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H1 − L1-BOUNDEDNESS OF FIRST ORDER RIESZ TRANSFORMS ON A
LIE GROUP OF EXPONENTIAL GROWTH

PETER SJÖGREN AND MARIA VALLARINO

Abstract. Let G be the Lie group R2 n R+ endowed with the Riemannian symmetric

space structure. Let X0, X1, X2 be a distinguished basis of left-invariant vector fields of the

Lie algebra of G and define the Laplacian ∆ = −(X2
0 +X2

1 +X2
2 ). In this paper we consider

the first order Riesz transforms Ri = Xi∆−1/2 and Si = ∆−1/2Xi, for i = 0, 1, 2. We prove

that the operators Ri, but not the Si, are bounded from the Hardy space H1 to L1.

1. introduction

Let G be the Lie group R2 n R+ where the product rule is the following:

(x1, x2, a) · (x′1, x′2, a′) = (x1 + a x′1, x2 + a x′2, a a′) ∀(x1, x2, a), (x′1, x
′
2, a

′) ∈ G .

The group G is not unimodular; the right and left Haar measures are given by

dρ(x1, x2, a) = a−1 dx1 dx2 da and dλ(x1, x2, a) = a−3 dx1 dx2 da ,

respectively. The modular function is thus δ(x1, x2, a) = a−2. Throughout this paper, unless

explicitly stated, we consider the right measure ρ on G and we denote by Lp and ‖ · ‖p and

〈·, ·〉 the Lp-space, the Lp-norm and the L2-scalar product with respect to the measure ρ.

The group G has a Riemannian symmetric space structure, and the corresponding metric,

which we denote by d, is that of the three-dimensional hyperbolic half-space. The metric d

is invariant under left translation and it is given by

cosh r(x1, x2, a) =
a + a−1 + a−1(x2

1 + x2
2)

2
∀(x1, x2, a) ∈ G ,

where r(x1, x2, a) = d
(
(x1, x2, a), (0, 0, 1)

)
denotes the distance of the point (x1, x2, a) from

the identity of G. The measure of a hyperbolic ball Br, centred at the identity and of radius
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r, behaves like

λ(Br) = ρ(Br) �

r3 if r < 1

e2r if r ≥ 1 .

Thus G is a group of exponential growth. In this context, the classical Calderón–Zygmund

theory and the classical definition of the atomic Hardy space H1 (see [CW, St]) do not apply.

Recently Hebisch and Steger [HS] constructed a new Calderón–Zygmund theory which holds

in some spaces of exponential growth, in particular on the space (G, d, ρ) defined above. The

main idea is to replace the family of balls which is used in the classical Calderón–Zygmund

theory by a family of suitable parallelepipeds which we call Calderón–Zygmund sets and

whose definition appears in [GS] and [HS].

Definition 1.1. A Calderón–Zygmund set is a parallelepiped R = [b1 − L/2, b1 + L/2] ×
[b2 −L/2, b2 + L/2]× [ae−r, aer], where the first two intervals are intervals in R of length L,

a ∈ R+, r > 0 and

e2a r ≤ L < e8a r if r < 1 ,

a e2r ≤ L < a e8r if r ≥ 1 .

Given a Calderón–Zygmund set R, we define its dilated set as R∗ = {x ∈ S : d(x, R) < r}.
There exists a constant C0 such that ρ(R∗) ≤ C0 ρ(R) and R ⊂ B

(
(b1, b2, a), C0r

)
.

Let R denote the family of all Calderón–Zygmund sets. In [HS] it is proved that every

integrable function on G admits a Calderón–Zygmund decomposition involving the family

R, and that a new Calderón–Zygmund theory can be developed in this context. By using

the Calderón–Zygmund sets, it is natural to define an atomic Hardy space H1 on the group

G, as follows (see [V] for details).

We define an atom as a function a in L1 such that

(i) a is supported in a Calderón–Zygmund set R;

(ii) ‖a‖∞ ≤ ρ(R)−1 ;

(iii)
∫

a dρ = 0 .

The atomic Hardy space is now defined in a standard way.

Definition 1.2. The Hardy space H1 is the space of all functions f in L1 which can be written

as f =
∑

j λj aj, where aj are atoms and λj are complex numbers such that
∑

j |λj| < ∞.

We denote by ‖f‖H1 the infimum of
∑

j |λj| over such decompositions.
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The new Calderón–Zygmund theory introduced in [HS] is used to study the boundedness of

some singular integral operators related to a distinguished Laplacian on G, which is defined

as follows.

