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ASYMPTOTIC ERROR EXPANSIONS FOR THE FINITE
ELEMENT METHOD FOR SECOND ORDER ELLIPTIC
PROBLEMS IN RN N >2. I: LOCAL INTERIOR EXPANSIONS

M. ASADZADEH!2, A. H. SCHATZ2 AND W. WENDLAND?3

ABSTRACT. Our aim here is to give sufficient conditions on the finite element
spaces near a point so that the error in the finite element method for the
function and its derivatives at the point have exact asymptotic expansions in
terms of the mesh parameter h, valid for h sufficiently small. Such expansions
are obtained from the so-called asymptotic expansion inequalities valid in RY
for N > 2, studies by Schatz in [22] and [24].

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The aim here is to give sufficient conditions on the finite element spaces near a
point so that the error in the finite element method for the function and its deriva-
tives at the point have asymptotic expansions in terms of the mesh size parameter
h, valid for h sufficiently small. So-called asymptotic error expansion inequalities
at a point for the finite element method were derived in Schatz [24]. These results
which will be stated in a moment, will be our main tools in deriving asymptotic
error expansions. In the paper [1] Richardson extrapolation was justified using
asymptotic error expansion inequalities. In this paper we shall use asymptotic
expansion inequalities to derive asymptotic expansions that are extended ways to
justify Richardson extrapolations.

Let us first describe the problem more precisely and then state the results. Let
Q) be a domain in RV, N > 2, and for d > 0 let By(zo) be a ball of radius d centered
at ro. We shall assume that at the point zo, that we are interested in, there exists
a d > 0 such that By = Bg(xo) CC Q.

Consider the second order elliptic equation of the form

a 0%u(x) )
(1.1) Lu(z) = Z i s f(z)  in Bg(mo).

The local weak formulation of (1.1) is

(1.2) A(u,v) :/ fudx for all v € Wy (Ba(xo)),
Bd(mo)
where
o Ou Ov
1.3 A(u,v =/ a;;— —— |dx.
(13) wo=| (Z: 52; 9
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Consider the finite element approximations wy of u. For this purpose for each
0< h<1,let S"(By) c WL (By) be finite element space satisfying the conditions
in [24]. For our purpose here, think of them as any variety of spaces of continuous
functions on By(zg), which on each set 73, of a quasi-uniform partition (of roughly
size h) which covers By(xo), contains all polynomials of degree < r —1 where r > 2.
For any set G C S"(By), SH(Q) is the restriction of S*(B,) to G and S"(G) are
the subspaces of S*(G) of functions supported in G.
Now the finite element approximation uj, € S*(By) of u is assumed to satisfy

(1.4) Alu —up, ) =0 forall ¢e€ S’f(Bd(;co)).

Let us begin with discussing asymptotic expansions for the values of functions
at the point .

Definition 1.1. A ~ term asymptotic expansion for the function values at a point
To is an expression of the form

(15) U(.’L’o) = Uh(.'L'o) + Z hr+|a|E\a|($07u) +R’Y(h’;$03u)a

r<|al<y-1
where the error coefficients F|,| are independent of h and the remainder term R,
is O(h7).

Our main result will be concerned with deriving 2r — 2 term asymptotic ex-
pansions for equations of the form (1.1), for » > 3. The general case of variable
coefficients and lower order terms:

I’ oy o ,
(1L6) Lu=-Y —(ai,-(m)a—%) + Zb,.(m) +e(z)u = f(z) in Ba(zo),

ox; ;
ig=1 9% O

can also be treated by the methods given in [23] and [1]. However, in this case, which
is not treated here, we are only able to prove a one term asymptotic expansion.

In order to find such expansions we shall impose so-called self-similarity condi-
tions, on the finite element spaces in a neighborhood of the point zg.

