

GÖTEBORG UNIVERSITY

PREPRINT 2007:30

Ideals of a *C**-algebra generated by an operator algebra

KATE JUSCHENKO

Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY GÖTEBORG UNIVERSITY Göteborg Sweden 2007

Preprint 2007:30

Ideals of a C*-algebra generated by an operator algebra

Kate Juschenko

Department of Mathematical Sciences Division of Mathematics Chalmers University of Technology and Göteborg University SE-412 96 Göteborg, Sweden Göteborg, October 2007

Preprint 2007:30 ISSN 1652-9715

Matematiska vetenskaper Göteborg 2007

Ideals of a C^* -algebra generated by an operator algebra.

Kate Juschenko

Abstract

In this paper we consider ideals of a C^* -algebra $C^*(\mathcal{B})$ generated by an operator algebra \mathcal{B} . A closed ideal $J \subseteq C^*(\mathcal{B})$ is called Kboundary ideal if the restriction of the quotient map on \mathcal{B} has a completely bounded inverse with cb-norm equal to K^{-1} . For K = 1one gets the notion of boundary ideals introduced by Arveson. We study the properties of K-boundary ideals and characterize them in the case when operator algebra λ -norms itself. Several reformulations of Kadison similarity problem are given. In particular, the affirmative answer to this problem is equivalent to the statement that every bounded homomorphism from $C^*(\mathcal{B})$ onto \mathcal{B} which is projection on \mathcal{B} is completely bounded.

1 Introduction.

An operator algebra is a subalgebra of B(H), the algebra of all bounded operators on a Hilbert space H. The algebra $M_n(B(H))$ of $n \times n$ matrices with entries in B(H) has a norm $\|\cdot\|_n$ via the identification of $M_n(B(H))$ with $B(H^n)$, where H^n is the direct sum of n copies of a Hilbert space H. If \mathcal{A} is a subalgebra of B(H) then $M_n(\mathcal{A})$ inherits a norm $\|\cdot\|_n$ via natural inclusion into $M_n(B(H))$. The norms $\|\cdot\|_n$ are called matrix norms on the operator algebra \mathcal{A} . The Blecher-Ruan-Sinclair Theorem [6] abstractly characterize operator algebras in terms of matrix norms.

A linear mapping $\phi : \mathcal{A} \to B(H)$ induces a linear mapping

$$\phi^{(n)}: M_n(\mathcal{A}) \to B(\bigoplus_{i=1}^n H)$$

via the formula $\phi^{(n)}((a_{ij})) = (\phi(a_{ij}))$ for every $(a_{ij}) \in M_n(\mathcal{A})$. The map ϕ is called completely bounded if there exists C such that $\|\phi\|_{cb} = \sup \|\phi^{(n)}\| < C$

 $C < \infty$, it is called completely contractive (isometric) if $\phi^{(n)}$ is contractive (corresp. isometric) for every $n \in \mathbb{N}$.

The C^* -envelope of an operator algebra \mathcal{A} , denoted by $C_e^*(\mathcal{A})$, is a C^* algebra generated by $i(\mathcal{A})$ for some completely isometric homomorphism $i : \mathcal{A} \to B(H)$ having the following universal property. For any completely isomorphic homomorphism $\rho : \mathcal{A} \to B(K)$ there exists a unique onto *homomorphism $\pi : C^*(\rho(\mathcal{A})) \to C_e^*(\mathcal{A})$ such that $\pi(\rho(a)) = i(a)$ for every $a \in \mathcal{A}$.

In [1] Arveson defined a noncommutative analog of the Šilov boundary of uniform algebra. It is known that the Šilov boundary of a uniform algebra Ais the closure of the Choquet boundary. The (irreducible) boundary representations of A correspond to points of the Choquet boundary. In noncommutative setting let \mathcal{B} be an operator algebra in $\mathcal{B}(H)$ and $C^*(\mathcal{B})$ be the C^* -algebra generated by \mathcal{B} in $\mathcal{B}(H)$. Then a closed (two-sided) ideal J of $C^*(\mathcal{B})$ is called boundary ideal if the canonical quotient map $q : C^*(\mathcal{B}) \to C^*(\mathcal{B})/J$ is completely isometric on \mathcal{B} . The Šilov boundary is a boundary ideal containing all boundary ideals. It can be shown that the C^* -envelope of an operator algebra \mathcal{B} is the quotient of C^* -algebra generated by \mathcal{B} by Šilov boundary whenever the latter exists. Arveson showed the existence of C^* -envelopes for *admissible* operator algebras developing theory of *boundary representations* in [1]. The existence in full generality was shown in [11]. But the question wether there are sufficiently many boundary representations to construct the C^* -envelope was not settled until the works [7] and [2] appeared.