Let X0, X1, X2 denote the left-invariant vector fields

X0 = a ∂a X1 = a ∂x1 X2 = a ∂x2 ,

which span the Lie algebra of G. The Laplacian ∆ = −(X2
0 + X2

1 + X2
2 ) is a left-invariant

operator which is essentially selfadjoint on L2(ρ). Since ∆ is positive definite and one-to-one

[GQS], its powers ∆α, α ∈ R, have dense domains and are self-adjoint. This makes it possible

to form the the Riesz transforms of the first order associated with ∆, defined by

Ri = Xi ∆
−1/2 and Si = ∆−1/2 Xi i = 0, 1, 2 ,

and the Riesz transforms of the second order, defined by

(1.1)

Rij = XiXj ∆−1 and Sij = ∆−1 XiXj and Tij = Xi∆
−1Xj i, j = 0, 1, 2 .

The boundedness properties of the Riesz transforms associated with the distinguished Lapla-

cian ∆ defined above have been considered by many authors. Actually some results ([GQS,

GS2, S]) have been proved in the context of the affine group of the real line, which is not

the group G. However, even if the setting is different, the results and the arguments may be

reformulated and applied also to our context, with some slight changes.

For i = 0, 1, 2, the operators Ri are of weak type 1 and bounded on Lp when 1 < p ≤ 2.

This result was obtained in [S] for the operator X∆−1/2, where ∆ is a distinguished Laplacian

and X is a distinguished vector field, in the context of the affine group of the real line.

Subsquently the result was proved in [HS, Theorem 6.4] in a more general setting including

the group G, as an application of the Calderón–Zygmund theory.

The operators Si are bounded on L2, for i = 0, 1, 2. Moreover if i = 1, 2, then Si is of weak

type 1 and bounded on Lp when 1 < p ≤ 2. This result was proved in [GS2] in the context

of the affine group of the real line and may be generalized to the group G. The operator S0

is not of weak type 1 (W. Hebisch, private communication).

Since Ri and Si are bounded on Lp, for p < 2, by duality it follows that Ri and Si are also

bounded on Lp when 2 < p < ∞.

The Riesz transforms of the second order defined by (1.1) have been studied first in [GQS]

in the context of the affine group of the real line, then in [GS1] in the general setting of NA

groups of rank 1, which includes the group G. The operators Tij are of weak type 1 and
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bounded on Lp, when 1 < p < ∞. The operators Rij and Sij are not of weak type p, for any

1 ≤ p < ∞.

In this paper we study the H1 −L1 boundedness of the Riesz transforms on the group G.

Our main results are the following:

(1) the operators Ri, i = 0, 1, 2, are bounded from H1 to L1 (Section 3);

(2) the operators Si, i = 0, 1, 2, are not bounded from H1 to L1 (Sections 4, 5).

In a forthcoming paper, the authors will give analogous boundedness properties of the second-

order operators defined in (1.1). It turns out that the operators Tij are bounded from H1

to L1, but that the Rij and Sij are not. The proofs rely on a partition of the operators into

local and global parts.

The problem of the boundedness of the Riesz transforms on the Hardy space H1 have been

studied on various Lie groups and Riemannian manifolds. Many results in the literature

concern “doubling spaces”, i.e., measured metric spaces where the volume of balls satisfies

the doubling condition. In this context, the Hardy space H1 is defined as in [CW].

In the classical setting of Rn, the Riesz transforms are bounded from H1 to H1 [St, III.3].

For a nilpotent Lie group, N. Lohoué and N. Varopoulos [LV] proved that given left-

invariant vector fields Xi, i = 1, . . . , k, which generate the Lie algebra of the group and

the sublaplacian ∆ = −
∑k

i=1 X2
i , the Riesz transforms of the first order Ri = Xi∆

−1/2 are

bounded from H1 to H1. Subsequently L. Saloff-Coste [SC] generalized this result to all

connected Lie groups of polynomial growth.

On Riemannian manifolds with nonnegative Ricci curvature the Riesz transforms of the

first order ∇∆−1/2, where ∆ is the Laplace-Beltrami operator, are bounded from H1 to L1

[B, CL]. Subsequently E. Russ generalized the same results to all Riemannian manifolds

satisfying the doubling condition and the Poincaré inequality [R].

The previous results do not apply to the space (G, d, ρ) since it is a space of exponential

growth.

Our paper is organized as follows: in Section 2 we find explicit formulae for the kernels

of the Riesz transforms of the first order. In Section 3 we prove the H1 − L1-boundedness

of the operators Ri as a consequence of a more general boundedness theorem for integral

operators . In Section 4 we prove that the operators S1 and S2 are not bounded from H1 to

L1. In Section 5 we show the unboundeness from H1 to L1 of the operator S0.

