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Abstract

We consider the spherically symmetric, asymptotically flat Einstein
equations coupled to a suitable matter model and find explicit condi-
tions on the initial data which guarantee the formation of a black hole
in the evolution. We establish such results for general matter models
characterized by general conditions on the matter quantities, and we
prove that the collisionless gas as described by the Vlasov equation
satisfies these conditions for a large class of initial data.
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1 Introduction

One of the many striking predictions of General Relativity is the assertion
that under appropriate conditions astrophysical objects like stars or galaxies
undergo a gravitational collapse resulting in a spacetime singularity. This
was first proven by Oppenheimer and Snyder [18] who constructed a semi-
explicit example of a homogeneous spherically symmetric ball of dust, i.e.,
of a pressure-less fluid, which under its self-consistent, general relativistic
gravitational interaction collapses. During this collapse the scalar curvature
of spacetime blows up at the centre of symmetry, and the geometry of space-
time breaks down there. This is referred to as the formation of a spacetime
singularity. An important feature of the Oppenheimer-Snyder solution is
that during the collapse a two-dimensional spacelike sphere evolves which
encloses the singularity and through which no causal curve, i.e., no light
ray or particle trajectory, can pass outward. In this way the spacetime sin-
gularity is isolated from the outside part of spacetime by a so-called event
horizon, and the singularity cannot be seen or in any other way be experi-
enced by observers outside the event horizon. This configuration was later
termed a black hole.

In the 1960s Penrose [19] proved that the formation of spacetime singu-
larities from regular initial data is not restricted to spherically symmetric,
especially constructed or isolated examples, but it is a genuine, stable fea-
ture of spacetimes. However, this result gives little information about the
geometric structure of a spacetime with such a singularity. In particular, it
is in general not known if every spacetime singularity which arises from the
gravitational collapse of regular initial data is covered by an event horizon.
Since the existence of so-called naked singularities (for which, by definition,
the latter is not true) would violate predictability (it would not be possible
to predict from the initial data what an observer would see if he could ob-
serve a singularity), the cosmic censorship conjecture was formulated which
demands that any singularity which arises from the gravitational collapse of
generic regular initial data is indeed hidden behind an event horizon. The
restriction to generic data means that naked singularities are allowed to oc-
cur for a “null set” of the initial data. An important example where naked
singularities do form for a null set, but for which cosmic censorship holds
true, is the spherically symmetric Einstein-scalar field system, cf. [9, 10].
Actually the above is an informal statement of the so-called weak cosmic
censorship conjecture [30, 12.1]; we will not be concerned with the strong
version in the present paper. For a mathematical discussion and the defini-
tion of the weak cosmic censorship conjecture we refer to [11].
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To deal with this conjecture in full generality is out of reach of the
present level of mathematics, but under the assumption of spherical sym-
metry progress has been made in recent years. One important outcome of
these investigations is that the answer is sensitive to which model is chosen
to describe the matter. Christodoulou [6] showed that for dust, i.e., the
matter model used by Oppenheimer and Snyder, cosmic censorship is vio-
lated. On the other hand, in a series of papers Christodoulou investigated
a massless scalar field as matter model and showed in 1999 that weak and
strong cosmic censorship hold true for this matter model; see [10] and the
references therein.

In the present investigation the main example considered as a matter
model is the so-called collisionless gas as described by the Vlasov equation.
It is used extensively in astrophysics, cf. [5], to describe galaxies or globular
clusters which are viewed as large ensembles of mass points which interact
only through the gravitational field that the ensemble creates collectively.
In a relativistic context this leads to the Einstein-Vlasov system. All results
available for this system support the following
Conjecture: Weak cosmic censorship holds for the Einstein-Vlasov system.
We mention explicitly that, in contrast to dust, small, spherically symmet-
ric initial data launch global solutions, i.e., the solutions are geodesically
complete and hence satisfy cosmic censorship, cf. [23]. Also, the numerical
simulations [4, 17, 26] which treat large initial data support the hypothesis
that naked singularities do not form in the evolution. We point out a further
interesting feature of Vlasov matter observed in these numerical studies: In
a one-parameter family of solutions which for large parameters, i.e., large
amplitudes of the initial data, collapse to a black hole the smallest black
hole always has a strictly positive ADM mass, i.e., there is a mass gap. This
contrasts several other matter models for which no mass gap is found, cf.
[14] for a review.

The aim of the present paper is to find explicit conditions on the ini-
tial data which ensure the formation of black holes. This class of initial
data has the important property that, except for “boundary cases”, prop-
erly restricted small perturbations of the data lead to solutions with the
same properties. In this sense the established behavior of the solutions is
stable and not restricted to especially constructed solutions or initial data,
respectively. It turns out that considerable parts of our argument can be
formulated for a general matter model which satisfies certain specific as-
sumptions, and in order to give a broader impact to our results we shall do
so. At the same time we emphasize that the Vlasov matter model is the
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only one which is presently known to actually satisfy all the assumptions
needed for our arguments to go through.

One aspect of our result is that there is a set of initial data which leads
to gravitational collapse such that weak cosmic censorship holds. This point
should be related to an earlier result by Rendall [28], where it is shown that
there exists a set of initial data for the spherically symmetric Einstein-Vlasov
system such that a trapped surface forms in the evolution. The occurrence
of a trapped surface signals the formation of an event horizon. Indeed,
Dafermos [12] has proved that if a spherically symmetric spacetime contains
a trapped surface and the matter model satisfies certain hypotheses then
weak cosmic censorship holds true. In [13] it was then shown that Vlasov
matter does satisfy the required hypotheses. Hence, by combining these
results, one obtains a set of initial data which lead to gravitational collapse
and for which weak cosmic censorship holds. However, the construction in
[28] rests on a continuity argument, and it is not possible to tell whether
or not a given initial data set will give rise to a black hole. This is in
contrast to the explicit conditions that we obtain in the present work. In
this regard it is very natural to relate our results to those of Christodoulou
on the spherically symmetric Einstein-scalar field system [8]. There explicit
conditions on the initial data are specified which guarantee the formation
of trapped surfaces. This paper played a crucial role in his proof [10] of the
weak and strong cosmic censorship conjectures mentioned above. In [11]
Christodoulou gave a historical review of his search for a proof of cosmic
censorship, and we quote: “The work which opened up the path to the
settlement of the cosmic censorship conjectures within the framework of the
spherical symmetric scalar field model was [8].” We hope that the results in
the present paper will lead to similar progress on the weak cosmic censorship
conjecture in the case of Vlasov matter. A few more comments on the
relationship between our results and the results in [8] are given before the
statements of the main theorems in Section 2.

The Vlasov matter model has a further promising property as compared
to other matter models. For the Vlasov-Poisson system, which arises as the
Newtonian limit of the Einstein-Vlasov system in a rigorous sense [24, 27],
and which is used extensively in astrophysics, there is a global existence
and uniqueness result for general, smooth initial data [16, 20]. This means
in particular that any breakdown of a solution of the Einstein-Vlasov sys-
tem can be expected to be a genuine, general relativistic effect such as a
spacetime singularity, but not a remainder of some bad behavior which the
matter model exhibits already on the Newtonian level.

