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Abstract

Polymerase Chain Reaction (PCR) is a major DNA amplification tech-
nology from molecular biology. The quantitative analysis of PCR aims at
determining the initial amount of the DNA molecules from the observation
of typically several PCR amplifications curves. The mainstream observa-
tion scheme of the DNA amplification during PCR involves fluorescence
intensity measurements. Under the classical assumption that the measured
fluorescence intensity is proportional to the amount of present DNA mole-
cules, and under the assumption that these measurements are corrupted by
an additive Gaussian noise, we analyze a single amplification curve using
a Hidden Markov Model (HMM). The unknown parameters of the HMM
may be separated into two parts. On the one hand, the parameters from the
amplification process are the initial number of the DNA molecules and the
replication efficiency, which is the probability of one molecule to be dupli-
cated. On the other hand, the parameters from the observational scheme are
the scale parameter allowing to convert the fluorescence intensity into the
number of DNA molecules and the mean and variance characterizing the
Gaussian noise. We use the maximum likelihood estimation procedure to
infer the unknown parameters of the model from the exponential phase of
a single amplification curve, the main parameter of interest for quantitative
PCR being the initial amount of the DNA molecules.

Key words and phrases: Data analysis; Hidden Markov Model; Monte Carlo
Expectation Maximization algorithm; Polymerase Chain Reaction.

1 Introduction

Polymerase Chain Reaction (PCR) has emerged as one of the main tool to am-
plify the number of a specific fragment of target DNA molecules. This technique
has many applications in virology (Cortez et al., 2003), microbiology (Mackay,
2004), and gene expression analysis (Klein, 2002; Yuan et al., 2006) to name a
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few. As concerning the latter application, PCR is preceded by areverse transcrip-
tion step, and is referred to as RT-PCR, in order to create DNA templates from
mRNA templates.

The quantitative approach of PCR (respectively RT-PCR) aims at determin-
ing the initial amount of the DNA (respectively mRNA) molecules present in a
biological sample. Several quantification procedures are available in the litera-
ture. The most popular one is based on a calibration curve constructed from many
amplification curves of a so-called standard (Livak, 1997; Ginzinger, 2002). Al-
ternative methods relying on a single amplification curve have been proposed.
This enables one to reduce costs and to increase throughput analysis because re-
action tubes no longer need to be used for the standard curve samples. It may also
eliminate the adverse effect of any dilution errors made in creating the standard
sample curves (User Bulletin 2, 2001). These methods using a single reaction
set-up are from very various kinds, and they may be based on either deterministic
or stochastic models. Some methods rely on consecutive observations from the
exponential phase above the background noise. This phase is identified and mod-
elled by a deterministic geometric series for which the number of DNA molecules
Xt, present at replication cyclet, is assumed to be defined byXt = X0(1 + p)t,
wherep ∈ (0, 1) is the replication efficiency from the exponential phase (Raey-
maekers, 1993; Liu and Saint, 2002; Tichopad et al., 2003; Zhao and Fernald,
2005).

Alvarez et al. (2007) proposed to use consecutive observations assumed to
follow a similar geometric series with a replication efficiency varying with the
amount of accumulated molecules.

Other methods based on deterministic models consist in fitting sigmoidal func-
tions for the amplification curve constituted by observations of the amount of
replicated molecules from both the exponential and the non-exponential phases
(Schlereth et al., 1998; Rutledge, 2004; Goll et al., 2006). Performing a biophys-
ical analysis of the enzyme activity in the course of PCR, Stone et al. (2006)
developed a deterministic model based on the reaction equations derived from the
law of mass actions.

Some methods account for the randomness inherent to DNA amplification.
Stochastic models for the DNA amplification based on the theory of branching
processes have been developed for quantitative PCR. They either rely on ob-
servations from the exponential phase above the background noise, using then
a Galton-Watson branching process model (Peccoud and Jacob, 1998), or they
rely on observations above the background noise from both the exponential and
the non-exponential phases, using then a population-size-dependent branching
process (Jagers and Klebaner, 2003; Lalam et al., 2004).

Some models discern small and long molecules (Nedelman et al., 1992) and
some models account for mutations affecting DNA sequences when they replicate

2



(Cariello et al., 1991; Olofsson and Shaw, 2002; Volles and Lansbury, 2005). But
here, we will not take these two features into account.