In the following, C denotes a positive, finite constant which may vary from line to line

and may depend on parameters according to the context.
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2. The convolution kernels of the Riesz transforms

In this section, we compute the convolution kernels of the Riesz transforms of the first

order. First recall that the definition of the convolution of two functions f, g on G is

f ∗ g(x) =

∫
G

f(xy−1) g(y) dρ(y) ∀x ∈ G .

Let V denote the space {∆u : u ∈ C∞
c (G)}. In [GS1] it is verified that V is a dense subspace

of L2 and that V ⊂ D(∆−1) ⊂ D(∆−1/2). We denote by Uα the convolution kernel of ∆−α/2,

in the sense that ∆−α/2f = f ∗ Uα, for all f ∈ V . Since

∆−α/2 =
1

Γ(α/2)

∫ ∞

0

tα/2−1e−t∆ dt ,

we have that

Uα =
1

Γ(α/2)

∫ ∞

0

tα/2−1pt dt ,

where pt denotes the heat kernel of ∆. It is well known [CGGM, Theorem 5.3, Proposition

5.4], [ADY, Formula (5.7)] that

pt(x) =
1

8π3/2
δ1/2(x)

r(x)

sinh r(x)
t−3/2 e−

r2(x)
4t ∀x ∈ G ,

where r(x) denotes as before the distance of x from the identity. Hence,

Uα(x) =
1

Γ(α/2)

1

8π3/2
δ1/2(x)

r(x)

sinh r(x)

∫ ∞

0

tα/2−1t−3/2 e−
r2(x)

4t dt

=
1

Γ(α/2)

21−α

π3/2
δ1/2(x)

r(x)

sinh r(x)

∫ ∞

0

r(x)α−3(x)v2−αe−v2

dv

= Cα δ1/2(x)
rα−2(x)

sinh r(x)
∀x ∈ G ,

if α < 3. When α = 1 we get that C1 = 1
2π2 . We denote by U = U1 the convolution kernel

of ∆−1/2 given by

(2.1) U(x) =
1

2π2
δ1/2(x)

1

r(x) sinh r(x)
∀x ∈ G.

Since Ri = Xi ∆
−1/2, we get for all f ∈ V and x ∈ G

Rif(x) = Xi(f ∗ U)(x) =

∫
Xi,xf(xy−1) U(y) dρ(y)

= lim
ε→0

∫
r(y)>ε

Xi,xf(xy−1) U(y) dρ(y)

= − lim
ε→0

∫
r(y)>ε

Xi,yf(xy−1) U(y) dρ(y)
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= lim
ε→0

∫
r(y)>ε

f(xy−1) Xi,yU(y) dρ(y) ,(2.2)

where the last step follows by integration by parts, as in [S, Section 3]. Thus the convolution

kernel of Ri is the distribution pv ki, where ki = XiU . Moreover for f ∈ V and x /∈ suppf

Rif(x) =

∫
G

f(xy) ki(y
−1) dλ(y)

=

∫
G

f(y) ki(y
−1x) dλ(y)

=

∫
G

f(y) ki(y
−1x) δ(y) dρ(y)

=

∫
G

f(y) Ri(x, y) dρ(y) ,(2.3)

where Ri(·, ·) denotes the integral kernel of Ri, related to ki by

(2.4) Ri(x, y) = δ(y) ki(y
−1x) ∀x, y ∈ G, x 6= y .

We now consider the operators Si. By arguing as in [GS2, page 246-247], it is easy to see

that if f ∈ C∞
c (G), then Xif ∈ D(∆−1/2), so that Si is well defined on C∞

c (G). Moreover

for all f ∈ C∞
c (G) and g ∈ V

〈Sif, g〉 = 〈∆−1/2 Xif, g〉 = 〈Xif, ∆−1/2g〉 = −〈f, Xi ∆
−1/2g〉 = −〈f, Rig〉 .

Thus by (2.4) we deduce that the integral kernel of Si is given by

(2.5) Si(x, y) = −Ri(y, x) = −δ(x) ki(x
−1y) ∀x, y ∈ G, x 6= y .

We now compute ki explicitly. To do so we shall need the following simple lemma.

Lemma 2.1. At any point (x1, x2, a) 6= (0, 0, 1) in G, the derivatives of r along the vector

fields Xi are given by

Xir(x1, x2, a) =


a−a−1−a−1(x2

1+x2
2)

2 sinh r(x1,x2,a)
= a−cosh r

sinh r
if i = 0

x1

sinh r(x1,x2,a)
if i = 1, 2 .

