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Abstract

A multitype Galton-Watson process describes populations of par-
ticles that live one season and are then replaced by a random number
of children of possibly different types. Biological interpretation of the
event that the daughter’s type differs form the mother’s type is that a
mutation has occurred. We study a situation when mutations are rare
and, among the types connected in a network, there is a supercriti-
cal type allowing the system to escape from extinction. We establish
a neat asymptotic structure for the Galton-Watson process escaping
extinction due to a sequence of mutations towards the supercritical
type. The conditional limit process is a GW process with a multitype
immigration stopped after a sequence of geometric times.

Keywords: Galton-Watson process, multitype, decomposable, escape
from extinction.

AMS 2000 Mathematics Subject Classification: Primary 60J80,
Secondary 92D25

∗Current address: Department of Mathematics, University of Minho, Campus de Gual-
tar, 4710-057 Braga Portugal

1



(1,1,1,1)­
­

­­

´
´

J
J

JJ

Q
Q

(1,1,1,0)

(1,1,0,1)

(1,0,1,1)

(0,1,1,1)

@
@

@
@

¡
¡

¡
¡

@
@

@
@

@
@

@
@

A
A
A
A

A
A
A
A

¢
¢
¢
¢

¢
¢
¢
¢

(1,1,0,0)

(1,0,1,0)

(1,0,0,1)

(0,1,1,0)

(0,1,0,1)

(0,0,1,1)

¡
¡

¢
¢
¢
¢

¢
¢
¢
¢

¢
¢
¢
¢

@
@

@
@

@
@

A
A
A
A

A
A
A
A

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

(0,0,0,0)

­
­

­­´
´

Q
Q

J
J

JJ

Figure 1: The network of 0-1 sequences of length L = 4. Here the edges
represent single point mutations of probability µ(1− µ)L−1. More generally,
mutation between two sequences which differ in i sites has probability µi(1−
µ)L−i.

1 Introduction

This work is motivated by a series of papers by Iwasa et al [4], [5] studying the
probability that a virus placed in a hostile environment escapes extinction
via a chain of mutations. In their basic population model the virus is coded
by a vector of zeros and ones of length L, so that the set of the sequences can
be viewed as a graph, illustrated by Figure 1, with 2L vertices representing
different forms of the virus.

Let all the sequences with exactly i ones have the same fitness mi de-
fined as the mean offspring number. If we further assume that 0 < mi < 1
for i = 1, . . . , L and m0 > 1, then a reproduction process stemming from
the subcritical form (1, . . . , 1) is doomed to get extinct unless a sequence of
mutations results in the supercritical form (0, . . . , 0). Suppose that all point
mutations have the same probability µ per site per generation. Then accord-
ing to [5] the escape probability is a small number of order µL as µ → 0.
This means that asymptotically we can disregard the possibility of backward
mutations on the path from the initial sequence (1, . . . , 1) towards the escape
sequence (0, . . . , 0).

A relevant Markov chain describing such a virus population is a multi-
type Galton-Watson (GW) process (see [3], [8]) with 2L types of particles.
Here time is measured in generations and particles are assumed to reproduce
asexually. The offspring numbers are assumed to be independent random
variables whose distributions are common for all particles of the same type.
The aim of this paper is to give the asymptotic GW process describing the
number and the types of viruses in a population escaping extinction.

We start our study with the case L = 1, when the GW process has just two
types of particles 0 and 1. In Section 2 we consider a general two-type GW
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process which starts with a type 1 particle and where all the type 0 particles
are killed. Such a one type population can be viewed as a decomposable
two-type GW process or, as shown in Section 3, as a decomposable three-
type GW process. These decompositions are our basis for obtaining the limit
structures of the GW processes escaping extinction like that in Section 4.

In the two-type case mutation is modelled in a more general way than
discussed so far. Namely, in the limit theorem of Section 4 we will allow the
mutation probability for a newborn type 1 particle to depend on its family
size. We show that in the case when the initial type 1 is subcritical and the
other type 0 is supercritical, the conditional limit process is a GW process
with immigration. The immigration source is turned on during a geometric
time T1 with mean E(T1) = 1

1−m1
. The immigration source corresponds to a

stem lineage leading to the successful mutation. The numbers of immigrants
have the size-biased distribution.

Careful asymptotic analysis of the two type case demonstrates that the
backward mutations on the path to escape are negligible. Therefore when an-
alyzing the case with the number of types larger than two we simply disregard
the possibility of backward mutations. In Section 6 we study a sequential
mutation model, where mutations may occur along an interval of types start-
ing from type L and ending at type 0. This is a natural intermediate step
between the two-type case towards the network model. Indeed, if we treat
each subset of sequences with exactly i ones as a single type i, then we arrive
at a sequential model with the mutation probability between types i and j
being asymptotically equivalent to

(
i
j

)
µi−j, given j < i.

The asymptotic results in Section 7 address a wide class of sequential
mutation models. Section 8 discusses the asymptotic distribution of the
total time to escape and its expected value. Finally, in Section 9 we apply
the results of Section 7 to the network mutation model.

2 A two-type GW process focussed on one

type

Consider a GW process with two types of particles labelled by 0 and 1.
If Zi(n) is the number of type i particles in generation n, then the vec-
tor {Z0(n), Z1(n)}n≥0 forms a Markov chain describing the population size
and type structure evolving generationwise. Proposition 2.1 below describes
the fate of type 1 particles as a decomposable GW process recognizing two
subtypes of type 1 particles. This construction reminds the well-known de-
composition of the supercritical GW process into particles with infinite and
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finite lines of descent (see [1], p. 47).
We are going to distinguish between two kinds of type 1 particles: sub-

type 10 - those who have type 0 particles among their descendants, and
subtype 11 - those whose total progeny consists only of type 1 particles.
Given the process starts from a single particle, called a progenitor, there are
two possibilities to choose the type of the progenitor

B0 = {Z0(0) = 1, Z1(0) = 0},
B1 = {Z0(0) = 0, Z1(0) = 1}.

