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Abstract

It is widely recognized that when classical optimal strategies are used
with parameters estimated from data, the resulting portfolio weights are
remarkably volatile and unstable over time. The predominant explana-
tion for this is the di¢ culty to estimate expected returns accurately. We
propose to parameterize an n stock Black-Scholes model as an n factor
Arbitrage Pricing Theory model where each factor has the same expected
return. Hence the non-unique volatility matrix determines both the co-
variance matrix and the expected returns. This enables the investor to
impose views on the future performance of the assets in the model. We
derive an explicit strategy �� which solves Markowitz� continuous time
portfolio problem in our framework. The optimal strategy is to implic-
itly keep 1=n of the wealth invested in stocks in each of the n underlying
factors. To illustrate the long-term performance of ��, we apply it out-
of-sample to a large data set. We �nd that it is stable over time and
outperforms all the underlying market assets in terms of Sharpe ratios.
Further, �� had a signi�cantly higher Sharpe ratio than the classical 1=n
strategy.

Key Words: Black-Scholes model, robust portfolio optimization,
equal risk premiums, Markowitz�problem, 1=n strategy, ranks.

1 Introduction

The fundamental question of portfolio optimization is natural: How do we trade
in the stock market in the best possible way? However, this is not easy to
answer. Classical optimal strategies applied with parameters estimated from
data are known to give irrational portfolio weights. This is primarily due to the

The author is grateful to Christer Borell, Erik Brodin and Ralf Korn for fruitful discus-
sions.
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di¢ culty to estimate expected returns with su¢ cient accuracy, see examples in
[2]. This motivates to study how to circumvent this problem.
Several di¤erent methods for estimating expected returns have been pub-

lished which do not rely entirely on statistics. For example, Black and Litterman
[2] proposed to estimate the expected returns by combining market equilibrium
with subjective investor views. A drawback with this approach is that the in-
vestor still has to quantify her beliefs by specifying numbers for the expected
returns, admittedly with an uncertainty attached to them. The e¤ects of this
action are hard to control.
The Arbitrage Pricing Theory (APT), see [11], is another acclaimed ap-

proach. The APT models the discrete time returns of the stocks as a linear
combination of independent factors. The APT relies on statistical estimates of
the expected returns that are constructed to �t historical data. Hence, it is due
to give unstable portfolio weights.
Yet another popular method to estimate expected returns is simply to ignore

them. This idea is pursued for example in the classical 1=n strategy, which puts
1=n of the investor�s capital in each of n available assets. However, this strategy
does not use the dependence between di¤erent stocks. This is a disadvantage,
since it is possible to obtain good estimates of, for example, the covariance
between stock returns.
Recently, some authors have proposed to let the expected returns depend on

ranks. These ranks could, for example, be based on the capital distribution of
the market, which is fairly stable over time. For developments of this interesting
idea, see [3].
Our goal is to �nd optimal trading strategies that circumvent the severe

problems associated with estimating expected returns. Further, we want to
allow for investors to specify their unique market views through the market
model in a robust way. To this end, we parameterize the Black-Scholes model as
an n factor APT model with no individual error terms, and make the assumption
that each factor has the same expected return. Hence, expected returns are
determined by the volatility matrix and the expected return of the factors. The
non-uniqueness of the volatility matrix allows the investor to impose her views
on the market by selecting a volatility matrix which suggests expected returns
of the stocks that she believes are reasonable.
Modern portfolio optimization was initialized by Markowitz in [8]. Markowitz

measured the risk of a portfolio by the variance of its return. He then formu-
lated a one-period quadratic program where he minimized a portfolio�s variance
subject to the constraint that the expected return should be greater than some
constant. Merton ([9] and [10]) was the �rst to consider continuous time port-
folio optimization. He used dynamic programming and stochastic control to
maximize expected utility of the investor�s terminal wealth. The �rst results on
continuous time versions of Markowitz problem were published rather recently,
see [1], [5], [6], [7], [12], and [13].
We solve Markowitz� continuous time portfolio problem explicitly for our