To be more specific, consider now a smooth spacetime manifold M
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equipped with a spacetime metric gαβ ; Greek indices run from 0 to 3. Then
the Einstein equations read

Gαβ = 8πTαβ , (1.1)

where Gαβ is the Einstein tensor, a non-linear second order differential ex-
pression in the metric gαβ , and Tαβ is the energy-momentum tensor given
by the matter content (or other fields) of the spacetime. To obtain a closed
system, the field equations (1.1) have to be supplemented by

evolution equation(s) for the matter (1.2)

and

the definition of Tαβ in terms of the matter and the metric. (1.3)

It is often possible to specify conditions on (1.2) and (1.3) under which one
can establish geometric properties of a spacetime described by the Einstein-
matter system (1.1), (1.2), (1.3). The Penrose singularity theorem men-
tioned above is of this nature, and part of our arguments will also be pre-
sented in this form.

However, in order to verify such general conditions, in particular with
respect to the existence of local or global solutions to the corresponding
initial value problem, a specific matter model must be chosen, and in the
present paper this is a collisionless gas. All the particles in the gas are
assumed to have the same rest mass, normalized to unity, and to move
forward in time. Hence, their number density f is a non-negative function
supported on the mass shell

PM :=
{

gαβpαpβ = −1, p0 > 0
}

,

a submanifold of the tangent bundle TM of the spacetime manifold M ; pα

are the canonical momenta corresponding to general coordinates xα = (t, xa)
on M . We use coordinates (t, xa) with zero shift, and Latin indices run from
1 to 3. On the mass shell PM the variable p0 becomes a function of the
remaining variables (t, xa, pb) as

p0 =
√
−g00

√
1 + gabpapb.

The number density f = f(t, xa, pb) satisfies a continuity equation, the so-
called Vlasov equation, which says that f is constant along the geodesics of
the spacetime metric,

∂tf +
pa

p0
∂xaf − 1

p0
Γa

βγpβpγ ∂paf = 0, (1.4)
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where Γα
βγ are the Christoffel symbols induced by the metric gαβ . The

energy-momentum tensor is given by

Tαβ =
∫

pαpβf |g|1/2 dp1dp2dp3

−p0
, (1.5)

where |g| denotes the determinant of the metric. The system (1.1), (1.4),
(1.5) is the Einstein-Vlasov system in general coordinates. For an introduc-
tion to relativistic kinetic theory and the Einstein-Vlasov system we refer
to [1] and [29].

If, for comparison, the matter is to be described as a perfect fluid with
density R, four-velocity field Uα, and pressure P , then the matter evolution
equations are the Euler equations

Uα∇αR+ (R+ P )∇αUα = 0,

(R+ P )Uα∇αUβ + (gαβ + UαUβ)∇αP = 0,

where ∇α is the covariant derivative corresponding to the metric gαβ . The
energy-momentum tensor in this case is

Tαβ = RUαUβ + P (gαβ + UαUβ).

To close the Einstein-Euler system it has to be supplemented by an equation
of state P = P (R). The choice P = 0 yields the dust matter model referred
to above.

Due to the complexity of the field equations (1.1) very little can be
said about the questions at hand for these equations in their general form.
Since on the other hand these questions are of considerable interest also
in spacetimes satisfying simplifying symmetry assumptions, we from now
on focus on asymptotically flat, spherically symmetric spacetimes and write
down the metric

ds2 = −e2µ(t,r)dt2 + e2λ(t,r)dr2 + r2(dθ2 + sin2 θ dϕ2)

in Schwarzschild coordinates. Here t ∈ R is the time coordinate, r ∈ [0,∞[
is the area radius, i.e., 4πr2 is the area of the orbit of the symmetry group
SO(3) labelled by r, and the angles θ ∈ [0, π] and ϕ ∈ [0, 2π] parameterize
these orbits. Asymptotic flatness means that the metric quantities λ and µ
have to satisfy the boundary conditions

lim
r→∞

λ(t, r) = lim
r→∞

µ(t, r) = 0. (1.6)
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For a metric of this form the 00, 11, and 01 components of the Einstein
equations are found to be

e−2λ(2rλr − 1) + 1 = 8πr2e−2µT00, (1.7)

e−2λ(2rµr + 1)− 1 = 8πr2e−2λT11, (1.8)

λt = 4πrT01, (1.9)

where subscripts indicate partial derivatives. The 22 and 33 components are
also nontrivial, but they are not needed for our analysis, and the remaining
components vanish identically due to the symmetry assumption.

Our aim is to find explicit conditions on the initial data such that the
corresponding solutions of the spherically symmetric, asymptotically flat
version of the system (1.1), (1.2), (1.3) have the following property: There
is an outgoing radial null geodesic γ+ originating from r = r0 > 0, i.e., γ+

is the solution of

dγ+(s)
ds

= e(µ−λ)(s,γ+(s)), γ+(0) = r0, (1.10)

such that the solution exists on the outer region

D := {(t, r) ∈ [0,∞[2| r ≥ γ+(t)}, (1.11)

and has the properties that

lim
s→∞

γ+(s) < ∞. (1.12)

Furthermore, as t → ∞ there remains matter in the outer region D. Thus
the matter distribution undergoes a gravitational collapse and a black hole
forms.

In the next section we state our main results for the Einstein-Vlasov
system, where we specify classes of spherically symmetric initial data which
lead to solutions showing the above behavior. The Vlasov equation and the
corresponding energy-momentum tensor components in the case of spherical
symmetry are stated there. In Section 3 we give a general formulation of
one of our results where no particular matter model is considered. The
reason for this is that most steps in the proof of Theorem 2.2 below are of a
general character and—besides the fact that for the Einstein-Vlasov system
there is an existence theory for the initial value problem which guarantees
the existence of solutions on D—the specific properties of Vlasov matter are
used only in one key lemma. Hence it is natural to precisely single out the
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required conditions on the level of the macroscopic matter quantities. This
clarifies the main mechanism in our method, and it may lead to applications
of our method to other matter models. Using an additional feature of Vlasov
matter we construct an alternative, and in some respects larger, class of
initial data which ensure the formation of black holes, cf. Theorem 2.1.

The proofs of our results then proceed as follows. After stating some
general auxiliary results in Section 4 we prove Theorem 3.1, which is the
general-matter version of Theorem 2.2, in Section 5. The latter result is
then established in Section 6 by showing that Vlasov matter satisfies the
required general conditions on the matter for a suitable class of initial data.
Theorem 2.1 is established in Section 7. For all these results it is essential
to make sure that in the outer region D all the matter moves inward. In
the case of general matter this is a condition which we have to impose on
the solution, whereas in the case of Vlasov matter we can specify conditions
on the initial data such that this is true. In the results discussed so far the
solutions have the property that all the matter which is initially in the outer
region D remains there for all future coordinate time t, i.e., no matter is
swallowed by the r = γ+(t) surface. In a final section we show that in the
case of Vlasov matter initial data do exist where a small piece of the matter
originally outside r = γ+(t) is indeed swallowed.

2 Main results for Vlasov matter

In this section Eqns. (1.6)–(1.9) will be supplemented by the spherically
symmetric version of the Vlasov equation together with expressions for the
relevant components of the energy-momentum tensor so that a closed sys-
tem is obtained, known as the spherically symmetric, asymptotically flat
Einstein-Vlasov system.

In order to exploit the symmetry it is useful to introduce non-canonical
variables on momentum space and write f = f(t, r, w, L). For a detailed
derivation of the corresponding equations we refer to [22]; here we just state
the result. The Vlasov equation is

∂tf + eµ−λ w

E
∂rf −

(
λtw + eµ−λµrE − eµ−λ L

r3E

)
∂wf = 0, (2.1)

where
E = E(r, w, L) :=

√
1 + w2 + L/r2 = eµp0.