Proof. It suffices to differentiate the expression

(2.6) cosh r(x1, x2, a) =
a + a−1 + a−1(x2

1 + x2
2)

2
,

with respect to Xi. For X0 = a ∂a we obtain

sinh r(x1, x2, a) X0r(x1, x2, a) = a
1− a−2 − a−2(x2

1 + x2
2)

2
,

which gives the result for i = 0. The cases of Xi = a ∂xi
, i = 1, 2, are similar. �
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By (2.1) and Lemma 2.1 for i = 1, 2 and (x1, x2, a) 6= (0, 0, 1), we get

ki(x1, x2, a) = XiU(x1, x2, a)

= − 1

2 π2
a−1 sinh r + r cosh r

r2 sinh2 r
Xir(x1, x2, a)

= − 1

2 π2
a−1 xi

sinh r + r cosh r

r2 sinh3 r
.(2.7)

For i = 0 and (x1, x2, a) 6= (0, 0, 1) we get

k0(x1, x2, a) = X0U(x1, x2, a)

=
1

2 π2

[
− a a−2 1

r sinh r
− a−1 sinh r + r cosh r

r2 sinh2 r
X0r(x1, x2, a)

]
=

1

2 π2

[
− a−1 1

r sinh r
− a−1 a− a−1 − a−1(x2

1 + x2
2)

2

sinh r + r cosh r

r2 sinh3 r

]
= −U

(
(x1, x2, a)

)
+

1

2 π2

−1 + a−2 + a−2(x2
1 + x2

2)

2

sinh r + r cosh r

r2 sinh3 r
.(2.8)

3. H1 − L1-boundedness of Ri

In this section we prove that the Riesz transforms Ri are bounded from H1 to L1, for

i = 0, 1, 2.

The result is a consequence of the following boundedness theorem for integral operators.

Note that the hypotheses of the following proposition are the same as those of [HS, Theorem

2.1].

Proposition 3.1. Let T be a linear operator bounded on L2 such that T =
∑

j∈Z Tj, where

(i) the series converges in the strong operator topology of L2;

(ii) every Tj is an integral operator with integral kernel Tj;

(iii) there exist positive constants a, A, ε and c > 1 such that∫
G

|Tj(x, y)|
(
1 + cjd(x, y)

)ε
dρ(x) ≤ A ∀y ∈ G;(3.1)

∫
G

|Tj(x, y)− Tj(x, z)| dρ(x) ≤ A
(
cjd(y, z)

)a ∀y, z ∈ G .(3.2)

Then T is bounded from H1 to L1.
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Proof. It is enough to show that there exists a constant C such that ‖Ta‖1 ≤ C for any

atom a.

Let R be the support of the atom a centred at the point cR. We estimate the integral of

Ta on R∗ by the Cauchy–Schwarz inequality:∫
R∗
|Ta| dρ ≤ ‖Ta‖2 ρ(R∗)1/2

≤ C ‖T‖2,2 ‖a‖2 ρ(R)1/2

≤ C ‖T‖2,2 .(3.3)

It is easy to show that from the estimates (3.1) and (3.2) it follows that

(3.4) sup
R∈R

sup
y, z∈R

∫
(R∗)c

|T (x, y)− T (x, z)| dρ(x) < ∞ ,

where T is the integral kernel of T . Thus the integral of Ta on the complementary set of R∗

is estimated as follows:∫
R∗c

|Ta| dρ ≤
∫

(R∗)c

∣∣∣ ∫
R

T (x, y) a(y) dρ(y)
∣∣∣ dρ(x)

=

∫
(R∗)c

∣∣∣ ∫
R

[T (x, y)− T (x, cR)] a(y) dρ(y)
∣∣∣ dρ(x)

≤
∫

(R∗)c

∫
R

|T (x, y)− T (x, cR)| |a(y)| dρ(y) dρ(x)

=

∫
R

|a(y)|
( ∫

(R∗)c

|T (x, y)− T (x, cR)| dρ(x)
)

dρ(y)

≤ ‖a‖1 sup
y∈R

∫
(R∗)c

|T (x, y)− T (x, cR)| dρ(x)

≤ C .

This concludes the proof of the proposition. �

We now easily obtain the following theorem.

Theorem 3.2. The Riesz transforms Ri, for i = 0, 1, 2, are bounded from H1 to L1.

Proof. In the proof of [HS, Theorem 6.4], it is shown that the kernel of the operator Ri

satisfies the estimates (3.1) and (3.2). Thus by Proposition 3.1, the operator Ri is bounded

from H1 to L1. �
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4. Unboundedness of S1 and S2

In this section we prove that the operators S1 and S2 are not bounded from H1 to L1. To

do so, we shall define an atom a on G such that the images of a under the Riesz transforms

Si, i = 1, 2, are not integrable in a region far from the support of the atom (see Theorem

4.2). By symmetry it suffices to consider the case i = 1.