The main motivation of our study is to provide a tractable statistical method to
analyze a single amplification curve based on a sound mathematical model. This
method takes into consideration the stochasticity inherent to the DNA amplifica-
tion and the stochasticity inherent to the collecting of PCR measurements. Also,
this original approach allows to circumvent the use of standard calibration curves.

We present a quantitative procedure for analyzing an individual PCR ampli-
fication curve relying on a Hidden Markov Model (HMM) described in Section
2. We assume that the amplification curve is observed through a fluorescence-
chemistry based method which is one of the main procedures used to record the
kinetic accumulation of DNA molecules. Unknown parameters arising in this
proposed formalism are determined using the maximum likelihood estimation
method explained in Section 3. Usually, the implementation of the maximum
likelihood estimators in the context of an HMM is done using the Expectation-
Maximization (EM) algorithm as described in Section 4. In our present model,
because the underlying Markov chain has an infinite state space, the EM algo-
rithm is not applicable. Instead, we propose to use a Monte Carlo EM (MCEM)
algorithm when considering an approximated model specified in Section 5.

2 Mathematical model

The amplification of the number of DNA molecules as PCR proceeds may be
dynamically modelled using the branching process theory (Krawczak et al., 1989).
PCR is formed by the succession of replication cycles. At each replication cycle,
a DNA molecule is either replicated successfully with probabilityp, or is not
replicated with probability1−p. The quantityp is referred to as the replication or
reaction efficiency. We will consider the exponential phase of PCR during which
we make the classical assumption thatp is constant (Livak, 1997) with0 < p < 1.
Let X0 be the initial number of DNA molecules, and letXt be the number of DNA
molecules present at replication cyclet. Denote byYt,i the number of descendant
molecules from moleculei from cyclet. If moleculei replicates correctly, then
Yt,i = 2 with probability p, andYt,i = 1 otherwise with probability1 − p. We
will assume that the offspringYt,i are all independent and identically distributed
(i.i.d.). The number of DNA molecules present at cyclet + 1 equals then

Xt+1 =
Xt∑

i=1

Yt,i, with

P (Yt,i = 2) = p = 1 − P (Yt,i = 1).
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The Markovian process{Xt} is a Galton-Watson branching process. Following
Stolovitzky and Cecchi (1996), we will particularly rely on the fact that{Xt}
satisfies

Xt+1 = Xt + Bin(Xt, p)

because a sum ofXt independent random variablesYt,i−1 distributed as a Bernoulli(p)
random variable follows a Binomial(Xt, p) distribution.

In practical PCR experiments, the numbers of DNA molecules as they repli-
cate are not directly accessible. The current method mainly used to measure the
amount of DNA molecules as PCR proceeds relies on fluorescence chemistry
(Crockett and Wittwer, 2001; Mackay et al., 2002; Zipper et al., 2004), and we
will consider here PCR data obtained with this type of chemistry.

We will make the classical assumption that the fluorescence signal emitted
by the DNA molecules is proportional to the amount of these molecules (Livak,
1997). In addition, we will assume that the fluorescence data are obtained with
additive Gaussian errors. These errors will be either assumed independent of the
number of DNA molecules (case 1 below), or they will be assumed to have a
variance depending on the number of DNA molecules (case 2). Therefore, under
these assumptions, the fluorescence-chemistry based observation of the number
of DNA molecules as they replicate during the exponential phase of PCR may be
described by the following HMM: for allt ∈ {1, 2, . . . , n − 1},





Xt+1 = Xt + Bin(Xt, p),
Ft = αXt + εt, with
case 1: εt ∼ N(µt, σ

2
t ), or

case 2: εt|Xt ∼ N(µt, σ
2Xt).

(1)

The process{Ft} is assumed to be a sequence of conditionally independent ran-
dom variables given the hidden branching process{Xt}. We will consider two
different cases. In case 1,Xt andεt are independent, the background errors{εt}
are independent Gaussian random variables withµt, respectivelyσ2

t , being the
mean, respectively the variance, ofεt. In case 2, the distribution ofεt condition-
ally to Xt is assumed Gaussian with meanµt and with varianceσ2

t = σ2Xt.
In the HMM terminology, the process{Xt} is referred to as the regime, and

{Ft} as the observational process. For a comprehensive review on HMM’s, see
Ephraim and Merhav (2002).

