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ON THE DENSITY OF SOLUTIONS TO DIOPHANTINE
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ABSTRACT

This thesis consists of two papers giving new upper bounds for the density
of integral points on affine algebraic varieties, using a g-analogue of van der
Corput’s method of exponential sums first developed by Heath-Brown. In
the first paper we consider complete intersections of r hypersurfaces of degree
at least 3 in A”. In the second paper we iterate the van der Corput method
twice to get upper bounds for the number of integral zeros of bounded height
to a single polynomial f € Z[z1,...,z,] of degree at least 4.
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INTRODUCTION

In the study of Diophantine equations, one of the fundamental problems is

to count the number of solutions x = (z1,...,2,) € Z™ to a given equation
(1) f(eTl,...,.’L'n):O,
where f € Z[z1,...,z,]. Sometimes it is possible to prove that there are only

finitely many solutions. But if this is not the case, it is sensible to study the
density of solutions, that is, for a given positive real number B we want to
estimate the number of solutions satisfying |x| < B, where |x| = max; |z;|.
To this end we introduce the counting function

N(f,B) = #{x € Z" f(x) = 0, |x| < B}.

If the polynomial f has degree d < m, a heuristic upper bound for N(f, B)
is B"~%. Indeed, the stronger statement that

N(f,B) ~B"™4

is predicted for a large class of polynomials by a conjecture of Manin [2] (see
Remark 2 in Paper I).

By the leading form of the polynomial f we shall mean the homogeneous
part of maximal degree. The best estimates for N(f, B) can be obtained
when the leading form F' of f defines a non-singular hypersurface in P%ﬁl.
We call F' non-singular in this case.

It is often fruitful to study congruences

f(z1,...,2,) =0 (mod m)

for different m, rather than the equation (1) itself. Thus, we introduce the
counting functions

N(f,B,m)=#{x€Z" f(x) =0 (modm),|x| < B}.

Trivially, for any m, N(f, B, m) is an upper bound for N(f, B). In the study
of congruences, exponential sums are fundamental. For example, the number
of solutions u = (u1,...,u,) € Fy (p prime) to a congruence f(u1,...,un) =
0 (mod p) (where, by abuse of notation, the u;:s denote residue classes as
well as representatives thereof) is counted by the exponential sum

P
p Z Z ep(af(u)),

a=1 uEFg

where e,(z) = exp(27iz/p). In order to count only points of bounded height,
and thus estimate N(f, B,p), one can introduce a weight function into the
sum. Using Deligne’s bounds [1] for exponential sums over F,, Fujiwara, [3]
proved, for a non-singular form F' of degree at least 2 in n > 4 variables,
that
N(F,B) < B2/,

Heath-Brown [5] went further, proving that for a polynomial f of degree at
least 3 such that the leading form F' is non-singular, we have the estimate

(2) N(f,B) <5 Bn—3+15/(n+5)

for n > 5. To prove this he started from N(f, B,pq) for two primes p <
B < ¢ and introduced a technique which might be regarded as a g-analogue



of van der Corput’s method with A- and B-processes. For an account of
this method in its original context, the study of the Riemann zeta function,
see [4]. For an introduction to Heath-Brown’s g-analogue, see [7, §7.3].
The basis is still Deligne’s bounds, but before these are applied, a rather
elaborate differencing process relays the problem to the study of N(fY, B, q)
for a series of differenced polynomials f¥(x) = f(x + py) — f(x). The aim
of this thesis is to extend the technique developed in [5] in two different
directions.

In the first paper we extend Heath-Browns method to systems of equations

f169) =+ = f(x) = 0

such that the leading forms F1, ..., F, define a complete intersection in P!,
Suppose that the degrees of the f; are all at least 3, and that the F; define
a non-singular subvariety of I%_l. If we define a counting function

N(fla"'af’r‘aB) :#{Xeznafl(x) = :f,,.(X) :O,‘X‘ SB}

in the same spirit as for a single polynomial, then the main result of this
paper states that

N(fl, o ,f“ B) Ly, Bn—3r+7-2(13n—5—37‘)/(n2—|—4m‘—n—7‘—r2)(log B)n/2

for n > 4r + 2. The dependence upon the coefficients of the F; is made
explicit. For the base step, i. e. the counting of points on the varieties
defined by the differenced polynomials, we use an exponential sum estimate
by Katz [6]. On account of this, besides generalizing (2), we also get a slight
improvement in the case of a hypersurface. Recently, however, this has been
improved by Salberger [8] to

(3) N(f,B) <5 Bn—3—|—9/(n+2)'

In the second paper we look at polynomials f € Z[X},...,X,] of degree
at least 4, which allows us to iterate the differencing step twice. For this
approach, we start from the counting function N(f, B, 7pq), where 7, p,q
are three different primes. Again we assume that the leading form F' is
non-singular. For n > 10 we then prove that

N(f,B) <<F Bn—4+36/(n+8)_

This improves upon (3) for n > 17.
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THE DENSITY OF INTEGRAL POINTS ON COMPLETE
INTERSECTIONS

OSCAR MARMON

WITH AN APPENDIX BY PER SALBERGER

ABSTRACT. In this paper, an upper bound for the number of integral
points of bounded height on an affine complete intersection defined over
Z is proven. The proof uses an extension to complete intersections of
the method used for hypersurfaces by Heath-Brown [10], the so called
“g-analogue” of van der Corput’s AB process.

1. INTRODUCTION

If X is an affine algebraic set defined by a set of equations
filxy,...xp) =0,a=1,...,7

with integral coefficients, and if B is a box in R" - that is, a product of closed
intervals - then we define the quantity

N(X,B) = #{x = (z1,...,2,) € Z"; fi(x) = 0,x € B}.

If m is a positive integer, and if B is small enough as to contain at most one
representative of each congruence class modulo m, then we define

N(X,B,m) =#{x=(z1,...,2,) €Z"; fi(x) =0 (mod m),x € B}.

Since N(X,B) < N(X,B,m) one can obtain upper bounds for N(X,B) by
considering N (X, B,m) for suitably chosen m. If B = [-B, B]" for some
B > 0 we write

N(X,B) = N(X,B) and N(X, B,m) = N(X,B,m).

Throughout this paper we shall be concerned with the case when X is a
complete intersection, that is, when dim X = n — r, where r is the num-
ber of equations defining X in A”. Our main concern shall be to find an
upper bound for N(X, B). One result in this direction is the following, by
Fujiwara [5]: let X be a non-singular hypersurface in A" defined by the van-
ishing of a polynomial f with integer coefficients, of degree at least 2. Then
N(X,B) < n B"—2+2/n for n > 4. Fujiwara proved this by exhibiting an
asymptotic formula for N (X, B, p) for primes p, the proof of which uses the
estimates for exponential sums by Deligne [3] as a key tool. Heath-Brown
[10] was able to sharpen the exponent to n —2+2/(n+ 1) by averaging over
primes in an interval. In the same paper he introduced a new technique, the
so called g-analogue of van der Corput’s method. He could then prove the
bound

(1) N(X,B) <<f,n Bn73+15/(n+5)
1



2 OSCAR MARMON

for a non-singular hypersurface X defined by a polynomial f of degree at
least 3 (Theorem 2 in [10]), by considering N (X, B,pq) for two suitable
primes p and gq.

In this paper we will generalize the method of Heath-Brown to complete
intersections of arbitrary codimension.

Notation. If X is a scheme over Z we write Xg = X Xgpec z Spec Q and
Xq = Xr, = X Xgpec z Spec [y for every prime ¢. When a norm |x| on C"
occurs we will always mean the maximum norm |x| = maxi<;<y |z;|. For a
polynomial F' € C[Xy,...,X,] we define the height ||F|| as the maximum
modulus of the coefficients of F'.

Theorem 1. Let

X = Spec Z[Xl, R ,Xn]/(fla - ,fr),
where the leading forms Fy, ..., F,. of f1,--., fr are of degree > 3, and let
Z =Proj Z[Xq,..., X,/ (F1, ..., F}).

Assume that Zg is non-singular of codimension r in P&_l. Then, if n >
4r 4+ 2, we have for B > 1

2r+1
13n—5—3r r
N(X’ B) <<n,d Bn—3'r'-|—r2 n2+dnr—n—r—r2 (log B)n/2 (Z log ||E ||> )
=1

where d = max;(deg f;).

Remark 1. The factor (log B)™? can in fact be disposed of, and we sketch
in the end of Section 4 how this can be done.

Remark 2. Suppose, in the situation of Theorem 1, that all the f; are homo-
geneous, i.e. f; = F;. Then the problem of measuring the density of integer
points on X is equivalent to the corresponding problem for rational points on
Z. To be more specific, each point z € P*~1(Q) can be represented uniquely
up to sign by an n-tuple x € Z" such that ged(z1,...,z,) = 1. We can then
define a height function on P"~!(Q) by H(z) = |x|, and the corresponding
counting function

N(Z,B)=#{z € ZnP" (Q); H(z) < B}.

Elementary considerations (see e.g. [11, Ex. F.16]) then show that
N(Z,B) < BY 6 > 1, if and only if N(X,B) < B?. In the case where
all d; = 3, it is worth comparing Theorem 1 to a conjecture by Manin (see
[4] or |2, Conj. A]) which predicts that

N(Z,B) <p, B",

for n > 3r + 1. (The log B-factor present in the conjecture vanishes since
Pic(Y') = Z for all projective complete intersections Y of dimension > 3 ([8,
Cor. 3.2]).)

The estimate given by Theorem 1 in the case r = 1 is in fact slightly
sharper than (1), owing to the use of estimates by Katz [14] on exponential
sums modulo ¢. Theorem 1 is proven in Section 4, and is a corollary to the
following theorem.
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Theorem 2. Let

X :Spec Z[XI,---7Xn:|/(f1a"'af7‘)a

where v < n and the leading forms Fy, ..., F. of f1,..., fr are of degree > 3,
and let

Z =Proj Z[Xq,..., Xy]/(F1,..., F}).
Let B be a positive number, and let p and q be primes, with 2p < 2B +1 <
q — p, such that both Z, and Z,; are non-singular of dimension n —1 — r.
Then we have

(2B + 1)

g
+ B(n+1)/2p(n727)/2q71/4(logq)n/2 + Bn/2pfr/2q(nfr)/4(10gq)n/Z
+Bn/2p(nf'r)/2(log q)n/2 + Bnpf(n+r71)/2qfr + Bn71p77+1q77) ’

N(X,B,pq) = + Ona (B(”“)/ 2p=r/2gn=r=1/4(1og q)"/?

where d = max;(deg f;).

The proof of Theorem 2 is carried out in Section 4 and more or less
follows [10]. However, in contrast to Heath-Brown, we do not use Poisson
summation, but a more direct approach.

We also prove, in Section 3, a generalization (and slight sharpening) of
Theorem 3 in [10], a weighted asymptotic formula for the density of Fg-
points on affine complete intersections defined over F,. However, for the
proof of Theorem 2, we will use an unweighted version of this result, proven
by Salberger in an Appendix to this paper. This is because we desire an
unweighted asymptotic formula in Theorem 2.

Acknowledgement. 1 wish to thank my supervisor Per Salberger for intro-
ducing me to the topic of this paper, and for numerous helpful suggestions
during the way. I am also grateful to the anonymous referee for carefully
reading the manuscript and suggesting several improvements.

2. PRELIMINARY RESULTS FROM ALGEBRAIC GEOMETRY

We recall some facts from algebraic geometry that will provide helpful
tools for proving our main results.

Definition. Let X be a scheme. A point z € X is a singular point of X if
the local ring Ox ; is not a regular local ring. X is said to be singular if it
has singular points, and non-singular if not. We denote the singular locus
of X - the set of singular points - by SingX.

If X is a scheme and z a point on X, then O, is the local ring at x, my,
its maximal ideal and k(z) = Oy /m, the residue field of z. If X — Y is a
morphism of schemes, {2y/y denotes the sheaf of relative differentials of X
over Y, and we abbreviate Qx/spec B = Sdx/R-

We have the following characterization of singular points on a scheme.