n stock market model. The optimal strategy �� is to implicitly hold 1=n of
the wealth invested in stocks in each of the n underlying factors, regardless of
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how we have chosen expected returns and the dependence between the stocks
through the volatility matrix. This is not the same as holding 1=n of the wealth
in each stock.
We apply ��, out-of-sample, to two di¤erent data sets. For the �rst data set,

we analyze how investor views transforms into expected returns, and how this
a¤ects the optimal strategy. For the second data set, the long-term performance
of �� is investigated, when no investor preferences are assumed. We �nd that
�� is stable over time and outperforms all the underlying market assets in terms
of Sharpe ratios. Moreover, we can reject the hypothesis that the classical 1=n
strategy gives a higher Sharpe ratio than �� with a very low level of signi�cance.
We present our model in Section 2. Further, we give some examples of pro-

cedures for obtaining volatility matrices that imply rates of return with di¤erent
features. An optimal portfolio for a continuous time version of Markowitz�prob-
lem for n stocks is solved explicitly in Section 3. Section 4 contains an empirical
study of the optimal strategy.

2 The model

We present in this section the model for the stocks. Further, we discuss how
to estimate the volatility matrix, and its relation to the expected returns for
di¤erent assets.

2.1 The stock price model

For 0 � t � T <1, we assume as given a complete probability space (
;F ; P )
with a �ltration fFtg0�t�T satisfying the usual conditions. We take n indepen-
dent Brownian motions Bi; and de�ne the stocks Si; i = 1; :::; n; to have the
dynamics

dSi (t) = Si (t)

0@rdt+ nX
j=1

�i;j [(�� r) dt+ dBj (t)]

1A ; (2.1)

for the continuously compounded interest rate r > 0, and constant � > r, where
the volatility matrix � := f�i;jgni;j=1 is assumed to be non-singular. The stock
price processes become

Si (t) = Si (0) exp

0@0@r � 1
2

nX
j=1

�2i;j

1A t+ nX
j=1

�i;j [(�� r) t+Bj (t)]

1A ;
for B1 (0) = : : : = Bn (0) = 0: We also equip the market with a risk free bond
with dynamics

dR (t) = rR (t) dt:
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This is the classical Black-Scholes model parameterized as an n factor APT
model with no individual random error terms. Hence, the stocks Si depend
on n independent risk factors Fj (t) := [(�� r) t+Bj (t)]. In addition, the
expected returns are assumed to be equal for each factor. A consequence of this
model is that the continuously compounded expected returns are determined
by � � r and the volatility matrix. We have no additional information on any
factor, so equal expected return for all of them is a reasonable assumption.
We discuss now how to choose the volatility matrix.

2.2 The volatility matrix and the rates of return

In mathematical �nance, the volatility matrix � is typically used only to model
the covariance between the returns of di¤erent stocks. However, a given covari-
ance matrix C does not uniquely de�ne a � such that C = ��T . The model
presented above allows the investor to impose her views on the market by se-
lecting a volatility matrix which suggests expected returns of the stocks that
she believes are accurate. Hence expected returns and investor views can be
expressed in a manner less sensitive to statistical estimates and guesses. We
�rst describe two basic examples of volatility matrices. It is then shown that
all volatility matrices which imply the same C can be written as the Cholesky
decomposition of C multiplied by an orthogonal matrix.

Example 2.1 The Sharpe ratio (SR) of a stock is de�ned as its yearly expected
return in excess of the risk-free return divided by the volatility. The SR are hard
to estimate accurately since it requires estimates of expected returns. For the
investor, one alternative to setting expected returns is to specify ranks. Assume
that the investor has ranked the stocks according to her beliefs for their SR. The
stock with the highest presumed SR is assigned rank 1; the second highest gets
rank 2; and so on. We now order the stocks according to their rank, with the
stock with rank n on line 1, the stock with rank n � 1 on line 2, and so on.
Cholesky decomposition applied to the corresponding ordered covariance matrix
gives a clear tendency for stocks with high ranks to have large SR. The reason is
that the row sums of the lower triangular volatility matrix will tend to be larger
for stocks with high ranks. Hence, the continuously compounded rates of return
for these stocks will be larger, and consequently also the yearly expected returns.
Consider the two stocks SA, and SB. The investor ranks SA to have the

lowest SR. In this example we take the covariance matrix

C =

�
4 2
2 5

�
; (2.2)

which is sorted in order of increasing SR. Cholesky decomposition gives then the
volatility matrix

� =

�
2 0
1 2

�
:

The continuously compounded rates of return for SA and SB are r�2+2 (�� r)
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and r � 1
2

�
1 + 22

�
+ (1 + 2) (�� r), respectively.