In this paper we study a generalization of boundary ideals. Namely, a closed (two-sided) ideal $J \subset C^*(\mathcal{B})$ will be called K-boundary ideal if a canonical quotient map $q : C^*(\mathcal{B}) \to C^*(\mathcal{B})/J$ restricted to \mathcal{B} has a completely bounded inverse $q|_{\mathcal{B}}^{-1}$ with completely bounded norm equal to K^{-1} . For K = 1 we obtain the boundary ideals of [1]. Surprisingly, there is no analog of Šilov boundary for K-boundary ideals for $K \neq 1$. That is in general there is no K-boundary ideal containing every other K-boundary ideal, see Example 3.

As a corollary of [15] and the solution of Halmos problem [17] there exists bounded homomorphism of the disk algebra $A(\mathbb{D})$ into B(H) which is not completely bounded. Adapting this result to the quotient maps in Example 5 we construct an operator algebra \mathcal{B} and an ideal J such that $q|_{\mathcal{B}}^{-1}$ is bounded but not completely bounded.

Further, we prove that if an operator algebra \mathcal{B} λ -norms itself and J is closed ideal of C^* -algebra generated by \mathcal{B} such that the restriction of the quotient map $q: C^*(\mathcal{B}) \to C^*(\mathcal{B})/J$ has continuous inverse $q|_{\mathcal{B}}^{-1}$ then $q|_{\mathcal{B}}^{-1}$ is completely bounded.

In Section 3 we consider the following problem raised by Kadison in 1955. Is any bounded homomorphism π of a C^* -algebra \mathcal{A} into B(H) is similar to a *-homomorphism? The similarity above means that there exists an invertible operator $S \in B(H)$ such that $S^{-1}\pi(\cdot)S$ is *-homomorphism. Haagerup [10] showed that π is similar to a *-homomorphism if and only if it is completely bounded. Obviously, for this problem it is sufficient to consider only faithful homomorphisms. Pitts [19] proved that every bounded faithful homomorphism of a C^* -algebra has a completely bounded inverse. In Section 3 we show that for Kadison's similarity problem it is sufficient to consider bounded faithful homomorphisms that have completely contractive inverses. As a corollary of this result we have that every bounded homomorphism of a C^* -algebra is completely bounded if and only if every bounded homomorphism of a C^* -algebra is completely bounded if and only if every bounded homomorphism of a C^* -algebra is projection on \mathcal{B} is completely bounded.

It was proved in [19] that bounded homomorphism π of a C^* -algebra \mathcal{A} is completely bounded if and only if $\pi(\mathcal{A}) \lambda$ -norms itself. Using this result and Theorem 4 we have a reformulation of Kadison's similarity problem in terms of ideals of a C^* -algebra generated by an operator algebra, see Theorem 6.

In this paper all operator algebras are supposed to be unital and for a given operator algebra $\mathcal{A} \subseteq B(H)$ the C^{*}-algebra generated by \mathcal{A} in B(H) is denoted by $C^*(\mathcal{A})$.

We refer the reader to the books [8], [16] and [17] for precise definitions, basic facts and terminology related to operator algebras, operator spaces and completely bounded maps.

2 K-boundary Ideals.

In this section we define and investigate a generalization of boundary ideals.

Definition 1. Let \mathcal{B} be a closed subalgebra of a unital C^* -algebra \mathcal{A} such that \mathcal{B} contains the unit and generates \mathcal{A} as a C^* -algebra. A closed ideal J of \mathcal{A} is called a K-boundary ideal if K > 0 is the greatest constant having

the following property

$$K \cdot \|a\|_{M_n(\mathcal{A})} \le \|a\|_{M_n(\mathcal{A}/J)} \tag{1}$$

for every $a \in M_n(\mathcal{B})$ and $n \in \mathbb{N}$. In other words the canonical quotient map $q: \mathcal{A} \to \mathcal{A}/J$ restricted to \mathcal{B} is injective and has a completely bounded inverse with completely bounded norm equal to K^{-1} .