The variables w ∈]−∞,∞[ and L ∈ [0,∞[ can be thought of as the radial
component of the momentum and the square of the angular momentum
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respectively. Notice that the latter is conserved along characteristics of the
Vlasov equation. The matter quantities are given by

ρ(t, r) = e−2µT00(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0
Ef(t, r, w, L) dL dw, (2.2)

p(t, r) = e−2λT11(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

w2

E
f(t, r, w, L) dL dw, (2.3)

j(t, r) = −e−(λ+µ)T01(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0
w f(t, r, w, L) dL dw. (2.4)

Notice that the quantities ρ, p, j appear on the right hand sides of the
field equations (1.7)–(1.9), and they are given in terms of f alone, which
is the main reason for using the non-canonical variables w and L. The
system (1.6)–(1.9), (2.1)–(2.4) is the spherically symmetric Einstein-Vlasov
system in Schwarzschild coordinates. As initial data we need to prescribe an
initial distribution function

◦
f =

◦
f(r, w, L) ≥ 0, which should be compactly

supported in ]0,∞[×]−∞,∞[×]0,∞[, and such that∫ r

0
4πη2 ◦

ρ(η) dη = 4π2

∫ r

0

∫ ∞

−∞

∫ ∞

0
E

◦
f(η, w, L) dLdw dη <

r

2
. (2.5)

The origin r = 0 is excluded from the support for technical reasons, but this
could be avoided by using Cartesian coordinates. The condition (2.5) implies
that the equations (1.7) and (1.8) have solutions λ and µ, cf. Section 4, and
since

◦
f has compact support, a property which is inherited by f(t), the

matter terms are well defined. If in addition
◦
f is C1 we say that the initial

data is regular. As is shown in [23] or [22], regular initial data launch a unique
local solution for which all the derivatives which appear in the system exist
classically. In Section 6 we discuss in more detail that this local solution
extends to the whole outer region D defined in (1.11).

To state our main results let 0 < r0 < r1 be given, put M = r1/2 (this
is going to be the ADM mass of the solution), and fix 0 < Mout < M such
that

2(M −Mout)
r0

<
8
9
. (2.6)

Remark. The value 8/9 is chosen for definiteness, and any number less
than one would do, effecting the values of some of the constants below.

Two different theorems will be stated below, corresponding to the fol-
lowing two situations.
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(i) Let R1 > r1 be such that

R1 − r1 <
r1 − r0

6
, (2.7)

or

(ii) let R1 > r1 be such that√
R1 − r1

R1
< min

{
1
6
,

r2
0

12κR1M
,
r1 − r0

8κR1

}
, (2.8)

where the (explicit) constant κ > 0 will be specified in Theorems 2.2
and 3.1 below.

Finally, we define

R0 :=
1
2
(r1 + R1).

Denote by ◦
ρ the energy density induced by the initial distribution function

◦
f. We require that all the matter in the outer region [r0,∞[ is initially
located in the strip [R0, R1], with Mout being the corresponding fraction of
the ADM mass M , i.e.,∫ ∞

r0

4πr2 ◦
ρ(r)dr =

∫ R1

R0

4πr2 ◦
ρ(r)dr = Mout. (2.9)

Furthermore, the remaining fraction M −Mout should be initially located
within the ball of area radius r0, i.e.,∫ r0

0
4πr2 ◦

ρ(r)dr = M −Mout. (2.10)

Remark. The set up described above is quite similar to the set up in [8]
for a scalar field. In [8] it is not required to have matter in an “inner” strip
[0, r0], as is the case here in view of (2.10) and the condition Mout < M.
The reason why we need some matter in the region r ≤ r0 is to ensure that
initially ingoing matter continues to be ingoing for all times, cf. Lemma 6.1
below. If one only considers purely radially ingoing particles, i.e., with no
angular momentum (which results in a non-smooth distribution function f),
then we could allow for Mout = M. It is interesting to note that p = ρ holds
for Vlasov matter, if the particles have no angular momentum and their rest
mass is zero, which is the case for the scalar field considered in [8].

Now we are in the position to formulate our main results for Vlasov
matter. Corresponding to Case (i) above, we prove
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Theorem 2.1 Let r0, r1,M , and Mout be given as above, and let R1 satisfy
(2.7). Then there exists a set I1 of regular initial data for the spherically
symmetric Einstein-Vlasov system such that if

◦
f ∈ I1, then (2.9) and (2.10)

hold, the corresponding solution exists on D, and

lim
s→∞

γ+(s) < ∞, lim
s→∞

∫ ∞

γ+(s)
4πr2ρ(s, r) dr > 0,

where γ+ satisfies (1.10).

By abuse of notation we denote by D both the outer region in spacetime
defined by (1.11) and the part of the mass shell with (t, r) ∈ D.

The next theorem addresses Case (ii) above, assuming the stronger condi-
tion (2.8). This allows for a more straightforward proof, and the constraints
on the momentum variables of the initial distribution function

◦
f which are

used to specify the set I1 will be slightly relaxed. Hence, the initial data set
I1 does not contain I2 in Theorem 2.2 below, but it is larger in the sense
that data in I2 are quite close to containing a trapped surface, which is not
necessarily the case for data in I1. The precise form of I1 and I2 is specified
in the proofs.

Theorem 2.2 Let r0, r1,M , and Mout be given as above and let R1 satisfy
(2.8) with κ = 6. Then there exists a set I2 of regular initial data for the
spherically symmetric Einstein-Vlasov system such that if

◦
f ∈ I2, then (2.9)

and (2.10) hold, the corresponding solution exists on D, and

lim
s→∞

γ+(s) < ∞, lim
s→∞

∫ ∞

γ+(s)
4πr2ρ(s, r) dr > 0,

where γ+ satisfies (1.10).

In the next section we formulate a version of Theorem 2.2 for quite general
matter models. One reason for this is that the main mechanism behind
our method becomes very transparent by posing sufficient conditions on the
macroscopic matter terms rather than conditions on the initial distribution
function

◦
f as we did in the theorems above. Theorem 2.2 will then be a

consequence of this generalization, cf. Section 6, whereas Theorem 2.1 is
established in Section 7.

In these proofs it turns out that for the classes of initial data that we
have specified we can obtain somewhat sharper asymptotic information on
γ+ and the mass in the outer region; see (5.7) below.

11



3 The result for general matter models

In this section we specify the general assumptions on a matter model suffi-
cient for our method to be applied. In order to keep the discussion consistent
with the Vlasov part of our arguments, and in view of the right hand sides
of the field equations (1.7), (1.8), (1.9), it is convenient to use the notation

ρ := e−2µT00, p := e−2λT11, j := −e−µ−λT01. (3.1)

Firstly, we assume that the following two conditions are satisfied.

• The dominant energy condition holds. (DEC)

• The radial pressure p is non-negative. (NNP)

The dominant energy condition (DEC) plays a central role in general rel-
ativity and is the main criterion that a matter model should satisfy to be
considered realistic. We refer to [15] for its definition. The non-negative
pressure condition (NNP) is restrictive in the sense that it rules out, for
example, a Maxwell field as matter model. However, for most astrophys-
ical models it is a standard assumption, with e.g. fluid models satisfying
this condition. For the purpose of this paper we only need to focus on two
consequences of these two criteria, cf. [15] and [21]. The (DEC) condition
implies, together with the (NNP) condition, that

0 ≤ p ≤ ρ and |j| ≤ ρ. (3.2)

Furthermore, by (DEC) any geodesic (s,R(s)) of a material particle or a
light ray satisfies ∣∣∣∣dR(s)

ds

∣∣∣∣ ≤ e(µ−λ)(s,R(s)). (3.3)

The meaning of the latter condition is that locally the speed of energy flow
is less than or equal to the speed of light.