By differentiating the expression (2.7) of k1 along the vector field X2 and applying Lemma

2.1, we obtain that

X2k1(x1, x2, a) = − 1

2 π2
a−1 x1 X2r(x1, x2, a)

[r2 sinh3 r(2 cosh r + r sinh r)

r4 sinh6 r
−

− (sinh r + r cosh r)(2r sinh3 r + 3r2 sinh2 r cosh r)

r4 sinh6 r

]
=

1

2 π2
a−1 x1 x2

sinh r

2 r2 cosh2 r + r2 + 2 sinh2 r + 3r sinh r cosh r

r3 sinh4 r
.(4.1)

We now define three regions Γ, Γ′ and Γ′′ of G where we shall estimate and integrate the

derivative X2k1, for reasons which will become clear later on. Set

Γ′′ = {(x1, x2, a) ∈ G : x1/4 < x2 < (1 + e2) x1, x1 > a > 2 cosh 1} ,

Γ′ = {(x1, x2, a) ∈ Γ′′ : x2 < x1} ,

Γ = {(x1, x2, a) ∈ Γ′′ : x1/4 + a/2 < x2 < x1 − 5a/4, x1 > 9a/2, a > 4 cosh 1} .(4.2)

Obviously Γ ⊂ Γ′ ⊂ Γ′′.

Lemma 4.1. There exist a positive continuous function Φ on Γ′′ and a positive constant C

such that

(i) X2k1 ≥ C Φ in Γ′′;

(ii) for any (x1, x2, a) in Γ′ and τ in [0, e2], the point (x1, x2, a) · (0, τ, 1) is in Γ′′ and

Φ
(
(x1, x2, a) · (0, τ, 1)

)
≥ Φ(x1, x2, a) ;

(iii)
∫

Γ
Φ dρ = ∞ .

Let E be the parallelepiped (−1/2, 1/2)× (−1/4, 0)× (1, 2). Then

(4.3) Γ · E−1 · E ⊆ Γ′ .

Proof. For any (x1, x2, a) in Γ′′

cosh r(x1, x2, a) =
a + a−1 + a−1(x2

1 + x2
2)

2
>

a−1x2
1

2
>

a−1a2

2
> cosh 1 ,
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and

cosh r(x1, x2, a) =
a + a−1 + a−1(x2

1 + x2
2)

2
< C a−1 x2

1 .

Thus for any (x1, x2, a) in Γ′′ we have that r(x1, x2, a) > 1 and, since er < 2 cosh r < C a−1 x2
1,

r(x1, x2, a) ≤ C log(a−1 x2
1) .

By the formula (4.1) it is clear that X2k1 is positive on Γ′′ and that for all (x1, x2, a) in Γ′′

X2k1(x1, x2, a) ≥ C a−1 x1 x2
1

cosh r

( 1

r sinh2 r
+

1

r sinh4 r
+

1

r3 sinh2 r
+

1

r2 sinh2 r

)
≥ C a−1 x1 x2

1

r cosh3 r

≥ C
a−1 x1 x2

log(a−1 x2
1) (a−1 x2

1)
3
.

We define Φ(x1, x2, a) = a−1 x1 x2

log(a−1 x2
1) (a−1 x2

1)3
. The condition (i) is verified. Let (x1, x2, a) be a

point in Γ′ and τ in [0, e2]. Then (x1, x2, a) · (0, τ, 1) = (x1, x2 + a τ, a) . Since (x1, x2, a) is in

Γ′, we have x1 > a > 2 cosh 1 and x1/4 < x2 < x2 + a τ < x1 + ae2 < (1 + e2) x1 , so that

(x1, x2, a) · (0, τ, 1) is in Γ′′. Moreover,

Φ
(
(x1, x2, a) · (0, τ, 1)

)
= a−1 x1 (x2 + a τ)

1

log(a−1 x2
1) (a−1 x2

1)
3
≥ Φ(x1, x2, a) ,

as required in (ii). To prove (iii), we integrate Φ over Γ and obtain∫
Γ

Φ dρ =

∫ ∞

4 cosh 1

∫ ∞

9a/2

∫ x1−5a/4

x1/4+a/2

a−1 x1 x2

log(a−1 x2
1) (a−1 x2

1)
3

dx2 dx1
da

a

= C

∫ ∞

4 cosh 1

∫ ∞

9a/2

x1

(a−1 x2
1)

2 log(a−1 x2
1)

dx1
da

a

= C

∫ ∞

4 cosh 1

∫ ∞

81a/4

du

u2 log u
da

≥ C

∫ ∞

4 cosh 1

1

a log a
da

= ∞ .