If $C^*(\mathcal{B})$ is commutative then every ideal which satisfies inequality (1) with n = 1 and K > 0 is automatically boundary ideal, i.e. K = 1. It follows from the following observation.

Proposition 2. Let J be closed a ideal of $C^*(\mathcal{B})$ and 0 < K < 1 be a greatest constant satisfying inequality

$$K \cdot \|b\|_{C^*(\mathcal{B})} \le \|b\|_{C^*(\mathcal{B})/J}$$

for every $b \in \mathcal{B}$. Then there exists $b \in \mathcal{B}$ such that $\|b\|_{C^*(\mathcal{B})} = 1$ and $\|b^n\|_{C^*(\mathcal{B})} \to 0$ when $n \to \infty$.

Proof. Straightforward.

A boundary ideal is called Silov boundary if it contains every other boundary ideal. In the following example we present an operator algebra such that the C^* -algebra it generates has K-boundary ideals (for some K < 1) but does not have a K-boundary ideal that contains all K-boundary ideals.

Example 3. Consider

$$\mathcal{B} = \{ \begin{pmatrix} x_1 & x_2 - x_1 \\ 0 & x_2 \end{pmatrix} \oplus x_1 \oplus x_2 \oplus \begin{pmatrix} y_1 & y_2 - y_1 \\ 0 & y_2 \end{pmatrix} \oplus y_1 \oplus y_2 : x_1, x_2, y_1, y_2 \in \mathbb{C} \}.$$

One can easily check that \mathcal{B} is an algebra and the C^* -algebra generated by \mathcal{B} in $M_8(\mathbb{C})$ is $M_2(\mathbb{C}) \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{M}_2(\mathbb{C}) \oplus \mathbb{C} \oplus \mathbb{C}$. Consider the following ideals

$$J_1 = M_2(\mathbb{C}) \oplus 0 \oplus 0 \oplus 0 \oplus \mathbb{C} \oplus \mathbb{C}, J_2 = 0 \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus M_2(\mathbb{C}) \oplus 0 \oplus 0.$$

We have

$$\begin{split} \| \begin{pmatrix} x_1 & x_2 - x_1 \\ 0 & x_2 \end{pmatrix} \oplus x_1 \oplus x_2 \oplus \begin{pmatrix} y_1 & y_2 - y_1 \\ 0 & y_2 \end{pmatrix} \oplus y_1 \oplus y_2 \|_{C^*(\mathcal{B})} \\ &= \max\{\| \begin{pmatrix} x_1 & x_2 - x_1 \\ 0 & x_2 \end{pmatrix} \|, \| \begin{pmatrix} y_1 & y_2 - y_1 \\ 0 & y_2 \end{pmatrix} \|\} \\ &= \max\{\| \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \|, \| \begin{pmatrix} y_1 & y_2 - y_1 \\ 0 & y_2 \end{pmatrix} \|\} \\ &\leq C \cdot \max\{\| \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix} \|, \| \begin{pmatrix} y_1 & y_2 - y_1 \\ 0 & y_2 \end{pmatrix} \|\} \\ &= C \cdot \| \begin{pmatrix} x_1 & x_2 - x_1 \\ 0 & x_2 \end{pmatrix} \oplus x_1 \oplus x_2 \oplus \begin{pmatrix} y_1 & y_2 - y_1 \\ 0 & y_2 \end{pmatrix} \oplus y_1 \oplus y_2 \|_{C^*(\mathcal{B})/J_1} \end{split}$$

Let $q: C^*(\mathcal{B}) \to C^*(\mathcal{B})/J_1$ be the canonical quotient map. Using inequalities above we have $||b|| \leq C \cdot ||q(b)||$ for every $b \in \mathcal{B}$. Thus the restriction of qto \mathcal{B} , $q|_{\mathcal{B}}$, is invertible map into $M_8(\mathbb{C})$ and it is easy to see that $||q|_{\mathcal{B}}^{-1}|| > 1$. By Smith's theorem [22] the completely bounded norm of $\tau := q|_{\mathcal{B}}^{-1}$ equals to the norm 8-th amplification. Therefore $||\tau||_{cb} = ||\tau^{(8)}|| \geq ||\tau|| > 1$ and J_1 is K-boundary ideal with $K = ||\tau||_{cb}^{-1}$.

Similar arguments prove that J_2 is a K-boundary ideal with the same constant K. There is no K-boundary ideal that contains both ideals since the sum of J_1 and J_2 is the whole $C^*(\mathcal{B})$.