The event B1, in turn, is the union of two disjoint events

B10 = {Z10(0) = 1, Z11(0) = 0},
B11 = {Z10(0) = 0, Z11(0) = 1},

revealing the subtype of the progenitor. We shall denote by P0, P1, P10, P11

the conditional probabilities specifying the type or subtype of the progenitor
and by E0, E1, E10, E11 the respective expectation operators. Put

Q10 = P1(B10), Q11 = P1(B11) = 1−Q10,

and define the two-type reproduction law in terms of the generating functions

fi(s0, s1) = Ei

(
s

Z0(1)
0 s

Z1(1)
1

)
, i = 0, 1.

Consider k = k0 + k1 daughters of the progenitor assuming that Z0(1) =
k0 among them have type 0 and Z1(1) = k1 have type 1. We label the
type 1 daughters by the numbers 1, . . . , k1 and the type 0 daughters by
k1 + 1, . . . , k. Within the types the labeling is done uniformly at random.
For an event A concerning the original GW process we will denote by A(i) its
analog associated with the GW process stemming from the i-th daughter of
the progenitor. Let R denote the smallest label among the type 1 children
having the subtype 10,

R(ω) = min{1 ≤ i ≤ Z1(1) : ω ∈ B
(i)
10 },

with the usual convention that the minimum of the empty set is infinity. The
next lemma is analogous to Lemma 2.1 in [2].

Lemma 2.1 The conditional distribution of R is given by

P1(R = j|Z0(1) = k0, Z1(1) = k1) =

{
Q10Q

j−1
11 , 1 ≤ j ≤ k1,

Qk1
11, j = ∞,

(1)
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implying

E[sR] =
sQ10

1− sQ11

(1− f1(1, sQ11)).

and

Q11 = f1(0, Q11). (2)

Proof Let {A1, . . . , Ak} be some random events concerning the GW process
generated by a single progenitor particle. For k = k0+k1 due to independence
of particle lives we have

P1(Z0(1) = k0, Z1(1) = k1, A
(i)
i , 1 ≤ i ≤ k) (3)

= P1(Z0(1) = k0, Z1(1) = k1)

k1∏
i=1

P1(Ai)
k∏

i=k1+1

P0(Ai).

With a specific choice of Ai = Ci, where

Ci =





B11, 1 ≤ i ≤ j − 1,
B10, i = j,
B1, j + 1 ≤ i ≤ k1,
B0, k1 + 1 ≤ i ≤ k,

(4)

and j ∈ [1, k1], we get

{R = j, Z0(1) = k0, Z1(1) = k1} = {Z0(1) = k0, Z1(1) = k1, C
(i)
i , 1 ≤ i ≤ k},

Thus according to (3)

P1(R = j|Z0(1) = k0, Z1(1) = k1) = Qj−1
11 Q10. (5)

Now it remains only to note that

P1(R = ∞|Z0(1) = k0, Z1(1) = k1) = Qk1
11,

and that equation (2) follows from

B11 = {Z0(1) = 0, R = ∞}. (6)

¤

Lemma 2.2 Let {Ai, i = 1, 2, 3, . . .} be random events concerning the GW
process generated by a single progenitor particle. The daughter versions of
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theses events {A(i)
i , i = 1, . . . , k}, k = k0 + k1 are conditionally independent

given R = j, Z0(1) = k0, Z1(1) = k1 with

P1(A
(i)
i |R = j, Z0(1) = k0, Z1(1) = k1) =





P11(Ai), 1 ≤ i ≤ j − 1 ∧ k1,
P10(Ai), i = j,
P1(Ai), j + 1 ≤ i ≤ k1,
P0(Ai), k1 + 1 ≤ i ≤ k.

Proof Let j ∈ [1, k1]. In terms of the system of events (4)

{R = j, Z0(1) = k0, Z1(1) = k1, A
(i)
i , 1 ≤ i ≤ k}

= {Z0(1) = k0, Z1(1) = k1, A
(i)
i ∩ C

(i)
i , 1 ≤ i ≤ k}.

The stated conditional independence follows now from (3) and (5)

P1(A
(i)
i , 1 ≤ i ≤ k, R = j|Z0(1) = k0, Z1(1) = k1)

=

j−1∏
i=1

P1(Ai ∩B11)P1(Aj ∩B10)

k1∏
i=j+1

P1(Ai)
k∏

i=k1+1

P0(Ai)

= P1(R = j|Z0(1) = k0, Z1(1) = k1)

×
j−1∏
i=1

P11(Ai)P10(Aj)

k1∏
i=j+1

P1(Ai)
k∏

i=k1+1

P0(Ai).

¤

Proposition 2.1 Let the two-type GW process start from a 1-particle and
kill every 0-particle appearing in the population. The resulting process can be
treated as a decomposable GW process {Z10(n), Z11(n)}n≥0 with two types of
particles: 10 and 11. The progenitor’s type has distribution (Q10, Q11), and
the new two-type reproduction law is defined by

E11

(
s

Z10(1)
0 s

Z11(1)
1

)
=

f1(0, Q11s1)

Q11

, (7)

E10

(
s

Z10(1)
0 s

Z11(1)
1

)
=

f1(1, Q10s0 + Q11s1)− f1(0, Q11s1)

Q10

. (8)

Proof Since

E11

(
s

Z10(1)
0 s

Z11(1)
1

)
Q11 + E10

(
s

Z10(1)
0 s

Z11(1)
1

)
Q10 = E1

(
s

Z10(1)
0 s

Z11(1)
1

)

and due to the basic branching property

E1

(
s

Z10(1)
0 s

Z11(1)
1

)
= f1(1, Q10s0 + Q11s1),
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to prove (7) and (8) it suffices to verify that

E1

(
s

Z10(1)
0 s

Z11(1)
1 ; B11

)
= f1(0, Q11s1).