Let λ, µ, ρ, p, j correspond to a solution of the spherically symmetric
Einstein-matter equations (1.6)–(1.9), (1.2), (1.3) in Schwarzschild coordi-
nates, launched by initial data from a class I. In order to investigate the
global structure of the solutions it is necessary that they exist globally in
an appropriate sense. In the situation at hand they need to exist on the
outer region D defined in (1.11). In the spherical symmetric case the main
obstruction for obtaining global solutions arises from the difficulties related
to the centre of symmetry r = 0. For example, for a massless scalar field or
a collisionless gas as matter model it has been shown that solutions remain
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regular away from r = 0 for general initial data, cf. [11, 2, 25]. On the
other hand, for dust a singularity of shell crossing type can also occur at
some r > 0. Although in that case there are no true geometric spacetime
singularities, such behavior has to be ruled out in order not to interfere with
the analysis of the solution on D. This can be achieved by proper assump-
tions on the initial data, cf. [6]. In view of (3.3) a possible break down of
solutions at r = 0 will have no influence on the outer domain D. Hence we
formulate a third condition, concerning global existence of solutions in the
outer domain, as follows.

• For solutions launched by data from the set I, γ+ defined by (1.10)
exists on [0,∞[, and λ, µ, ρ, p, j ∈ C1(D). (GLO)

The three conditions above are of a quite general nature. The fourth and
final condition however, is tightly connected to our method of proof.

• There exists a constant c1 > 0 such that ρ ≤ −c1j in D. (EHC)

The acronym (EHC) stands for “event horizon condition”, and this condition
plays a crucial role for our method of proof. We emphasize that our main
results show that for Vlasov matter there are initial data sets such that
(EHC) holds. As a first consequence of (EHC) and (3.2), note that j ≤ 0 in
D, i.e., the matter is ingoing for all times. In this respect our present results
complement [3], where purely outgoing matter is considered.

Let us now assume that our matter model satisfies (DEC) and (NNP),
and that there exists an initial data set I such that (GLO) and (EHC) hold
as well. Then we have the following result, which should be viewed as a
version of Theorem 2.2 for general matter.

Theorem 3.1 Let r0, r1, M , and Mout be given as above and let R1 satisfy
(2.8) with κ = 2c1. Assume that there exists an initial data set I3 ⊂ I such
that (2.9) and (2.10) hold for all initial data in I3. Then for any solution
launched by initial data in I3,

lim
s→∞

γ+(s) < ∞, lim
s→∞

∫ ∞

γ+(s)
4πr2ρ(s, r) dr > 0,

where γ+ satisfies (1.10).

Remark. For a spherically symmetric perfect fluid with density R, pressure
P = P (R), and radial velocity field u, the (DEC) and (NNP) conditions and
Eqn. (3.2) respectively are satisfied provided that 0 ≤ P (R) ≤ R, which
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restricts the equation of state. The (EHC) condition holds for example with
c1 =

√
2 if −eλu ≥ 1 on D. In the kinetic context of the Vlasov model

we derive analogous estimates on the particle level from conditions on the
initial data.

4 Preliminaries

In this section we collect some general facts concerning the spherically sym-
metric Einstein-matter equations under the assumptions (DEC) and (NNP)
that have been specified in the previous section.

A quantity which plays an important role is the quasi-local mass m(t, r).
Typically, the spherically symmetric Einstein-matter system is supple-
mented by the requirement of a regular centre, i.e., λ(t, 0) = 0. Using
this boundary condition the field equation (1.7) implies that

e−2λ = 1− 2m

r
, (4.1)

where the quasi-local mass would be given by m(t, r) :=
∫ r
0 4πη2ρ(t, η) dη.

Then m(t,∞) is a conserved quantity, the ADM mass. However, in the
present context we want to investigate the system on the outer domain
D, regardless of whether or not the solution remains regular in the region
r < γ+(t). Hence we do not use the usual boundary condition at r = 0.
Instead, we assume that the ADM mass M > 0 is given and redefine the
quasi-local mass by

m(t, r) = M −
∫ ∞

r
4πη2ρ(t, η) dη. (4.2)

Then limr→∞m(t, r) = M , 0 ≤ m ≤ M , and mr = 4πr2ρ holds. Defining
λ by (4.1), (3.1) shows that (1.7) and the boundary condition in (1.6) are
satisfied. In addition, we need to modify (2.5) to

◦
m(r) <

r

2
, r ∈]0,∞[, (4.3)

a condition that once again will be included in the notion of regular initial
data.

By (1.7) and (1.8),

λr =
(
4πrρ− m

r2

)
e2λ, µr =

(m

r2
+ 4πrp

)
e2λ.
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In view of (1.6), µ = µ̂ + µ̌, where we define

µ̂(t, r) := −
∫ ∞

r

m(t, η)
η2

e2λ(t, η) dη, (4.4)

µ̌(t, r) := −
∫ ∞

r
4πη p(t, η) e2λ(t, η) dη. (4.5)

Lemma 4.1 The following assertions hold.

(a) 2µ̂ ≤ µ− λ ≤ µ̂ ≤ µ̂ + λ.

(b) µ + λ ≤ µ̂ + λ.

(c) (µ− λ)(t, r) = 2µ̂(t, r) +
∫∞
r 4πη (ρ− p)(t, η) e2λ(t, η) dη.

(d) µ̂t(t, r) =
∫∞
r 4πj(t, η) e(µ+λ)(t, η)e2λ(t, η) dη. In particular, if j ≤ 0,

then also µ̂t ≤ 0.

Proof : In view of (1.6),

λ(t, r) = −
∫ ∞

r

(
4πη ρ(t, η)−m(t, η)

η2

)
e2λ dη = −

∫ ∞

r
4πη ρ(t, η) e2λ dη− µ̂,

and by (3.2) the relation µ − λ ≥ 2µ̂ follows. On the other hand, by (4.1),
λ ≥ 0. Thus µ̌ ≤ 0 leads to µ − λ ≤ µ ≤ µ̂ ≤ µ̂ + λ, and part (a) is
established. Part (b) follows from µ̌ ≤ 0. As to (c), we observe that

µ̂ + λ +
∫ ∞

r
4πη (ρ− p) e2λ dη = µ̌,

which gives the claim. By (4.1) and (1.9), (e2λ m
r2 )

t
= 1

2r (e2λ − 1)t =
−4π eµ+λe2λj. Hence (d) follows from (4.4). 2

Lemma 4.2 For r ∈ [0,∞[ the following holds:∫ ∞

r
4πη (ρ + p)(t, η) e(µ+λ)(t, η)e2λ(t, η) dη = 1− e(µ+λ)(t, r) ≤ 1,∫ ∞

r
4πη ρ(t, η) e(µ̂+λ)(t, η)e2λ(t, η) dη = 1− e(µ̂+λ)(t, r) ≤ 1.

Proof : It suffices to integrate

∂r(eµ+λ) = eµ+λ(µr + λr) = eµ+λ4πr (p + ρ),

∂r(eµ̂+λ) = eµ̂+λ(µ̂r + λr) = eµ̂+λ
(
e2λ m

r2
+

(
4πrρ− m

r2

)
e2λ

)
= 4πrρ eµ̂+λe2λ, (4.6)
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observing that limr→∞ µ̂(t, r) = limr→∞ λ(t, r) = limr→∞ µ(t, r) = 0. For
Vlasov matter, the first relation has been used in [2, Lemma 1]. 2

Next we consider outgoing and ingoing radial null geodesics γ+ and γ−,
respectively.