Proposition 1. Let X be a scheme of finite type over a perfect field k.
Suppose that X is equidimensional of dimension n. Then for every point
T € X, the following conditions are equivalent:

(i) = is a singular point of X ;
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(i1) dimg(z) Qx/k,e ®0, K(T) > N

Proof. Since this is a local question, we can assume that X = Spec R with
R equidimensional. Suppose z = p € Spec R. Then we have, by [18, Ex.

14.36),
) n =htp + dim R/p
@) =dim Oy + tr.d.x(z)/k.
By definition, x is singular if and only if

dim,,(y) mg/mj > dim O,.
Furthermore, by [9, Ex. I1.8.1], we have an exact sequence of x(z)-vector
spaces

0— mm/mi — Qow/k ®o, k(z) = Qn(w)/k — 0.
Since Qo /i, is equal to the stalk Qy/; , of the sheaf of relative differentials,
and since dimy(y) Q) = tr.d.k(z)/k by [9, Thm. IL.8.6A], this implies
that
dimy () Qx k5 ®0, K(x) = dimy(z) me/m2 + tr.d.x(z)/k.
In view of (2) it follows that z € SingX if and only if
dimy () Qx/k,e ®0, k(z) > dim Oy + tr.d.k(z)/k = n.

Remark 3. By [9, Ex. I1.5.8] the function

o(z) = dimy ) Ux/k 2 Q0, k()
is upper semicontinuous, so that in the situation described in the proposition,
Sing X is a closed subscheme of X.

Remark 4. The proposition also shows that for X equidimensional and of
finite type over a perfect field k, X is non-singular if and only if it is smooth
over k (see [9, Ch. III.10]).

Remark 5. The particular case where we will use the proposition is for X a
complete intersection of positive dimension in projective space over a perfect
field. Such X are indeed equidimensional, since firstly, any local complete
intersection is Cohen-Macaulay (|9, Prop. 8.23]) and thus locally equidi-
mensional, and secondly, a complete intersection in P} of dimension > 1 is
connected (]9, Ex. II1.5.5]).

When working in a projective space P with homogeneous coordinates
Lo, ..., T, we denote by P" the dual projective space with homogeneous
coordinates &y, ...,&,. For a point a = (ag,...,a,) in P* we will let H,
denote the hyperplane defined in P" by the equation a-x = apzo + ... +
antn, = 0. We begin by proving the following corollary to Bertini’s Theorem.
By convention, the dimension of the empty set is defined to be —1.

Lemma 1. Let k be an algebraically closed field. Let X be a non-empty
complete intersection in Py. Suppose that

dim Sing X = s.
Then there is a hyperplane H such that dim(X N H) =dim X — 1 and
dim Sing(X N H) < max(s,0).
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Proof. The case s = —1 follows immediately from Bertini’s Theorem [13,
Cor 6.11(2)]. (X is then smooth over k£ by Remark 4.) If s > 0, let Y =
X \ SingX, so that Y is smooth. Then, by Bertini’s Theorem, there exists
a non-empty Zariski open subset U of PZ such that for hyperplanes H,
parametrized by closed k-points a in U, Y N H, is smooth and thus non-
singular by Remark 4. Hence, for a € U(k) we have

(3) Sing(X N H,) C SingX N H,.

Furthermore, there are non-empty open sets U’, U” such that for all closed k-
points a of U’, no irreducible component of SingX of dimension s is contained
in H,, and for a € U"(k) no irreducible component of X is contained in H,.
Then we have, for a € UNU' NU"(k), that dim(X N H,) =dim X — 1 and
dim Sing(X N H,) < s. O

Remark 6. For any hyperplane H such that dimX N H = dimX — 1,
dim Sing(X N H) > dim SingX — 1 (see [14, Lemma 3|).

The next lemma is an “effective” version of Bertini’s Theorem. For a more
explicit result of the same type, see [1].

Lemma 2. Let n,r,di,...,d, be natural numbers, and let Fy,...,F, be
forms in Xy,..., X, with integer coefficients, and with deg F; = d;. Let
V = Proj Z[Xy,...,X,]/(F1,...,F;), and suppose that Vg has dimension
n—r > 0. Then for every prime q such that V; has dimension n —r, there
is a non-zero form ®, € Fy[&o, ..., &) with degree bounded in terms of n and
di,...,d, only, such that for every point a = (ag,...,an) € P%q satisfying
®4(ap,---,an) # 0 we have

(1) dimSing(V, N H,) = max(—1, dim SingV, — 1)

(i) dimVy; N Hy = dim 'V, — 1.
In particular, for each q > qo = qo(n,d1,...,d,) there is an a € ]P’%q with the
properties (i) and (ii).

Proof. We let P;, for each ¢ = 1,...,r, be the projective space over Z
parametrizing all hypersurfaces in P, of degree d; (as a Hilbert scheme), and
work in the large multiprojective space P = P; x ... xP,. For a k-point in P
representing a tuple (Fi,..., F,) we write V(F},..., F,) for the intersection
of the corresponding r hypersurfaces in P}. Let W C P x P, x P be defined
as the closed set of points P € P x P? x P} representing (F1,..., F,a,x)
that satisfy

X € V(Fl,... ,FT) N H,.
Let

W —>P =P xP
be the projection. The function ¢(P) := dim,py Qw/pr p is upper semicon-
tinuous (see Remark 3), so the set

S={PeW;p(P)>n—r}

is closed. Now, let 7 : S — P’ be the restriction of 7w to S, and let for every
se{-1,0,1,...,n}

As = {Q € P';dim7 1(Q) > s}.
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By Chevalley’s Semicontinuity Theorem [7, Cor 13.1.5], A is closed in P’,
as is the set

D={QeP;dimr (Q) >n—r}.

For each s € {—1,0,...,n}, let Ts = DU As. Then T is closed as well, so
there exist multihomogeneous forms H7,..., H; over Z that define T§.

For a closed k-point P € W representing (Fi,...,F,,a,x) we have an
isomorphism of stalks Qyy/p/ p = Qy g x, Where

Y =V(FR,...,F.)N Hy CPY.

Thus, for each tuple (F1,..., F,,a) such that both V = V(Fy,...,F,) and
V N H, are complete intersections of codimension r and r 4 1, respectively,
the fiber #=1(Fy,..., Fy,a) is precisely Sing(V N H,) by Proposition 1. For
every other point (Fy,...,F,,a) we have #~1(Fy,...,F,,a) = Pr. We
conclude that T, for each s, is the set of tuples (Fi,...,F,,a) such that
V(Fy,...,F,) N H, either has codimension < r or has a singular locus of
dimension at least s. In particular, if we have a closed k-point Q € P
representing (F1,..., F;) such that V = V(Fy,..., F}) satisfies

(4) dimV =n—r, dimSingV = s,

and if 75 : Ts — P is the projection, then the fiber 7;1(Q) is the closed
set of points a € P} such that either dimSing(V N H,) > dimSingV or
dim(V N Hy) = dim V.

Now let F1,..., F, be forms as in the hypothesis, and let ¢ be a prime such
that (4) is satisfied for @Q € P representing the tuple of (mod g)-reductions
(Fi)gs---,(Fy)q). Then m;1(Q) is defined in P}, where k = x(Q) = Fy,
by the specializations H}| 0 of the multihomogeneous forms H;. Applying
Lemma 1 we get that 7, (Q) x Spec k is a proper closed subset of P2 (where k
is an algebraic closure of k). Therefore one of the forms H} |, € k[{o, .- -, &n]
must be non-zero, so the form

q)q(fo,---,fn) = HZS|Q (605---5671)

has the desired properties.
The last assertion of the lemma follows from the easy observation that a
polynomial of degree at most ¢ cannot vanish at every point of Pﬁq. O

The following lemma explores the new geometry arising from the Weyl

differencing in Section 4. For a polynomial f(Xj,...,X,) we denote by Vf

¢
the gradient (aa—)gl, e aan) and by V2f the Hessian matrix (78 2L Xj) :
n v ,J

Lemma 3. Let Gy,...,G, be homogeneous polynomials in Z[X1,...,X,] of
degrees di,...,d,, and let

V =Proj Z[Xy,..., Xa]/(G1,...,G,).

Let q be a prime such that ¢t d; for alli=1,...,r and suppose that V, is a
non-singular complete intersection of codimension r in Pg{;l.
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(i) Let
_ n—1 n—1, . .
S = {(x,y) ePr xPp s y-VGi(x)=0,i=1,...,7,

rank (y - VQGi(x))KKr < r} .

Then dimS < n — 2.
(ii) Fory € ]Pg;l, let

Sy:{XE]P%;l; y-VGi(x)=0,i=1,...,7,
rank (y - VQGi(X))lgigr <, } )

For s = —1,0,1,...,n— 1, let Ts = {y € IP’gq_l; dim Sy > s}. Then
T is Zariski closed and dim7s <n — s — 2.

(iii) For each s, let Ts,(l), 5(2),... be the irreducible components of T%.
Then

> " deg(TY)) = Oppay,..a, (1)-
7

To prove Lemma 3 we shall need the following lemma.

Lemma 4. Let k be a field, and let V' be a closed subscheme of P} x P}.
Let A CP" x P™ be the diagonal, A = {(x,x); x € P}}. If dimV > n, then
VNA#0.

Proof. Consider the rational map

f . ]P)2n—}—1 ——3 P" x P"

given by

(XO MR X2n—|—1) — ((XO P Xn), (Xn+1 PP X2n+1)) .
Its domain of definition is the Zariski open set U := P?" 1\ (L U M), where
L={Xy=...=X,=0}and M = {X,41 = ... = Xop4+1 = 0}. Moreover,

let A be the variety in P21 defined by Xo = Xp41,. .., Xn = Xont1. Then
f is an isomorphism between A and A. Let V be the Zariski closure in P2n+1
of f~1(V). Then

dimV =dimV +1>n+1,
so that

codimA + codimV <2n+1.
Thus, by the Projective Dimension Theorem [15, Ex. 3.3.4], ANV is

nonempty. But a point P in this intersection automatically lies in U, since
AN (LU M) is empty, and we get a point f(P)in ANV. O

Proof of Lemma 3. (i) Assume that dimS > n — 1. According to Lemma
4, we then must have S N A # (. Thus, suppose (x,x) € SN A. By the
definition of S, we then have

?@VQ&%:Qi:L”qT

rank (x - V2Gy(x)) | c;c, <T-



8 OSCAR MARMON

But x - V2G;(x) = V(x - VG;(x)), so by Euler’s identity we have (since ¢
does not divide any of the degrees of the G;)

{Gi(x):(), i=1,....r

Therefore, by the Jacobian Criterion, x is a singular point of V, in contra-
diction with the hypothesis.

(ii) Let 7 : S — P"~! be the projection onto the second coordinate,
(x,y) — y. Then Sy = 77 1(y) x {y}. The fact that T} is closed follows
from Chevalley’s semicontinuity theorem [7, Cor 13.1.5]. Now let Ss = SN

(P! x Tj) for each s = —1,...,n — 1. Since S is the disjoint union of
fibres
Ss = U 7T_1(Y)7
y€Ts

we have, by (i)
dimT,; + s <dimS; <dimS <n—2,

whence dim7Ts; <n — s — 2.
(iii) As in Lemma 2, we shall let P; be the projective spaces parametrizing
hypersurfaces of degree d; in P, and put P =Py x ... x P.. Now, let

S={(Gi,...,Gp,x,y) €P xPLIx Pl y VGi(x) =0, i=1,...,r
rank (y'VQGi(x))lgigr <, }

Let 7 : S — Px Pl ! be the projection (G1,...,Gr,%,y) = (G1,...,Gr,y),
and define for each s

T, ={P=(G,...,Cr,y);dim7 "' (P) > s}.
Then 75 is closed by Chevalley’s theorem, so it is defined in P X ]P’%i by

multihomogeneous polynomials Hi,...,H; where t = Op,4,,..4,(1). Now
we fix polynomials Gi,...,G, and a prime ¢q. The set T is then defined
in ]P’gq_lby Hilg, . - Hilg, .- Now by Bézout’s Theorem [6, Ex.

8.4.6] we have
E deg(Ts(j)) < I | deg(Hi) <<n,r,d1,...,dr 1.
J i

3. POINTS ON COMPLETE INTERSECTIONS OVER [,

The following result is well-known and trivial, but we include a proof for
the sake of completeness.

