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Ideals of a C*-algebra generated by an
operator algebra.

Kate Juschenko

Abstract

In this paper we consider ideals of a C*-algebra C*(B) generated
by an operator algebra B. A closed ideal J C C*(B) is called K-
boundary ideal if the restriction of the quotient map on B has a com-
pletely bounded inverse with cb-norm equal to K~!. For K = 1
one gets the notion of boundary ideals introduced by Arveson. We
study the properties of K-boundary ideals and characterize them in
the case when operator algebra A-norms itself. Several reformulations
of Kadison similarity problem are given. In particular, the affirma-
tive answer to this problem is equivalent to the statement that every
bounded homomorphism from C*(B) onto B which is projection on B
is completely bounded.

1 Introduction.

An operator algebra is a subalgebra of B(H), the algebra of all bounded
operators on a Hilbert space H. The algebra M, (B(H)) of n x n matrices
with entries in B(H ) has a norm ||-||,, via the identification of M, (B(H)) with
B(H™), where H™ is the direct sum of n copies of a Hilbert space H. If A is
a subalgebra of B(H) then M, (A) inherits a norm || - ||, via natural inclusion
into M,,(B(H)). The norms || - ||,, are called matrix norms on the operator
algebra A. The Blecher-Ruan-Sinclair Theorem [6] abstractly characterize
operator algebras in terms of matrix norms.
A linear mapping ¢ : A — B(H) induces a linear mapping

n

¢ : M, (A) — B(EP H)

i=1



via the formula ¢ ((a;;)) = (¢(ay;)) for every (a;;) € M, (A). The map ¢ is
called completely bounded if there exists C' such that ||¢| = sup||¢o™ | <

C < o0, it is called completely contractive (isometric) if ¢(™ is contractive
(corresp. isometric) for every n € N.

The C*-envelope of an operator algebra A, denoted by C*(A), is a C*-
algebra generated by i(.A) for some completely isometric homomorphism i :
A — B(H) having the following universal property. For any completely
isomorphic homomorphism p : A — B(K) there exists a unique onto *-
homomorphism 7 : C*(p(A)) — C*(A) such that 7(p(a)) = i(a) for every
ac A

In [1] Arveson defined a noncommutative analog of the Silov boundary of
uniform algebra. It is known that the Silov boundary of a uniform algebra A
is the closure of the Choquet boundary. The (irreducible) boundary represen-
tations of A correspond to points of the Choquet boundary. In noncommuta-
tive setting let B be an operator algebra in B(H ) and C*(B) be the C*-algebra
generated by B in B(H). Then a closed (two-sided) ideal J of C*(B) is called
boundary ideal if the canonical quotient map ¢ : C*(B) — C*(B)/J is com-
pletely isometric on B. The Silov boundary is a boundary ideal containing
all boundary ideals. It can be shown that the C*-envelope of an operator
algebra B is the quotient of C*-algebra generated by B by Silov boundary
whenever the latter exists. Arveson showed the existence of C*-envelopes for
admissible operator algebras developing theory of boundary representations
in [1]. The existence in full generality was shown in [11]. But the question
wether there are sufficiently many boundary representations to construct the
C*-envelope was not settled until the works [7] and [2] appeared.

In this paper we study a generalization of boundary ideals. Namely, a
closed (two-sided) ideal J C C*(B) will be called K-boundary ideal if a
canonical quotient map ¢ : C*(B) — C*(B)/J restricted to B has a com-
pletely bounded inverse q|l§1 with completely bounded norm equal to K~ 1.
For K = 1 we obtain the boundary ideals of [1]. Surprisingly, there is no
analog of Silov boundary for K-boundary ideals for K # 1. That is in gen-
eral there is no K-boundary ideal containing every other K-boundary ideal,
see Example 3.

As a corollary of [15] and the solution of Halmos problem [17] there exists
bounded homomorphism of the disk algebra A(D) into B(H) which is not
completely bounded. Adapting this result to the quotient maps in Example 5
we construct an operator algebra B and an ideal J such that q|g1 is bounded



but not completely bounded.

Further, we prove that if an operator algebra B A-norms itself and J is
closed ideal of C*-algebra generated by B such that the restriction of the
quotient map ¢ : C*(B) — C*(B)/J has continuous inverse g|z' then ¢|;" is
completely bounded.