Let us note that inequality (1) with n = 1 may fail even when $q|_{\mathcal{B}}$ is injective. The reason is that the image of a Banach subalgebra of a C^* -algebra \mathcal{A} under the quotient map is not necessarily closed. Consider for example the C^* -algebra $C(\overline{\mathbb{D}}_2)$ of continuous function on the disk \mathbb{D}_2 of radius 2 and its Banach subalgebra $A(\mathbb{D}_2)$ of analytic functions on \mathbb{D}_2 which have continuous extension on $\overline{\mathbb{D}}_2$. Let \mathbb{D}_1 be the disk of radius 1 and the same center as \mathbb{D}_2 . The restriction of functions to \mathbb{D}_1 is a *-homomorphism $\pi : C(\overline{\mathbb{D}}_2) \to C(\overline{\mathbb{D}}_1)$ and $\pi(A(\mathbb{D}_2))$ is not closed since there are analytic functions on \mathbb{D}_1 which are not extendable to the analytic function on \mathbb{D}_2 . Thus the quotient map $q: C(\overline{\mathbb{D}}_2) \to C(\overline{\mathbb{D}}_2)/J$, where $J = ker(\pi)$, maps $A(\mathbb{D}_2)$ into non-closed subalgebra in $C(\overline{\mathbb{D}}_2)/J$. An example of a Banach operator algebra which is isomorphic to a non-closed self-adjoint operator algebra via contractive isomorphism can be found in [13].

K-boundary ideals can be easily characterized in the case when $\mathcal{B} \lambda$ -norms itself. Let us recall necessary definitions.

For a given operator algebra \mathcal{B} define norms $||| \cdot |||_n$ on $M_n(\mathcal{B})$ via

$$|||X|||_n = \sup\{||RXC|| : R \in M_{1,n}(\mathcal{B}), C \in M_{n,1}(\mathcal{B}), ||R|| \le 1, ||C|| \le 1\}.$$

Evidently $|||X|||_n \leq ||X||_n$ for every $X \in M_n(\mathcal{B})$.

An operator algebra \mathcal{B} λ -norms itself, see [20], if there exists $\lambda > 0$ such that

$$\lambda \cdot \|X\|_n \le |||X|||_n$$

for every $X \in M_n(\mathcal{B})$ and $n \in \mathbb{N}$.

In the following we will need the notion of the maximal enveloping C^* algebra of an operator algebra. For a given operator algebra \mathcal{B} there exists a C^* -algebra, denoted by $C^*_{max}(\mathcal{B})$, and a completely isometric homomorphism $i: \mathcal{B} \to C^*_{max}(\mathcal{B})$ such that $i(\mathcal{B})$ generates $C^*_{max}(\mathcal{B})$ as a C^* -algebra and has the following universal property (see [3], [5]). If $\pi: \mathcal{B} \to \mathcal{A}$ is a completely contractive homomorphism into a C^* -algebra \mathcal{A} then there exists a unique *-homomorphism $\tilde{\pi}: C^*_{max}(\mathcal{B}) \to \mathcal{A}$ extending π , i.e. $\tilde{\pi} \circ i = \pi$. Algebra $C^*_{max}(\mathcal{B})$ is called maximal enveloping C^* -algebra of \mathcal{B} . The existence follows from the following construction, see [?] for details.

Define a semi-norm on the algebraic free product of \mathcal{B} and \mathcal{B}^* by

$$\|a\|_{\mathcal{B}*\mathcal{B}^*} = \sup\{\|(\pi * \pi^*)(a)\| : \pi : \mathcal{B} \to B(H)$$

is completely contractive homomorphism}

The null-space of this norm is two-sided ideal J. Then $\mathcal{B} * \mathcal{B}^*/J$ is pre- C^* -algebra and $C^*_{max}(\mathcal{B})$ is its completion. Uniqueness of $C^*_{max}(\mathcal{B})$ follows from the universal property.

Theorem 4. If an operator algebra \mathcal{B} λ -norms itself and $i : \mathcal{B} \to B(H)$ is completely isometric homomorphism then for every ideal $J \subset C^*(i(\mathcal{B}))$ such that the inequality

$$K' \cdot \|b\|_{C^*(i(\mathcal{B}))} \le \|b\|_{C^*(i(\mathcal{B}))/J} \tag{2}$$

holds for every $b \in \mathcal{B}$ and some K' > 0 we have that J is K-boundary ideal for some $K \ge \lambda K'$.