Expansions of this type have been known for some time for some finite difference
methods (c.f., e.g. Bohmer [6]). The main contributions to the finite element
literature are on plane domains and are due to Q. Lin and coworkers. In the case
of finite elements with r = 2 (in particular piecewise linear or bilinear elements),
such expansions were first derived at points x which are the vertices of a uniform
triangulation of the plane in Lin and Zhu [16], Lin and Lu [12] and Lin and Wang
[13]. Improvements and extensions of these expansions were then given in the paper
by Blum, Lin and Rannacher [4] which contains an excellent presentation of the
derivation of the exact asymptotic expansion. Further results, of this kind, can
be found in Lin and Wang [14], Lin and Xie [15], Blum [3], Rannacher [18], Chen
and Lin [7], Wang [29], Lin [11], Ding and Lin [9], and Chen and Rannacher [8] ,
where other references can be found. For an asymptotic expansion near a corner
see Blum and Rannacher [5]. For a related study of the extrapolation of the energy
functional see Riide [20] and [21]. Corner domains are addressed in Huang and
coworkers [10], where they assume sufficiently smooth initial data and rectangular
domains. Lin [11] considers an extrapolation technique for the eigenvalues on non-
convex domains. We recommend the survey articles by Rannacher [19] and Blum

[2].
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An outline of the remaining part of this paper is as follows: In Section 1.1 we give
assumptions on the finite element spaces, in particular the self-similarity property
and state the main results of the paper: Theorems 1.1 and 1.2 which are concerned
the accuracy of pointwise error estimates for the function and its first order partial

]
derivatives, i.e., (u — up)(zo) and 6—(u —up)(z0), ¢ = 1,..., N, respectively, at
o

certain (similarity) points zg of the gzrid. Section 2 contains preliminaries for the
proofs of Theorems 1.1 and 1.2. Section 3 is devoted to the proofs of the main
results. Finally in our concluding in Section 4 (Appendix I) we recall the usual
finite element assumptions used throughout the paper. Below we denote by C a
general constant independent of the parameters involved in the estimates unless
otherwise explicitly stated or clear from the context.

1.1. Some assumptions on the subspaces and statement of the main the-
orems. The requirements we shall make on the subspaces, near a point zg, are
motivated by looking at the meshes which are systematically refined in a neighbor-
hood of zy. For example as in so-called nested spaces constructed to be used in
the multigird methods. In order to do so it will be more convenient to work with
a sequence of subspaces Sp (B1(zo)) where for some sufficiently small h and fixed
K>1
h

=
Now we state the most important assumption A.5. on the finite element spaces
(the usual properties A.1.-A.4. of the finite element spaces are listed in Appendix

1).

(1.7 hj (for example K = 2,3,4.)

Definition 1.2. Two subspaces S, (B, (z0)) and St (By,(z0)) are said to be
similar near xo if the mapping (a scaling about zg)

h;
(18) (T¢) @) = (a0 + e~ 0))
is a one to one mapping of S, (Bh,; (z0)) onto St (By, (20)).
Examples of subspaces satisfying this definition are given in [1]

Assumption A.5. on the mesh. We shall now assume that given z( there exists

a d > 0 and an integer kg such that for any pair of integers j and k with j > k > ko,

(i-e., hj < hg < hy,), the scaling Sh* (Bny 4(20)) is similar to Shi (Bh,;(%0)). This
o

2
just says that from some mesh size hy, on, the mesh on a disk of radius d is
constantly uniformly refined about z¢ resulting in self-similar subspaces about zg.

In the sequel we shall use the following notation: For m > 0 an integer, 1 <
p < 00 and G C Q, W*(G) denotes the usual Sobolev space of functions with
distributional derivatives of order < m which are in L,(G). Define the seminorms

(3 10l )" it 1<p<o,

[ulwi @) =
i@ > DUl (q) if p=oo,
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and the norms

Z lulwi (@) if p=oc.
j=1

If m >0, W,;™(G) is the completion of C§°(G) under the norm

=1

Q| =

1
lullwzm () = sup /uwdw, E+
YeCrE@) ¢

lllwme =1

Our first result is ad follow:

Theorem 1.1. Letr > 3, r+1 < v < 2r —2, and suppose that A.5. is satisfied in
a ball of radius d > Ch centered at xo and suppose u — uy, satisfies (1.4). Further
suppose that u € W2 (Bg4(zo)). Then

(1.9) u(zo) = un(zo) + ( 3 capau(xo)h\al) + R,
r<|a|<y-1

where

(1.10) Ry < C (W llullwz sawony + 4 llu = unllyt 5,000y )

We now give an asymptotic expansion for first derivatives. Note however, if z

is a point of the mesh where % is discontinuous, then we define

817h T 8uh
(1.11) G (20, 8) = lim T4 (@ + 55),
where 8 = (B1,...,0n) is any unit vector chosen so that for s sufficiently small,

ou
say 0 < s < 5o, a—mh exists and has a limit as s — 0. There may be many possible
2

(zo, 8). Obviously, %(wo,ﬂ) = Oun (zo) at points xo where Oun

ox; Ox;

6uh

choices of

1
18 continuous.

Theorem 1.2. Suppose the assumptions of theorem 1.1 are hold, except that now
we assume r > 2, then for i =1,2,..., N, and u € W)1(By),

811,(.’11'0) _ 6ﬂh($07ﬂ) a |a]—1 !
(1.12) s ( 3" CaD%u(ao)h ) +R,
r<]a|<y-1
where h=h;, j=k,k+1,..., and
(1.13) R, < C(m lallgpas 5 + AN = wnllyt 5, )

Remark 1.1. Such expansions, at a point, even for any r < 7 would justify the
usual procedure of verifying the rate of convergence of the method at xg.
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Remark 1.2. Tt is unreasonable to expect that an estimate like (1.9) holds at a
point if the “shape of the mesh” changes at the point as h changes. This is suggested
by the fact that the interpolation error at a point depends heavily on the shape of
the domain in which z is located. Hence our need for the assumption A.5. of the
similarity near the point .

2. PRELIMINARIES

Our starting point in proving Theorems 1.1 and 1.2 will be results from Schatz
in [24], so-called asymptotic expansion inequalities which we state for equations of
the form (1.4).

Lemma 2.1. Forr > 3, r+1 < v < 2r — 2, v integer, let u € WX (Ba(zg))
and suppose d > Ch for some C chosen sufficiently large. Then the following
“asymptotic expansion inequality holds”:

|(u — up)(z0)| < C(ln %)W[M |2|:: Du(zo)| + -

(2.1) +RTE Y |D“u(wo)|+h'y||u||W;o(Bd(wo))]

la|l=7-1
—t—N
F NPy - Unllw=t (Bu(zo))-
Here, ¥ =1 if vy =2r — 2 and 7 = 0 otherwise.
Remark 2.1. The estimate (2.1) is valid on irregular meshes.

Remark 2.2. The case r = 2 is excluded from (2.1).

Let us state the corresponding result for the first derivatives which includes also
r = 2 and is as follows:

Lemma 2.2. Suppose that r > 2 and Assumptions A.1-A.J (given in the Appendix
I) are satisfied. Let t be a non negative integer, 1 < p < oo, and 7y an integer,
r <y <2r—2. Letx € Qp and d > kh for some k sufficiently large, and
u € WX (Bqy(wo)) and uy, € SH(Ba(zo)) satisfy (1.4). Then

llu — unllwy (Ba(z)) < C(ln%)w(h"—l Z |D*u(z0)| + - - -

la|=r

(2:2) + 1703 [Du(zo)| + m||u||W;+1(Bd(mo)))

la|=y
+ C(d—l—t—N/p”u — uh“WP_t(Bd(iEO))) -
Herey=1ify=2r—2, and y=0ifr <~ < 2r —2.

3. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1.