Given (x1, x2, a) ∈ Γ and (y1, y2, b), (z1, z2, c) ∈ E we have that

(x1, x2, a) · (y1, y2, b)
−1 · (z1, z2, c) =

(
x1 + ab−1(z1 − y1), x2 + ab−1(z2 − y2), ab−1c

)
,

where ab−1c > 4 cosh 1/2 = 2 cosh 1 and

x1 + ab−1(z1 − y1) > 9a/2− ab−1 · 2 · 1/2 > 7ab−1/2 > 2ab−1 > ab−1c .
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Moreover

x2 + ab−1(z2 − y2) > x1/4 + a/2− ab−1/4

=
x1 + ab−1

4
− ab−1/4 + a/2− ab−1/4

>
x1 + ab−1(z1 − y1)

4
,

and

x2 + ab−1(z2 − y2) < x1 − 5a/4 + ab−1/4

= x1 − 2ab−1/2 + 2ab−1/2− 5a/4 + ab−1/4

< x1 + ab−1(z1 − y1) .

Thus the point (x1, x2, a) · (y1, y2, b)
−1 · (z1, z2, c) is in Γ′, proving (4.3). �

Theorem 4.2. The operators S1 and S2 are not bounded from H1 to L1.

Proof. By symmetry, it is enough to treat the case of S1. We shall construct an atom a such

that S1a does not belong to L1. Let R be the parallelepiped
(
− e2 log 2/2, e2 log 2/2

)
×

(
−

e2 log 2/2, e2 log 2/2
)
×(1/2, 2); it is easy to check that R is a Calderón–Zygmund set centred

at the identity. Now let E be the parallelepiped defined in Lemma 4.1 and consider the right

translate Eσ of E by the point exp(σ X2) = (0, σ, 1) for some σ > 0, i.e.,

Eσ = E · (0, σ, 1) = {(y1, y2 + b σ, b) : (y1, y2, b) ∈ E}

⊂ (−1/2, 1/2)×
(
− 1/4 + σ, 2 σ

)
× (1, 2) .

With σ = 1/4, E and Eσ are disjoint and contained in R.

Let us consider the function a := ρ(R)−1
(
1E−1Eσ

)
. It is obvious that a is supported in the

Calderón–Zygmund set R and ‖a‖∞ ≤ ρ(R)−1. Moreover
∫

a dρ = ρ(R)−1
(
ρ(E)−ρ(Eσ)

)
=

0. Thus a is an atom. We now compute S1a outside the support of a. For all x /∈ E ∪ Eσ

S1a(x) =

∫
S1(x, y) a(y) dρ(y)

= ρ(R)−1

∫
E

S1(x, y) dρ(y)− ρ(R)−1

∫
Eσ

S1(x, y) dρ(y) .

Changing variable y = v · (0, σ, 1) in the last integral, this transforms into

ρ(R)−1

∫
E

S1(x, y) dρ(y)− ρ(R)−1

∫
E

S1(x, v · (0, σ, 1)) dρ(v)
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= ρ(R)−1

∫
E

[
S1(x, y)− S1

(
x, y · (0, σ, 1)

)]
dρ(y) .

By (2.5) we know that

S1(x, y)− S1

(
x, y · (0, σ, 1)

)
= δ(x)

(
− k1(x

−1y) + k1(x
−1y exp(σ X2))

)
= δ(x) σ

d

dt

∣∣∣
t=τ(x,y)

k1

(
x−1y exp(tX2)

)
= δ(x) σ X2k1

(
x−1y exp(τ(x, y) X2)

)
,

for some τ(x, y) in (0, σ). It follows that for all x /∈ E ∪ Eσ

S1a(x) = ρ(R)−1 σ δ(x)

∫
E

X2k1

(
x−1y exp(τ(x, y) X2)

)
dρ(y) .(4.4)

To prove that S1a is not in L1, we integrate |S1a| in the region E Γ−1, where Γ is defined by

(4.2). It is easy to check that if x ∈ E Γ−1, then x /∈ E ∪ Eσ, so that we can apply (4.4) in

the region E Γ−1 and obtain∫
E Γ−1

∣∣S1a(x)
∣∣ dρ(x) = ρ(R)−1 σ

∫
E Γ−1

δ(x)
∣∣∣ ∫

E

X2k1

(
x−1y exp(τ(x, y) X2)

)
dρ(y)

∣∣∣ dρ(x)

= ρ(R)−1 σ

∫
Γ E−1

∣∣∣ ∫
E

X2k1

(
xy exp(τ(x, y) X2)

)
dρ(y)

∣∣∣ dρ(x) .

If x ∈ Γ E−1 and y ∈ E, then xy ∈ Γ′, in view of (4.3). Since 0 < τ(x, y) < σ < e2, by

Lemma 4.1 the point xy exp(τ(x, y) X2) is in Γ′′ and

X2k1

(
xy exp(τ(x, y) X2)

)
≥ C Φ(xy exp(τ(x, y) X2)) ≥ C Φ(xy) .