But this follows from (6) and (1):

E1

(
s

Z10(1)
0 s

Z11(1)
1 ; Z0(1) = 0, R = ∞

)
= E1

(
s

Z1(1)
1 ; Z0(1) = 0, R = ∞

)

= f1(0, Q11s1).

Finally, the claimed independence of particle lives in the framework of the
new two-type system follows from Lemma 2.2.

¤

3 A refined structure of the two-type GW

process focussed on one type

With the same two-type GW process let us now distinguish between two
kinds of type 0 particles which will be labelled as 00 and 01 depending on
the explosion (00) or extinction (01) of the GW process stemming from a
0-particle in question. This allows us to refine our earlier classification of the
type 1 particles after the subtype 10 is further divided into subtypes 100 and
101. A subtype 100 particle is a 10-particle with at least one 00-descendant.
It means that the other subtype 101 must have 01-descendants but never
00-descendants. Let Z100(n) and Z101(n) stand for the number of particles of
subtypes 100 and 101 in generation n. Put

Q100 = P1 (Z100(0) = 1, Z101(0) = 0, Z11(0) = 0) ,

Q101 = P1 (Z100(0) = 0, Z101(0) = 1, Z11(0) = 0) ,

so that Q100 + Q101 = Q10.
It is well-known that the extinction probabilities

qi = Pi

(
lim

n→∞
(Z0(n) + Z1(n)) = 0

)

satisfy the following pair of equations (see [1], p.186)

q0 = f0(q0, q1),

q1 = f1(q0, q1).

Clearly, Q100 = 1 − q1, since for the progenitor of type 1 to be classified
as a subtype 100 particle the corresponding branching process must survive
forever. This yields the following equation

1−Q100 = f1(q0, 1−Q100). (9)
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Proposition 3.1 Let the two-type GW process start from a 1-particle and
kill each 0-particle appearing in the population. The resulting process can
be treated as a decomposable GW process {Z100(n), Z101(n), Z11(n)}n≥0 with
three types of particles 100, 101, and 11.

The progenitor’s type has distribution (Q100, Q101, Q11) and the new three-
type reproduction law is defined by

E11

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

)
=

f1(0, Q11s1)

Q11

, (10)

E101

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

)
=

f1(q0, Q101s01 + Q11s1)− f1(0, Q11s1)

Q101

, (11)

E100

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

)
(12)

=
f1(1, Q100s00 + Q101s01 + Q11s1)− f1(q0, Q101s01 + Q11s1)

Q100

.

Proof It is easy to adjust Lemma 2.1 and Lemma 2.2 to verify the branching
property of the three-type process, and it directly follows from Proposition
2.1 that (10) holds. Now, in view of the branching property of the three-type
process

E1

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

)
= f1(1, s00Q100 + s01Q101 + s1Q11)

and because of

E1

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

)
= Q100E100

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

)

+ Q101E101

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

)

+ Q11E11

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

)

to prove (11) and (12) it suffices to show that the sum of the last two terms
equals f1(q0, Q11s1 + Q101s01), or equivalently

E1

(
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1 ; the process dies out

)

= E1

(
s

Z101(1)
01 s

Z11(1)
1 ; the process dies out

)

= f1(q0, Q101s01 + Q11s1).

But the last equality follows from the branching property saying that for the
process to die out all the daughter processes should die out independently,
and when it comes to type one daughters there are two possible ways toward
extinction: either with or without type 0 descendants.

¤
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4 Limit theorem in the two-type case

In the previous two sections we considered a two-type GW process with a
general reproduction law described by a pair of generating functions f0(s0, s1)
and f1(s0, s1). In this section we deal with a family of the two-type GW
processes labelled by a parameter 0 < µ < 1 regulating communication rates
between types 0 and 1. We will assume a particular kind of the reproduction
law for the type 1 particles:

f
(µ)
1 (s0, s1) =

∞∑

k=0

p1(k)
(
s1(1− µa

(µ)
10 (k)) + s0µa

(µ)
10 (k)

)k

=
∞∑

k=0

p1(k)
(
s1 + (s0 − s1)µa

(µ)
10 (k)

)k

. (13)

Here {p1(k)}∞k=0 is the distribution of the total offspring number for a type 1
particle. Notice that the offspring number is independent of the parameter
µ which controls mutation or change of type.

According to (13) each out of k offspring independently chooses its type:

type 1 with probability (1− µa
(µ)
10 (k)) or type 0 (mutation event) with prob-

ability µa
(µ)
10 (k). In our asymptotic analysis µ goes to zero making mutations

rare events. We will assume the uniform convergence

sup
k≥0

| a(µ)
10 (k)− a10(k)| → 0, µ → 0, (14)

where the limit sequence is uniformly bounded

sup
k≥0

a10(k) < ∞. (15)

Obviously, f
(µ)
1 (s0, s1) → φ1(s1), where

φ1(s) =
∑

k=0

p1(k)sk.

We assume a similar convergence for the offspring numbers of the type 0
particles

f
(µ)
0 (s0, s1) → φ0(s0), (16)

where the limit generating function φ0(s) describes the limit reproduction
regime of type 0 with no mutation to type 1.
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The limiting mean offspring numbers mi = φ′i(1), i = 0, 1 are always

supposed to be positive and finite. Condition (16) implies q
(µ)
0 → q, where

q = 1 if m0 ≤ 1, and q ∈ [0, 1), q = φ0(q) if m0 > 1. In terms of the
generating function

ψ10(s) =
∞∑

k=1

kp1(k)a10(k)sk−1

condition (15) ensures ψ10(1) < ∞.

Theorem 4.1 Consider the µ-labelled two-type GW process stemming from
a type 1 particle which satisfies conditions (13)-(16). If m1 < 1 and ψ10(1) >
0, then the probability of the mutation event has asymptotics

Q
(µ)
10

µ
→ ψ10(1)

1−m1

, µ → 0, (17)

and conditioned on the mutation event, the process {Z10(n), Z11(n)}n≥0 con-
verges in distribution to a limit process {X10(n), X11(n)}n≥0, which is a de-
composable two-type GW process described below.