Lemma 5. Let X = Spec Fy[X1,..., X,]/(f1,---, fp) be a closed subscheme
of Ay, , and let d = max;(deg f;). Let B > 1. Then, for any box B =
[@1 —b1,a1 +b1] X ... X [ap — bp,an + by, with |b;| < B, containing at most
one representative of each congruence class modulo q, we have

N(X7 Ba q) <<n,p,d BdimX-
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Proof. We identify Aﬁl with the open subset {Xo # 0} of IP’]’PEQ and consider
the scheme-theoretic closure Y of X in P defined by the homogenizations
Fy,...,F, of fi,...,f,. Then the sum Dx of the degrees of the irreducible
components of Y is at most d” by Bézout’s Theorem [6, Ex. 8.4.6]. Thus it
suffices to show that N (X, B, q) < py BYmX for every closed subscheme X .
We prove this by induction over v = dim X. If v = 0, then #X(F,;) < Dy,
so we are done. Thus, suppose that v > 1. Since X has at most Dx
irreducible components, it is enough to prove that N(X', B, ¢) <, p, B" for
an arbitrary irreducible component X’ of X. For some i € {1,...,n}, all the
hyperplanes H, :z; = a, where a ranges over I, intersect X' properly. Since
Dxnn, < Dx, the induction hypothesis yields that N (X' N H,, B, q) <n, Dy
B¥~ ! for each a € F, . Since we only need to consider at most 2B values of
a, we get

N(X,a Ba q) = ZN(XI N Haa BaQ) S 2B - On,DX (‘Byil) <<n,Dx BV’

a

as desired. 0

Delignes work on the Weil Conjectures [3] yields a sharp asymptotic for-
mula for the number of Fy-points on a non-singular projective complete in-
tersection. In the paper by Hooley [12] (with an appendix by Katz) an
extension to the singular case is proven. The following lemma is an affine
reformulation of Hooley’s result.

Lemma 6. LetY be a closed subscheme oflP’ﬁq that is a complete intersection
of codimension v < n and multidegree (d1,...,d,). Let Z =Y N {zy = 0}
and suppose that dimZ = dimY — 1. Put X =Y \ Z and s = dim SingZ.
Then we have

#X(Fy) = ¢" " + Onaya, (47 T29P2),

Proof. In case n = r the lemma is a trivial consequence of Bézout’s Theorem.
We may thus assume that n > r. By [12, Appendix, Thm. 1] we have

#Z([F) =1+q+...+¢" "+ 0"/,
However, s > dim SingY — 1 by Remark 6, so by the same theorem we get
#Y(F) =1+q+...+¢" " +0(q"H2r9/2),
Subtracting these two equations, we get
#X(Fy) = g7+ O(¢" T4/,
as stated. O

The following result is a generalization of Theorem 3 in [10]. However,
even in the case of a hypersurface we get a slightly sharper estimate. The
reason for this is the use of estimates by Katz [14] for “singular” exponential
sums. A similar application of those results are found in a paper by Luo [16].

Notation. For an element x = (z1,...,%,) in Z" we let

xg = (1 +4Z,...,zn +qZ) € Fy.
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Theorem 3. Let W : R* — R be an infinitely differentiable function, sup-
ported in a cube of side 2L. Let q be a prime and B a real number with
1<B<Kgq. Let

X = Spec Z[Xl, cee ,Xn]/(fla P ,fr),
where the leading forms Fy,...,F. of fi,..., fr are of degree at least 2, and
let
Zy = Proj Z[Xy,...,Xy]/(q, F1,..., F}).

Assume that dim Z; =n — 1 —r. Let s = dim SingZ,; and d = max;(deg F;).
Define a weighted counting function

Nw(X,B,q) = Y _ W(%x).

xXcZ"
Xq€Xy
Then we have

NW(X,B,Q) = q_TNW(AnaBaq)

5
? +Onar (DnﬂBs“q(”"”‘s‘Q)/ 2(B + q1/2)) ,

where, for each natural number k, Dy is the mazimum over R" of all partial
derivatives of W of order k.

Proof. We begin with some preparatory considerations, to justify the use of
Lemma 6 later in the proof. Let

Y, = Proj Z[ X, ..., Xy]/(q,G1,...,Gy),

where G(Xo, ..., Xn) = X% fi(X1/Xo,...,Xn/Xo) for i =1,...,n. Then
Zy=Y,N{Xo =0} and X, =Y, \ Z;. Moreover, since dimZ; =n—1—r
we must have dimY, =n —r.

We shall follow the approach of Heath-Brown [10] and use induction with
respect to s, starting with the case when Z; is non-singular, that is, when
s = —1. In case n — r > 2 we shall use Katz’ results. We begin, however,
with two trivial cases. Suppose firstly that n —r = 1. Then

Nw(X,B,q) <n,r, DoN(X, B, q) <, DoB
by Lemma 5, and
¢ "Nw (A", B,q) <n1 Dog "' B" <, 1, DyB,
SO
Nw(X,B,q) = ¢ Nw (A", B,q) <nd,.L Dns1(B +¢'/?)

as required for (5). Next, suppose that n —r = 0. Also in this case the
formula (5) holds, since Ny (X, B,q) <p. 4, Do and ¢ "Ny (A", B, q) <n,1.
Dyg "B™ <1 Do, whereas the error term required for (5) is Dy41 (Bg~ 1%+

1).
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From now on, we assume that n —r > 2. By the Poisson Summation
Formula we have

Nw(X,B,q) = ZZW( z+qu)>

2€ Xq u€Ln
. (B
_ZEZX( ) agneq(a-z)w (;a)
~(0) 27 (Ge) e

where

z]‘I(a) = Z eq(a'z),

z€X,

a sum which we shall now investigate. In case a = 0 (mod ¢), we can use
Lemma 6 to conclude that we have

Ye(a) = #X(Fy) =¢" " + On,d(q(nir+1)/2)-

Next we consider £,(a) for a # 0 (mod q). Since Z, is a projective complete
intersection of dimension at least 1, it is geometrically connected. Being non-
singular, it is thus geometrically integral. The hypothesis that deg F; > 2 for
all 4 now implies that for each a € Fy \ {0} we have dim(Z;NHa) =n—r-2,
where H, is the hyperplane defined by a-x = 0. Then, by Theorems 23 and
24 in [14], we have

Eq(a) < q(n—7‘+1—|—6(a))/2’
where d(a) = dim Sing(Z, N Hy). Thus we get

s = (2) (S(30) 0 ronie )
qla
S O —
q aczm” q

The first term here equals

. (2) 5 W B+ O ((?)nq“""*”ﬂ > W(Bv))

q veZ™ veZ™

= qirNW(AnaBa q) + On,d,L (Ban(n—H‘fl)/Q) 3

by the Poisson formula in the reverse direction and since Ny (A", B,q) =
On,a,r.(B™). Now we shall try to estimate the sum

~ (B
(8) %% (_a> ‘ q(n—r—|—1—|—(5(a))/2'
agZ:" q

It follows from a result of Zak (see [12, Appendix, Thm. 2]) that §(a) = —1
or 0 for all a. By Lemma 2, all a for which §(a) = 0 satisfy ®(a) = 0




12 OSCAR MARMON

(mod ¢q) for a non-zero polynomial ®(&q,...,&,) with integer coefficients,
whose degree is O, 4(1). Thus, let us split (8) into two sums

S+ = Y W (§a> RS (§a> ‘ ST,
aEZ" q aezn q
®(2)=0(q) ®(a)Z0(9)

We observe that, since the infinitely differentiable function W has compact

support, we have an estimate W(t)‘ &np Di|t|™ for |t| > 1 and any

k > 0, and moreover Dy <, 1 Dg4q for every k. In particular, for any
t € R® we have the estimate

9) ‘W(t)‘ <.z Dpmin(1, |t 7%), & >0
In order to estimate Yo, we calculate
R B . B —n—1
Z w (—a) L, Dny1 Z min (1, ‘—a )
o (2)Z0(q) 7 aczr 7

q n+1 o
<t Dpt1 ), 1+ D (§> Yl
la|<q/B la|>q/B

q n
<K Dpy1q (E) ;

which yields

n
22 <<n,L Dn+1 (%) q(’ﬂ—r)/Q_

For 31 we write

(2

<nr Dpp1 ), min (1,
)

)

3 Za
B(a)=0(q) B(a)=0(q 7
n+1
Knt Dnyt Y, 1+ Dpp (%) > laTh
la|l<q/B la|>q/B
@(a)=0(q) ®(a)=0(q)

The first term is O, 4(Dpn11(g/B)""!) by Lemma 5. Moreover we claim that

e g\ 2
Z la]™" 1<<n,d (E) .

la|>q/B
®(a)=0(q)

To see this, we note that the contribution to the sum from an interval A/2 <
|(a)] < A, where A > 0, is Oy, 4(A72). Indeed, by Lemma 5 the number of
terms is O, 4(A""') and the size of each term is O, q4(A™""'). Putting
A = 2% and summing over k for which 2¥ > ¢/B, we get

Z |a|—n—1 <<n,d Z 2—2k<<(%)72.

la|>q/B 2k>q/B
@(a)=0(q)

Thus we conclude that

q n—1 _
21 <<n,d,L Dn+1 (E) q(n T+1)/2,
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so we arrive at the estimate

n
(10) S1+ s nar Dot (5) 6" (B + g2,

B
Inserting (7) and (10) into the formula (6) yields

NW(X’ B’ q) = q_rNW(Ana B7 q) + On,d,L (Dn+1q(n—r—1)/2 (B + q1/2)> )

as required for the case s = —1.

Suppose now that Z; is singular, so that s > 0. Following Heath-Brown
[10] we will count points on hyperplane sections. We begin with remarking
that it is enough to prove the theorem for ¢ greater than some constant
g0 = qo(n,d). Indeed, if ¢ <5, 4 1, then B <, 4.1, 1, so that trivially we have
Nw(X,B,q) — ¢ "Nw(A",B,q) <41 1. Thus, using Lemma 2, we can
assume that it is possible to find a primitive integer vector b, with b <, 4 1,
such that dim(Z, N Hy) = n — r — 2 and dimSing((Z, N Hyp)q) = s — 1,
where Hy, is the hyperplane in P* ! defined by b+ x = 0. We can find a
unimodular integer matrix M, all of whose entries are Oy, 4(1) such that the
automorphism of IP’"fl induced by M maps Hy, onto the hyperplane X, = 0,
which we identify with P* 2 = Proj Z[Xy,...,X,_1]. Let Zq be the image
of Z, N Hy. Then

Z, = Proj Z[X1,..., X 1]/(q,G1,- - -, Gy)

where G;(X1,..., X, 1) = F;(M~Y(Xy,...,X, 1,0)) for i = 1,...,r, and
each Gj is of the same degree as F;. Obviously we have dimSingZ, = s — 1.
Moreover,

Nw (X, B,q) = ZW( ):ZW(%;:),

xq€X4 quj(q

where ):( is the image of X under the automorphism of A" induced by M and
where W (t) = W (M ~'t). Then W is supported in a cube of side L' <, 4 L,
SO we can write

(11) Nw(X,B,q)= > ZW(%::).

~BL'<c<BL x X,
Tp=C

For each ¢ € Z, the intersection of X with the hyperplane z, = c is isomor-
phic to

X, = Spec Z[X1,..., Xn-1]/(9%,---,95)
where gf(X1,...,Xpn-1) = fi(X1,...,Xn—1,¢) for i = 1,...,r. For each c
and %, the leading form of g{ is G;, so our induction assumption applies to
X., Z, and the new weight function W, on R*~! defined by W,(t) = W (t,¢).
We get

S W (%) = Na (e

Xq EXq
In=cC

_ q—TN (An 1 B,q) + On i (Dn+lBsq(n—r—s—2)/2(B + q1/2)> )
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We shall now add the contributions from all ¢ in the interval [-BL', BL'].
Observe that

> Ny avhBg= Y Y W(%(wc))

_BL'<c<BL' _BL'<¢<BL' yczn—1
1 -1 1 !
XEZL™ UYL
= Nw(An,B,Q),

since M is unimodular. Thus, summing according to (11) we deduce that
Nw (X, B,q) = ¢ Nw (A", B,q)
+ On,d,L (Dn+1Bs+1q(n_T_3_2)/2(B + q1/2))

and the induction step is finished. a

4. PROOF OF THE MAIN RESULT

The aim of this section is to prove Theorems 1 and 2.