Hence, applying Fubini’s theorem and using w = xy instead of x, we get∫
E Γ−1

∣∣S1a(x)
∣∣ dρ(x) ≥ C ρ(R)−1 σ

∫
Γ E−1

∫
E

Φ(xy) dρ(y) dρ(x)

= C ρ(R)−1 σ

∫
E

dρ(y)

∫
Γ E−1y

Φ(w) dρ(w)

≥ C ρ(R)−1 σ

∫
E

dρ(y)

∫
Γ

Φ(w) dρ(w) .

Lemma 4.1 (iii) implies that this integral diverges. �
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5. Unboundedness of S0

To prove that the operator S0 is not bounded from H1 to L1, we follow the same idea as

in the previous section. The only difference is that we consider the derivative of the kernel

k0 along the vector field X0 in a different region of G.

We first compute the derivative of the expression (2.8) for k0 along the vector field X0:

X0k0(x1, x2, a) =
1

2 π2

a−1

r sinh r
+

1

2 π2

1− a−2 − a−2(x2
1 + x2

2)

2

sinh r + r cosh r

r2 sinh3 r
+

− 1

2 π2

[
a−2 + a−2(x2

1 + x2
2)

] sinh r + r cosh r

r2 sinh3 r
+

+
1

2 π2

−1 + a−2 + a−2(x2
1 + x2

2)

2

a− a−1 − a−1(x2
1 + x2

2)

2 sinh r
×

×
[ (2 cosh r + r sinh r)r2 sinh3 r

r4 sinh6 r
−

− (sinh r + r cosh r)(2r sinh3 r + 3 r2 sinh2 r cosh r)

r4 sinh6 r

]
=

1

2 π2

a−1

r sinh r
+

1

2 π2

1− 3 a−2 − 3 a−2(x2
1 + x2

2)

2

sinh r + r cosh r

r2 sinh3 r
+

+
1

2 π2
a−1

[
a− a−1 − a−1(x2

1 + x2
2)

]2

4
×

× 2 r2 cosh2 +r2 + 2 sinh2 r + 3 r sinh r cosh r

r3 sinh5 r
.(5.1)

We shall estimate and integrate the function X0k0 in the regions

Ω′ = {(x1, x2, a) ∈ G : x2
1 + x2

2 < a2/4, a > 4 cosh 1} ,

Ω = {(x1, x2, a) ∈ G : x2
1 + x2

2 < a2/64, a > 4
√

2 cosh 1} .(5.2)

Lemma 5.1. There exist a positive continuous function Ψ on Ω′ and a positive constant C

such that

(i) X0k0 ≥ C Ψ in Ω′;

(ii) for any (x1, x2, a) in Ω′ and τ in [0, 1], the point (x1, x2, a) · (0, 0, eτ ) is in Ω′ and

Ψ
(
(x1, x2, a) · (0, 0, eτ )

)
≥ C Ψ(x1, x2, a) ;

(iii)
∫

Ω
Ψ dρ = ∞ .

Let F be the parallelepiped (−1/16, 1/16)× (−1/16, 1/16)× (1,
√

2). Then

(5.3) Ω · F−1 · F ⊆ Ω′ .
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Proof. Note that for all (x1, x2, a) in Ω′

cosh 1 <
a

2
< cosh r(x1, x2, a) < C a ,

so that r(x1, x2, a) > 1 and, since er ≤ 2 cosh r ≤ C a, we have r ≤ C log a.

It is easy to show that in the region Ω′ all the summands which appear in the last expression

in (5.1) are positive and that for all (x1, x2, a) in Ω′

X0k0(x1, x2, a) ≥ C
a−1

r sinh r
≥ C

a2 log a
.

We define Ψ(x1, x2, a) = 1
a2 log a

. The condition (i) is satisfied.

Let (x1, x2, a) ∈ Ω′ and τ ∈ [0, 1]. It is easy to check that the point (x1, x2, a) · (0, 0, eτ ) =

(x1, x2, a eτ ) is in Ω′. Moreover,

Ψ
(
(x1, x2, a) · (0, 0, eτ )

)
=

1

a2 e2τ log(a eτ )
≥ C

1

a2 log a
= C Ψ(x1, x2, a) ,

as claimed in (ii). To prove (iii), we integrate Ψ over Ω and obtain∫
Ω

Ψ dρ =

∫ ∞

4
√

2 cosh 1

1

a2 log a

∫ ∫
x2
1+x2

2≤a2/64

dx1 dx2
da

a

= C

∫ ∞

4
√

2 cosh 1

1

a2 log a
a2 da

a

= ∞ .

