) Xo)) dp(y)’ dp(z) .
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Ifx e QF ! and y € F, then zy € Q, in view of (5.3). Since 0 < 7(z,y) < 0 < 1, by

Lemma 5.1(ii) the point zy exp(7(x,y) Xo) is in Q" and

Xoko(zy exp(T(z,y) Xo)) > C ¥ (zyexp(r(z,y) Xo)) > C ¥(zy).

As in the proof of Theorem 4.2, we get

/FQl |Soa(z)| dp(z) > Cp(R) "o /QFl /F\If(xy) dp(y) dp(z)
—Cp(R) o /

F

o) [ vw)dpw)

zcm&lg/@@[ﬁmmmw

F

Lemma 5.1 (iii) implies that the last integral diverges. O
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