Various models for the background noise have been proposed. Wilhelm et al.
(2003) considered a constant background noise variance and they modelled the
background noise mean byµt = a(1 − exp {−bt}) + c, wheret is the replication
cycle. Tichopad et al. (2003) and Goll et al. (2006) used a linear modelµt = at+b
with constant varianceσ2

t = σ2. These proposals for the background noise mean
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do not rely on any biophysical justification concerning the fluorescence signal
measurements, but they are rather based on visual inspection of fluorescence data
from so-called No Template Controls which do not contain any DNA to amplify.
Measurements from No Template Controls, which typically consist in four repli-
cates, provide information on the errors from the fluorescence measuring device.
It would seem more natural to assume a constant background level, and this is
what we will do here.

Perfoming a simulation study, Lalam (2007) investigated model (1) in the par-
ticular case 1 withµt = 0 andσ2

t = σ2 using a Bayesian framework.
HMM’s are a particular instance of graphical models, they are namely dy-

namic Bayesian network models (Ghahramani, 2001). The HMM proposed here
is schematically represented in Figure 1.

Figure 1: Graphical representation of model (1) as a dynamic Bayesian network
model. A full line arrow shows direct dependence between two elements. Arrows
in dashed lines, accounting for the fact that the distributions ofεt conditionally
to Xt are parts of the model, are present only in case 2. The observable random
variablesF1, F2, . . ., Fn are in grey. The elementsp, X0 andα are deterministic
constants, the other elements are random variables.

Within model (1), we assume that the background noise is normally distributed
with meanµt and varianceσ2

t . We will consider that the mean and variance of the
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errorsεt depend on an unknown finite-dimensional parameter denoted byθε. For
example, assuming thatµt = µ andσ2

t = σ2 yieldsθε = (µ, σ2).
We aim at estimating the unknown parameters of the model from the ampli-

fication process and from the observational process. The unknown parameters of
the amplification process are the initial number of the DNA moleculesX0 and the
reaction efficiencyp of the PCR exponential phase. The unknown parameter of
the observational scheme is the parameterθε characterizing the mean and vari-
ance from the Gaussian noise. In case 1, we will in particular considerµt = µ
andσ2

t = σ2; in case 2, we will considerµt = µ. In both cases, the parameter
θε reads thenθε = (µ, σ2). But the method presented here may also be applied
to more general parametric forms forµt andσ2

t . In addition, for the model to be
identifiable, we assume that the scale parameterα between the fluorescence level
intensity and the number of DNA molecules is known.

We will rely on the observed realizations ofF1, F2, . . ., Fn from the exponen-
tial phase of a single amplification curve in order to inferθ = (X0, p, θε). To this
end, we will use the maximum likelihood approach.
Remark: When considering case 1, one may use data from No Template Con-
trols in order to infer the parameterθε from the Gaussian noise by the maximum
likelihood procedure. One may then use the observations ofF1, F2, . . ., Fn to
infer θ = (X0, p), with θε fixed to its estimated value based on the No Template
Controls data.

3 Maximum likelihood estimation

Let us introduce a few notations which are useful to define the likelihood of
the observations to be maximized for deriving the maximum likelihood estimator
(MLE) of the true value of the parameterθ in model (1).

The initial distribution of the underlying Markovian process{Xt} is denoted
by π = (πj : j ∈ N) and satisfies

πj = P (X1 = j)

= P (Bin(X0, p) = j − X0)

= Cj−X0

X0
pj−X0(1 − p)2X0−j with X0 ≤ j ≤ 2X0.

We will assume thatX0 6= 0, that is the biological sample contains effectively
DNA molecules to amplify. IfX0 = 0, thenXt = 0 for all t ∈ N.
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The transition matrixA = (aij) of {Xt} is such that, fori ≤ j ≤ 2i,

aij = P (Xt+1 = j|Xt = i)

= P (Xt + Bin(Xt, p) = j|Xt = i)

= P (Bin(i, p) = j − i)

= Cj−i
i pj−i(1 − p)2i−j.

For j > 2i or 0 ≤ j < i, aij = 0. The Markovian process{Xt} is said to be
homogeneous sinceaij does not depend ont.
The conditional densityb(·|xt), or emission distribution in the HMM terminology,
is given by

b(ft|xt) =
1√
2πσ2

t

exp {− 1

2σ2
t

(ft − αxt − µt)
2}.