Step I. Let us perform a simple step which is still valid at any point of an irregular
mesh. We will reduce the problem to one which more clearly shows what has to be
proved in order to obtain an asymptotic expansion at a point.
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Without loss of generality assume for the moment that zo = {0} and d = 1.
The case of arbitrary d > 0 will be considered later. Assume further that A(-,-) is
coercive over W4 (B;(0)), i.e., there is constant C' such that

(3.1) Cllulliwz (3, 0y < A(w,u) for all u € Wy (Bi(0)).

Note that A corresponds to the operator L given in (1.1) which, in general, does

not satisfy (3.1). However, it is easy to construct a form A by adding a sufficiently
large lower order term which vanishes for |z — zo| < § and satisfies

Cllulliva s,y < Alu,u)  for all u € Wy (B (o))

and

A(w—un, ) = Alw—un,9) Vg € St (Bip(ao)).

In order to keep the notation to a minimum we shall assume this has been done
at the beginning and set A = A, keeping in mind that u — uy, satisfies the original
equation in By /2(:50) but the w§ are determined relative to A on B.

Now for each monomial z* = w*(z) let w{¥(z) € S!(Bi) be the finite element
approximation defined by

(3.2) Aw® —w,p) =0 VYo e SHBy).

Then the functions

b=u@ - Y 2D e

al
r<lal<y-1

and 9y, € S?(B;) defined by
Da
mmmE) - Y T

r<|a|<y-1

satisfy the local equations

(3.3) AW =) =0 Vo€ SH(By).

Hence the estimate (2.1) can be applied at g = {0}. Noticing that ¢(0) = u»(0)
and the fact that (D%*)(0) =0 for all » < |a| < v —1 we obtain

Du(0)
w0 =u©- Y Zup)ir,
r<|a|<y-1 ’
(3.4)
Deu(0) wp(0), |,
=un(0) = Y a,( ) -—glil)h‘ '+ R,
r<lal<y—1 ’
where

Ry < C(WJullwz (50 + 118 = unllwy+ (s, 0)))

where we have used (2.1).

Note that (3.4) is valid on an irregular mesh without assumption of similarity at
the point 0. However, (3.3) is not! an asymptotic expansion because the coefficients
wfﬁ((x?) are functions of h. In order to obtain an asymptotic expansion we shall
restrict ourselves to a sequence of meshes with mesh size h; as defined previously

and require similarity at the point 0. Then we shall show




ASYMPTOTIC ERROR EXPANSIONS FOR THE FEM 7

Step II. We claim that for r < |a| < 2r—3

35  lim ©) wi, )

h—0 |ex| ||
h] h]

— Co| < ORI

=C, exists and |

Towards this end we shall show that there exists a ko such that for each j > ko

(36) el T h""'
J

‘ <7l forall k> .

Then (3.6) would imply that, for |a| < 2r — 2, { | | } is a Cauchy sequence and

therefore (3.5) holds and hence (1.9) is proved for d=1.
The proof of (3.6) is somewhat involved. We start with a fixed h; for j sufficiently
large so that the estimate (2.1) holds (h; sufficiently small). By assumption A.5.

each S’“e Bh,c 0)) is similar to Sfj B1(0)) for all £ > j. Set h—’“ = )X and note
h

that a‘ wp ()\a:) e Sp (31(0)), (A < 1 is scaling factor).
We shall now show that

(3.7 A(m" | whk (A\x), (x)) =0, for all p € SfJ (31/2(0)).

Ale

Since the a;; are constants, we have by the change of variable z = ¥ that the left
side of (3.7) is equal to

N
0 1 Op(x)
aij— (2% — —wi. (A\z)) - dz
‘/31/2(0) z,;::l J ox; < Ael “he ) 83:1-

— /\1—N—|a\

0

dy =0,
ay]()y

B, 2(0) 52 dy; (ya — wy, (y))

which proves (3.7).
Because of (3.7) and (3.2), recalling that z* = w?, it follows that wp, (z) —

serwh, (Az) € S7(By(0)) and satisfies

(3.8) A(ng( ) — thk(xx) oz )) =0, forallyeSh (31/2(0)).