If furthermore, m0 > 1, then the probability of the escape event has asymp-
totics

Q
(µ)
100

µ
→ (1− q)

ψ10(1)

1−m1

, µ → 0, (18)

and conditioned on the escape event, the process {Z100(n), Z101(n), Z11(n)}n≥0

converges in distribution to {X10(n), 0, X11(n)}n≥0.

In view of Propositions 2.1 and 3.1 this theorem is a consequence of three
convergences as µ → 0 proven in the next section

E
(µ)
11

[
s

Z10(1)
0 s

Z11(1)
1

]
→ φ1(s1), (19)

E
(µ)
10

[
s

Z10(1)
0 s

Z11(1)
1

]
→ m1s0

φ′1(s1)

φ′1(1)
+ (1−m1)

ψ10(s1)

ψ10(1)
, (20)

E
(µ)
100

[
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

]
→ m1s00

φ′1(s1)

φ′1(1)
+ (1−m1)

ψ10(s1)

ψ10(1)
. (21)

The limit generating functions in (19)-(21) imply the following reproduction
rules in the limit process.

The limit {X10(n), X11(n)}n≥0 is a GW process with two types 10∗ and
11∗ corresponding to the escape (stem) lineage and extinct (side) lineages
respectively. It starts with a single 10∗-particle, whose reproduction law is

10



described by the limit generation function in (20)-(21). At the time of death
this particle either produces one 10∗-particle with probability m1, or zero 10∗-
particles with probability (1−m1). In both cases it also produces a random
number of 11∗-particles: in the former case the generating function for the
number of 11∗-offspring is φ′1(s)/m1, and in the latter case it is ψ10(s)/ψ10(1).
It follows that asymptotically the stem lineage stays alive for a geometric time
T1 with mean E(T1) = 1

1−m1
(cf. [7]).

Relation (19) says that the 11∗-particles reproduce themselves accord-
ing to the generating function φ1(s). Therefore, the process X11(n) can
be viewed as the number of particles in a GW process with a stopped im-
migration. Think of the stem lineage described above as the immigration
source, with every immigrant initiating an independent GW process with
the offspring generating function φ1(s). At times 1, . . . , T1 − 1, the indepen-
dent numbers of immigrants have a common distribution with the generating
function φ′1(s)/m1. At the time T1, when the stem lineage stops, the num-
ber of immigrants has a possibly different distribution with the generating
function ψ10(s)/ψ10(1).

Notice that if mutation probability is independent of the family size
a10(k) ≡ c, then ψ10(s) = cφ′1(s) and ψ10(1) = cm1, so that even the
last number of immigrants has the generating function φ′1(s)/m1. Observe
that this generating function corresponds to the so-called size-biased ver-
sion of the offspring distribution φ1(s), see for example [6]. In this case
{X10(n), X11(n)}n≥0 becomes a size-biased version of the single type GW
process with the offspring generating function φ1(s), whose distinguished
line is stopped at the geometric time T1.

5 Proof of Theorem 4.1

Throughout this section we assume (13)-(16) and m1 < 1. We prove (17)-
(21) (where relations (18) and (21) additionally require that m0 > 1) using
the following lemma.

Lemma 5.1 As µ → 0 uniformly over (s0, s1) ∈ [0, 1]2

f
(µ)
1 (s0, s1) = φ1(s1) + µ (s0 − s1)ψ10(s1)

+ o(µ(s0 − s1)) + O

(
µ2(s0 − s1)

2 η(s1)

1− s1

)
,

where η(s) = m1 − φ′1(s) is such that η(s) ↘ 0 as s → 1.

11



Proof If 0 ≤ a ≤ a + b ≤ 1, then

0 ≤ (a + b)k − ak − kak−1b ≤ b2

k−1∑
i=1

(k − i)ai−1 ≤ k b2 1− ak−1

1− a
(22)

and therefore
∣∣∣∣∣
∞∑

k=1

p1(k)[s1 + µ(s0 − s1)a10(k)]k − φ1(s1)− µ (s0 − s1)ψ10(s1)

∣∣∣∣∣

≤
∞∑

k=1

p1(k)
∣∣[s1 + µ(s0 − s1)a10(k)]k − sk

1 − kµa10(k)(s0 − s1)s
k−1
1

∣∣

≤
∞∑

k=1

p1(k)

{
µ2(s0 − s1)

2a2
10(k)

k−1∑
i=1

(k − i)si−1
1

}

≤ C2µ2(s0 − s1)
2

∞∑

k=1

p1(k)k
1− sk−1

1

1− s1

= C2µ2(s0 − s1)
2 m1 − φ′1(s1)

1− s1

.

On the other hand, (13) implies

∣∣∣∣∣f
(µ)
1 (s0, s1)−

∞∑

k=1

p1(k)[s1 + µ(s0 − s1)a10(k)]k

∣∣∣∣∣

≤ µ|s0 − s1|
∞∑

k=1

p1(k)k|a(µ)
10 (k)− a10(k)|

which gives the o(µ(s0−s1)) term due to the uniform convergence condition.
¤

Proof of (17)-(18)

The probability Q
(µ)
10 that a 1-particle will have at least one 0 type descendant

is estimated from below by

p1(k)kµa
(µ)
10 (k)[1− µa

(µ)
10 (k)]k−1

whatever is k = 1, 2, 3, . . .. Since ψ10(1) > 0, there exists such a k that
p1(k)a10(k) > 0. Thus in view of the condition (15) we can conclude that

lim sup
µ→0

µ/Q
(µ)
10 < ∞. (23)

12



By Lemma 5.1

f
(µ)
1 (0, Q

(µ)
11 )− φ1(Q

(µ)
11 ) + µQ

(µ)
11 ψ10(Q

(µ)
11 ) = o(µ) + O

(
µ2η(Q

(µ)
11 )

Q
(µ)
10

)

which combined with (2) and (23) yields

Q
(µ)
11 − φ1(Q

(µ)
11 ) + µQ

(µ)
11 ψ10(Q

(µ)
11 ) = o(µ) + O

(
µη(Q

(µ)
11 )

)
.