Proof of Theorem 2. Throughout the proof, any implicit constant is allowed
to depend only on n and d, and we will omit the subscripts n,d from the O-
and <-notation.

Note. It will suffice to prove the theorem under the somewhat weaker hy-
pothesis that p < 2B+1 < ¢, but with the additional assumption that 2B+1
is a multiple of p. We will now prove that the general case follows from this
case. If p and q are given primes and B is an arbitrary real number such
that 2p < 2B 4+ 1 < g — p, then there are real numbers B; and Bj, with
B <€ B; < B < By € B, such that 2B7 + 1 and 2By + 1 are multiples of
pand p < 2B; +1 < g for i = 1,2. Indeed, we can take B; = B — p/2 and
By =B+ (p—p)/2, where 2B + 1 = p (mod p) and 0 < p < p. We have

2B+1)" 2B+1)"
N(X,B,pQ) - % < N(X,BQ,])Q) - %
pq pq
2B, +1)" 1 _
:N(XaB27pq) _%+O(Bn lp 7"—|—lq T)a
and similarly
2B+ 1)" 2B, +1)*

N(XaB,pq)_¥ > N(X, Bl,pQ) - %+O(BnilpiT+lqiT)'

pyq pbgq

Thus, if we assume Theorem 2 to be true for By and Bs, then we see that it
must also hold for B, since Bi, By < B.

From now on we assume that 2B + 1 is a multiple of p between p and gq.
To facilitate the notation we introduce the characteristic function of the box
B =[-B,B]",

(x) = 1 if max|z;| < B,
XB 10 otherwise.
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Then
N:=N(X,B,pg) = Y, xs(x)= >, Y. x8(x).
xEZ™ wely x=w(p)
pq|fi(x) p|fi(w) qlfi(x)

The “expected value” of the inner sum is
K:=p™"¢"(2B+1)",

so let us write

N=> | > xsx)-K|+K > 1

wely |\ x=w(p) wely
plfi(w) \dlfi(x) p|fi(w)

15

If we denote the first of these two sums by S, then, using Lemma 6, we get

N =S+ K#X(F) =5+ K (p"" +0p""/2)
(12)

2B +1)"
e R e}
pq
Now we turn our attention to S. By Cauchy’s inequality
2
st XX | X om-K |
welp welp  \ x=w(p)

p|fi(w) plfi(w) \4qlfi(x)

so that, if we denote the expression in the rightmost parentheses by 33, and

apply Lemma 5, we get
(13) S < pn—n2xl/2,

We estimate ¥ by adding some extra (positive) terms:
2

< YY) > xex)-K
welp aclfy x=w(p)
fi(x)=ai(q)
( 2
= Z Z Z xg(x) | —2K Z xB(x) + p"q" K2
welp aclF) x=w(p) xXEL™
fi(x)=ai(q)
The middle term here is just —2p™q" K2, so, denoting the first sum by Z we
get
(14) Y < Z-p'g"K>

To analyze Z, we write

Z=) xe(®x > xs&)

XEL™ x'ez™
x'=x(p)

fi(x")=fi(x)(q)
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We make the variable change x' = x + py in the second sum, introducing
the “differenced” polynomials

£ (x) = filx+py) - fi(x).
If By denotes the new box BN (B — py) = {x € Z™";x € B,x + py € B}, we

get
zZ = > xs® >, xs(x+py)

XEL™ YEL™
£ (x)=0(q)

Y Y xe, ().

YEZ™  X€EL™
£ (x)=0(q)

Ay)= > x,®)—q" Y xs,x),

XEL™ XEL™

7 (x)=0(q)

Z=> AW +a "> > x8,(x)

yEL™ YELTXEL™

Let us define

and write

Now one sees that, since we are assuming p | (2B + 1),

n

Z Z XBy = H Z Z X[—B,B](-’Ei)X[—B—pyi,B—pyi](mi)

yEL" XEL™ i=1 \yi€Z ;€%
( (2B +1 > _ T K2,
In other words, Z A(y) +p"q"K?, so we get by (14)
(15) Z< YA
yezn

Our task is now to estimate Y A(y). To this end, denote the leading forms
of fY,...,f¥ by FY,...FY and let

Xy = Spec Fylz1,...,zn] /(). fY),
Zy = Proj Fy[z1,.. ]/(Fly, L FY).
Observe that for each 1 = 1,...,r we have
F) =py-VF,

unless the right hand side vanishes identically (mod ¢) in x. Due to the
non-singularity of Z, this happens only if y =0 (mod ¢). Indeed, if y - VF;
is identically zero for some ¢, then, in the notation of Lemma 3, Sy = ]P’gq_l.
Thus y is a point on the affine cone over T,,_1 = (.

Lemma 7.
> Aly) < B p gm0 (log )" + B" ' p g *(log )"
YEZ™
+ B"p "¢" /2(log g)" + B"(log q)".



THE DENSITY OF INTEGRAL POINTS ON COMPLETE INTERSECTIONS 17
Proof. First, we note that A(y) = 0 for all y with |y| > (2B + 1)/p. Thus,
we only need to sum over the set

B={yeZ%|y| <(2B+1)/p}.
Let us decompose this set into subsets: B = By U B; U...U B,, where
B, ={y € B;codimZy, =0}, 0=0,...,r.
For y € B,, we can use Theorem 1 of the Appendix [17] to get
A(y) K, BHgr=s0)=22(B 4 ¢12) (log g)",

where s(y) = dim Sing(Zy ). Next we need to find out how often each value
of s(y) arises. We consult Lemma 3. Since Zy is a complete intersection
of codimension r, the Jacobian Criterion implies that Sing(Zy) = Sy. Thus,
the set of all y such that s(y) = s is contained in the affine cone over the
set Ts. By part (ii) of Lemma 3, T, has projective dimension n — s — 2, so
by part (iii) and Lemma 5, we get

B n—s—1
#{y € Byi5(y) = 8} <na (5) .

Summing, we get

n—r—1 B n—s—1
Z A(y) < Z (_) Bs+1q(n—r—s—2)/2(B+q1/2)(10gq)n
yeB, s=—1 p

& Bn(logq)n (Bp—nq(n—r—l)/Z _l_p—nq(n—r)/Q + Bp—'rq—l/Q +p—r> .

It remains to consider the contribution from y € B,, ¢ < r. We make a
simple observation about the varieties Zy originating from these values of y:
now the set Sy is very large.

Lemma 8. Let G1,...,G, be forms in the variables X1,..., X,. Let

V={G =...=G, =0} cp*!
and let 0G
. P i
W—{Gl—...—GT—O, rank(an> <r}.

Suppose that codim(V) = o < r. Then W contains all irreducible compo-
nents of V' of dimension n — 1 — 0. In particular, dimW =n—1— 0.

Proof. Let V' be an irreducible component of V' with dimV’' =n -1 —o.
Assume that there were a point P € V' such that rank (g%) (P) = r. Then

we would have

dimTpV' =n—-1-r<n—1—-0=dimV’,
a contradiction. Thus V' C W. O

We see that if y € B,, then, by Lemma 8, dim Sy = n — 1 — 0. Recalling
that, in the notation of Lemma 3, T}, 1, has dimension less than or equal

to o — 1, we must have
B a
1B,| < (—) :
p
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Using Lemma 5 to get the trivial estimate A(y) < B"~? for y € B,, we
compute the contribution from the B,, o < r:

r—1 r—1 B\’ r—1
Sy am-Y (2) p-my <
o=0yeB, o=0 p =0

In sum, then,

YAy =) > Ay)

yeB 0=0y€eBs
< B"p gD (log q)" + B p g7 2 (log )"
+ B"p "¢ )2 (log q)" + B"(log q)",

and Lemma 7 follows. O

Working our way back through the estimates (15), (13) and (12), we now
arrive at

(2B + 1)
p"q"
(16) 4B t/2ym=2n)/24=1/4 (1og q)/2 4 B"/2p=r/2¢(n=1)/4 (10g q)"/2

N = +0 (B(n+1)/2p—1'/2q(n—r—1)/4(log q)n/Z

+Bn/2p(nfr)/2(10g q)n/2 + Bnpf(n+r71)/2qfr> .
This completes the proof of Theorem 2. O

We shall now prove Theorem 1, where the modest dependence upon || F|
is due to the following lemma.

Lemma 9. Let X and Z be defined as in Theorem 2, and assume that Zg is
non-singular of dimensionn —1—r. If P> (37_, log ||Fi||)1+5, then there
s a prime p <5 P such that Z, is non-singular of dimensionn —1 —r.

Proof. As in the proof of Lemma 2, let P = Py X ... x P, where P; is the
projective space parametrizing all hypersurfaces of degree d; in ]P’%_l. By

a semicontinuity argument analogous to that in the proof of Lemma 2, the
subset U C P defined by

(Gy,...,G;) €U & V(Gy,...,G,) is non-singular of codimension r,

is Zariski open, its complement thus being defined by multihomogeneous
polynomials Hy,...,H; in the coefficients of G1,...,G,. Now by the hy-
potheses, for some j we must have H;(Fi,...,F,) # 0. We observe firstly
that

,
log |[Hj(F1, ..., Fy)| <na > log || Fi|.
i=1
Secondly, for an arbitrary positive number A we have
log |H](F1, s aFr)|
log AP

#{p> AP;p | Hj(F,...,F})} <
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Thus, if we choose A large enough, there are fewer than

;
yie [z tog |17
=1

such primes. Hence among the q first prime numbers greater than AP, there
must be one prime p such that p { H;(Fi,..., F;). By Chebyshev’s Theorem
it is possible to find an interval [AP, cs AP] that contains more than P/(1+9)
primes. Since P > a!*?, this interval must contain p. ([l

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Theorem 2 yields in particular that

+ B(n+1)/2p7r/2q(nfr71)/4

prq"

N(XaBaPQ) <<n,d
+B(n+1)/2p(n—2r)/2q—1/4 +Bn/2p—r/2q(n—r)/4 _|_Bn/2p(n—r)/2
+Bnp—(n+r—1)/2q—r+Bn—1p—r+1q—r (logq)n/Z

Thus we want to optimize the expression
Bn
pq
+Bn/2p—r/2q(n—7')/4 +Bn/2p(n—r)/2 +Bnp—(n+7'—1)/2q—r +Bn—1p—r+1q—r

+B(n+1)/2p—r/2q(n—r—1)/4 + B(n+1)/2p(n—2r)/2q—1/4

by choosing appropriate p and ¢. It turns out that
1___Bsnr—r?—5r 9_ 2(4nr—12)

(]_7) p = B n2+4nr7nfr27r’ g = B™ n2+anr—n—r2-p
would be an optimal choice. (Note that the last two terms in the expression
are dominated by the first term, so the optimization consists of trying to get
the first five terms to be of approximately equal order of magnitude.) The
restriction n > 4r + 2 ensures that (17) is compatible with the requirement
that 2p < 2B+1 < g¢—p. The trouble is now to make sure that the intervals
specified in (17) contain “good” primes, that is, primes such that both Z,
and Z; are non-singular of dimension n —1 —r.