Let us writeF1:n = (F1, . . . , Fn) andX1:n = (X1, . . . , Xn). The likelihood of
observingF1:n, under the parameter valueθ, equals

P (F1:n|θ) =
∑

x1:n

P (F1:n|x1:n, θ)P (x1:n|θ)

=
∑

x1:n

P (F1|x1:n, θ)
n−1∏

t=1

[P (Ft+1|F1:t, x1:n, θ)]P (x1|θ)
n−1∏

t=1

P (xt+1|x1:t, θ)

=
∑

x1:n

P (F1|x1, θ)
n−1∏

t=1

[P (Ft+1|xt+1, θ)]P (x1|θ)
n−1∏

t=1

P (xt+1|xt, θ)

=
∑

x1:n

[
n∏

t=1

b(Ft|xt)]πx1

n−1∏

t=1

axtxt+1
. (2)

The maximum likelihood estimator of the true parameter value has no closed an-
alytical expression. Its derivation should be numerically performed, but the direct
maximization of the likelihood (2) is computationally demanding. In the context
of HMM’s, the derivation of maximum likelihood estimators is mainly performed
with the Expectation-Maximization (EM) algorithm (Cappé et al, 2005).

4 EM algorithm

The EM algorithm (Dempster et al., 1977) is the tool of choice to calculate the
MLE in an HMM. The EM algorithm is also known as the Baum-Welch algorithm
(Baum et al., 1970), or forward-backward algorithm, in the case of classical finite

7



state space HMM’s. It provides a computationally efficient iterative method for
local maximization of the log-likelihood function

ℓn(θ) = log P (F1:n|θ).

Starting from some initial parameter values, the EM procedure iterates between
a step that fixes the current parameters and computes posterior probabilities over
the hidden states (the E-step) and a step that uses these probabilities to maximize
the expected log-likelihood of the observations as a function of the parameters
(the M-step).

More precisely, suppose that an estimateθk of the parameterθ is available at
the end of thek-th iteration of the algorithm. Let̃θ denote some other estimate
of θ. The EM algorithm follows from the definition of an auxiliary function, the
expected log-likelihood of the complete (hidden and observed) data for the given
observation ofF1:n and any pair of parameters̃θ andθk:
E-step

Q(θ̃, θk) = Eθk
{log P (X1:n, F1:n, θ̃|F1:n)}, (3)

whereQ is a function of the parameter̃θ, given the current parameter estimateθk

and the observation of the sequence{Ft}. An updated estimate ofθ at iteration
k + 1, denoted byθk+1, is obtained as follows:
M-step

θk+1 = argmaxeθQ(θ̃, θk).

The log-likelihoodℓn(θ) is such thatℓn(θ) = Q(θ, θk) − H(θ, θk), where

H(θ, θk) = Eθk
{log p(X1:n|F1:n; θ)|F1:n}.

Dempster et al. (1977) noted that the inequalityℓn(θk+1) ≥ ℓn(θk) holds if θk+1

maximizesQ(θ, θk) with respect toθ.
The two steps of the EM algorithm are alternated until the change in the pa-

rameters is small. The EM algorithm is proved to converge as the number of iter-
ationsk tends to infinity with a fixed number of observationsn under some mild
assumptions (Wu, 1983; McLachlan and Krishnan, 1997). In practice, the algo-
rithm may converge to a local maximum of the likelihood surface of the HMM.
A common practice is then to start the EM optimization algorithm from several
parameter values.

Maximization of the auxiliary functionQ(θ, θk) for a given sequenceF1:n

results in re-estimation formulas for the parameterθ. In the case of Gaussian
emission distribution and finite state space Markov chain, explicit formulas are
available and based on the forward and backward densities (Baum et al., 1970).
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Define the forward density byα(xt, f1:t) = p(xt, f1:t) representing the joint
density ofXt and the sequenceF1 to Ft, and define the backward density by
β(ft+1:n|xt) representing the conditional density ofFt+1 to Fn given Xt. For
t = 1, . . . , n, one has

p(xt, f1:n) = p(xt, f1:t, ft+1:n)

= p(xt, f1:t)p(ft+1:n|xt)

= α(xt, f1:t)β(ft+1:n|xt).

The forward and backward densities satisfy the following recursions:

α(xt, f1:t) = b(ft|xt)
∑

xt−1

α(xt−1, f1:t−1)axt−1 xt
, for all 2 ≤ t ≤ n

with α(x1, f1) = πx1
b(f1|x1), and

β(ft+1:n|xt) =
∑

xt+1

β(ft+2:n|xt+1)axt xt+1
b(ft+1|xt+1), for all n − 1 ≥ t ≥ 1

with β(fn+1:n|xn) = 1. Recursions rely on the conditional independence of
(F1, . . . , Ft) and(Ft+1, . . . , Fn) givenXt, for t = 1, . . ., n − 1 (Rabiner, 1989).