Thus the difference in (3.8) is a discrete A harmonic function in B;/5(0) and it
follows from (2.1): first proved by Schatz and Wahlbin [26], with v = 0 and up =
wh () — s=rwi, (Az), that

whk

1
(i, 0) = s 0] < s, - 5
W37 (B1/2(0))

<|

’U)hk

illw2=7(By,5(0)) * el

W3~ (B1/2(0))
=J1 + Jo

We shall now estimate J; and Js.
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Setting =« — wy. = EF a standard duality argument leads to

(3.10) Ti = B w2 s, ni0) = _ sup (B, ).
b € W3 7%(By/2(0))
1¥llwg-2(5,,5(0)) =1

Now let

(v,;9) = A(v,Z)  for all v € W3 (B12(0)),
then for any x € S!(B/2(0)),
(B, ¢)| = A(BY, Z —x) < Chy™™? 19w, 200 -
Thus
2r—2
(3.11) J1 < Ch;

The estimate of J, is rather lengthy. We begin by using a duality argument
where setting Ef := 2* — girwit (Az) we have

(3.12) Jo = sup (B¢, ),
peW. (B1/2 (0))
||7/’||W; 2(Bya(0) = 1

where |¢|W21‘—2(B1/2(0)) is the seminorm and we have used the obvious fact that
|¢|W;‘2(B1,2(0)) < ||¢||W.§‘2(B1/2(0))' We again make the change of variable z = £
and obtain

o ) = Fo - za Yy y W
E=[  Bepea= | BEQRO
1 « « o
N W/BW(O) (v = wit, ) d(w) dy,
where ¢ (y) = ¢(4) € WTQ(BA/Q (0)) and
/2
|¢|WT *(B1/2(0)) — Z /|Dﬁ¢
|Bl=r—2

— \T2- N/2 Z /‘D'B’(/J dy /2‘

|Bl=r—2

Inserting these into (3.12) yields

Jy < A2-7—lal=N/2 sup (y — wy, (y),w(y))

TEW~2(Bs 2(0)) ‘J

W3 ~2(By/2(0))

Using a duality argument let

(3.13) A(n,v) = (n,9),
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and let vy be the interpolant of v, then it follows that for each {bv,
)\Z—T—\a|—N/2 (ya _ UJ;? {5) — /\2—r—|a\—N/2A(ya _ wgz v — UI)
k? k7

< )\2440{\71\]/2( H(|y| + )\)T*‘alvE/‘:(y)HLQQ(BUQ(O)) x

(3.14) x|yl + MV - o)

L1(B1/2)(0)
1B g mers o) 10 = V1lwg s\ ) )
= \2r-lal=N/2 (J2aJ2b + chsz)-

Notice that 3 < 1, if A < 1, also the return from EO‘ to EY in (3.14). One can
always decompose the unit disk into two parts as an inner and an outer region so
that v satisfies a homogeneous differential equation on the outer region. Estimating
the above Jy terms in the reverse order we obtain for Jsq,

Jaa = v = /UI”WI(Bl\Blm) < OXT 1hT ' ||v||W’"(B1\B7/16)

By well known a priori error estimates, see Lions and Magenes [17]

1
||U||W2"(Bl\B7/16) < ||U||W22_5’(B1)’ Vo' > E + 1.
Thus

(3.15) Jog < AT lhr 1 Hd}H < A2 3+N/2hr 1 ‘%[}‘

% (By) Wwi=3(B1)’

where we have used the fact that the measure of By, is proportional to AN since,

HwH sup () < Hw)

B —
B 11y g7 (15, =1 ||so||W5/(E)

lelly,, < OX2+N/2

LB ) lell..,

< s AR
=1

L2(Bxy2) W;=2(B1)’

1llwg? 51y

where we have used the Sobolev inequality to obtain the bound: |l¢f|, < C. As
for Js. we have

(316) J2c = ||Eg||W1(Bl\Bl/2) ~ ||Ek ||W1(B )\T_lh.;‘—l.
Taken together (3.15) and (3.16) yield