Proof. Let $X \in M_n(\mathcal{B}), R \in M_{1,n}(\mathcal{B}), C \in M_{n,1}(\mathcal{B})$ and $||R|| \leq 1, ||C|| \leq 1$.

Since the canonical quotient map is completely contractive we have

$$||RXC||_{C^*(i(\mathcal{B}))} = ||\sum_{i,j} R_i X_{ij} C_j||_{C^*(i(\mathcal{B}))}$$

$$\leq \frac{1}{K'} \cdot ||\sum_{i,j} R_i X_{ij} C_j||_{C^*(i(\mathcal{B}))/J}$$

$$= \frac{1}{K'} \cdot ||RXC||_{C^*(i(\mathcal{B}))/J}$$

$$\leq \frac{1}{K'} \cdot ||X||_{M_n(C^*(i(\mathcal{B}))/J)}.$$

Taking supremum over all R and C we have

$$\lambda K' \cdot ||X||_{M_n(C^*(i(\mathcal{B})))} \le ||X||_{M_n(C^*(i(\mathcal{B}))/J)}.$$

Thus J is K-boundary ideal for some $K \ge \lambda K'$.

The example of a semi-simple operator algebra which does not λ -norm itself was given in [19]. In the following we present slightly simplified proof of this result and construct an operator algebra and ideal such that inequality (1) is valid for n = 1 but not for all $n \ge 1$.

Example 5. An operator $T \in B(H)$ is called polynomially bounded operator if there exists a bounded homomorphism $u_T : A(\mathbb{D}) \to B(H)$ such that $u_T(p) = p(T)$ for every polynomial p. An operator T is called completely polynomially bounded if u_T is completely bounded. In [15] it was shown that T is completely polynomially bounded if and only if T is similar to a contraction. There exists a polynomially bounded operator which is not similar to a contraction, see [17]. Thus there is $T \in B(H)$ such that u_T is bounded but not completely bounded homomorphism. Since T is polynomially bounded we have that $\sigma(T) \subseteq \mathbb{D}$. Let U be unitary operator such that $\sigma(U) = \mathbb{T}$. Then $u_{T\oplus U}$ is bounded but not completely bounded and $\mathbb{T} \subseteq \sigma(T \oplus U)$. Thus $\|u_{T\oplus U}(f)\| \ge \|f\|$ for every $f \in \mathbb{A}(\mathbb{D})$ and $\mathcal{B} = u_{T\oplus U}(\mathbb{A}(\mathbb{D}))$ is a Banach algebra. Since $u_{T\oplus U}^{-1} : \mathcal{B} \to \mathbb{A}(\mathbb{D})$ acts into commutative C^* -algebra we have $\|u_{T\oplus U}^{-1}\|_{cb} = \|u_{T\oplus U}^{-1}\| \le 1$. Let $i : \mathcal{B} \to C^*_{max}(\mathcal{B}) \to C(\overline{\mathbb{D}})$ be *homomorphism extending $u_{T\oplus U}^{-1} \circ i^{-1} : i(\mathcal{B}) \to \mathbb{A}(\mathbb{D})$. Since $\tau(C^*_{max}(\mathcal{B}))$ is a C^* -algebra generated by $\mathbb{A}(\mathbb{D})$ we have that τ is surjective. Consider a canonical quotient map

$$q: C^*_{max}(\mathcal{B}) \to C^*_{max}(\mathcal{B}) / \ker(\tau) \simeq C(\mathbb{D}).$$

Then there is $\widetilde{K} > 0$ such that

$$K \|b\|_{C^*_{max}(\mathcal{B})} \le \|b\|_{C^*_{max}(\mathcal{B})/\ker(\tau)}.$$

Since $q|_{\mathcal{B}}^{-1} = i \circ u_{T \oplus U}$ is not completely bounded we have that ker (τ) is not a K-boundary ideal. Thus Theorem 4 implies that $u_{T \oplus U}(A(\mathbb{D}))$ does not λ -norm itself.