Another alternative is to assign an economic interpretation to the factors.
For example, one can assume that each stock has a unique factor associated to
it which represents the uncertainty primarily due to that stock.

Example 2.2 Presume that SA depends as much on what happens to factor A,
as SB depends on what happens to factor B. This is reasonable for companies of
about the same size and importance to each other, whether or not they operate on
the same market. With the economic interpretation of the factors given above,
the volatility matrix should be symmetric. Symmetry can be attained by taking
the matrix square root of the covariance matrix.
For the covariance matrix in Equation (2.2) the square root volatility matrix

is

� =

�
1:940 0:485
0:485 2:183

�
:

The stock risk premiums for this method are approximately equal: 1:213 (�� r)
for SA, and 1:193 (�� r) for SB.

We consider now some standard results from linear algebra. Assume that
the positive de�nite covariance matrix C can be written as C = V V T for some
matrix V: We know by QR factorization that V can be written as V = LQ;
where L is lower triangular and Q is orthogonal. It follows that C = V V T =
LQQTLT = LLT ; regardless of orthogonal Q. But since L is lower triangular,
it must be equal to the unique Cholesky decomposition of C. We conclude that
all volatility matrices can be written as the Cholesky decomposition multiplied
by an orthogonal matrix.

Remark 2.1 Even though the choice of volatility matrix does not change the
covariance matrix, we will see below that it has a crucial impact on the optimal
trading strategy. This is due to that the volatility matrix determines the expected
returns.

3 Markowitz�problem in continuous time

We derive in this section an explicit solution to Markowitz�problem in contin-
uous time, given our market model. The optimal strategy is to implicitly keep
1=n of the wealth invested in stocks in each factor Fj .

3.1 An explicit solution

Our objective is to solve the continuous time Markowitz problem

min
�2A

fV ar (W� (T ))g ;

E [W� (T )] � w exp (�T ) : (3.1)
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Here w is the initial wealth, � is the continuously compounded required rate
of return, and W� (T ) is the wealth at the deterministic time T; given that we
invest according to the admissible strategy � 2 A: The admissible strategies A
are the set of all Rn-valued stochastic processes that are uniformly bounded and
progressively measurable in Ft. We sometimes write W for W� when there is
no risk for confusion.
The self-�nancing wealth process W is de�ned as

W (t) = w +
nX
i=1

Z t

0

�i (s)W (s)

Si (s)
dSi (s) +

Z t

0

(1�
Pn

i=1 �i (s))W (s)

R (s)
dR (s) ;

for all t 2 [0; T ], where �i (t)W (t) =Si (t) is the number of shares of stock i
which is held at time t. See [4] for a motivating discussion. This gives the
wealth dynamics

dW (t) =

nX
i=1

�i (t)W (t)

0@ nX
j=1

�i;j [(�� r) dt+ dBj (t)]

1A+W (t) rdt

=W (t)

0@ nX
j=1

pj (t) (�� r) dt+
nX
j=1

pj (t) dBj (t) + rdt

1A ;
for the processes pj :=

Pn
i=1 �i�i;j :

The assumption that � is uniformly bounded implies that the equation for
W can be written as

W (t) = w exp

0@ nX
j=1

�Z t

0

�
pj (s) (�� r)�

1

2
p2j (s)

�
ds+

Z t

0

pj (s) dBj (s) + rt

�1A :
To avoid trivial cases, we assume that � > r such that we need to invest in

some risky asset to obtain an expected yield larger than w exp (�T ) :
For the optimal strategy ��; we must have that

E
h
W�� (T )

i
= w exp (�T ) : (3.2)

To see this, consider a strategy � with E [W� (T )] > w exp (�T ). We know that

V ar (W� (T )) = E [V ar (W� (T ) jp )]