For B large enough, (17) is a valid choice. Indeed, if

r €1
B> <Zlog||ﬁ;-||> , where
1=1

1 5nr —r? — 5r - 1-I-1

e1=(1-— —

! n2+4nr —n—r2 -7 2r )’

then by Lemma 9 (with § = (2r) 1) we can choose p and g, satisfying (17),

such that Theorem 2 holds. For these B, and with p and ¢ subject to (17),
Theorem 2 implies that

13n—3r—>5

N(X,B) < N(X, B,pq) <na B" """ #rinr—n=7= (log B)"/2.
For B < (37_; log ||F;||)**, we use the trivial estimate
N(X,B) <pqB""
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obtained by Lemma 5 to get

_ 2 13n—3r—>5 r ez
N(X,B) g B" " s (ZlogllFill) , where
i=1
13n —3r—5
=e | 2r —r? < 2r+1.
2= ( T 7’L2+47’L’I‘—7’L—7‘2—’f‘> sar

This proves the theorem. O

Remark. If we are content with just an upper bound for N(X, B,pq) in
Theorem 2, we can get rid of the factor (log q)"/ 2 and thus prove a slightly
sharpened version of Theorem 1, without the factor (log B)®2. This can
be achieved by introducing an infinitely differentiable weight function into
the proof of Theorem 2, as in [10], and using Theorem 3 in the place of [17,
Thm. 1] . More precisely, if instead of N(X, B, pq) we consider the weighted
counting function

where W is a non-negative, infinitely differentiable weight function on R”
supported in [—1, 1], we can prove an asymptotic formula for Ny (X, B, pq)
where the main term is

The error term would then consist of the first four error terms of Theorem
2 with the factor (log q)”/ 2 removed, the fifth error term unchanged, and an
additional term which is o (p~ "¢ "B™) and thus negligible for the application
of Theorem 1. To prove this asymptotic formula one imitates the proof of
Theorem 2, with xg(x) replaced by W (%x) and K by

n 1
Kw=p"q TZW(ﬁx>

XEL™

One is then led to estimate expressions

Awl(y) = Z Wy(x) —q™" Z Wy (x),
xXEL™ XEZ™
£ (x)=0(q)

where Wy (x) = W (55x) W (35 (x + py)). At this point we invoke Theorem
3. Here the error term, in contrast to the unweighted formula of Theorem 1 in
the Appendix, contains no factor (log ¢)", whence the promised improvement
of the upper bound. The only main divergence from the proof of Theorem 2
lies in the calculation of the sum ZyEZ" > xezn Wy(x). This can be done by
means of Poisson summation (see [10, p. 20]) and gives rise to the additional
error term mentioned above.
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Appendix
PER SALBERGER!2

The aim of this note is to count F;-points in boxes on affine varieties. If
x = (21,...,%,) € Z™ and ¢ is a prime, then we set x; = (z1 +4¢Z,...,z, +
qZ) € Fy. If Biis a box in R" and W a closed subscheme of A7, then we let

N(W,B,q) =#{x=(z1,...,2n) EBNZ" :x, € W(F,)}.

Lemma 1. Let q be a prime and B be a bor in R"® such that each side
has length at most 2B < q. Let f1,...frl1,...,ls31 be polynomials in
Z[x1,...,%y], T+s+1 < n such that the leading forms Fi,...,F, of fi,... fr
are of degree > 2 and the leading forms Ly,...,Lsy1 of l1,...,ls11are of de-
gree 1. Let

X = Spec Z[:El’""xn]/(fla'-'afT‘all-"als+1)a
A = Spec Z[z1,...,zn)/(l1 ... ,ls41) and
Z = PI‘Oj Z[:L‘l,...,.Tn]/(Fl,...,Fr,Ll,...,L5+1).

Suppose that Zq = Zy, is non-singular of codimension v+ s+ 1 in ]P’E;l-
Then

N(X,B,q) = ¢ "N(A,B,q) + On a(¢™ " *"2/2(B + ¢'/?)(log ¢)"),

where d = max; deg F;.

Proof. If r + s + 1 = n, then #X(F;) < d" by the theorem of Bezout
and hence N(X,B,q) — ¢ "N(A,B,q) <pq1 < g 5=A/2(B 4 ¢ /?). 1f
r+s+1=mn—1, then N(X,B,q) = O, 4(B) by Lemma 5 in the main paper,
so that N(X,B,q) — ¢"N(A,B,q) <na B < ¢ "72/2(B + ¢'/?). We
may thus assume that r+s+1 < n—2. Then, Z; is geometrically connected
since it is a complete intersection of dimension > 1 (see [1, Ex. I1.8.4(c)]).
It is thus geometrically integral since it is non-singular. Therefore, by the
homogeneous Nullstellensatz we obtain that a linear form a-x = ajz; +
coo + anTp, (a1,...,a,) € Fy vanishes on Z; if and only if a - x belongs
to the linear F,-space V of linear forms in (z1,...,2,) generated by the
reductions of Lq,...,Ls11 (mod ¢g). We now follow the approach of [3]. Let
Si1(a) = Ypepnzneq(—a-b) and Sz(a) = > cxm,)eq(a-x) for a € F.
Then,

N(X,B,q) =¢™ > Si(a)S:(a).
aEFg

"Mathematical Sciences, Chalmers University of Technology, SE-412 96 Géteborg
*Mathematical Sciences, Géteborg University, SE-412 96 Goteborg



THE DENSITY OF INTEGRAL POINTS ON COMPLETE INTERSECTIONS 23

Let Tl = Proj Fy[z1,...,7,]/(a171 + . .. + apzy) for a = (ay,...,a,) € Fy.

Then,
Y S@H@ =Y Y Y efax-b)
acV a€V xeX (F, ) beBNZ™
s+1
Z Z H ZeqaL(x—b))
xeX(F,) beBnzn i=1 \ I aer,

=#{(x,b) € X(Fy) x (BNZ"): Li(x —b) =0 (mod ¢),1 <i<s+1}

=#{(x,b) € X(IF;) x (BNZ") : [;(b) =0 (mod ¢),1 <i<s+1}
= #X(qu)N(A, B, q).
Here #X (F,) = " "~! -I—On,d(q(”_’"_s)/?) by Lemma 6 in the main paper.
There is also a set of n — s — 1 indices i(1),...,i(n—s—1) € {1,...,n} such
that any b = (b1,...,b,) € BNZ" with by € A(F,) is uniquely determined
by (bi1),---»bin—s—1)). Hence, #N(A,B,q) <p B"5~1 We have thus
shown that

¢ ") Si(a) (5D X (F,)N(A, B, q)

acV
— q_TN(A, B, q) + O, d(q—(n—s—1)—|—(n—r—s)/2Bn—s—1)'
As g (n-s-Dtn-r=s)/2pn-s-1 < o(n-7-5-2)/2B we conclude that
g™ Si(a)Sx(a) =q "N(A,B,q) + Onalg™ " * ?/*B).
acV
We now estimate ¢~ Zae]Fg\V Si(a)Sa(a). Since dim Z, NI, < dim Z,
for a ¢ V, we obtain from the theorem of Katz (cf. [3]) that
SQ(a) <<n,d q(n—r—s+6)/2
where § = dim Sing(Z, NIl,) < dim Z; € {-1,0}. As

> IS1(a)] Knya ¢"(logq)"
aEIF‘"

(see [3]), we get that the total contribution to ¢~" Eang\V Si(a)S2(a) from

all a € Fy \ V where Z; NI, is non-singular is On (g™ =570/ (log q)™).

To estimate the contribution from the remaining a € Iy, we use that there
exists a form ® € Z[yi,...,yn] of degree O, 4(1) in the dual coordinates
(y1,---,Yn) of (z1,...,2,) such that ®(a) = 0 in Z/qZ for all n-tuples a
where Z; N1, is singular (cf. Lemma 2 in the main paper). Hence,

Yo Isi@I< Y ISi(a)l <nad" ' Bllogg)"

acly acly
Sing(Z4NIla)#0 ®(a)=0

where the last inequality comes from an argument in [3]. The n-tuples a
where Z,; NI, is singular will therefore contribute with

Ona(¢" " ~*7/2B(log q)" ")
oqg™" Zae]Fz; S1(a)S2(a). This completes the proof of the lemma. O
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For a linear form L = a1z + ... + apzy € Z[z1,...,2,], we will write
IL]| = sup(la1l,.. ., |an])-
Theorem 1. Let g be a prime and B be a box in R such that each side has

length at most 2B < q. Let fi1,... fy be polynomials in Z[x1,...,z,], T <N
with leading forms Fy, ..., F. of degree > 2. Let

X = Spec Z[z1,...,z5)/(f1,-.., fr) and
Z = Proj Zlzy,...,zn|/(F1,..., F})

Suppose that Z, = Zy, is a closed subscheme of Pﬁq_lof codimension r with
singular locus of dimension s. Then,

N(X,B,q) = ¢ "N(A%,B,q) + Ona(B*q" " 22(B + ¢'/?)(log 9)"),

where d = max; deg F;.

Proof. Tt is enough to prove the statement for g greater than some constant
qo depending only on n and d, since for ¢ <, 4 1 we have B <, 4 1 and thus,
trivially, N(X,B,q) —¢7"N(A},B,q) <pq 1. Thus, assuming that ¢ is large
enough, we choose s + 1 linear forms Ly,...,Lst1 € Z[z1,...,Z,) such that
|ILi|| = Oqxn(1) and such that

Z} = Proj Zlzy,...,%4]/(¢, F1, ..., Fyr, Ln,. .., L)

is a closed subscheme of codimension r + ¢ in qu_l with singular locus of
dimension s —i for : = 1,...,s+ 1. Such forms were used already in [2] and
one gets a proof of their existence from Lemma 2 in the main paper.

Let I = L(BNZ" for the map L : Z" — Z*'! which sends b =
(b1y-..,by) to (Li(b),...,Lst1(b)). Then #I = O, q4(B*™). Moreover,
if ¢ = (c1,-..,¢541) € Z°F! then we may apply Lemma 1 to the affine
subscheme X of A7 defined by (f1,...,fr, L1 —¢1,...,Lsp1 — ¢cs41) and
conclude that

N(X¢,B,q) = ¢"N(Ac, B, q) + 0y, 4(¢" " *"2/2(B + ¢'/?)(log ¢)")

for Ac = Spec Z[z1,...,z,]/(L1 — c1,...,Lsy1 — cs41)- If we sum over
all ¢ = (c1,...,¢5+1) € I, then we get the desired asymptotic formula for
N(X,B,q). This finishes the proof. |

Remark. Note that ¢""N (A%}, B, q) = g~ "#(BNZ"), since different elements
in BN Z™ are non-congruent (mod ¢q) by the assumption on B.
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THE DENSITY OF INTEGRAL POINTS ON
HYPERSURFACES OF DEGREE AT LEAST 4

OSCAR MARMON

1. INTRODUCTION

Given a polynomial f € Z[z1,...,z,] we wish to study the solutions in
Z"™ to the Diophantine equation
(1) f(xla"'axn):O'

We are interested in the density of solutions, that is, for a given positive real
number B we want to estimate the number of solutions x to (1) satisfying
|x| < B, where |x| = max;|z;|. To this end we introduce the counting
function

N(f, B) = #{x € Z" f(x) = 0, x| < B}.
We shall use congruences as a tool to estimate N(f, B). Thus, we introduce
the counting functions

N(f,B,m) = #{x € Z"; f(x) = 0 (modm), |x| < B}.

Trivially, for any m, N(f, B, m) is an upper bound for N(f, B). We extend
this notation to systems of equations in the obvious way:

N(fla--'afTaB) :#{XEZn;fl(X) =" :fr(x) 207‘){‘ SB}’
N(fi,. .., fry,Bym)=#{x € Z"; f1(x) =+ = fr(x) =0 (modm), |x| < B}.

By the leading form of the polynomial f we shall mean the homogeneous
part of maximal degree. Heath-Brown [5] proved that for a polynomial
f € Z[Xy,...,X,] of degree at least 3 such that the leading form F is
non-singular (i.e. defines a non-singular hypersurface in P{), we have the
estimate
N(f,B) <F Bn—3+15/(n+5)

for n > 5. To prove this, Heath-Brown studied N(f, B, pq) for two different
primes p, ¢, and devised a version of van der Corput’s method of exponential
sums as a key step in the estimation of this counting function. By incorpo-
rating an exponential sum estimate by Katz [8] into Heath-Browns method,
the author [9] sharpened this result slightly, to

N(f,B) <p Bn73+(13n78)/(n2+3r72)(log B)n/2

for n > 6. Salberger [10] was able to sharpen the estimate further, through
a new geometric argument. He proved

N(f,B) <F Bn73+9/(n+2) (log B)n/2

for n > 4.
For polynomials of degree at least 4, one can try to iterate the Weyl (or
van der Corput) differencing step in [5] twice to get even sharper estimates,
1
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and that is the approach we will take in this paper. The aim is to prove the
following result:

Theorem 1.1. Let f be a polynomial in Z[x1,...,x,] of degree d > 4 with
leading form F. Let Z = ProjZ[zy,...,z,]/(F), and suppose that Zg is
a non-singular subscheme of P&_l. Then, provided n > 10, we have the
estimate

N(f,B) <F B’n—4+36/(n+8).