Given (x1, x2, a) ∈ Ω and (y1, y2, b), (z1, z2, c) ∈ F we have that (x1, x2, a) · (y1, y2, b)
−1 ·

(z1, z2, c) =
(
x1 + ab−1(z1 − y1), x2 + ab−1(z2 − y2), ab−1c

)
, where ab−1c > 4 cosh 1 and[

x1 + ab−1(z1 − y1)]
2 +

[
x2 + ab−1(z2 − y2)]

2

< x2
1 + x2

2 + a2b−2(z1 − y1)
2 + a2b−2(z2 − y2)

2 + 2ab−1x1(z1 − y1) + 2ab−1x2(z2 − y2)

< a2/64 + a2(1/8)2 + a2(1/8)2 + 2a|x1|/8 + 2a|x2|/8

< a2(1/64 + 1/32 + 1/16)

< a2/8

< (ab−1c)2/4 .

Thus (x1, x2, a) · (y1, y2, b)
−1 · (z1, z2, c) ∈ Ω′ and (5.3) is proved. �

Theorem 5.2. The operator S0 is not bounded from H1 to L1.
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Proof. Following closely the proof of Theorem 4.2, we shall construct an atom a such that

S0a does not belong to L1. With R as in the proof of Theorem 4.2, we let F be the

parallelepiped defined in Lemma 5.1 and consider the right translate F σ of F by the point

exp(σ X0) = (0, 0, eσ), i.e.,

F σ = F · (0, 0, eσ) = {(y1, y2, aeσ) : (y1, y2, b) ∈ F}

=
(
− 1/16, 1/16)×

(
− 1/16, 1/16)× (eσ, eσ

√
2) .

With σ = (log 2)/2, F and F σ are disjoint and contained in R.

Let us consider the atom a := ρ(R)−1
(
1F − 1F σ

)
. We compute S0a outside the support

of a. For all x /∈ F ∪ F σ

S0a(x) =

∫
S0(x, y) a(y) dρ(y)

= ρ(R)−1

∫
F

S0(x, y) dρ(y)− ρ(R)−1

∫
F σ

S0(x, y) dρ(y) ,

which, by the change of variable y = v · (0, 0, eσ) in the last integral, transforms into

= ρ(R)−1

∫
F

[
S0(x, y)− S0

(
x, y · (0, 0, eσ)

)]
dρ(y) .

By (2.5) we know that

S0(x, y)− S0

(
x, y · (0, 0, eσ)

)
= δ(x)

(
− k0(x

−1y) + k0(x
−1y exp(σ X0))

)
= δ(x) σ

d

dt

∣∣∣
t=τ(x,y)

k0

(
x−1y exp(tX0)

)
= δ(x) σ X0k0

(
x−1y exp(τ(x, y) X0)

)
,

for some τ(x, y) in (0, σ). It follows that for all x /∈ F ∪ F σ

S0a(x) = ρ(R)−1 σ δ(x)

∫
F

X0k0

(
x−1y exp(τ(x, y) X0)

)
dρ(y) .(5.4)

To prove that S0a is not in L1, we integrate S0a in the region F Ω−1. It is easy to verify that

if x ∈ F Ω−1, then x /∈ F ∪ F σ, so that we can apply (5.4) and obtain∫
F Ω−1

∣∣S0a(x)
∣∣ dρ(x) = ρ(R)−1 σ

∫
F Ω−1

δ(x)
∣∣∣ ∫

F

X0k0

(
x−1y exp(τ(x, y) X0)

)
dρ(y)

∣∣∣ dρ(x)

= ρ(R)−1 σ

∫
Ω F−1

∣∣∣ ∫
F

X0k0

(
xy exp(τ(x, y) X0)

)
dρ(y)

∣∣∣ dρ(x) .
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If x ∈ Ω F−1 and y ∈ F , then xy ∈ Ω′, in view of (5.3). Since 0 < τ(x, y) < σ < 1, by

Lemma 5.1(ii) the point xy exp(τ(x, y) X0) is in Ω′ and

X0k0

(
xy exp(τ(x, y) X0)

)
≥ C Ψ(xy exp(τ(x, y) X0)) ≥ C Ψ(xy) .

As in the proof of Theorem 4.2, we get∫
F Ω−1

∣∣S0a(x)
∣∣ dρ(x) ≥ C ρ(R)−1 σ

∫
Ω F−1

∫
F

Ψ(xy) dρ(y) dρ(x)

= C ρ(R)−1 σ

∫
F

dρ(y)

∫
Ω F−1y

Ψ(w) dρ(w)

≥ C ρ(R)−1 σ

∫
F

dρ(y)

∫
Ω

Ψ(w) dρ(w) .

Lemma 5.1 (iii) implies that the last integral diverges. �
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