The conditional probability density functionp(xt|f1:n), for all 1 ≤ t ≤ n, can
be calculated as

p(xt|f1:n) =
α(xt, f1:t)β(ft+1:n|xt)∑
xt

α(xt, f1:t)β(ft+1:n|xt)
,

and the conditional probability density functionp(xt−1, xt|f1:n), for all 2 ≤ t ≤ n,
satisfies

p(xt−1, xt|f1:n) =
α(xt−1, f1:t−1)β(ft+1:n|xt)axt−1xt

b(ft|xt)∑∞
i=1

∑2i

j=i α(i, f1:t−1)β(ft+1:n|j)aijb(ft|j)
.

These quantities appear in the expression of the auxiliary functionQ to use in the
EM algorithm.

The expression of (3) reads here

Q(θ̃, θk) = Eθk
{log P (X1:n, F1:n, θ̃)|F1:n}

=
∞∑

j=1

P (X1 = j|F1:n, θk) log πj1{X0≤j≤2X0}

+
∞∑

i=1

2i∑

j=i

n∑

t=2

P (Xt−1 = i,Xt = j|F1:n, θk) log aij

+
∞∑

j=1

n∑

t=1

P (Xt = j|F1:n, θk) log b(Ft|Xt = j).
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As a consequence, it is not possible to use the exact EM algorithm because it is
not feasible to compute forward and backward densities for an infinite number of
values. Even if the underlying branching process is restricted to take its values in
a finite set, say{1, 2, . . . , Xmax}, the value ofXmax would be very large because
Xn grows exponentially fast: for example, ifX0 = 100 andp = 0.8, if one con-
siders 20 observations, thenX20 ≤ X0(1 + p)20 entails thatXmax = 1.275 107.
Such a large value forXmax prevents us from using the exact EM algorithm. We
will rather use a Monte Carlo EM (MCEM) algorithm introduced by Wei and
Tanner (1990). The principle of this algorithm is to replace the E-step by a Monte
Carlo integration procedure. Also, we will use an approximation of the likelihood
because this will lead to more tractable computations. The approximation will
consist in replacing the binomial distribution in (1) by a Gaussian distribution. If
one uses the exact likelihood, then the unknown quantityX0 appears in a com-
binatorial term and this complicates the maximization step. In addition, in the
case of the exact likelihood when considering model (1), one should constrain the
underlying Markov chain in such a way thatXt ≤ Xt+1 ≤ 2Xt, and this also
complicates the procedure. As a consequence, we propose to carry out a MCEM
algorithm in an approximated model.

5 MCEM algorithm in the approximated model

5.1 Principle

In order to render the estimation procedure more tractable, we will consider
the approximated model





Xt+1 = Xt + N(Xtp,Xtp(1 − p)),
Ft = αXt + εt, with
case 1: εt ∼ N(µt, σ

2
t ), or

case 2: εt|Xt ∼ N(µt, σ
2Xt).

(4)

Given Xt, the binomial distribution Bin(Xt, p) from (1) may be reasonably ap-
proximated by the normal distributionN(Xtp,Xtp(1−p)) if Xtp ≥ 5 andXt(1−
p) ≥ 5.

When approximating the binomial distribution by its normal counterpart, the
transition probability of{Xt} reads

P (Xt+1 = j|Xt = i) = P (N(Xtp,Xtp(1 − p)) = j − Xt|Xt = i)

=
1√

2πip(1 − p)
exp {− 1

2ip(1 − p)
(j − (1 + p)i)2}

= ãij, say.
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The initial distribution satisfies

P (X1 = j) = ãX0j = π̃j, say.

Within model (4), we will use the MCEM algorithm. Instead of computing the
quantityQ(θ̃, θk) with θk the current parameter estimate, one simulatesM realiza-
tionsx1, . . ., xM of the hidden dataX = (X1, . . . , Xn) = X1:n conditionally on
the observableF1:n and given the current estimateθk, and then one approximates
Q(θ̃, θk) by

Q̂M(θ̃, θk) =
1

M

M∑

m=1

log P (xm, F1:n, θ̃),

where, in view of formula (2),

P (xm, F1:n, θ̃) = [
n∏

t=1

b(Ft|xm
t )]π̃xm

1

n−1∏

t=1

ãxm

t
xm

t+1

with

b(Ft|xm
t ) =

{
1√

2πeσ2
exp {− 1

2eσ2 (Ft − αxm
t − µ̃)2} in case 1,

1√
2πeσ2xm

t

exp {− 1
2eσ2xm

t

(Ft − αxm
t − µ̃)2} in case 2.