= w2E

24exp
0@2
0@(�� r) nX

j=1

Z T

0

pj (t) dt+ rT

1A1A
0@exp

0@ nX
j=1

Z T

0

p2j (t) dt

1A� 1
1A35 :
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It is a necessary condition for an optimal strategy that
Pn

j=1 pj (t) � 0 for
all (t; !) 2 [0; T ] � 
. The reason is that whenever this condition is violated,
exchanging � for the strategy to put all the money in the risk free asset will
both increase expected return and lower the variance. Hence, the strategy ��,
for any � 2 (0; 1) such that Equation (3.1) holds, has lower variance than � by
the de�nition of the pj .
We consider now the deterministic and constant process

~p1 (t) = ::: = ~pn (t) =
1

n

�� r
�� r =: ~p; (3.3)

and associated strategy ~�. Note that E
�
W ~� (T )

�
= w exp (�T ). This implies,

for any strategy � 2 A which satis�es Equation (3.2), that

V ar (W� (T )) = E [V ar (W� (T ) jp )]
= w2 exp (2�T )

�
exp

�
n~p2T

�
� 1
�

� E

24exp
�
2
�
(�� r)

Pn
j=1

R T
0
pj (t) dt+ rT

��
exp (2�T )�

exp
�Pn

j=1

R T
0
p2j (t) dt

�
� 1
�

(exp (n~p2T )� 1)

35 :
Set Ip := 1

nT

Pn
j=1

R T
0
pj (t) dt. We can use Jensen�s inequality to see that

exp

0@ nX
j=1

Z T

0

p2j (t) dt

1A � exp
�
nI2pT

�
;

for all ! 2 
, so

V ar (W� (T )) � w2 exp (2�T )
�
exp

�
n~p2T

�
� 1
�

� E
"
exp (2 ((�� r)nIp + r)T )

�
exp

�
nI2pT

�
� 1
�

exp (2�T ) (exp (n~p2T )� 1)

#
:

We have assumed that

E
�
exp (((�� r)nIp + r)T )

exp (�T )

�
= 1:

We see now that

exp (((�� r)nIp + r)T )
�
exp

�
nI2pT

�
� 1
�

exp (�T ) (exp (n~p2T )� 1) > 1;
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for Ip > ~p; and

exp (((�� r)nIp + r)T )
�
exp

�
nI2pT

�
� 1
�

exp (�T ) (exp (n~p2T )� 1) < 1;

for Ip < ~p. This gives

V ar (W� (T )) � w2 exp (2�T )
�
exp

�
n~p2T

�
� 1
�
;

with equality only for � = ~�. Hence, for su¢ ciently high bounds on the admis-
sible strategies, the strategy �� that solves

�1�1;1 + :::+ �n�n;1 =
1

n

�� r
�� r (3.4)

...

�1�1;n + :::+ �n�n;n =
1

n

�� r
�� r ;

for all t 2 [0; T ] minimizes the variance of the terminal wealth W (T ) subject to
the growth constraint in Equation (3.1). The equation for W�� becomes

W�� (t) = w exp

0@�t� ��� r
�� r

�2
t

2n
+
1

n

�� r
�� r

nX
j=1

Bj (t)

1A
=d w exp

  
�� 1

2n

�
�� r
�� r

�2!
t+

1p
n

�� r
�� rB (t)

!

for a Brownian motion B; where "=d" denotes equality in distribution.

Remark 3.1 The e¤ect on the wealth process W�� from increasing the number
of stocks n is illustrated in Figure 3.1. The �gure shows that the higher expected
return the investor requires, the more she will have to risk. Nonetheless, the
risk will decrease as the number of stocks n increases. Note that W�� is strictly
positive with probability 1; so the investor does not risk bankruptcy.

Remark 3.2 There are interesting connections between �� and Merton�s clas-
sical portfolio problems. For example, assume that we want to �nd a strategy ~�
that maximizes expected utility of terminal wealth E [U (W� (T ))]. Merton�s �̂
for logarithmic utility U (w) = log (w) in our model becomes then

�̂ = (�� r)
�
��T

��1
�1 = (�� r)

�
�T
��1

��1�1 = (�� r)
�
�T
��1

1:

This �̂ is of the same form as the optimal strategy �� for our continuous time
Markowitz�problem.