Ar2-lal=N/2 g < oar—2olal=N/2pr—1\3r -4+ N/2 -1 ‘{p"‘
(3.17) - ’ T Iw e
< C)\2r—2—\a|h2_r—2 ‘ ~‘ )
- il W5 ~2(B1)

This is half of the estimate for J,. We shall now estimate Jo, by writing
Jon < C [[(fyl+ 27V =)

>

Ax<p <}

L1(Ba»x)

(3.18) |y|_'_/\ a| TV(U_UI))

L1(Q)

where , are the annuli

QE:{mEBl: PZ+1S|73|SP£}> PZ=2_€7 621727
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Then by approximation theory and the Cauchy Schwarz inequality, from (3.18) we
get

ol _ “rN/2 1y
(3.19) Jop < CA@ 1+N/2h; 1|’U|W2T(B5A)+ Ziplea\ T+N/2y 1h; 1|v|W2,,(92),
1<e<E

where 7 = [(In 2)/ In 2], with [7] denoting the integer part of 7, and Q) = U5, | Q,,
is the union of Q, and its closest adjacent neighbors. Similarly, using local es-
timates for the continuous problem, with Q} = Uf,j:leflﬂin, and the fact that
3<2r—|of <,

r—|a|—N/2
(320) |U|W27‘(Qz) S Cpf |’U|W12"‘—|0‘|(Qzl) -
Hence the last term on the right hand side of (3.19) can be estimated as

—r+N/2\r—1y7— g
(321) D TN T ol gy < ONTHRGT [ol e
1<e<?

1*1(B1\Bax) *

The last term will be estimated by Green’s function. For any multi-index 8, with
|B| = 2r — |a| we have, with ¢ and v satisfying (3.13),

Lol 20185 [ B0 0 )

b 1
- /|y<2)‘ ‘d’(y)‘ </w|>2)\ |z —y|N 22 =le dx) dy.

For each y let R = |z — y|, then in spherical coordinates

(3.22)

1 RN-1
dz <C —_——~  dR
/|’”|22>‘ |z — |V r<r<1 RN-2+2r—le]

(3.23)

—-C R|‘1H‘1—27‘ dR < C}\\a|+2—2r’
A<R<1 -

where we use the inequality —r + 1 < |a| + 1 — 2r < —2. Therefore using (3.23) in
(3.22) and the Poincare inequality on 1) we get for 1) € Wi (B, /2)5

DPu(z)| do < CNel+22 |15 < Cpel-rNz2 ) ,
/zZQ/\ | ( )| - ¢) Li(Bxs2) — v W3~ 2(Bx/2)
and from using (3.22) in (3.20)

(3.24) Jap < CX=HN 2L

r—2 "
w,

Finally, it remains, to estimate Js,. In order to do this we shall need a simple
variant of a result proved in Schatz [24] for

) V)

3.25 Joa = || (——
(3.25) > ES

Lo (Bl/2)
The result in [24] is as follows: For any 0 < s <r —1,
(3.26)

Wm—wu@nscw I

ly — 2| + h + ||e||W22—r(B1/4) |

) V(- X))

Loo(Bi/4)
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Applying (3.26) to u = z, up = wy, we obtain for any z € By /5(0),

)" v

_ <
ly| + A -

(327 <|Gre) " ) v

Loo(Bszya)

1 loe|—r o
- (|y| + A) HVEh:c ||W§—T(Bl) :

Now, since A = hy/h; < 1, thus hi/(|y| + A) = h; < 1, and hence

1 hy, |z] + A 1 ly — 2|+ |yl + A
: < h
<Iy|+/\ |y—2|+hk)(|2|+>\) - |Z|+/\((|y—zl+hz)(|y|+>\)) o
1 hi b
< .
= |z|+/\(|y|+/\+ |y—z|+hk)