After re-arranging the terms, in case 1,P (xm, F1:n, θ̃) equals

1

(2πσ̃)n

1√
X̃0

∏n−1
t=1 xm

t

1

(
√

p̃(1 − p̃))n
exp{− 1

2σ̃2

n∑

t=1

(Ft − αxm
t − µ̃)2

− 1

2X̃0p̃(1 − p̃)
(xm

1 − (1 + p̃)X̃0)
2 − 1

2

n−1∑

t=1

1

xm
t p̃(1 − p̃)

(xm
t+1 − (1 + p̃)xm

t )2},

and in case 2,P (xm, F1:n, θ̃) equals

1

(2πσ̃)n ∏n−1
t=1 xm

t

1√
X̃0xm

n

1

(
√

p̃(1 − p̃))n
exp{− 1

2σ̃2

n∑

t=1

1

xm
t

(Ft − αxm
t − µ̃)2

− 1

2X̃0p̃(1 − p̃)
(xm

1 − (1 + p̃)X̃0)
2 − 1

2

n−1∑

t=1

1

xm
t p̃(1 − p̃)

(xm
t+1 − (1 + p̃)xm

t )2}.

The parameter updateθk+1 of thek-th iteration of the MCEM algorithm is given
by an ordinary M-step applied tôQM(·, ·):

θk+1 = argmaxeθQ̂M(θ̃, θk).
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As a rule of thumb, Wei and Tanner (1990) advocate to increaseM as iterationk
increases.

Sherman et al. (1999), Fort and Moulines (2003), and Cappé et al. (2005)
studied convergence conditions for the MCEM procedure. Sherman et al. (1999)
emphasized that increased confidence in an MCEM procedure can be obtained
by running the procedure with different starting values for the parameters and by
checking the nature of the limit points using the Louis method. Levine and Casella
(2001) studied the Monte Carlo error inherent to the MCEM algorithm.

In order to simulate a realizationx of the hidden dataX1:n conditionally to
F1:n and to some parameterθ, we propose to rely on a Markov Chain Monte Carlo
(MCMC) sampling scheme. MCMC methods consist in generating a Markov
chain whose stationary distribution is the target distribution of interest. After some
burn-in time, the realizations of this Markov chain may be viewed as realizations
of sampling from the desired distribution. Gilks et al. (1996) provide an intro-
duction to MCMC methods. Jones and Hobert (2001) investigated the problem of
assessing the convergence of an MCMC scheme to the target distribution.

For θ given, one may updateX1, . . ., Xn conditionally onF1:n by relying on
the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). This
sampling scheme is based on the full conditionals of the distribution of interest.
It consists in drawing sequentially a realization of a variable according to the dis-
tribution of this variable conditionally to all the other variables held fixed. The
variables are first assigned arbitrary initial values, and the Markov chain is simu-
lated until it converges to its stationary distribution. More precisely, forθ given,
denote the distribution of interest byL(X1:n|F1:n). Consider that the full con-
ditional distributionsLi(Xi|F1:n) = L(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn, F1:n) are
available. Gibbs sampling aims at approximatingL when generations from the
Li are possible. It provides an alternative generation scheme based on successive
generations from the full conditional distributions as follows:
Step 1. Set initial valuesX(0)

1:n = (X
(0)
1 , . . . , X

(0)
n ).

Step 2. Obtain a new valueX(j)
1:n = (X

(j)
1 , . . . , X

(j)
n ) from X

(j−1)
1:n through succes-

sive generation of values

X
(j)
1 ∼ L(X1|X(j−1)

2 , . . . , X(j−1)
n , F1:n)

X
(j)
2 ∼ L(X2|X(j−1)

1 , X
(j−1)
3 , . . . , X(j−1)

n , F1:n)
...

X(j)
n ∼ L(Xd|X(j−1)

1 , . . . , X
(j−1)
n−1 , F1:n).