Lemma 4.3 Let γ± be the solutions to

dγ±

ds
(s) = ± e(µ−λ)(s, γ±(s)), γ+(0) = r0 < r1 = γ−(0).

Then

(a) γ+ is strictly increasing, s 7→ m(s, γ+(s)) is increasing, and the limits
lims→∞ γ+(s) ∈]r0,∞] and lims→∞m(s, γ+(s)) ∈ [m(0, r0),M ] exist.

(b) γ− is strictly decreasing, s 7→ m(s, γ−(s)) is decreasing, and the limits
lims→∞ γ−(s) ∈ [0, r1[ and lims→∞m(s, γ−(s)) ∈ [0,m(0, r1)] exist.

(c) The relation

d

ds
(µ̂ + λ)(s, γ±(s)) =

(
µ̂t − 4πr eµ+λ(j ∓ ρ)

)∣∣∣∣
(t, r)=(s,γ±(s))

holds. In particular, if j ≤ 0 and ρ = j = 0 along γ±, then also
d
ds(µ̂ + λ)(s, γ±(s)) ≤ 0.

Proof : Differentiating (4.1) w.r.t. t and using (1.9) implies that mt =
−4πr2eµ−λj. Since ρ ≥ j according to (3.2), this yields

d

ds
m(s, γ+(s)) = mt(s, γ+(s)) + mr(s, γ+(s))

dγ+

ds
(s)

= (−4πr2eµ−λj + 4πr2ρ eµ−λ)
∣∣
(t, r)=(s,γ+(s))

≥ 0.

Thus part (a) is obtained from m ≤ M . Since ρ ≥ −j, the proof of (b) is
analogous to (a). As to (c), note that by definition of µ̂, (1.7), and (1.9),

d

ds
(µ̂ + λ)(s, γ±(s))

=
(
µ̂t + µ̂r

dγ±

ds
+ λt + λr

dγ±

ds

)∣∣∣∣
(t, r)=(s,γ±(s))

=
(
µ̂t ±

m

r2
e2λeµ−λ − 4πr eµ+λj ±

(
4πrρ− m

r2

)
e2λeµ−λ

)∣∣∣∣
(t, r)=(s,γ±(s))

=
(
µ̂t − 4πr eµ+λ(j ∓ ρ)

)∣∣∣∣
(t, r)=(s,γ±(s))

,

as desired. The last claim follows from Lemma 4.1(d). 2
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5 Proof of Theorem 3.1

In this section we use the hypotheses stated in Section 3 to prove Theo-
rem 3.1. The proof is short and emphasizes that the crucial mechanism is
captured in the (EHC) condition. Our main results which show in particu-
lar that the (EHC) condition holds for Vlasov matter are established in the
next sections.

Consider the out- and ingoing null geodesics γ+ and γ− defined in
Lemma 4.3. The claims follow if we can show that these geodesics never
intersect. By continuity and monotonicity there exists T ∈]0,∞] such that

r0 ≤ γ+(t) < γ−(t) ≤ r1, t ∈ [0, T [; (5.1)

it will be shown that actually T = ∞ holds. In view of (2.9) we have initially
that ρ = p = j = 0 for r ≥ R1. The (EHC) condition implies that j ≤ 0 in
D, meaning that the flow of matter is ingoing. Therefore

ρ = p = j = 0 and m = M for (t, r) ∈ [0, T [×[R1,∞[. (5.2)

By Lemma 4.2, (3.2), the (EHC) condition, and Lemma 4.1(d) for s ∈ [0, T [
and r ∈ [γ+(s),∞[,

1− e(µ+λ)(s, r) =
∫ ∞

r
4πη (ρ + p)(s, η) e(µ+λ)(s, η)e2λ(s, η) dη

≤ 2c1

∫ ∞

r
4πη |j(s, η)| e(µ+λ)(s, η)e2λ(s, η) dη

≤ −2c1R1

∫ ∞

r
4πj(s, η) e(µ+λ)(s, η)e2λ(s, η) dη

= −2c1R1µ̂t(s, r),

since j(s, η) 6= 0 implies η ≤ R1. Thus

µ̂t(s, r) ≤ −
1

2c1R1

(
1− e(µ+λ)(s, r)

)
. (5.3)
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This in turn implies that

µ̂(t, γ±(t))− µ̂(0, γ±(0))

=
∫ t

0

d

ds
µ̂(s, γ±(s)) ds

=
∫ t

0

(
µ̂t(s, γ±(s))± µ̂r(s, γ±(s))e(µ−λ)(s, γ±(s))

)
ds

≤
∫ t

0

(
− 1

2c1R1

(
1− e(µ+λ)(s, γ±(s))

)
± m(s, γ±(s))

γ±(s)2
e(µ+λ)(s, γ±(s))

)
ds

≤ − t

2c1R1
+

∫ t

0

( 1
2c1R1

+
m(s, γ±(s))

γ±(s)2
)

e(µ+λ)(s, γ±(s)) ds. (5.4)

Now for any r ∈ [r0, r1] and t ∈ [0, T [ it follows from µ̂r ≥ 0 and (4.1) that

µ̂(t, r) ≤ µ̂(t, R1) = −
∫ ∞

R1

M dη

η2(1− 2M/η)
. (5.5)

Using M = r1/2 we get

µ̂(t, R1) =
1
2

log
(R1 − r1

R1

)
,

so that for r ∈ [r0, r1],

eµ̂(t, r) ≤ eµ̂(t,R1) =
√

R1 − r1

R1
. (5.6)

By (3.3) and the properties of the initial matter distribution there is vacuum
in the region γ+(t) ≤ r ≤ γ−(t). Hence m(t, r) = M −Mout and (2.6) imply
that

eλ(t,r) ≤ 1√
1− 2(M −Mout)/r0

< 3

for γ+(t) ≤ r ≤ γ−(t). From Lemma 4.1(b) and (2.8), recalling κ = 2c1, we
obtain in particular that

e(µ+λ)(s,γ±(s)) ≤ e(µ̂+λ)(s,γ±(s)) < min
{

1
2
,

r2
0

8c1R1M

}
=: d.
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Thus (5.4) yields

µ̂(t, γ±(t))− µ̂(0, γ±(0)) ≤ − t

2c1R1
+ d

∫ t

0

( 1
2c1R1

+
M

r2
0

)
ds

= −
(

1− d

2c1R1
− d

M

r2
0

)
t

≤ −
(

1
4c1R1

− d
M

r2
0

)
t

≤ − t

8c1R1
, t ∈ [0, T [.

Hence Lemma 4.1(a) leads to the estimate

|γ±(t)− γ±(0)| =
∣∣∣∣ ∫ t

0
e(µ−λ)(s, γ±(s)) ds

∣∣∣∣ ≤ ∫ t

0
eµ̂(s, γ±(s)) ds

≤ eµ̂(0, γ±(0))

∫ t

0
e
− s

8c1R1 ds ≤ 8c1R1

√
R1 − r1

R1
,

where we used (5.6) in the last inequality. By the third condition in (2.8),√
R1 − r1

R1
<

r1 − r0

16c1R1
,

so that
|γ±(t)− γ±(0)| < r1 − r0

2
, t ∈ [0, T [.