In Section 3 we consider the following problem raised by Kadison in 1955.
Is any bounded homomorphism 7 of a C*-algebra A into B(H) is similar to
a *-homomorphism? The similarity above means that there exists an invert-
ible operator S € B(H) such that S™'7(-)S is *-homomorphism. Haagerup
[10] showed that 7 is similar to a *-homomorphism if and only if it is com-
pletely bounded. Obviously, for this problem it is sufficient to consider only
faithful homomorphisms. Pitts [19] proved that every bounded faithful ho-
momorphism of a C*-algebra has a completely bounded inverse. In Section 3
we show that for Kadison’s similarity problem it is sufficient to consider
bounded faithful homomorphisms that have completely contractive inverses.
As a corollary of this result we have that every bounded homomorphism of
a (*-algebra is completely bounded if and only if every bounded homomor-
phism from C*(B) onto B which is projection on B is completely bounded.

It was proved in [19] that bounded homomorphism 7 of a C*-algebra A is
completely bounded if and only if 7(.4) A-norms itself. Using this result and
Theorem 4 we have a reformulation of Kadison’s similarity problem in terms
of ideals of a C*-algebra generated by an operator algebra, see Theorem 6.

In this paper all operator algebras are supposed to be unital and for a
given operator algebra A C B(H) the C*-algebra generated by A in B(H)
is denoted by C*(A).

We refer the reader to the books [8], [16] and [17] for precise definitions,
basic facts and terminology related to operator algebras, operator spaces and
completely bounded maps.

2 K-boundary Ideals.

In this section we define and investigate a generalization of boundary ideals.

Definition 1. Let B be a closed subalgebra of a unital C*-algebra A such
that B contains the unit and generates A as a C*-algebra. A closed ideal J
of A is called a K-boundary ideal if K > 0 is the greatest constant having



the following property

K - lal| g, ) < llalla ) (1)

for every a € M,(B) and n € N. In other words the canonical quotient map
q: A — A/J restricted to B is injective and has a completely bounded inverse
with completely bounded norm equal to K~*.

If C*(B) is commutative then every ideal which satisfies inequality (1)
with n = 1 and K > 0 is automatically boundary ideal, i.e. K = 1. It
follows from the following observation.

Proposition 2. Let J be closed a ideal of C*(B) and 0 < K < 1 be a greatest
constant satisfying inequality

K- [|o]

) < |blle=s)/a

for every b € B. Then there exists b € B such that |b|
6™ ||c=8) — 0 when n — oo.

c*(B) = 1 and

Proof. Straightforward. O

A boundary ideal is called Silov boundary if it contains every other
boundary ideal. In the following example we present an operator algebra such
that the C*-algebra it generates has K-boundary ideals (for some K < 1)
but does not have a K-boundary ideal that contains all K-boundary ideals.

Example 3. Consider

T2

B = {< :%1 2 >@$1@I2@( %1 yzy—Q?A )@yl@yz L1, T2, Y1, Y2 € Cl

One can easily check that B is an algebra and the C*-algebra generated by B
in Mg(C) is My(C) e C Ca My(C)dCah C. Consider the following ideals

Jo=06Ca»Ca M(C)d00.



We have
1 Y2 —
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Let q : C*(B) — C*(B)/.Jy be the canonical quotient map. Using inequali-
ties above we have ||b]| < C'-||q(b)|| for every b € B. Thus the restriction of q
to B, q|s, is invertible map into Mg(C) and it is easy to see that ||q|gz"|| > 1.
By Smith’s theorem [22] the completely bounded norm of T := C]\gl equals to
the norm 8-th amplification. Therefore ||T|» = ||7®] > ||I7]| > 1 and J; is
K-boundary ideal with K = |7

Sitmilar arguments prove that Jy is a K-boundary ideal with the same
constant K. There is no K-boundary ideal that contains both ideals since the

sum of Ji and Jy is the whole C*(B).

Let us note that inequality (1) with n = 1 may fail even when ¢|z is injec-
tive. The reason is that the image of a Banach subalgebra of a C*-algebra A
under the quotient map is not necessarily closed. Consider for example the
C*-algebra C(IDy) of continuous function on the disk Dy of radius 2 and its
Banach subalgebra A(IDy) of analytic functions on Dy which have continuous
extension on Dy. Let D be the disk of radius 1 and the same center as Ds.
The restriction of functions to D; is a *-homomorphism 7 : C(Dy) — C(D;)
and m(A(IDy)) is not closed since there are analytic functions on D; which
are not extendable to the analytic function on Dy. Thus the quotient map
q: C(Dy) — CO(Dy)/J, where J = ker(n), maps A(ID;) into non-closed sub-
algebra in C(D;)/J. An example of a Banach operator algebra which is
isomorphic to a non-closed self-adjoint operator algebra via contractive iso-
morphism can be found in [13].