Step 3. Return to Step 2 until convergence is reached.
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5.2 Improvement of the estimation method when the early ob-
servations are very noisy

The estimation method that we propose is applicable if the Gaussian noiseεt

in (4) is moderate relative to the signalαXt coming from the DNA molecules. In
most practical experiments, the early observations are swamped by the measure-
ment noise and, as more and more DNA molecules accumulate, the measurement
error becomes smaller relative to the signal arising from the DNA molecules. In
order to take this feature into account, we suggest the following adaptation of the
estimation method presented above. The early observations contain information
on the noise error, whereas subsequent observations provide information on the
parameters defining the amplification process. Therefore, we propose to split the
dataF1, . . ., Fn in such a way that the early observations are used to infer the
parameterθε from the Gaussian noise, and the rest of the observations is used to
infer (X0, p). We may useF1, . . ., Fq, with q < n such thatαXt is negligible
relatively toεt for 1 ≤ t ≤ q, and we proceed by maximum likelihood estimation
for inferringθε = (µ, σ2) assuming that the observations come from i.i.d. realiza-
tions from a Gaussian distributionN(µ, σ2) sinceαXt is negligible relatively to
εt for 1 ≤ t ≤ q. We useFh+1, . . ., Fn, with h + 1 > q, in order to deriveXh

andp based on the MCEM algorithm described in Subsection 5.1 with replacing
F1:n, X1:n andθ = (X0, p, θε) by Fh+1:n, Xh+1:n, andθ = (Xh, p) respectively
in the notations, and by settingθε to its estimated value based onF1, . . ., Fq. An
estimator ofX0 may then be defined by the estimate ofXh/(1 + p)h based on the
relationshipE(Xh/(1 + p)h) = X0.

5.3 Theoretical properties of the estimators

Within the framework of general HMM’s, consistency and asymptotic normal-
ity of the maximum likelihood estimator, as the number of observationsn tends
to infinity, have been investigated (Leroux, 1992; Bickel et al., 1998). However,
these asymptotic properties are of little use in the context of real-time PCR data
as one has at hand typically a few dozens of observations.

6 Concluding remarks

We have described how fluorescence PCR data might be analyzed using a
HMM accounting for the stochastic amplification of DNA molecules during the
exponential phase, and accounting for the observation of the process with Gaussian
errors.

13



The PCR exponential phase is followed by a linear phase and a plateau for
which there is a decrease in PCR efficiency, possibly explained by a decline in
DNA polymerase activity or a depletion of certain reaction components (Liu and
Saint, 2002; Swillens et al., 2004). It would be challenging to extend the proposed
study to account for data belonging to the linear and plateau phases of PCR for
which the accumulation of DNA molecules may be modelled by a population-
size-dependent branching process (Jagers and Klebaner, 2003; Lalam, 2006).

Because fluorescence data are measurements of intensity levels, a possible
line of investigation consists in performing a data preprocessing before statistical
analysis, e.g. log-transformation of the data, similar to microarray data studies
(Sebastiani et al., 2003).
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[4] Capṕe, O., Moulines, E., Ryd́en, T. (2005) Inference in Hidden Markov Mod-
els, Springer.

[5] Cariello, N. F., Swenberg, J. A., Skopek, T. R. (1991) Fidelity of Thermo-
coccus litoralis DNA polymerase (VentTM ) in PCR determined by denaturing
gradient gel electrophoresis,Nucleic Acids Research, 19, 4193–4198.

14



[6] Cortez, K. J., Fischer, S. H., Fable, G. A., Calhoun, L.B., Childs, R. W.,
Barrett, A. J., Bennett, J. E. (2003) Clinical trial of quantitative real-time Poly-
merase Chain Reaction for detection of cytomegalovirus in peripheral blood of
allogeneic hematopoietic stem-cell transplant recipients,The Journal of Infec-
tious Diseases, 188, 967–972.

[7] Crockett, A. O., Wittwer, C. T. (2001) Fluorescein-labeled oligonucleotides
for real-time PCR: using the inherent quenching of deoxyguanosine nu-
cleotides,Analytical Biochemistry, 290, 89–97.

[8] Dempster, A. P., Laird, N. M., Rubin, D. B. (1977) Maximum likelihood from
incomplete data via the EM algorithm,Journal of the Royal Statistical Society,
Series B, 39, 1–38.

[9] Ephraim, Y., Merhav, N. (2002) Hidden Markov processes,IEEE Transac-
tions on Information Theory, 48, 1518–1569.

[10] Fort, G., Moulines, E. (2003) Convergence of the Monte Carlo Expectation
Maximization for curved exponential families,The Annals of Statistics, 31,
1220–1259.