It follows immediately that Q
(µ)
11 → 1 and therefore

φ1(Q
(µ)
11 )−Q

(µ)
11

µ
→ ψ10(1).

This implies (17), since φ1(s)− s ∼ (1−m1)(1− s) as s → 1.
Applying Lemma 5.1 once again we obtain

f
(µ)
1 (q

(µ)
0 , 1−Q

(µ)
100)− φ1(1−Q

(µ)
100)

= µ(q
(µ)
0 − 1 + Q

(µ)
100)ψ10(1−Q

(µ)
100) + o(µ) + O

(
µ2η(1−Q

(µ)
100)

Q
(µ)
100

)
,

where q
(µ)
0 → q with q ∈ [0, 1) given m0 > 1. Using (9) we can derive

1−Q
(µ)
100 − φ1(1−Q

(µ)
100)

= µ(q − 1 + Q
(µ)
100)ψ10(1−Q

(µ)
100) + o(µ) + O

(
µη(1−Q

(µ)
100)

)
,

since Q
(µ)
100/µ is bounded away from zero. Now it is obvious how to finish the

proof of (18).
¤

Proof of (19)-(21)
In view of Proposition 2.1 relation (19) is obvious. The other two relations
have similar proofs - here we give a proof of (21) based on the next observa-
tion. If 0 ≤ si ≤ si + δi ≤ 1 for i = 0, 1, then according to (22)

0 ≤ f
(µ)
1 (s0 + δ0, s1 + δ1)− f

(µ)
1 (s0, s1)−R(µ)(s0, s1, δ0, δ1) (24)

≤
∞∑

k=1

kp1(k)
(
δ1 + µ(δ0 − δ1)a

(µ)
10 (k)

)2 1−
(
s1 + µ(s0 − s1)a

(µ)
10 (k)

)k−1

1− s1 − µ(s0 − s1)a
(µ)
10 (k)

13



where

R(µ)(s0, s1, δ0, δ1)

=
∞∑

k=1

kp1(k)
(
s1 + µ(s0 − s1)a

(µ)
10 (k)

)k−1 (
δ1 + µ(δ0 − δ1)a

(µ)
10 (k)

)
.

Relations (24) and (12) yield

0 ≤ Q
(µ)
100E

(µ)
100

[
s

Z100(1)
00 s

Z101(1)
01 s

Z11(1)
1

]
−R(µ)(q

(µ)
0 , s(µ), 1− q

(µ)
0 , Q

(µ)
100s00)

≤
∞∑

k=1

kp1(k)
(
Q

(µ)
100s00 + µ(1− qµ

0 −Q
(µ)
100s00)a

(µ)
10 (k)

)2

×
1−

(
s(µ) + µ(q

(µ)
0 − s(µ))a

(µ)
10 (k)

)k−1

1− s(µ) − µ(q
(µ)
0 − s(µ))a

(µ)
10 (k)

with s(µ) = Q
(µ)
11 s1 + Q

(µ)
101s01 → s1. It remains to observe that the right hand

side is O(µ2) and

R(µ)(q
(µ)
0 , s(µ), 1− q

(µ)
0 , Q

(µ)
100s00)

Q
(µ)
100

=
∞∑

k=1

kp1(k)

×
(
s(µ) + µ(q

(µ)
0 − s(µ))a

(µ)
10 (k)

)k−1
(

s00 + µ

(
1− q

(µ)
0

Q
(µ)
100

− s00

)
a

(µ)
10 (k)

)

→ m1s00
φ′1(s1)

φ′1(1)
+ (1−m1)

ψ10(s1)

ψ10(1)
.

¤

6 The sequential mutation model

Suppose we can distinguish between L+1 types of particles, labelled 0, . . . , L.
Type i particles can only produce particles of the types 0, . . . , i, whatever is
i ∈ [0, L]. Notice that this sequential mutation model only partially extends
the previous two-type model. We prohibit the reverse mutations for the sake
of simplicity. As the asymptotic analysis of the two type case shows, the
more general sequential model with reversed mutations should lead to the
same asymptotic behavior.

14



Let Zj(n) be the number of type j particles existing at time n given that
the branching process stems from a single particle whose type is specified
by the index of the probability measure Pi. Adjusting the notation of the
two-type case put

fi(s0, s1, . . . , si) = Ei

(
s

Z0(1)
0 s

Z1(1)
1 . . . s

Zi(1)
i

)

and
Qi1 = Pi[Z0(n) = 0, for all n ≥ 0], Qi0 = 1−Qi1.

Then
Qi1 = fi(0, Q11, Q21, . . . , Qi1) (25)

since to avoid descendants of type 0 nor the progenitor itself can have daugh-
ters of type 0, neither the progenitor’s daughters can have descendants of type
0. We split each type in two subtypes in a way similar to our decomposition of
Section 2. Consider the future of a particle of type i: with probability Qi0 it
will eventually manage to produce a particle of type 0, in which case the parti-
cle is labelled i0, and otherwise with probability Qi1 it is labelled i1. Arguing
as in Lemma 2.1 we see that the process {ZL0(n), ZL1(n), . . . , Z10(n), Z11(n)}
is a decomposable 2L-type GW process.

To describe the reproduction law in the 2L-type GW process observe that

Ei

(
s

Zi0(1)
i0 s

Zi1(1)
i1 . . . s

Z10(1)
10 s

Z11(1)
11

)

= Qi0Ei0

(
s

Zi0(1)
i0 s

Zi1(1)
i1 . . . s

Z10(1)
10 s

Z11(1)
11

)

+ Qi1Ei1

(
s

Zi0(1)
i0 s

Zi1(1)
i1 . . . s

Z10(1)
10 s

Z11(1)
11

)

where the left hand side is

fi(1, Q10s10 + Q11s11, . . . , Qi0si0 + Qi1si1)

and

Qi1Ei1

(
s

Zi0(1)
i0 s

Zi1(1)
i1 . . . s

Z10(1)
10 s

Z11(1)
11

)
= fi(0, s11Q11, s21Q21, . . . , si1Qi1).