C*(B)

C*(B)/J1

K-boundary ideals can be easily characterized in the case when B A-norms
itself. Let us recall necessary definitions.
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For a given operator algebra B define norms ||| - |||, on M, (B) via
X = sup{|RXC| : R € My,(B),C € Mpa(B), || Rl <1, |[Cf} <1}

Evidently ||| X]|||. < [| X ||, for every X € M, (B).
An operator algebra B A-norms itself, see [20], if there exists A > 0 such
that
A1 X b < X

for every X € M, (B) and n € N.

In the following we will need the notion of the maximal enveloping C*-
algebra of an operator algebra. For a given operator algebra B there exists a
C*-algebra, denoted by C (B), and a completely isometric homomorphism

i:B— C,..(B) such that i(B) generates C}, . (B) as a C*-algebra and has

the following universal property (see [3], [5]). If 7 : B — A is a completely
contractive homomorphism into a C*-algebra A then there exists a unique
s-homomorphism 7 : C} .. (B) — A extending =, i.e. Toi = 7. Algebra

C .. (B) is called maximal enveloping C*-algebra of B. The existence follows
from the following construction, see [?] for details.

Define a semi-norm on the algebraic free product of B and B* by

|a||gep = sup{||(m * 7*)(a)|| : 7 : B — B(H)
is completely contractive homomorphism }

The null-space of this norm is two-sided ideal J. Then B x B*/J is pre-C*-
algebra and C . (B) is its completion. Uniqueness of C* _(B) follows from

max max
the universal property.

Theorem 4. If an operator algebra B A-norms itself and i : B — B(H) is
completely isometric homomorphism then for every ideal J C C*(i(B)) such
that the inequality

K- ||

ey < I[blle=qim))/ s (2)

holds for every b € B and some K' > 0 we have that J is K-boundary ideal
for some K > \K'.

Proof. Let X € M,,(B), R € My,(B), C € M,1(B) and ||R| <1, ||C| < 1.



Since the canonical quotient map is completely contractive we have

IRXCllc-ay = 1Y RiXi;Cylle-m)
%,J
1
< -l > RiXiiCill ey s
4.
1
= 7 IBXClle-awyys
1

< o Xl amyya-
Taking supremum over all R and C' we have

AKX [aso= sy < 1X L at e my -
Thus J is K-boundary ideal for some K > \K'. O

The example of a semi-simple operator algebra which does not A-norm
itself was given in [19]. In the following we present slightly simplified proof of
this result and construct an operator algebra and ideal such that inequality
(1) is valid for n = 1 but not for all n > 1.

Example 5. An operator T € B(H) is called polynomially bounded opera-
tor if there exists a bounded homomorphism ur : A(D) — B(H) such that
up(p) = p(T) for every polynomial p. An operator T is called completely
polynomially bounded if ur is completely bounded. In [15] it was shown that
T is completely polynomially bounded if and only if T is similar to a con-
traction. There exists a polynomially bounded operator which is not similar
to a contraction, see [17]. Thus there is T € B(H) such that ur is bounded
but not completely bounded homomorphism. Since T is polynomially bounded
we have that o(T) C . Let U be unitary operator such that o(U) = T.
Then upey is bounded but not completely bounded and T C o(T @ U). Thus
lurau (I = £l for every f € A(D) and B = upeu(A(D)) is a Banach
algebra. Since u;éaU : B — A(D) acts into commutative C*-algebra we
have ||urspllo = llurepll < 1. Let i : B — Cf,.(B) be embedding of B
into its mazimal enveloping C*-algebra and let T : C¥,,.(B) — C(D) be *-
homomorphism eztending uzg; oi~' : i(B) — A(D). Since 7(Cy.,(B)) is
a C*-algebra generated by A(D) we have that T is surjective. Consider a
canonical quotient map

q:Cr..(B)— Cr  (B)ker(r) ~ C(D).

max maxr
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Then there is K > 0 such that
K|b|

) < 0]

C*

maa:

Crhaz (B)/ ker(r)-

Since qlz' = i o urgy is not completely bounded we have that ker(r) is not
a K-boundary ideal. Thus Theorem 4 implies that urey(A(D)) does not A-
norm itself.