Therefore from the above inequality and (3.27), taking the supremum over all y €

B,y we get
(3.28)
2 la=r a a r—|af @
s C|(pram) VET @) OV IVE e,
oo (D374
Now
(3_29) /\r—\a| ”VEI(:”WZZ_T(Bl) < )\r—\a|)\2r—2h?r—2 < )\3r—\a|—2h5r—2_

To estimate the first term on the right hand side of (3.28) we use the same diadic
decomposition as before and write B3/, = Ban,; U, Ba,, where Ah; < p1, Then on

Bin;,
1 la|—r
- < \r—lef
(|z| +)\) = ’

and
V(@ = 2f)] < N TRT 2%y, < X W
Similarly, on €y,

()" e e

1yl _
—— <(=) atmgp
2] + A i P

Loo(Q0) P

sup
¢
Summing up we get
1 loe|—r
Y V(z® —z7)(2)
H(|z|+)‘) Lo (Bsya)

(330) < C()\T—|a|/\7“—1h;'*1)\|a‘—7‘ + Sup_pz‘—\a|p\la\—1‘)\r—1h;71)
1<0<2

—1p7r—1
<c(xthy )
Taken together these last two inequalities (3.29) and (3.30) yield
Joa < C(/\r—lh;—l + /\3r—|a|—2h'];r—2)_
Nowsincer —1<r+1=3r—-2r+3-2<3r—|a| —2 < 2r —2. Thus
(3.31) Joa < C(M—lh;—l).
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Combining (3.31), (3.24) and (3.17) we have in view of (3.14) and finally (3.10)
and (3.9) that

1
wh; (0) — ol Vi (0)‘ < Ch3T=2 4 ONr 2 lalp2r=2
+ A2-T—lal-N/2 <A|a\—1+N/2)\r—1h?r_2)

< C(h?”) (1 4 azr2lal 4 1)
<ChZ™?  forall hy.

Consequently we have the final answer for the case p =1, viz,

wy (0)  w® (0 .
(3.32) i) i, (O <CRT21 forall hy < hy (k> j).
h\fl\ h'lkal J J
j
Therefore for each a, r < |a| < 2r — 3,
ws (0
lim hf_() -C,

j— ler|
J—o0 hj
exists and is independent of h; and u, and we have the asymptotic expansion

D*u(0), |4
(3.33) uw(0) = un(0)— > caThl 17 (|ullwz gy +llw = unllwze (s, -

r<[a|<y—-1

Step III. Ch; < p < 1, p fixed.
Let A(u —up,p) =0 Vo € Sl (B)) then under the change of variable y = £
u:=u(py) and up = up(py) satisfy

A(@ — T, ) =0 Vo € SH/°(By)

and therefore we may apply the asymptotic expansion to obtain on unit size domain

ea  ao-mo-- Y (%) (2)"+%,

a!
r<|ol<y-1
where
~ h Yo - -
(3.35) o] < 0(52) Wilwa, 5,20 + Ol =l -
Changing variables back again we get the main result for step III:
Ca a a
(3.36) w0 —up(0)=— 3 (?)Dwu(o)lﬂ + R,
r<laj<y—=1
where

(3.37) Riy,p) < C(h” lullywz, s,y + 2~ llu — unllyye (s, ) .
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Proof of Theorem 1.2.

Step I. p=1.

We shall give a sketch of the proof of Theorem 1.2, mentioning only the differences
between the two proofs for Theorems 1.1 and 1.2. For r > 2, i.e. piecewise linear
as above, consider

(3.38) u(0) —up(0) — Y (%!((Dxlal—capau(o)wg(m)).
r<la|<y-1

The result we shall need from Schatz and Wahlbin [26] is the Lemma 2.2. Applying

du(0)  dun(0)
Ow;

Lemma 2.2 to calculate the error at 0 for the difference we have for

Ox;
1=1,2,...,N, on unit size domain
du(0) _ dun(0) 3 Du(0) 9wi,(0) _ "
Oz; 0z; a! ox; v’

o
where r <~ <2r—1and
R, < O]l 0y + 1o = bl s, 09 )
Thus in this case we are led to showing that
owfi (0)  dwy, (0)
M= Ow; _ oz, < Ch2'rflf|a\‘