Since γ−(0)− γ+(0) = r1− r0, this implies that γ−(T )− γ+(T ) > 0. Hence,
if we choose T in (5.1) to be maximal, then T = ∞, i.e., γ+ and γ− do never
intersect. This completes the proof of Theorem 3.1. 2

Remark. In the above proof we have obtained the somewhat more explicit
information that

lim
s→∞

γ+(s) <
r0 + r1

2
, m(s, γ+(s)) = M −Mout, s ≥ 0, (5.7)

the latter since all the matter originally to the right of γ−(s) > γ+(s)
necessarily stays there.
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6 Proof of Theorem 2.2

We first check that the (DEC), (NNP), and (GLO) conditions hold for Vlasov
matter. Then we show that there exists a class of initial data such that the
corresponding solutions satisfy the (EHC) condition with c1 = 3. Hence
Theorem 2.2 will follow from Theorem 3.1.

The characteristic system associated to the Vlasov equation (2.1) is

dR

ds
= e(µ−λ)(s, R) W

E
, (6.1)

dW

ds
= −λt(s,R)W − e(µ−λ)(s, R)µr(s,R)E + e(µ−λ)(s, R) L

R3E
, (6.2)

dL

ds
= 0. (6.3)

If s 7→ (R,W, L)(s) is a solution with data (R,W, L)(0) = (r, w, L), then

f(s,R(s),W (s), L) =
◦
f(r, w, L)

is constant in s. Hence (R(s),W (s), L) ∈ supp f(s) iff (r, w, L) ∈ supp
◦
f.

Such characteristics will be addressed as characteristics in supp f .
Direct inspection of the definition in (2.3) shows that (NNP) holds for

Vlasov matter. It is moreover well-known that the (DEC) condition is sat-
isfied for Vlasov matter; see [1, Sec. 1.4]. Alternatively, we can check (3.2)
and (3.3) directly. The latter follows from (6.1) above, whereas the former
is a consequence of the expressions for the matter terms given in (2.2), (2.3),
and (2.4).

To see that the (GLO) condition holds for any regular initial data set
we argue as follows. First of all, a regular initial data launches a local-in-
time solution on some time interval [0, T [, and the corresponding theorems
in [23] or [22] also give a condition under which this local solution can be
extended to a global one. In order to see that the local solution can always be
extended to the whole outer domain D we first observe that the spherically
symmetric Einstein-Vlasov system on D, with (4.1) and (4.2) replacing the
usual boundary condition of a regular centre and with (1.10) included, has
again a well-posed initial value problem for regular data supported in ]r0,∞[.
This can be shown in the same way as for the system on the whole space, the
essential point being that no characteristic of the Vlasov equation can enter
region D at the boundary r = γ+(t). To the local solution on D we can now
apply the arguments from [25] and conclude that the solution exists on all
of D. This is possible due to the fact that the estimates in [25] address a
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situation where matter is bounded away from the centre or is controlled in
a neighborhood of the centre so that these estimates can be applied on D.
We emphasize that for our present analysis only the behavior of the solution
on D plays a role. We have chosen to present our results in the form that
we have Vlasov matter also inside r < γ+(t), and this part of the solution
may or may not break down, but this is irrelevant for our arguments.

Hence it remains to show that the (EHC) condition holds. To this end
we let 0 < r0 < r1 < R1, R0 = (r1 +R1)/2, and M = r1/2. For a parameter
W− < 0 to be specified below and regular data

◦
f with ADM mass M we

formulate the following
General support condition: For all (r, w, L) ∈ supp

◦
f the following holds:

r ∈]0, r0] ∪ [R0, R1],

and if r ∈ [R0, R1] then
w ≤ W−

and also
0 < L <

3L

η
◦

m(η) + η
◦

m(η), η ∈ [r0, R1]. (6.4)

We use the notation ◦
m when ρ = ◦

ρ in (4.2). Furthermore, we abbreviate

Γ = Γ(r1, R1) :=
√

R1 − r1

R1 + r1
. (6.5)

The following lemma shows that if the support condition holds, then the
particles in the outer domain D keep moving inward in a controlled way.

Lemma 6.1 Let
◦
f be regular and satisfy the general support condition for

some W− < 0. Then for all (r, w, L) ∈ supp f(t) such that (t, r) ∈ D,

w ≤ Γ(r1, R1)W−.

In particular, j ≤ 0 on D.

Proof : Let [0, T [ denote the maximal time interval such that for t < T

w < 0 for (r, w, L) ∈ supp f(t) with (t, r) ∈ D. (6.6)

Since W− < 0, T > 0 by continuity. By the definition of j,

j(t, r) ≤ 0 for (t, r) ∈ DT := D ∩ ([0, T [×[0,∞[). (6.7)
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Let (R,W, L)(s) be a characteristic in supp f . Then

d

ds
(e−λW ) = − e−λ

(
Wλt + Wλr

dR

ds
− dW

ds

)
=

4πR

E
eµ(2WEj −W 2ρ− E2p) + eµ

(
1− 2m

R

) L

R3E

+ eµ m

R2

(w2

E
− E

)
= − 4π2

R
eµ

∫ ∞

−∞

∫ ∞

0

[√
Ẽ

E
w −

√
E

Ẽ
w̃

]2

f dL̃ dw̃

− eµ m

R2

(
1 + L/R2

E
+

2L

R2E

)
+ eµ L

R3E
,

where E = E(R,W, L) and Ẽ = Ẽ(R, w̃, L̃). Therefore

d

ds
(e−λW ) ≤ −eµ m

R2

(
1 + L/R2

E
+

2L

R2E

)
+ eµ L

R3E
.

Differentiating (4.1) w.r.t. t and using (1.9) leads to mt = −4πr2eµ−λj,
which by (6.7) is non-negative on DT . It follows that m(s, r) ≥ m(0, r) =
◦

m(r). Thus as long as the characteristic remains in DT ,

d

ds
(e−λW ) ≤ −eµ

◦
m(R)
R2

(
1 + L/R2

E
+

2L

R2E

)
+ eµ L

R3E

= eµ 1
R3E

(
L− 3L

R
◦

m(R)−R
◦

m(R)
)

.

Now R(0) ∈ [R0, R1] and Ṙ(s) ≤ 0 by (6.1) and (6.6) yields R1 ≥ R(0) ≥
R(s) ≥ γ+(s) ≥ r0. Hence condition (6.4) implies that, as long as the
characteristic remains in DT , d

ds(e
−λW ) < 0, so that

W (s) ≤ eλ(s, R(s))−λ(0, R(0)) W−.

But λ ≥ 0, so W− < 0 leads to

W (s) ≤
(

min
r∈[R0,R1]

e−λ(0, r)
)

W−.

In view of (4.1),

e−λ(0, r) ≥
√

1− 2M

R0
=

√
R1 − r1

R1 + r1
, r ∈ [R0, R1],
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and recalling (6.5) it follows that

W (s) ≤ Γ(r1, R1)W− < 0

as long as the characteristic remains in DT . By the maximality of T in (6.6),
T = ∞, and the proof is complete. 2

In order to specify the initial data set I2, let r0, r1, M , and Mout be
given as in Section 2 and let R1 be such that (2.8) holds for κ = 6. We
require that W− < 0 satisfies the estimate

Γ(r1, R1) |W−| ≥ 1. (6.8)

Then

I2 :=
{ ◦

f |
◦
f is regular, satisfies (2.9), (2.10), the general support condition,

and for (r, w, L) ∈ supp
◦
f with r ∈ [R0, R1],

√
L/r0 ≤ Γ |W−|

}
.