Remark 3.3 The optimal strategy �� has the advantage that the investor can
apply it without estimating the parameters � and �: Assume that the investor
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Figure 3.1: Left: Distributions of optimal wealth at time T = 1 for di¤erent n
with parameters w = 1; � = 0:1; � = 0:2; and r = 0:03: Right: Distributions of
optimal wealth at time T = 1 for di¤erent n with parameters w = 1; � = 0:3;
� = 0:2; and r = 0:03:

has chosen a fraction of her wealth to invest in risky assets. This choice, together
with Equations (3.4), determines (�� r) = (�� r).

4 An empirical study of ��

We investigate the empirical performance of �� by analyzing two di¤erent data
sets. For the �rst data set, we examine how investor preferences are translated
into expected returns, and the e¤ect these expected returns have on the optimal
strategy. For the second data set, we analyze the long-term e¢ ciency of ��

when no investor views are assumed. Throughout this section, we set r = 0:05.
Further, we assume that the investor is fully invested in the stock market at all
times.

4.1 The strategy �� with ranks

The �rst data set comprises three di¤erent stocks traded at OMX - The Nordic
Exchange. The stocks are Ericsson B, Hennes & Mauritz B, and Volvo B. The
data is from the time period 2002-07-01 to 2007-01-01. The covariance matrix
is estimated from a window of 18 months of data, and it is updated each month.
We have ranked the stocks with regards to their presumed SR; Ericsson B: rank
1; Hennes & Mauritz B: rank 2; Volvo B: rank 3. We �nd the volatility matrix
by applying Cholesky decomposition as in Example 2.1. The optimal strategy
�� is applied out-of-sample, with daily adjustments of the portfolio weights. It
can be seen from Figure 4.1 that the optimal strategy is stable over time, and
that the portfolio weights are positive for every stock the entire time period.
The wealth process associated with �� is presented in Figure 4.2.
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Figure 4.1: Blue, green, and red lines denote optimal fractions of wealth, based
on ranks, to be held in Volvo B, Hennes & Mauritz B, and Ericsson B, respec-
tively.
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Figure 4.2: Colored lines: Prices for Volvo B, Hennes & Mauritz B, and Ericsson
B. Blue thick line: Wealth process for the optimal strategy �� based on ranks
for the three stocks.

10



5 10 15 20 25 30 35 40 45
0.01

0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Sharpe ratios

Indexes

Figure 4.3: Blue and red lines represent the Sharpe ratio for �� and the classical
1=n strategy, respectively. Blue stars are the Sharpe ratios for the individual
industry portfolios.

4.2 The strategy �� without investor views

The second data set consists of 48 value weighted industry portfolios, which we
treat as stocks, consisting of each stock traded at NYSE, AMEX, and NASDAQ.
The data is from the time period 1963-07-01 to 2005-12-30. The covariance
matrix is estimated from a �ve-year window of data, with the Black Monday of
1987 removed, and it is updated each month. The Black Monday is not removed
from the return data. It is reasonable to assume that the industry portfolios
are approximately equally important to each other. Also, the investor has no
preferences regarding any assets. Hence, we apply the matrix square root to the
covariance matrix to get the volatility matrix, see Example 2.2. The optimal
strategy �� is applied out-of-sample, with daily adjustments of the portfolio
weights. For this data set, the strategy �� outperformed the underlying market
assets in terms of Sharpe ratios. Further, �� obtained 29% more wealth than the
classical 1=n strategy, and with 16% lower volatility. Consequently, Memmel�s
corrected Jobson & Korkie test of the hypothesis that the classical 1=n strategy
gives a higher Sharpe ratio than �� had a p value smaller than 10�6, see Figure
4.3. Figure 4.4 shows the evolvement of the estimated strategies ��i , which are
quite stable over time. The industry portfolio with the largest average fraction
of wealth invested in it is the Paper index.
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Figure 4.4: The optimal strategy �� for the 48 industry portfolios.
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