It will be convenient to seek to estimate a weighted counting function
rather than the original one. More precisely, let W : R" — [0, 1] be an infin-
itely differentiable function, supported on [—2,2]". Then we define weighted
counting functions

Nw(f,Bm)= > W (%;:) .
XEL™
fm(x)=0
Here f,, denotes the image of f in (Z/mZ)[z1,...,zy] under the homomor-
phism induced by the canonical epimorphism Z — Z/mZ. In the proof of
Theorem 1.1 we shall take W to be the function defined by

{exp(—l/(l —2), |t <1,

(2) W(t) = Hw(ti/2), where w(t) = 0 1t > 1.

i=1
It is then clear that N(f, B,m) < Nw(f, B, m). Approximating the char-
acteristic function of the cube [—B, B]" with a smooth function in this way
allows us to sharpen some of the estimates involved.

The proof of Theorem 1.1 is carried out in Section 3. We will use a
modulus which is a product of three distinct primes m = mwpq, where the
primes 7, p can be viewed as parameters connected to the two consecutive
differencing steps. The two differencings put us in the position to apply
results on the density of F,-rational points on a family of new varieties over
F,, parametrized by integral n-tuples y,z. These results, behind which lie
Deligne’s bounds for exponential sums over non-singular varieties, become
weaker as the dimensions of the singular loci of the varieties increase, and
thus we need to control these dimensions. Section 2 is devoted to this
problem.

2. PRELIMINARY GEOMETRIC RESULTS

The geometric arguments in this section extend those of Salberger [10].
A priori, some of our results are valid in characteristic zero only. But by
standard arguments from elimination theory and Chevalley’s theorem on
upper semicontinuity of fibre dimension, we obtain conditions on primes p
ensuring the truth of the statements in characteristic p.

Let F(z1,...,z,) be a homogeneous polynomial of degree d > 3 with
coefficients in a perfect field K of characteristic p, where p > d or p = 0,
and suppose that the variety Z C IP’?(_1 defined by the vanishing of F is
non-singular. Furthermore, for each y € K", define

oF oF
y = . = _— LR [
FY(0) =¥ VF(X) = i+ + gy
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and let
Zy = Proj K[z1,-..,24)/(F,FY), Zy =ProjK[z1,...,z,]/(FY).
Furthermore still, for each pair y,z of n-tuples of elements of K, we define
O’F

FY?(x) = (Hess(F))y -z = Z myizja
1<4,5<n

and the corresponding projective subscheme
Zy s =ProjK[zy,...,z,]/(F,FY,F¥7").

When z (or any other letter) is used to denote a K-point of P !, we will
use the corresponding bold letter x to denote an element of K™ representing
z, and vice versa, given x € K"\ {0}, we denote its homothety class by z.

Definition. In general, if V C ]P”}(_1 is a non-singular hypersurface de-
fined by a homogeneous polynomial G(z1,...,z,), then the Gauss morphism
G:V — P! is defined by z — [VG(x)], where VG(x) = (g—g,...,gTGn).
It can be extended to the whole of P!, since if VG(x) = 0 then dG(x) =
x - VG(x) = 0, so G(x) = 0 by the assumption on the characteristic. Thus
G is well-defined outside V.

Remark 2.1. Tt is easy to prove that the fibres of G are finite. In particular,
this implies that the polynomial GY, as defined above, cannot vanish iden-
tically for y # 0, since then the image of }P’?{l under the Gauss map would
be contained in a hyperplane.

Note that, by the remark above, Zy is a complete intersection of codi-
mension 2 and multidegree (d,d — 1), unless y = 0.

For fixed y, we wish to characterize the choices of z giving rise to par-
ticular values of the dimension of the singular locus of Z ,. Thus, for each
s =-1,0,...,n—2, define T;(Zy) to be the closed subset of z = [z] € ]P”}{l
such that dimSing Zy , > s. Also define the closed subset Tyeg(Zy) =
{z; dim Zy , = dim Zy }.

Lemma 2.1. Let n > 4. Suppose that y # 0 and that Zy and Zy are
non-singular varieties. Then
(i) Taeg(Zy) = @.
(ii) Suppose furthermore that p = 0. Then for each s = —1,0,...,n—4,
we have
dimTs(Zy) <n—2—s.

Proof. To prove the first assertion of the lemma, we need only note that by
the remark above, since F¥ is non-singular, F¥Y* does not vanish identically
for z # 0. Thus it has degree d — 2. Moreover, since Zy is a non-singular
complete intersection of dimension at least 1, it is geometrically integral. If
Zy and Zy , were to have equal dimension, then F¥* would have to vanish
on the whole of Zy, implying, by the homogeneous Nullstellensatz, that
FY* € Rad(F, FY). However, the ideal (F, FY) is prime, hence radical, so
we would have FY* € (F, FY), which is impossible for degree reasons. This
proves that Tyeg(Zy) = @.
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We shall now prove the second assertion. Since Zy is non-singular, we
can define the Gauss morphism
OFY OFY
-1 -1
§: P =P xe (6, 60) = (8—331”8—%) .
Note that, using the notation H, for the hyperplane z - £ = 0, we have
Zyz = ZyN S*I(Hz). We shall recursively find a sequence of linear sub-

spaces I1_1,Ily,...,II,_4 of IP’?(_l such that Zy, N G~1(II,) is non-singular

of dimension n —4 — s for s = —1,0,...,n — 4. Let I[I_; = ]P”}(_l. Then
Zy N 9_1(1'[_1) = Zy is non-singular by assumption. Suppose next that
we have already found a linear subspace I, s € {—1,0,...,n — 5} of di-
mension n — 4 — s such that Zy s := Zy NG !(Il;) is non-singular , and

let §5 : Zy s — II; be the restriction of § to Zy ;. Then, by Bertini’s
theorem [7, Cor 6.11(2)], we may find a hyperplane II;;; C II; such that
G; (Ms41) = Zy N G '(Il541) is non-singular of dimension n — 3 — s. Here
we use the fact that K has characteristic zero.

Now, for each s = —1,0,...,n — 4, let A; be the s-dimensional linear
subspace of P! = Proj K|[z1,...,2,] parametrizing hyperplanes H, such
that H, DO II,. We shall now prove that Ts(Zy) NAs; = &, and the statement
(ii) will then follow from the projective intersection theorem. Therefore,
suppose that z = [z] € A,. Since then H, D II;, there is a linear subvariety
I, C ]P”}{_l of codimension s such that II; = H;NIT",. By the above, however,

Zy NG HH,) NG HT,) = Zy NG H(I,)
is non-singular, so we must have
(3) (Sing Zy ,) NG~HT,) = @.
By Remark 2.1 it follows that
dim§ }(T',) =dimT, =n—-1—s.

Now (3), along with the projective dimension theorem, implies that
dim Sing Zy, , < s — 1. Thus we have z ¢ Ts(Zy), as promised.
O

Next, let us consider the (possibly) singular case.

Lemma 2.2. There is a constant @), depending only on d and n, with the
following property. Put
o = max{dim Sing Zy, dim Sing Zy}

Assume that o < n — 5. Then the following holds:

(i) Suppose that either p =0 or p > Q. Then

dim Tyeg(Zy) < 0.
(ii) Suppose that p = 0. Then, for each s =0,...,n —2 — o we have
dimT,4541(Zy) <n—2—s.

Proof. For o = —1, this is precisely the statement of the previous lemma,

so we assume that o > 0. It is then a consequence of Bertini’s theorem that
there exists a linear subspace L C IE’”;(_1 of codimension o +1 such that Zy,NL

and Zy N L are non-singular. This follows from repeated application of [9,
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Lemma 1]. (As stated there, the lemma assumes that K be algebraically
closed, but using an argument by Ballico [1] this hypothesis can be replaced
by the requirement that the cardinality of K be greater than a constant
depending only on d and n.)

Without loss of generality, assume that L is given by x, = 2,1 = -+ =
ZTpn—o =0. ThenY = Z,NL and Y = Zy N L are non-singular subschemes of
]P’?{U*z = Proj K|[z1,...,Zn—g—1]. For every z = (21,...,2p-¢-1,0,...,0) €
L, we have Zy , N L =Yj;, where z = (21,...,2p—g—1)-

It is easy to prove (see [8, Lemma 3]) that for any complete intersection
V in projective space, and any hyperplane H, we have

dim Sing(V N H) > dim Sing V' — 1.
By repeated application of this fact, we get that
Ta+s+1(Zy) NLCTy(Y).

Now we can use Lemma 2.1 (note that n—(o+1) > 4, so the lemma applies)
to conclude that
dimTy(Y)<n—(c+1)—2—s,
and hence dim T}, 1 s11(Zy) < n—2—s by subadditivity of codimension. This
proves (ii).
Similarly, we note that Tgeg(Zy) N L = @ by Lemma 2.1, which yields the
assertion (i). O

In what follows, let F' € Z[zy,...,z,] be a homogeneous polynomial of
degree d > 3. Let

Z = ProjZlzy,...,z,]/(F).
For any prime g, put
Zy = Proj Lz, ... ,z4]/(q, F)
= ProjFy[z1,...,zn]/(Fy),

where we use the notation F, to denote the image of a polynomial under
the canonical epimorphism Z — Z/qZ. This notation will be used also for

composite moduli. Next, for any y = (y1,...,¥,) in Z" we let
OF OF
FY . =y -VF - =y —+-.. —
(xla 7$n) y \% (wla a$n) ylaxl + +yn8xna
and define

Zgy = ProjZizy,...,z,)/(q,F,FY), Zyy =ProjZizi,...,z,]/(q, FY).

We also introduce the abbreviated notations s4(y) = dim Sing Z, , 5,(y) =
dim Sing Z, y, and o4(y) = max(s,(y), §4(y)). Furthermore, let us define

Ty(Zg) = {y € PR '554(y) > s}
For any pair of n-tuples y, z we put
o0*F

FY%(z1,...,z,) = (Hess(F))y -z = Z Yizj oo
i0Tj

i,j=1
We define

Zgyz =ProjZlz,...,z,)/(q, F, F¥,F¥*)



6 OSCAR MARMON

and s4(y,z) = dimSing Z; y ,. Furthermore, as above, let
Ts(Zgy) ={z € qu_l;sq(%z) > s}

The first part of the following uniformity statement is proven in [9, Lemma
2.9 (iii)].

Lemma 2.3. The sum of the degrees of the irreducible components of
Ts(Z,) is bounded in terms of n and d only. The same holds for Ts(Z,y)
for any y.
Definition. Let g be a prime number. We say that F' satisfies the property
(Ro(q)) if Z, is a non-singular variety.
(R1(q)) if for every s = —1,0,...,n — 3,
dimTs(Zy) <n—2—s.

(Ra(q)) if for every y € Fy and every s = —1,0,...,n — 4,

dim Ty 5 (y)+1(Zgy) <n—2—s.

We shall now derive a sufficient condition for F' to satisfy the condition
(Rz2(q)). Let H be the Hilbert scheme of all degree d hypersurfaces in P} *.
Homogeneous coordinates for H are given by t = (¢7), where I runs over
all n-tuples (i1,...,4,) of non-negative integers such that iy +--- + i, = d.
If x = (z1,-..,%,) are homogeneous coordinates for P%~*, then x! denotes
the monomial z?' .-~z Consider the multiprojective space

P=HxPy ! xPp! xpp!
with multihomogeneous coordinates (t,y, z, x).
Lemma 2.4. There exists a finite number of forms ®1(t),..., Pr(t) with
integer coefficients, such that a sufficient condition for the hypersurface de-
fined by > arx! to satisfy (Ra(p)) at a prime p is that p does not divide all of

the integers ®;(a). Moreover, if 3 arx! defines a non-singular hypersurface
over Q, then the ®;(a) do not all vanish.