(6.9)

Consider now a solution f launched by initial data from this set. Condition
(6.8) and Lemma 6.1 imply that

|w| ≥ Γ(r1, R1) |W−| ≥ 1 on supp f ∩D, (6.10)

and since L is conserved along characteristics, (6.9) leads to
√

L/r ≤√
L/r0 ≤ |w| for all particles in supp f ∩ D. Hence the definition (2.2)

of ρ implies that on D,

ρ(t, r) ≤ π

r2

∫ ∞

−∞

∫ ∞

0
f dL dw +

π

r2

∫ ∞

−∞

∫ ∞

0
|w|f dL dw

+
π

r2

∫ ∞

−∞

∫ ∞

0

√
L/rf dLdw

≤ 3
π

r2

∫ ∞

−∞

∫ ∞

0
|w|f dL dw = 3 |j(t, r)|. (6.11)

Accordingly, I2 satisfies the (EHC) condition with c1 = 3, and Theorem 2.2
follows from Theorem 3.1. 2

We briefly show that the set I2 is far from empty. Therefore fix 0 < r0 <
r1 < R0 < R1, M = r1/2, and 0 < Mout < M such that R0 = (r1 + R1)/2,
(2.6), and (2.8) are satisfied. Let 0 ≤ f1 ∈ C1 have r-support in [r0 − δ, r0]
for some 0 < δ < r0/9, and let 0 ≤ f2 ∈ C1 have r-support in [R0, R1]. Fix
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the compact w-support of f2 in ] − ∞,W−] with W− < 0 such that (6.8)
holds, and fix its L-support in [0, L2] so that

√
L2

r0
≤ Γ(r1, R1) |W−|

and
L < (M −Mout)

(3L

η
+ η

)
, L ∈ [0, L2], η ∈ [r0, R1].

Now take
◦
f = Af1 + Bf2, where A > 0 and B > 0 are chosen such that

(2.9) and (2.10) are satisfied. Note that ◦
m(η) ≥ M −Mout for η ∈ [r0, R1],

whence (6.4) holds as well; thus the general support condition if verified. It
remains to check (4.3). If r ∈]0, r0 − δ], then ◦

m(r) = 0. If r ∈ [r0 − δ,R0],
then ◦

m(r) ≤ M −Mout yields in view of (2.6),

2 ◦
m

r
≤ 2(M −Mout)

r0 − δ
< 1.

If r ∈ [R0,∞[, then
2 ◦
m

r
≤ 2M

R0
< 1,

since 2M = r1 < R0. Hence
◦
f is regular and has all the properties that are

required in the definition of I2.
Remark. The set I2 has “non-empty interior”, in the sense that sufficiently
small perturbations of initial data in the “interior” of this set belong to I2 as
well, provided that the support is changed very little and M is left invariant.
This is due to the fact that the various parameters entering into the definition
of I2 are defined in terms of inequalities and hence can be varied.

7 Proof of Theorem 2.1

The set up is closely related to the set up in the proof of Theorem 2.2. As
we saw above, the (DEC), (NNP), and (GLO) conditions are satisfied for
Vlasov matter, and we will again construct an initial data set such that the
(EHC) condition holds with c1 = 3. However, since this result relies on
condition (2.7) instead of (2.8), we cannot simply invoke Theorem 3.1 after
the (EHC) condition has been verified; instead an additional step needs to be
added to the proof. For this new argument a slightly stronger condition on
the momentum variable w needs to be imposed on supp

◦
f. We now require

that W− < 0 satisfies

Γ(r1, R1)2|W−|2 ≥
10
d

, (7.1)
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where

d := min
{

1
2
,

r0

12R1
,
r1 − r0

300R1

}
.

Then

I1 :=
{ ◦

f |
◦
f is regular, satisfies (2.9), (2.10), the general support condition,

and for (r, w, L) ∈ supp
◦
f with r ∈ [R0, R1],

√
L/r0 ≤ 1.

}
(7.2)

The same construction as at the end of the previous section shows that this
set is not empty, and the same remark as at the end of the previous section
applies.

Let f be a solution launched by initial data from I1. It is clear from
these conditions that Lemma 6.1 applies, and since 10/d ≥ 1, it follows that
(6.10) holds as well. Thus the argument leading to ρ ≤ 3|j| on D in the
proof of Theorem 2.2 applies again. Hence, the (EHC) condition is satisfied
with c1 = 3.

Consider the expression

ρ(s, r)− p(s, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

(
E − w2

E

)
f(s, r, w, L) dL dw.

Since E2 ≥ w2 ≥ Γ2(r1, R1) W 2
− by Lemma 6.1, we get for r ∈ [γ+(s), R1]

from
√

L/r0 ≤ 1,

E − w2

E
=

1
E

(E2 − w2) =
1
E

(
1 +

L

r2

)
≤ 2

E
≤ 2

Γ2 W 2
−

E =: c0E, (7.3)

so that
ρ(s, r)− p(s, r) ≤ c0ρ(s, r). (7.4)

After this preparation, we again show that the out- and ingoing null
geodesics γ+ and γ− do not intersect. We choose T ∈]0,∞[ such that (5.1)
holds. In this case we cannot rely on the smallness of eµ̂ as in the proof of
Theorem 3.1, so we need to control the evolution also when eµ̂ is not small.
For this part the estimate (7.4) is essential.

We fix t±∗ ∈ [0, T [ by requiring that

e(µ̂+λ)(s, γ±(s)) > d for s ∈ [0, t±∗ [, e(µ̂+λ)(s, γ±(s)) ≤ d for s ∈ [t±∗ , T [.

First we note that t±∗ is well-defined, since by Lemma 4.3(c),

d

ds
e(µ̂+λ)(s, γ±(s)) ≤ 0. (7.5)
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Step 1: Consider s ∈ [0, t±∗ ]; if t±∗ = 0, then this step is omitted. For
η ≥ γ±(s),

d ≤ e(µ̂+λ)(s, γ±(s)) ≤ e(µ̂+λ)(s, η),

since (µ̂ + λ)r = 4πrρ e2λ ≥ 0 by (4.6). Hence Lemma 4.1(c) and (7.4) yield

(µ− λ)(s, γ±(s)) = 2µ̂(s, γ±(s)) +
∫ ∞

γ±(s)
4πη (ρ− p)(s, η) e2λ(s, η) dη

≤ 2µ̂(s, γ±(s)) +
c0

d

∫ ∞

γ±(s)
4πη ρ(s, η) e(µ̂+λ)(s, η)e2λ(s, η) dη

≤ 2µ̂(s, γ±(s)) +
c0

d
,

where for the last estimate Lemma 4.2 has been used.
Now we make the following observation: There is at least one charac-

teristic (R̄, W̄ , L̄)(s) with R̄(0) ∈ [R0, R1], which does not leave the strip
[r1, R1] during the finite time interval [0, T ]. In fact, if at time t = T all
characteristics had left the strip [r1, R1] (and thus had entered the region
r < r1), then m(T, r1) = M . From (4.1) and 2M = r1 it would follow that
λ(T, r1) = ∞. However, this contradicts the (GLO) condition which holds
for Vlasov matter.

Since γ±(s) ≤ r1 ≤ R̄(s), and since µ̂r ≥ 0, we thus obtain in view of
Lemma 4.1(a) that

(µ− λ)(s, γ±(s)) ≤ 2µ̂(s, γ±(s)) +
c0

d
≤ 2µ̂(s, R̄(s)) +

c0

d

≤ (µ− λ)(s, R̄(s)) +
c0

d
, s ∈ [0, t±∗ ].

Next note that |W | ≥ 1 by (6.10), and hence due to (6.1) and observing
R̄2 ≥ r2

0 ≥ L,

| ˙̄R| = |W |
E

eµ−λ ≥ |W |√
2 + W 2

eµ−λ ≥ 1
2

eµ−λ.