It follows

Ei1

(
s

Zi0(1)
i0 s

Zi1(1)
i1 . . . s

Z10(1)
10 s

Z11(1)
11

)
=

fi(0, s11Q11, s21Q21, . . . , si1Qi1)

Qi1

,

(26)

Ei0

(
s

Zi0(1)
i0 s

Zi1(1)
i1 . . . s

Z10(1)
10 s

Z11(1)
11

)
(27)

=
fi(1, Q10s10 + Q11s11, . . . , Qi0si0 + Qi1si1)− fi(0, s11Q11, . . . , si1Qi1)

Qi0

.

15



Our forthcoming asymptotic analysis turns to an extension of the two-
type case (13)

f
(µ)
i (s0, s1, . . . , si) = E

(µ)
i

(
s

Z0(1)
0 s

Z1(1)
1 . . . s

Zi(1)
i

)
(28)

=
∞∑

k=0

pi(k)

[
si

(
1−

i−1∑
j=0

µi−ja
(µ)
ij (k)

)
+

i−1∑
j=0

µi−ja
(µ)
ij (k)sj

]k

=
∞∑

k=0

pi(k)

[
si +

i−1∑
j=0

µi−ja
(µ)
ij (k)(sj − si)

]k

,

which says that each out of the k offspring of an i-particle independently
chooses its type: it mutates to a type j ∈ [0, i−1] with probability µi−ja

(µ)
ij (k)

or retains the maternal type type i with probability 1 − ∑i−1
j=0 µi−ja

(µ)
ij (k).

Here again parameter µ controls mutation rates so that as µ → 0 mutations
become rare

f
(µ)
i (s0, s1, . . . , si) → φi(si), φi(s) =

∞∑

k=0

pi(k)sk. (29)

Put mi =
∑∞

k=1 kpi(k). We will assume that all types, possibly except 0, are
asymptotically subcritical, i.e.,

0 < mi < 1, i = 1, . . . , L, 0 < m0 < ∞. (30)

As in Section 2 we will assume the uniform convergence

sup
0≤j<i≤L

sup
k≥0

| a(µ)
ij (k)− aij(k)| → 0, µ → 0, (31)

where the limit sequences are uniformly bounded

sup
0≤j<i≤L

sup
k≥0

aij(k) < ∞. (32)

Put

ψij(s) =
∞∑

k=1

kpi(k)aij(k)sk−1, 0 ≤ j < i ≤ L (33)

and define a matrix A = [Aij]
L
i,j=0 by

Aij =





1, i = j = 0,
ψij(1)

1−mi
, 0 ≤ j ≤ i− 1,

0, otherwise.

16



Define a vector (χ0, . . . , χL) recursively

χi =
i−1∑
j=0

Aijχj, χ0 = 1. (34)

If all ψij(1) > 0, then all components of this vector are strictly positive.

In terms of the matrix powers An = [A
(n)
ij ]Li,j=0 we can write

χi = Ai0 +
i−1∑
j=1

Aijχj

= Ai0 +
i−1∑
j=1

Aij

(
Aj0 +

j−1∑

k=1

Ajkχk

)

= A
(2)
i0 +

i−2∑
j=1

A
(2)
ij χj = . . .

= A
(i)
i0

=
i−1∑

k=0

∑
0=j0<j1<j2<...<jk<i

Aijk
. . . Aj10.

It follows from (34) that the i-th row of the matrix B = [Bij]
L
i,j=0 with

Bij =
χj

χi

Aij (35)

defines a probability distribution on the set {0, . . . , i − 1}. Notice that the

matrix powers An and Bn are connected by B
(n)
ij =

χj

χi
A

(n)
ij .

7 Limit theorem for the sequential model

The following result partially extends the two-type Theorem 4.1. It is clear
how a full extension would look like.

Theorem 7.1 Consider the µ-labelled 2L-type process GW process described
in Section 6 that starts from a type L particle and satisfies conditions (29)-
(32). Let all ψij(1) > 0. The probability that the process produces at least
one particle of type 0 has asymptotics

QL0

µL
→ χL, µ → 0. (36)
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Conditioned on the event that a 0-particle is produced, the process
{ZL0(n), ZL1(n), . . . , Z10(n), Z11(n)}n≥0 converges in distribution to a limit
process {XL0(n), XL1(n), . . . , X10(n), X11(n)}n≥0 which is a decomposable 2L-
type GW process described below.

The limit process {XL0(n), XL1(n), . . . , X10(n), X11(n)}n≥0 starts with a
single particle of type L0∗. This particle lives a geometric number TL of
generations with P (TL = n) = mn−1

L (1 − mL). At times 1, 2, . . . , TL − 1
the stem L0∗-particle gives birth to particles of type L1∗ according to a
size-biased distribution with generating function φ′L(s)/mL. Each particle of
type L1∗ initiates an independent single-type subcritical GW process with
the offspring generating function φL(s). At time TL the stem particle is
replaced by a stem particle of type i0∗, where index i chosen from the set
{0, 1, . . . , L − 1} according to the distribution {BL0, . . . , BL,L−1}, see (35).
The number of L1∗ particles born at time TL has a different distribution: the
p.g.f. is given by ψLi(s)/ψLi(1).

After time TL the scheme above is repeated with L being replaced by i.
The particle of type i0∗ lives a geometric time Ti with mean 1

1−mi
, in that

Xi0(n) =

{
1, n ∈ {TL, . . . , TL + Ti − 1}
0, otherwise

.

At times TL+1, . . . , TL+Ti−1 particles of type i1∗ appear from the stem par-
ticle according to the size-biased distribution φ′i(s)/mi and each one of them
initiates an independent single-type subcritical GW processes with offspring
generating function φi(s). At time TL +Ti the stem particle changes its type
to j0∗, where j is chosen from {0, 1, . . . , i − 1} according to the probability
measure {Bi0, . . . , Bi,i−1}. The distribution of the number of type i1∗ par-
ticles produced at time TL + Ti has generating function ψij(s)/ψij(1). And
the whole process restarts from this type j particle until the type 0 particle
is produced.