3 K-boundary Ideals and the Similarity Prob-
lem.

Let A be a C*-algebra and 7 : A — B(H) be a bounded homomorphism. It
was shown in [19] that 7(.A) is a Banach algebra. Moreover, if 7 is injective
then it has a completely bounded inverse, see [19], [13]. Define 7 : A —
B(H & H) by the following rule:

7i(a) = m(a) ® 7(a™)".

Evidently 7 is completely bounded iff 7 is completely bounded. Thus by
theorem of Haagerup (see [10]) we have that 7 is similar to *-homomorphism
iff 7 is such. A simple proof of this fact which does not use the Haagerup’s
results can be found in [21] (see also [14]).

Let J be a unitary operator. A homomorphism 7 : A — B(H) is called
J-symmetric if 7(a*) = Jw(a)*J* for every a € A.

Let J: B(H®H) — B(H® H) be unitary operator defined by J(z@y) =
y @ x. Then 7(a*) = w(a*) & 7(a)* = Jr(a)*J* and 7 is J-symmetric.
Theorem 6. If 7 : A — B(H) is bounded injective homomorphism then 7

has a completely contractive inverse.

Proof. Let B = 7(A) and r(a) denotes the spectral radius of a € A. Since
B is a Banach algebra and isomorphism preserves the spectrum we have

ou,(a)(@) = o, 7)) (7™ (a)) and

la* = lla*all = r(a"a)
= r(7"(a"a)) < Hfr(”)(a*a)ll
< [l7™ (@) - ||7VT ()|
= (7@ L)7"™ ()" (J @ L)l - |7™ (a)l]
< [l#" (@],



for every a € M, (A). Thus the inverse homomorphism #! : B — A is
completely contractive. Il

* ox(B) be the canon-
ical inclusion of B into its maximal enveloping C*-algebra. Replacing 7
by 7 o 7t, which does not effect completely boundedness of 7, we have that
7(A) generate its maximal enveloping C*-algebra. Therefore by universal
property of the maximal enveloping C*-algebra 7! can be extended to a

s-homomorphism p : C, . (B) — A. Now we have C},,.(B)/ker(p) ~ A and

max max

Assume that 7 is as in Theorem 6. Let ¢ : B — C*

K-

Cran®) < 0l )/ker() < 10l csnn () (3)

for every b € B and some K > 0.
Note that 7 is completely bounded if and only if ker(p) is a K-boundary
ideal for some K > 0.

* .

Proposition 7. The kernel of p is the ideal J generated by {%(a) — 7 (a”)
a € A}. If a closed ideal J' satisfies (3) for some K > 0 and J C J' then
J=J.

Proof. Since p is a *-homomorphism p(7(a) — 7(a*)*) = 0 and J C ker(p).
Let us prove the converse inclusion. Let ¢ : C},,.(B) — CF ..(B)/J be a
canonical quotient map. Since B is isomorphic to a C*-algebra A we have
that B is semisimple Banach algebra. The image C = g o 7(.A) of bounded
homomorphism ¢ o 7t of C*-algebra A is Banach algebra. By Johnson’s the-
orem on uniqueness of norm topology on a semisimple Banach algebra (see
[12]) the restriction of ¢ to B is bicontinuous isomorphism of B and C.
Assume that there exists © € ker(p) \ J. Since B generates C7,  (B)

as a C*-algebra we have that x is a uniform limit of polynomials Py(by, ...,
bn,, b7, ..., bk ), where b; € B. Thus

» Yny,
Q(Pk(bla s 7bnk7b>{7 cee b;k» = Pk(qa)l)a v 7Q(bnk>7q<bl)*7 L 7Q(bnk)*)

converge uniformly in C}, . (B)/J. Clearly q(b;)* = q(gj) for some Zj e B
and the elements

Pu(q(by), .- q(bu), a(by), -, q(bn,) = a(Pe(by, .- buy by, - bn,))

converge in C. Since ¢ : B — C is bicontinuous P (b, .. ., bnmgh o by ) EB
converge to some element y € B. Clearly z —y € J. Hence y € B\ J. Since
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J C ker(p) and x € ker(p) we have y € ker(p) which is a contradiction.
Thus J = ker(p).
To prove the second statement of the theorem consider the canonical

quotient map ¢y : Cf.(B) — C&..(B)/J and let « € J\J. Then x
is a uniform limit of polynomials Py (by,...,b,,, 05, ..., by, ) and there are
bj € B such that q(b5) = q(b;). Then qp(Py(bi,... bn,,05,...,0;,)) =