Therefore for all t ∈ [0, t±∗ ] the estimate

|γ±(t)− γ±(0)| =
∣∣∣∣ ∫ t

0
± e(µ−λ)(s, γ±(s)) ds

∣∣∣∣ ≤ e
c0
d

∫ t

0
e(µ−λ)(s, R̄(s)) ds

≤ −2e
c0
d

∫ t

0

˙̄R(s) ds = 2e
c0
d (R̄(0)− R̄(t))

≤ 2e
c0
d (R1 − r1) (7.6)
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is obtained. Step 2: Let t ∈ [t±∗ , T [; if t±∗ = T , then this step is omitted.
The arguments here are basically the ones presented in Section 5. The
computation leading to (5.4) is almost identical, and

µ̂(t, γ±(t))− µ̂(t±∗ , γ±(t±∗ ))

≤ − t− t±∗
2c1R1

+
∫ t

t±∗

( 1
2c1R1

+
m(s, γ±(s))

γ±(s)2
)

e(µ+λ)(s, γ±(s)) ds (7.7)

for c1 = 3. By Lemma 4.1(b), e(µ+λ)(s, γ±(s)) ≤ e(µ̂+λ)(s, γ±(s)) ≤ d. Next we
use the facts that m/r < 1/2, γ±(s) ≥ r0, and the definition of d to obtain
the estimate

µ̂(t, γ±(t))− µ̂(t±∗ , γ±(t±∗ )) ≤ − 1
2c1R1

(t− t±∗ ) + d

∫ t

t±∗

( 1
2c1R1

+
1

2r0

)
ds

= −
(

1− d

2c1R1
− d

1
2r0

)
(t− t±∗ )

≤ −
(

1
4c1R1

− d
1

2r0

)
(t− t±∗ )

≤ − 1
8c1R1

(t− t±∗ ), t ∈ [t±∗ , T [.

Hence by Lemma 4.1(a),

|γ±(t)− γ±(t±∗ )| =
∣∣∣∣ ∫ t

t±∗

e(µ−λ)(s, γ±(s)) ds

∣∣∣∣ ≤ ∫ t

t±∗

eµ̂(s, γ±(s)) ds

≤ eµ̂(t±∗ , γ±(t±∗ ))

∫ t

t±∗

e
− (s−t±∗ )

8c1R1 ds

≤ e(µ̂+λ)(t±∗ , γ±(t±∗ ))

∫ ∞

t±∗

e
− (s−t±∗ )

8c1R1 ds ≤ 8c1R1d. (7.8)

Adding the contributions (7.6) from Step 1 and (7.8) from Step 2, the final
estimate

|γ±(t)− γ±(0)| ≤ 2ec0/d(R1 − r1) + 8c1R1d

is obtained for all t ∈ [0, T [. From (7.3) and (7.1) we have c0/d ≤ 1/5. The
third condition on d together with (2.7) thus imply that

|γ±(t)− γ±(0)| < r1 − r0

2
.

As in the proof of Theorem 3.1 we conclude that γ+ and γ− do not intersect,
completing the proof of Theorem 2.1. 2
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Remarks. (a) The sharper estimates stated in (5.7) clearly hold also in
this case.
(b) The solution must necessarily enter the regime of Step 2, more precisely,

lim
s→∞

e(µ̂+λ)(s, γ±(s)) = 0

for both null geodesics. Otherwise, the monotonicity implied by Eqn. (7.5)
yields a positive constant c > 0 such that e(µ̂+λ)(s, γ±(s)) > c for all time,
and hence,

|γ̇±| = eµ−λ = eµ̂+λeµ̌−2λ > ceµ̌−2λ.

Since no matter can cross the two null geodesics,

(µ̌− 2λ)(s, r) =
∫ ∞

r
4πη(2ρ− p)e2λdη + 2µ̂(s, r)

≥ 2µ̂(s, r) = −2
∫ ∞

r

◦
m(r0)

η2

1
1− 2 ◦

m(r0)/η
dη

= ln
r − 2 ◦

m(r0)
r

for r = γ±(s). If we insert this into the estimate for γ̇± it follows that this
quantity is bounded from below by a positive constant which contradics the
finite limits of γ±(s) as s →∞.

8 Light refreshments to a black hole

In this section we are going to show that for the case of Vlasov matter initial
data can be arranged such that for large times the solution behaves exactly
as in Theorems 2.1 or 2.2, but some of the matter which initially is in the
exterior region D is swallowed by the null geodesic γ+. We carry out the
argument, which essentially works by continuous dependence on initial data,
for Theorem 2.1.

Let
◦
f ∈ I1 be such that in Eqn. (7.1) the inequality is strict. The

corresponding local solution of the spherically symmetric Einstein-Vlasov
system on the whole space exists on some time interval [T, 0] with T < 0.
By choosing T sufficiently close to 0 we can make sure that r− = γ+(T ) > 0
and that the matter which at time t = 0 is in the strip [R0, R1] is moving
inward on the time interval [T, 0]. Clearly r− < r0. The desired initial data
is to be constructed from the state f(T ).

If at time T there is matter in the strip [r−, r0] it can only have come out
of the region r < γ+(t) when moving backward in time so that this matter
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is swallowed by γ+(t) when we move forward in time during [T, 0]. Hence
f(T ) provides initial data of the desired sort.

If there is no matter in the strip [r−, r0] at time T , i.e., no matter came
out of the inner region when moving backward in time, we construct new
regular initial data as follows. We take a small part of matter inside ]0, r−[—
of the order ε with respect to the L∞ norm of f—and place it in the strip
]r−, (r− + r0)/2[ in such a way that firstly the quasi-local mass m(T, r0) is
unchanged, secondly all the matter in the strip ]r−, (r− + r0)/2[ is moving
inward, i.e., has w < 0, and thirdly the condition on L in the general support
condition holds for the matter outside r−. This modification of f(T ) can be
carried out in such a way that the condition (2.5) is preserved, and it yields
initial data of the desired sort. To see this let f̃ denote the corresponding
solution. Using continuous dependence of the solution on the initial data,
cf. [22], we can, by making ε small, make sure that this perturbed solution
exists on the time interval [T, 0], and the radial null geodesic γ̃+ which starts
at r− at time T is as close to r0 at time t = 0 as we wish, in particular,
r̃0 = γ̃+(0) > (r− + r0)/2 . Since Lemma 6.1 applies, all the matter outside
γ̃+ is moving inward during the time interval [T, 0], and the matter starting
in the strip ]r−, (r− + r0)/2[ at time T is swallowed by γ̃+ during the time
interval [T, 0].

It remains to show that the behavior for t > 0 of the solution f̃ on D̃
is qualitatively the same as the one for f . Between the matter originally in
the strip [R0, R1] and the matter starting in ]0, (r−+ r0)/2[ at time T there
is a vacuum region where mt = −4πeµ−λj = 0 so that m(t, r0) is unchanged
during [T, 0]. Since the motion of the matter originally in the strip [R0, R1]
is affected by the matter further in only through the quasi-local mass m,
the motion of this matter is completely unchanged during the time interval
[T, 0]. This means that f̃(t = 0) =

◦
f on [r0,∞[. Since r̃0 is as close to r0

as we wish and the matter outside is the same as in the unperturbed case,
f̃(t = 0) belongs to the set I1, and we are done.

Acknowledgement : The authors are grateful for discussions with A. Ren-
dall, who also suggested the title of what is now Section 8.
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