Proof The proof of Theorem 7.1 is similar to the proof of Theorem 4.1
therefore here we only outline the major changes. Lemma 5.1 can be extended
to

∣∣∣∣∣f
(µ)
i (s0, s1, . . . , si)− φi(si)−

i−1∑
j=0

µi−j(sj − si)ψij(si)

∣∣∣∣∣ = (37)

= o

(
i−1∑
j=0

µi−j|sj − si|
)

+ O


µ2i ηi(si)

1− si

(
i−1∑
j=0

|sj − si|
µj

)2



18



where the ψij are the functions defined in (33) and ηi(s) = mi − φ′i(s).
Convergence (36) is proven by induction over L. The case L = 1 is

covered by Theorem 4.1. Now assume that, for any j ∈ {1, . . . , i − 1} it is

known that
Qj0

µj → χj. We prove that Qi0

µi → χi using (25). First observe

that Qi0

µi is bounded away from 0, since ψi,i−1(1) > 0, there exists a k ≥ 1

such that pi(k)ai,i−1(k) > 0 and the inequality

Qi0 ≥ pi(k)kµa
(µ)
i,i−1(k)Qi−1,0(1− µa

(µ)
i,i−1(k))k−1

implies lim sup µi/Qi0 < ∞ due to the induction assumption. Therefore, (37)
gives

∣∣∣∣∣f
(µ)
i (0, Q11, . . . , Qi1)− φi(Qi1)−

i−1∑
j=0

µi−j(Qj1 −Qi1)ψij(Qi1)

∣∣∣∣∣ =

= o

(
i−1∑
j=0

µi−j|Qj1 −Qi1|
)

+ O


µiη(i)(Qi1)

[
i−1∑
j=0

|Qj1 −Qi1|
µj

]2



which combined with (25) yields that Qi1 → 1 and

1−Qi0 − φi(1−Qi0)−
i−1∑
j=0

µi−j(Qi0 −Qjo)ψij(1) =

= o

(
i−1∑
j=0

µi−j|Qi0 −Qj0|
)

+ o


µi

[
i−1∑
j=0

|Qi0 −Qj0|
µj

]2

 .

It follows

φi(1−Qi0)− 1 + Qi0 = µi

i−1∑
j=0

χjψij(1) + O(µQi0)

and (36) for L = i is derived from (34).
In order to obtain the generating functions of the reproduction law of the

limit process we need an extension of (24): if 0 ≤ sj ≤ sj + δj ≤ 1, then

0 ≤ f
(µ)
i (s0 + δ0, . . . , si + δi)− f

(µ)
i (s0, . . . , si)−R

(µ)
i (s0, . . . , si, δ0, . . . , δi)

≤
∞∑

k=0

kpi(k)d2
k,µ(δ0, . . . , δi)

1− dk−1
k,µ (s0, . . . , si)

1− dk,µ(s0, . . . , si)
(38)
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where dk,µ(s0, . . . , si) = si +
∑i−1

j=0 µi−j(sj − si)a
(µ)
ij (k) and

R
(µ)
i (s0, . . . , si, δ0, . . . , δi) =

∞∑

k=1

kpi(k)dk−1
k,µ (s0, . . . , si)dk,µ(δ0, . . . , δi).

From (27) and (38) it follows that

Qi0Ei0

[
s

Zi0(1)
i0 s

Zi1(1)
i1 . . . s

Z10(1)
10 s

Z11(1)
11

]

= R
(µ)
i (0, Q11s11, . . . , Qi1si1, 1, Q10s10, . . . , Qi0si0) + O(µ2i)

and it remains to check that

Q−1
i0 R

(µ)
i (0,Q11s11, . . . , Qi1si1, 1, Q10s10, . . . , Qi0si0)

→ si0φ
′
i(si1) +

i−1∑
j=0

sj0
χj

χi

ψij(si1)

= misi0
φ′i(si1)

mi

+ (1−mi)
i−1∑
j=0

Bijsj0
ψij(si1)

ψij(1)
.

¤

8 The total time to escape

For application purposes, it is important to study the waiting time WL to
produce the escape type along an asymptotically viable path of mutations.
For the sequential mutation model studied in Sections 6 and 7, WL is a sum
of a random number of independent geometric random variables. In terms
of a Markov chain {Y (n)}n≥0 with the transition matrix

D = [Dij]
L
i,j=0, Dij = (1−mi)Bij + mi1{i=j}

this is the waiting time until absorption at state 0

P (WL ≤ n) = P (Y (n) = 0|Y (0) = L).

The last probability is the element D
(n)
L0 of the nth step transition matrix

Dn which can be computed from the Chapman-Kolmogorov equation

D
(n)
L0 = DL0D

(n−1)
00 + . . . + DLLD

(n−1)
L0

= (1−mL)
(
BL0 + BL1D

(n−1)
10 + . . . + BL,L−1D

(n−1)
L−1,0

)
+ mLD

(n−1)
L0 .

20



Subtracting a similar formula for D
(n−1)
L0 we get a recursion for the probability

PL(n) = P (WL = n)

PL(n) = mLPL(n− 1) + (1−mL)
L−1∑
j=1

BLjPj(n− 1).

Turning to the expected waiting time

ML = E(WL) =
∞∑

n=1

nPL(n)

we derive

ML =
1

1−mL

+
L−1∑
j=1

BLjMj

=
1

1−mL

+
L−1∑
j=1

BLj

1−mj

+
L−2∑
j=1

B
(2)
Lj Mj

=
1

1−mL

+
L−1∑
j=1

BLj + B
(2)
Lj + . . . + B

(L−j)
Lj

1−mj

=
1

1−mL

+
L−1∑
j=1

χj(ALj + . . . + A
(L−j)
Lj )

χL(1−mj)
.