Qs (Pi(by, ... by, b1, .., by, )) uniformly converges to 0. Thus Py(by, ..., by,,
bi,...,b,, ) converges to 0 in B. Since

G(Pe(biy -y by U5 05 ) = q(Pr(bry - g, by b))

converges to ¢(x) and we have ¢(z) = 0. O

Another way to make 7! extendable to a *-homomorphism from C*-
algebra generated by B = 7(.A) into A is the following. Since ||a|| < ||7(a)||
the embedding B into B@® A via i : 7(a) — 7(a) ® a is completely isometric
isomorphism. Let 7 = (io7)~'. Then 7(#(a)®a) = a and 7 has a contractive
extension, 7, to the C*-algebra generated by i(B), such that 7(a; ® az) = ay
for every ay @ ay € C*(i(B)). Since T is unital and contractive we have that
T is a *-homomorphism.

Now we can summarize our observations in several reformulations of the
Kadison’s similarity problem.

Theorem 8. The following are equivalent:
(1) Kadison’s conjecture has affirmative answer,

(i1) for every operator algebra B and every bounded homomorphism p :
C*(B) — B, such that p(b) = b for every b € B, p is completely bounded.

(ii1) if B is an operator algebra and p : C},..(B) — B is bounded homomor-

max

phism such that p(b) = b for every b € B and the restriction of p to B*
15 completely isometric then p is completely bounded.

(v) if an operator algebra B is isomorphic to a C*-algebra and J C C*(B)
15 a closed ideal such that

C-blle-w) < llbllo=@),.s

for every b € B and some C' > 0, then J is a K-boundary ideal.

10



Proof. Evidently (i)=(ii) and (ii)=-(iii).

(ili)=-(i). Let 7 : A — B(H) be bounded injective homomorphism from
C*-algebra A. By Theorem 6 and considerations preceeding Theorem 8 we
have bounded injective J-symmetric homomorphism 7 : A — B(H & H)
and completely isometric homomorphism i : 7(A) — C’;m(v (A)). Let p =
iof and B = p(A). Then ||p|les = ||7]|l and p~' : B — A extends to

s-homomorphism 7 : C}, .. (B) — A. Thus we have bounded homomorphism

por:Cr (B)— B

max

such that p o 7(b) = b for every b € B. Consider the restriction of p o 7 to
B*. Let (bi)i; € M,(B*) then b;; = p(a;;)* for some a;; € A. Since 7 is
J-symmetric we have

W (plai))i)ll = oo T(plai) )il
= |I(p(7(p(ai;))*))sl
= l(p(ag))isl = 17 (a))isll
= |I(J ® L)(#(aiy)")ij(J @ L)
= |I(&(ai) )il = Nl (az)igl
= [l(p(az))igll = ll(p(as))igll-

Thus p o 7|p+ is a complete isometry. By (iii) p o 7 is completely bounded.
Then B is similar to some C*-algebra C, i.e. there exists S € B(K) such
that B = SCS~!. Since AdS o p: A — C is bounded isomorphism between
two C*-algebras by Gardner’s theorem [9] we have that AdS o p is similar to
x-homomorphism which proves similarity of p to *-homomorphism.
(iv)=-(ii). Since ker(p) is ideal of C*(B) and satisfies conditions of (iv) we
have that ker(p) is a K-boundary ideal. Therefore p is completely bounded.
(i)=(iv). In [19] it was proved that if Kadison conjecture has affirmative
answer then every Banach operator algebra which is isomorphic to a C*-
algebra A-norms itself for some A > 0. By Proposition 4 we have that ideal
of (iv) is a K-boundary ideal. O

Remark 9. By ezample 5 we have that in condition (iv) of Theorem 8 it is
not enough to require B be isomorphic to a semi-simple Banach algebra.

Question. Note that p in Theorem 8 (ii) is B-bimodule map. Let C and
D be C*-algebras. In [23] Smith proved that if 7 : C — B(H) is bounded
D-bimodule map and D has cyclic vector then 7 is completely bounded and

11



I7lles = |I7]|. Is Smith’s theorem true if D is an operator algebra with cyclic
vector?
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