[11] Gelfand, A. E., Smith, A. F. M. (1990) Sampling-based approaches to calcu-
lating marginal densities,Journal of the American Statistical Association, 85,
398–409.

[12] Gelmini, S., Orlando, C., Sestini, R., Vona, G., Pinzani, P., Ruocco, L., Paz-
zagli, M. (1997) Quantitative polymerase chain reaction-based homogeneous
assay with fluorogenic probes to measure c-erbB-2 oncogene amplification,
Clinical Chemistry, 43, 752–758.

[13] Geman, S., Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images,IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6, 721–741.

[14] Ghahramani, Z. (2001) Introduction to Hidden Markov Models and
Bayesian Networks,International Journal of Pattern Recognition and Artifi-
cial Intelligence, 15, 9–42.

[15] Gilks, W. R., Richardson, S. Spiegelhalter, D. J. E. (1996) Markov Chain
Monte Carlo in practice. Chapman and Hall.

[16] Ginzinger, D. G. (2002) Gene quantification using real-time quantitative
PCR: An emerging technology hits the mainstream,Experimental Hematol-
ogy, 30, 503–512.

15



[17] Goll, R., Olsen, T., Cui, G., Florholmen, J. R. (2006) Evaluation of ab-
solute quantitation by nonlinear regression in probe-based real-time PCR,BMC
Bioinformatics, 7:107.

[18] Jagers, P., Klebaner, F. (2003) Random variation and concentration effects
in PCR,Journal of Theoretical Biology, 224, 299–304.

[19] Jones, G. L., Hobert, J. P. (2001) Honest exploration of intractable prob-
ability distributions via Markov Chain Monte Carlo,Statistical Science, 16,
312–334.

[20] Klein, D. (2002) Quantification using real-time PCR technology: applica-
tions and limitations,Trends in Molecular Medicine, 8, 257–260.

[21] Krawczak, M., Reiss, J., Schmidtke, J, Rosler, U. (1989) Polymerase chain
reaction: replication errors and reliability of gene diagnosis,Nucleic Acids Re-
search, 17, 2197–2201.

[22] Lalam, N., Jacob, C., Jagers, P. (2004) Modelling the PCR amplification
process by a size-dependent branching process,Advances in Applied Probabil-
ity, 36, 602–615.

[23] Lalam, N. (2006) Estimation of the reaction efficiency in Polymerase Chain
Reaction,Journal of Theoretical Biology, 242, 947–953.

[24] Lalam, N. (2007) Statistical inference for quantitative polymerase chain re-
action using a hidden Markov model: A Bayesian approach,Statistical Appli-
cations in Genetics and Molecular Biology, 6, article 10.

[25] Leroux, B. G. (1992) Maximum likelihood estimation for hidden Markov
models,Stochastic Processes and their Applications, 40, 127-143.

[26] Levine, R., Casella, G. (2001) Implementations of the Monte Carlo EM al-
gorithm,Journal of Computational and Graphical Statistics, 10, 422–439.

[27] Liu, W., Saint, D. A. (2002) A new quantitative method of real time re-
verse transcription polymerase chain reaction assay based on simulation of
polymerase chain reaction kinetics,Analytical Biochemistry, 302, 52–59.

[28] Livak, K. J. (1997) ABI Prism 7700 Sequence Detection System, User Bul-
letin 2. PE Applied Biosystems.

[29] Mackay, I. M., Arden, K. E., Nitsche, A. (2002) Real-time PCR in virology,
Nucleic Acids Research, 30, 1292–1305.

16



[30] Mackay, I. M. (2004) Real-time PCR in the microbiology laboratory,Clini-
cal Microbiology and Infection, 10, 190–212.

[31] McLachlan, G., Krishnan, T. (1997) The EM algorithm and extensions. John
Wiley and Sons.

[32] Nedelman, J., Heagerty, P., Lawrence, C. (1992) Quantitative PCR: Proce-
dures and precisions,Bulletin of Mathematical Biology, 54, 477–502.

[33] Olofsson, P., Shaw, C. A. (2002) Exact sampling formulas for multi-type
Galton-Watson processes,Journal of Mathematical Biology, 45, 279–293.

[34] Peccoud, J., Jacob, C. (1998) Statistical estimations of PCR amplification
rates. In Gene Quantification. Ed. Ferré, F., Birkhauser, New-York, pp. 111–
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