By a result of Schatz and Wahlbin [26] and in view of the fact that wf, — sirwp,

with A = %, as proved before is discrete harmonic and in view of (3.32), satisfies
2

M < a _ _ - .« < 2‘7‘—1—‘04
= h|ja|71 Wh; /\|a\wh5 - —hJ ’
which proves the expansion on unit sized domain and scaling as before gives the
main result for the derivatives: For i =1,2,..., N,
9u(0) _ dun(0) _
3.39 R C!, D (0)hl* = + R!
(3:39) e > DK 4R,
r<|a|<y-1

where h=h;, j=kk+1,..., v<2r —1and
(3.40) R < (Cm—l el 50y + 16—l (5, oy )

Step II. Asymptotic expansion for p < 1.

Following the scaling argument given in the proof of the Theorem 1.1, in the cor-
responding case: p < 1, the proof is an exercise to the reader. The estimate for the
remainder can be written as

R{y < C(h'vfl ||u||W;’o(B,J) + p,t,l,N/p || — uh”WP_‘(B,,) )

This completes the proof of Theorem 1.2. a



14 M. ASADZADEH"2, A. H. SCHATZ? AND W. WENDLAND?

4. ApPPENDIX I. PROPERTIES OF THE FINITE ELEMENT SUBSPACES

Here we shall state our assumptions on the finite element subspaces used in this
paper. They are basically the same as those given in Schatz and Wahlbin [27] and
[26]. The precise statements here are taken from [26].

For 0 < h < 1 a parameter and r > 2 an integer, S?({2) will denote a family
of finite dimensional subspaces of W1 (2). If D C € then S*(D) will denote the
restriction of functions in S*(Q) to D and Sﬁ (D) is the subspace of S (D) consisting
of functions whose support is contained in D. In what follows Dy CC D; CC Ds,
etc. denote concentric balls which are contained in . Assume that there exists
a constant k such that if dist(Dg,0D1) > kh and dist(Dy,0D3) > kh then the
following hold:

A.1 (Approximation) Ift = 0,1,t < £ <r,1 < p < 0o, then for each v € sz(Dg)
there exists a x € S*(D;) such that

llo = xllwz (1) < CH olwe(py)-

Here
1/p )
( Z ||D°‘U||1]’Jp) if 1<p<o
[v|pe = lo]=¢
? > D%, if p=oo.
|a|=¢

Furthermore, if v € Wé(Do) then y € Sﬁ(Dg) Here C is independent of h, v, x
and D;, i =0,1,2.

A.2 (Inverse Properties) If x € S"(D,), then for t = 0,1,

IxXllwe o1y < CHN274 x|y (),
and for £ = 0,1,
Idlwscon < O ixlly o
Here C is independent of h, x, D; and Ds.

A.3 (Super-approximation) Let w € C§°(D;), then for each x € S (D-) there
exists an n € S*(D5) such that for some integer v > 0

llwx = nllwz sy < Chllwllwa o Ixllwz(ps)-
Furthermore, if w = 1 on Dy, and D_; CC Dy with dist(D_1,0Dg) > k, then
n=xon D_4, and
llwx = nllwz(pyy < Chllwllwa oy lIXIlwi (Da\D_1)-

Here C is independent of w, x, 0, h, D;, i = —=1,0,1,2.

A.4 (Scaling) Let zo € Q and d > kh. The linear transformation y = zo +
(x — x9)/d takes By(xg) = {z : |z — zo| < d} N Q into a new domain Bj(zg) and
Sh(Bg(wo)) into a new function space sh/ d(31 (20)).- The h/ d(Bl (z0)) satisfies
A1, A.2 and A.3 with h replaced by h/d. The constants occurring in A.1, A.2 and
A .3 remain unchanged, in particular independent of d.
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