Proof of Lemma 2.4 and Lemma 2.3. Consider the following polynomials:

. Z o
U(a,y,x Zyz
O(a,y,z,x) Zz] Z [‘)xzaxj

Let M be the closed subscheme of P defined by ®, ¥, 0 and all 3 X 3-minors
of the matrix

[0®/0z, --- 0®/0z, ]
ov/oxy --- 0¥/0x,
|100/0x1 --- 0©/0zy

Let N be the closed subscheme of P defined by ®, ¥ and all 2 x 2-minors of

the matrix i i
0%/0x, - 0®/0xy,
0V /0z; -+ O0V/0zy]’
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and N the closed subscheme of P defined by ¥ and 89 /dx1,...,0¥/dz,.

Let m: M — H xP% ' xP% ! be the projection onto the first three factors.
Let Jg, for s = —1,0,1,..., be the subset of points P € H X IP’%_I X ]P’%_1
such that dim7~!(P) > s. By semicontinuity of fiber dimension, this is a
closed set.

To see the relevance of Jg, let m; : s — H be the projection onto the
first factor, and consider a point h € H (k) representing the hypersurface
Z C IP’Z_l. Then the Jacobian criterion implies that

77 (k) = {h} x {(y,2) € P}~! x P}~ !;dim Sing Z , > s}.

Lemma 2.3 follows from the closedness of J;, since the product of the z-
degrees of the multihomogeneous polynomials defining J, gives a bound for
the sum of the degrees of the irreducible components of Ts(Z,y)-

Similarly, let p : N — H x IE”%*1 and : N — H x IP’%*I be the projections
onto the first two factors, and let J, be the closed subset of points P €
H x IE”%_1 such that min{dimp~!(P),dimp*(P)} > r. Suppose that J,
is defined by forms Ul(r) (t,y),...,UgB (t,y). Furthermore, let U, be the
complement of J, in H x ]P’%_l.

Next, let w, : J; = H X IP’%_l be the projection onto the first two factors.
Then define Qg,, u = —1,0,1,..., to be the closed subset of points P €
H x P3~! such that dimw; }(P) > u.

It is known that the projection p; : H x ]P)%_1 — H onto the first factor
is proper. Hence p;(Qs,,) is a closed subset of H for all s and u, defined by
some homogeneous polynomials, say Qgs’u) (t),..., sfl’su,z (t). Suppose now
that the tuple a = (ay) of integers represents a hypersurface Z C P%_l,
and that p is a prime number at which Z does not satisfy (Ra(p)). Then
for some s and o and some primitive n-tuple y € Z", we have (a,,yp) €
Qo4+s+1,n—1—s N Upp1. In particular,

1n—1— .
QZ(-U+S+ o S)(a) =0 (modp),i=1,...,Metst1,n—1—s-

This shows that the forms Q§U+5+1’n_1_s) (t) suffice for the first assertion of
the lemma.

Assume now that Zg is non-singular. The fact that (ap,y,) € U411 im-
plies that p 1 UZ-(TH) (ap, yp) for some i, so that in particular Ui(TH) (ap,yp) #
0, implying that (a,y) € U,;;. But by Lemma 2.2, Q5 i1 pn—1-5 N Upt1
contains no Q-points, so for some j we must have Qg-ﬁ_s“’n*l*s) (a) # 0.
This proves Lemma 2.4. O

The corresponding result with (Ro(p)) replaced by (Ri(p)) is shown in
[10, §1]. With (Ra(p)) replaced by (Ro(p)) it is a standard result. Thus we
get the following

Corollary 2.1. For each polynomial F € Z[z1,..., x| of degree at least 3
defining a non-singular hypersurface in P&fl, there is a finite set of primes
P(F) such that F satisfies both (Ro(p)), (Ri(p)) and (Ra(p)) for every p ¢
P(F).
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3. PROOF OF THE MAIN RESULT

We begin with some remarks on the results from the author’s paper [9]
that we will use.

Remark 3.1. The error term
Dn+lBs+1q(nfrfsf2)/2(B + q1/2)
in [9, Theorem 3.3] can be given by the simpler expression
Dn+1Bs+2q(n—r—s—2)/2_

Indeed, if ¢'/2 > B, then one would have Bst2¢(n—r=5-2)/2 5, Bn—7_gq
that the theorem would be true by means of a trivial estimate, such as [9,
Lemma 3.1].

We shall in the proof use the weighted asymptotic formula mentioned in
[9, Remark 4.4]. Let us therefore state this result. Appealing to Remark
3.1, we may simplify the error term somewhat.

Theorem 3.1. Let W : R® — [0,1] be an infinitely differentiable function
supported on [—2,2]". Let f1,..., fr be polynomials in Z[z1,...,z,] of degree
at least 3, with leading forms Fy,...,F,.. Let

Z = ProjZ[z1,...,zn]/(F1,..., F})

and suppose that p and q are primes, with p < B < q, such that both Z, and
Zgq are non-singular subvarieties of ]P’gq_1 of dimension n —1 — r. Then we
have

NW(fl, s ,fTaBap(I) _p_rq_rNW(OaBap(I)
LWond,C B(n+1)/2p—r/2q(n—r—1)/4 _I_B(n+1)/2p(n—2r)/2q—1/4

+ Bnpf(n—H"fl)/qur + anC/Zp(Cfr)/qur/Z
for any C > 0, where d = max;(deg f;).
The following result is standard [9, Lemma 3.1].

Proposition 3.1. Let X = SpecFy[z1,...,z,]/(f1,..-,fp) be a closed sub-
scheme ofAﬁq , and let d = max;(deg f;). For any boz B = [a; — by, a1 + by]x
oo X [ap — by, an + by, with |b;| < B, containing at most one representative
of each congruence class modulo g, let B, be its image in (Z/qZ)". Then we
have

#(Bq n X(Fq)) Ln,p,d BamX,

The following asymptotic formula for the number of rational points on
a complete intersection, due to Hooley [6], is a consequence of the Weil
conjectures [2]. The version below is proven in [9, Lemma 3.2].

Proposition 3.2. Let fi,..., fr be polynomials in Fy[z1,...,z,] with lead-
ing forms Fy, ..., F,, respectively. Let

X = SpeC]Fq[‘Tl,"' 7‘,En]/(f1""af7‘)a
Z =ProjFylz1,...,z5)/(F1,..., F}).
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Suppose that dimZ =n — 1 —r and let s = dim Sing Z. Then
BX(E) = 7 + O (drr 24917
where d = max;(deg F;).

The following result is a simple exercise in Poisson summation. The
argument appears in [5].

Lemma 3.1. Let ¢ : R* — R be an infinitely differentiable function sup-
ported in the box [—M, M|", and let Dy, for k =0,1,2,3,..., be the mazi-
mum over R" of all partial derivatives of ¢ of order k. Let a and B be real
numbers such that B >1 and 1 < a < B. Then we have

2
5 o(5%) S o (5uran) = (S o ()
XEZL™ YEZ™ PVAS
+ On i (DkB#Fammk)

for any k € Z>.

Proof. Since ¢ is infinitely differentiable and compactly supported, we have
for the Fourier transform ¢ the estimate

(4) $(&) npre Dil€|

The function ®(x) = ¢((1/B)x) has the Fourier transform &(¢) = B"¢(BE).
Thus, by Poisson’s summation formula and (4), we get

3 (%x) =B Y $(Be)

(5) XEL™ gezn
= B"$(0) + On k(D B"F).
For fixed x, put ¥(y) = ¢((1/B)(x + ay)). Then
i) = (2) exp(-2riax-m (2n).

By Poisson’s summation formula and (5) we calculate

> o (pcran) = () oo xon) 3 b (2n)

yEeL™ neL™
(6) =a " (B"+ Oy ars(DLB" b))
_ 1 “k —
=a " Z ¢ (§X> —f—On,M,k(Dan ka n+k)’
XEZ™
which yields the desired formula. O

The density of solutions to f(x) = 0 (mod 7pg). This subsection con-
stitutes the technical heart of the proof of Theorem 1.1. In what follows, let
f be a polynomial in Z[z1, ..., z,] of degree d > 4, with leading form F'. Let
W be the infinitely differentiable weight function in (2). We shall assume
the existence of three different prime numbers 7, p,q, with 7,p < B < g,
such that F' satisfies (Ro()), (Ro(p)), (R1(p)), (Ro(q)), (R1(q)) and (Rz(q))-
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Lemma 3.2. In the notation of above, we have the following results:
(i) Put
K =n""p ¢ 'Nw(0, B, mpq).
Then

Nw (f, B,mpq) = (mpq) ' Nw (0,B 7rpq)+0< (”_1)/221/2>

P
+0 (B /?p~1 1), where

(ii) For any y € Z", let

) = (ot my) = F()), Wyl) = WEIW x+ )

and put
1 9 1
xX€L™” XEL™
qu(x):qu(x+7ry):0
Then
(8) Y= Z A(y) + O¢ (BZn—Cﬂ_—rH—Cp—Zq—Q) +&
y<B/m
for any C > 0.

(iii) Suppose that'y # 0. For any z € Z", let
£40) = 5 (F x4 p) = S ),
P00 = ~(fy (x-+ p2) = )

— L (Pt my +p2) — [(x +7y) — [ (x+p2) + F()),

p
Wy a(x) = Wy (x)Wy (x + pz)
and put
1 _3 1

Aly,z) := Z Wy 2 (§x> —q Z Wy .z (EX) .

XEL™ XEL™

fa(x)=f3(x)=

7" (x)=0

Then

1/2
(9) A(y) =p 2/ ( > A(y,Z)) + E2(y) + Euly)-

zLKB/p

(iv) Furthermore, we have

(10) A(O) <<Bnp 1 +B(n+1)/2p—1/2q(n—2)/4+B(n+1)/2p(n—2)/2q_
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All the implied constants depend only on n and d, unless otherwise specified.
The &; are error terms, spelled out in more detail within the proof.

Proof. Starting from the definition of Ny (f, B, mpq), we write

Nw (f, B, mpq) = Z Z W(%x)—K + K Z 1

uel? x=u (7) uely
fr(@)=0 \ fpq(x)=0 fr(u)=0

=S+K (w"—l + O(ﬂ'n/Z)) ,

where

S= > >oow (%;:) - K
uck? x=u ()

fx(@)=0\ fpq(x)=0

Here we have used the property (Ro(w)), applying Proposition 3.2 to the
hypersurface defined by fr(u) = 0. By Cauchy’s inequality,

2

1
Sty Y W(Ex) -K|,
uel? | x=u(n)
fra(x)=0

so we have
Nw(f, B,7pq) = n" 1K + O (ﬂ_(nfl)/221/2) L0 (Bnﬁfn/2p71q71> ,

and (i) is proven. Now,

5= | Y w (%x) -K
uclk? | x=u(w)
Fpq(x)=0
2

1
— Z Z W(Ex) — 2K Nw (f, B,pq) + n"K2.
uel? | x=u(n)
fpq(%)=0
By Theorem 3.1 we have
NW(faBapq) ="K + 80’
where
€0 <o BMHD/2p 1/24(n-2)/4 4 pn1)/2,(n-2)/2,-1/4
+Bnpfn/2q71 _{_anC/Qp(Cfl)/qul/Q’
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since Z, and Z, are non-singular. We conclude that
2

zzz Z W(%x) — 1" K%+ &4,
()

uclk? | x=u
frq(x)=0

where £; € KE&jy. Introducing a new variable y, we expand the sum of

squares as a double sum
2

S RIC| BRI I

uelf? | x=u(n) XEL™ YEZ™
fpq(x)=0 foa(x)=0 foq(x+7y)=0
1
-y X w(y)
y<B/1 xEL™

foa (%)= fpq (x+my)=0
Recalling the definition of A(y) above, we have
1
Y= Z Aly) +p %q 2 Z Z Wy, <§x> —m"K? 4 €.
y<B/m YEL XELT
By Lemma 3.1, however,
1
p—Qq—Q Z Z Wy (Ex) _ 7TnK2 <<C’ BQ'IL—C,R.—TL-FCp—Qq—Q’
YEL™ XEL™

so we have proven (ii).