Observe that the last formula is a weighted sum of the individual waiting
times E(Tj) = 1

1−mj
. The corresponding weight

χj

χL

(ALj + . . . + A
(L−j)
Lj ) =

ALjA
(j)
j0 + . . . + A

(L−j)
Lj A

(j)
j0

A
(L)
L0

= P (Y (n) = j for some n) (39)

gives the probability that the chain Y (n) visits the state j before it is ab-
sorbed at 0. Notice that in the case of ”neutral mutation” with mj = m, j =
1, . . . , L we get

ML =
1

1−m
+

1

1−m

L−1∑
j=1

χj(ALj + . . . + A
(L−j)
Lj )

χL

=
1

1−m

(
1 +

χL − AL0 + . . . + χL − A
(L−1)
L0

χL

)

=
1

1−m

(
L− AL0 + . . . + A

(L−1)
L0

χL

)
.

21



Finally, we describe a case where there is a simple formula for the coef-
ficients χi. Suppose that aij(k) ≡ ai(k) is the same for all daughter types j
given the mother type i. Then with simplified notation ψij(1) = ci we obtain

χi =
ci

1−mi

(
1 +

i−1∑

k=1

∑
0<j1<j2<...<jk<i

cjk

1−mjk

. . .
cj1

1−mj1

)

=
ci

1−mi

(
1 +

ci−1

1−mi−1

)
. . .

(
1 +

c1

1−m1

)
.

In this case we can also compute the asymptotic probability (39) that the
random path from type L towards type 0 visits type j

P (Y (n) = j for some n)

=
χj

χL

cL

1−mL

(
1 +

L−j∑

k=1

∑
j<j1<j2<...<jk<L

cjk

1−mjk

. . .
cj1

1−mj1

)

=
cj

1−mj

(
1 +

cL−1

1−mL−1

)−1

. . .

(
1 +

cj

1−mj

)−1

×
(

1 +
cL−1

1−mL−1

)
. . .

(
1 +

cj+1

1−mj+1

)

=
cj

1 + cj −mj

.

Thus the expected total time to escape becomes

ML =
1

1−mL

+
L−1∑
j=1

cj

(1 + cj −mj)(1−mj)
.

In particular, if aij(k) ≡ 1, then cj = mj and

ML =
1

1−mL

+
L−1∑
j=1

mj

1−mj

.

If furthermore mj ≡ m, then χj = m(1−m)−j and P (Y (n) = j for some n) =
m. In this special case the number of intermediate types has a binomial dis-
tribution Bin(L− 1,m) and

ML =
1 + (L− 1)m

1−m
.
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9 The network mutation model

We now return to the network model described in the introduction. This
model was introduced in the papers by Iwasa et al [4] and [5]. Here particles
are coded with binary sequences ū = (u1, . . . , uL) of length L. A mutation
occurs if one of the L sites changes from 1 to 0 or 0 to 1. Therefore there are
2L possible sequences which we will group into L + 1 types each containing
sequences ū with the same number of ones |ū| = u1 + . . . + uL. Assuming
that all sequences within a type i have the same offspring number distribution
described by generating function φi(s), we arrive at an important example
of the sequential mutation model allowing for backward mutations.

Let mi = φ′i(1) ∈ (0, 1) be the mean offspring number for the virus of type
i whose sequence contains i ∈ [1, L] ones and (L − i) zeros. The sequence
with all zeros 0̄ = (0, . . . , 0) will be assigned a supercritical reproduction
number m0 ∈ (1,∞). Given mutation rate µ per site per generation the
mutation probability between two sequences which differ in j sites becomes
µj(1−µ)L−j. Clearly, for j < i the mutation probability between types i and
j is asymptotically equivalent to

(
i
j

)
µi−j and does not depend on the family

size. Thus

ψij(s) =

(
i

j

)
φ′i(s), ψij(1) =

(
i

j

)
mi,

implying

Aij =
mi

1−mi

(
i

j

)
1{0≤j≤i−1} + 1{i=j=0},

Bij =
χj

χi

Aij,

where (χ0, . . . , χL) is defined recursively by (34).
A proper extension of Theorem 7.1 allowing for backward mutations pro-

vides an asymptotic picture of the network mutation model conditional on
escape. On the sequence level the limit process starts with the sequence
1̄ = (1, . . . , 1) initiating a ”stem lineage”. Each next generation the stem se-
quence either remains to be 1̄ with probability mL or turns to a 0-1 sequence
ū1 = (u11, . . . , u1L) with probability

P (1̄ → ū1) =
(1−mL)BL,i1(

L
i1

) , i1 = |ū1|.

For a geometric number of generations TL ∼ Geom(1 − mL) including the
time it switches to ū1, the stem sequence 1̄ produces random numbers of
side lineages of mutation-free 1̄-viruses. The number of such lineages per
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generation has generating function φ′L(s)/mL. Each mutation-free 1̄-lineage
is a single type GW process with the offspring generating function φL(s).

The mutant stem sequence ū1 follows the same pattern only with L re-
placed by i1 which is strictly less than L, unless i1 = 0 in which case the
system stops after hitting the escape form 0̄ of the virus. Thus the sequence
dynamics from 1̄ towards 0̄ is described by a random path 1̄ → ū1 → . . . →
ūk = 0̄ of a random length k ∈ [1, L + 1] through intermediate sequences
with strictly decreasing numbers of ones L > i1 > . . . > ik = 0, ij = |ūij |.
The random path forms a Markov chain with transition probabilities

P (ūj → ūl) =
(1−mij)Bij ,il(

ij
il

) .

The stem lineage spends at the type ūj a geometric number of generations
with mean λ(ij), where λ(i) = 1

1−mi
. During this time it generates mutation-

free ūj-lineages. The number of such lineages per generation has generating
function φ′ij(s)/mij . Each mutation-free ūj-lineage is a single type GW pro-
cess with the offspring generating function φij(s).
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