We note that the ideal (f(x), f(x + my)) in Z[x] can also be written as
(f(x), f¥(x)). By Remark 2.1, neither of Fj and F, is identically zero.
Thus fJ and f are polynomials of degree d — 1 with leading form F and
F, respectively, and moreover

dimZ;y =dimZ,y, =n — 3.
Let
Xy = SpeCZ[Xla s 7Xn:|/(fa fy)

Now we write

(11) Aly) = S(y) + &Ea(y),

where we have defined

and
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with

K(y)=p" q22W< )
XEL™
But then

Ex(y) = K(y) (#Xy(F) —p"7?),
and by Proposition 3.2 we have #Xy(F,) = p" 2+ 0 (p(”+sP(Y))/2), yielding

Ea(y) < Brp~(n=s(¥)/24-2,

Thus we turn now to S(y). We again apply Cauchy’s inequality, using
Proposition 3.1 to estimate the number of [F,-points on Xy. Thus we get

(12) S(y)? < p"*S(y),

where
2

1
S-S | X W (gx) - E®)
very x=v (p)
fa(x)=13 (x)=0
In this second differencing step, we will complete the sum (mod p) as in
Heath-Brown’s original argument [5], with respect to one of the two poly-

nomials involved. We have
2

a 1
(13 Sy <Y Y W, (%) - KO
VERy a=1 | x=v (p)
Jq(x)=0
17 (x)=a

Denote by X'(y) the right hand side of (13). Expanding the square, we get
2

-S| X W (5x) | - KN B0+ R )
veFy a=

1 (p
fq (x)
f7 (x)=a

By Remark 3.1 we have the estimate

Nw(f,B,q) =p"qK(y)+ O (Bq(nﬂ)/?) ,

insertion of which yields
2

a 1
> Wy <§X> —p"qK (y)?
(14) verz a=1 | x=v (p)
fq(x)=0
f7 (x)=a

L0 (Bn—l—lpfnq(nfG)/Q) _
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As before, we proceed to expand the sum of squares as a double sum, intro-
ducing a third variable z:
2

331 IDSIA CT D SRS SRR C )

velR? a=1 | x=v z& B XEZL™
A i) P S t2 0
fq (x)=a = {”(x):o

and then we compare the sum over x to its expected value A(y,z). Another
application of Lemma 3.1 yields that

g ) D> Wy (%X) —p"qK (y)* <¢ B™ Cp "t 3,
2K B/pXEL™
so it follows, in view of (12), (13) and (14), that
1/2
(15) Aly) <p™ 221 3 Aly,z) | +Ealy),
zLB/p
where
Eu(y) <o BOHD/2p=1¢(n=0)/4 | gn—Cp=14C=3/2  for ane ' > 0.
This proves (iii). Finally, (iv) follows directly from Theorem 3.1.
]

Next, let us sum up the results of Lemma 3.2 in an estimate for
Nw(f,B,npq). By (7),(8) and (9) we are led to evaluate the quantity

1/2

1/2
w0 mm e (3 (Fapm) )

yezZm\ {0} \zezZn

which will be the strongest competitor to the main term in (7). We wish
to switch the order of summation. Thus we apply Holder’s inequality [3,
Theorem 65] to get

> (Sava) < (2)" (5 5 a0

y#0 \zcZn YEZ" zEL™

Here we have used the fact that A(y,z) vanishes for y > B/w. (16) trans-
forms into

(17) E, Bn/4 (n— 2/4 n—2)/ Z Z A y’

ZEL™ yELT

1/2

1/4

We shall now try to calculate the double sum

(18) YD Aly.2)

ZELNyEL™
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Our domain of summation for the outer sum is then € = C N Z" for some

cube C centered at the origin and with sides of length < B/p. Denote by

C" the exceptional set of z € € such that g4(z) > n —4, and €' =€\ €".
First we take care of the case z = 0. We have

A(y,0) < Nw(f, f¥,B,q) + B"¢"® < B"q™?

for y # 0 such that s,(y) < n—>5, by Remark 3.1. If s,(y) >n—4ory =0,
we have

A(y,0) < Nw(f,B,q)+ B¢ < B"q™".
Recall that F satisfies (R1(g)), so the number of such y in the cube y < B/w
is < (B/m)3, by Proposition 3.1 and Lemma 2.3. This yields

n 3
Z Ay,0) < (§> B¢ 7% + (§> B"g~!
(19) yEL™ 4 g

= B>"g g2 4 B" 3573,

Next we calculate the contribution of z € €”\ {0}. As remarked in
Section 2, Z, , has the expected dimension, n — 3, for every z # 0, so we
can use the trivial estimate A(y,z) < B™ 3 from Proposition 3.1. Another
trivial estimate yields > 0 c7n A(y,2) < B2 375" Again, because of the

property (R1(q)), we have #C" < (B/p)3, so we get
(20) Z Z A(y,z) € Br~"p~3.
zeC” yezn

It remains to calculate the contribution from z € €'. Thus, fix z # 0 with
z < B/p, and suppose that o4(z) = ¢ < n — 5. (This means that Z,, is
regular in codimension one.) Our domain of summation for y is B, = B,NZ"
for a cube B, centered at the origin and with sides of length < B /7. Denote
by B the exceptional set of y € B, such that dim Z, 5, > n — 4, and put
Bl = B, \ B.. Using [9, Theorem 3.3] and Remark 3.1 we have the estimate

A(y, ) < BH#)H2gn=5s(y2)/>

for y € B,. Furthermore, by Lemma 2.3, and since F' satisfies (Ra(q)),
the number of y € B, such that s,(y,z) = s+ + 1 is < (B/7)""1=¢ for
—1<s<mn—>5— 0. Hence we calculate

n—5—o n—1—s
(21) Z Aly,z) <€ Z (E) BU+sH34(n—6-0-35)/2

™
YEB, s=—1
For y € B! we note that at least we have
A(y,2) < Nw,,(f, f* B,q) + B"q~* < B"¢?,

by [9, Theorem 3.3] and Remark 3.1, and since ¢ < n — 5. Furthermore,
provided q is greater than some constant ) independent of z, Lemma 2.2 tells
us that #B” < (B/x)°*tl. Thus, incorporating into (21) the contribution
from y € B we get

> Aly,z) < BHotpmngn5-0)/2 4 prtotipmimeg i/

(22) yEL™
+ BTH—U_H’/T_U_lq_Q.
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The next step is to sum over z € €. The property (Ri(q)), combined with
[5, Lemma 2], yields the estimate (B/p)”~!~¢ for the number of z such that
04(z) > 0. Thus, summing the contributions from (22) we get

n—>5 n—l—o
Z Z Aly;z) € Z (g) (Bn+0'+27r—nq(n—5—a')/2

(23) zeC yeZn o=—1

4 Brtot2p—imo-1/2 | Bn—|—o’—|—1ﬂ_—a—1q—2).

Each term in this sum is dominated by either the previous term or the next.
Taking this into account, we put together the three contributions (23), (20)
and (19) to get the following estimate for the double sum in (18):

(24) Z Z A(y,z) <<B2n+1ﬂ_fnpfnq(nf4)/2+B2n+17r73p7nq71/2
ZELNyEL™

+ B2np—nq—2 + BQn+17T—np—4 + BQn+17T—n—|—1p—4q—1/2
+ BZnﬂ_fn+4pf4qf2 4 B2n7r7"p73 + B2nﬂ_fnq72 + Bn+3,n.f3_
We arrive at the following result:

Lemma 3.3. Under the hypotheses of Lemma 3.2, and with E; defined by
(16), we have the estimate

(25) By < BOMD/Ag1/2,-1/20(=0)/8 | pnt1)/47(n-5)/4)~1/2,-1/8
+ B/Ag(n=2)/4p=1/2,=1/2 | B@n+1)/4,~1/2),(n—6)/4
+ BOn+D/Ap=1/4(n=6)/4,=1/8 | B3n/ty1/2)(n—6)/4,~1/2
+ B3/ 1/2p(n5)/4 . pdn/An 12 (n-2)/4,-1/2
+ B +3)/4 5 (n=58)/4(n=2)/4

For clarity, let us recall where the different terms in (25) come from.
The first three constitute the contribution from values of z # 0 such that
the ’differenced variety’ Z;, is non-singular. The next three come from
z # 0 where ma,x(dimSinng,z,dimSinng,z) = n — 5. Within these
sets of three terms, the first two correspond to y such that Z,, ., is a
complete intersection, with Sing Z, y , of minimal and maximal dimension,
respectively, whereas the third term comes from y such that Z, , has
higher dimension than expected. The sixth term corresponds to the case
max(dim Sing Z, 5, dim Sing Z, ;) > n — 5, and the two last to z = 0.

Proof of Theorem 1.1. We repeat the hypotheses of the theorem: let
f be a polynomial in Z[zy,...,z,]| of degree d > 4 with leading form F,
let Z = ProjZ[xz,...,z,]/(F), and suppose that Zg is a non-singular sub-
scheme of IP’%*I. Note that Lemma 3.2 (i) gives an asymptotic formula for
Nw (f, B,npq). However, we shall only use it as an upper bound, and try
to deduce a good upper bound for N(f, B) by choosing 7, p and ¢ wisely in
terms of B. It turns out that the following relations are desirable:

(26) T=px= B(nfl)/(nfS)’ q= BQ(nfl)/(nfS),
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since then the first, second, fourth and fifth terms in (25) will be of the same
order of magnitude as the main term in (i), and all other terms involved will
be smaller. To be able to use Lemma 3.2 we need to have ¢ > B, so we
cannot hope to find ¢ satisfying (26) unless n > 10, whence this condition in
the theorem. More importantly, the results of Lemma 3.2 are subject to a
set of hypotheses (Rk(-)) on 7, p,q. We need to show that such =, p, g exist
in the specified intervals (26).

By Corollary 2.1, however, the number of primes not fulfilling these cri-
teria is finite. Thus, provided B >p 1, any primes 7, p, g satisfying (26)
will do. Bertrand’s postulate [4, Theorem 418] assures that the intervals
specified in (26) contain primes. We are thus allowed to insert (26) into
Lemmata 3.2 and 3.3. Then we have, for the main term in (7),

(ﬁpq)*le(O,B,wpq) < Bn(ﬁpq)ﬂ < B 4+36/(n+8)
The same holds for the 'main’ auxiliary term - by Lemma 3.3 we have

El < Bn—4+36/(n+8)'

Thus, to finish the proof of Theorem 1.1 it remains to check that the re-
maining terms occuring in Lemma 3.2 are small enough. The third term in
(7) is obviously dominated by the main term. From the second term in (8)
we get the contribution

B=C/2p(C=1)/2=1 -1

which is < B"~4t36/("+8) provided C' >, 1. The term A(0) of (10) con-
tributes
ﬂ_(nfl)/QA(O)lﬂ & Bn713/2+54/(n+8)'

The contribution of £; to (7) is
ﬂ_(n—l)/281/2 < Bn—19/4+171/(4(n+8)) +B3n/4—3/4+9/(n+8)
1 gn11/4+9(20-11)/(4(n+8))
for any C' > 0. Again, choosing C' large enough yields this term negligible.
The error terms £2(y) and €4(y) have to be summed over all y # 0. For

€4(y), this is easily done, since the expression vanishes for y > B/, and
the estimate we have is independent of y. The contribution to (7) is

1/2
ﬂ_(nfl)/Q Z 84(}’) < Bn79/2+81/(2(n+8)) + Bn79/4+9(4079)/(4(n+8))’
y#0

which is small enough for C >, 1. The summation of £5(y) requires some-
what more work. Namely, by the property (Ri(p)), the number of y in the
interval y < B/ for which s,(y) = s is O((B/m)"~17%). Thus we get

n—3 B n—1-—s
Y &y < ) <;> Brp—(n=s)/2=2

y#0 s=—1
& B2y (mHD)/2g-2 4 g2, -2,,-3/2,-2



18

OSCAR MARMON

yielding the contribution

1/2

(n—1)/2 Z Ea(y) « Bn/A-1/2427/(4(n+8)) | gn-31/4+297/(4(n+8))

y#0

This proves the theorem.
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