3 K-boundary Ideals and the Similarity Problem.

Let \mathcal{A} be a C^* -algebra and $\pi : \mathcal{A} \to B(H)$ be a bounded homomorphism. It was shown in [19] that $\pi(\mathcal{A})$ is a Banach algebra. Moreover, if π is injective then it has a completely bounded inverse, see [19], [13]. Define $\check{\pi} : \mathcal{A} \to B(H \oplus H)$ by the following rule:

$$\check{\pi}(a) = \pi(a) \oplus \pi(a^*)^*.$$

Evidently π is completely bounded iff $\check{\pi}$ is completely bounded. Thus by theorem of Haagerup (see [10]) we have that π is similar to *-homomorphism iff $\check{\pi}$ is such. A simple proof of this fact which does not use the Haagerup's results can be found in [21] (see also [14]).

Let J be a unitary operator. A homomorphism $\pi : \mathcal{A} \to B(H)$ is called J-symmetric if $\pi(a^*) = J\pi(a)^*J^*$ for every $a \in \mathcal{A}$.

Let $J: B(H \oplus H) \to B(H \oplus H)$ be unitary operator defined by $J(x \oplus y) = y \oplus x$. Then $\check{\pi}(a^*) = \pi(a^*) \oplus \pi(a)^* = J\pi(a)^*J^*$ and $\check{\pi}$ is J-symmetric.

Theorem 6. If $\pi : \mathcal{A} \to B(H)$ is bounded injective homomorphism then $\check{\pi}$ has a completely contractive inverse.

Proof. Let $\mathcal{B} = \check{\pi}(\mathcal{A})$ and r(a) denotes the spectral radius of $a \in \mathcal{A}$. Since \mathcal{B} is a Banach algebra and isomorphism preserves the spectrum we have $\sigma_{M_n(\mathcal{A})}(a) = \sigma_{M_n(\check{\pi}(\mathcal{A}))}(\check{\pi}^{(n)}(a))$ and

$$\begin{aligned} \|a\|^2 &= \|a^*a\| = r(a^*a) \\ &= r(\check{\pi}^{(n)}(a^*a)) \le \|\check{\pi}^{(n)}(a^*a)\| \\ &\le \|\check{\pi}^{(n)}(a^*)\| \cdot \|\check{\pi}^{(n)}(a)\| \\ &= \|(J \otimes I_n)\check{\pi}^{(n)}(a)^*(J \otimes I_n)\| \cdot \|\check{\pi}^{(n)}(a)\| \\ &\le \|\check{\pi}^{(n)}(a)\|^2, \end{aligned}$$

for every $a \in M_n(\mathcal{A})$. Thus the inverse homomorphism $\check{\pi}^{-1} : \mathcal{B} \to \mathcal{A}$ is completely contractive.

Assume that $\check{\pi}$ is as in Theorem 6. Let $i : \mathcal{B} \to C^*_{max}(\mathcal{B})$ be the canonical inclusion of \mathcal{B} into its maximal enveloping C^* -algebra. Replacing $\check{\pi}$ by $i \circ \check{\pi}$, which does not effect completely boundedness of $\check{\pi}$, we have that $\check{\pi}(\mathcal{A})$ generate its maximal enveloping C^* -algebra. Therefore by universal property of the maximal enveloping C^* -algebra $\check{\pi}^{-1}$ can be extended to a *-homomorphism $\rho : C^*_{max}(\mathcal{B}) \to \mathcal{A}$. Now we have $C^*_{max}(\mathcal{B})/ker(\rho) \simeq \mathcal{A}$ and

$$\widetilde{K} \cdot \|b\|_{C^*_{max}(\mathcal{B})} \le \|b\|_{C^*_{max}(\mathcal{B})/ker(\rho)} \le \|b\|_{C^*_{max}(\mathcal{B})}$$
(3)

for every $b \in \mathcal{B}$ and some $\widetilde{K} > 0$.

Note that $\check{\pi}$ is completely bounded if and only if $ker(\rho)$ is a K-boundary ideal for some K > 0.

Proposition 7. The kernel of ρ is the ideal J generated by $\{\check{\pi}(a) - \check{\pi}(a^*)^* : a \in \mathcal{A}\}$. If a closed ideal J' satisfies (3) for some $\widetilde{K} > 0$ and $J \subseteq J'$ then J = J'.

Proof. Since ρ is a *-homomorphism $\rho(\check{\pi}(a) - \check{\pi}(a^*)^*) = 0$ and $J \subseteq ker(\rho)$.

Let us prove the converse inclusion. Let $q: C^*_{max}(\mathcal{B}) \to C^*_{max}(\mathcal{B})/J$ be a canonical quotient map. Since \mathcal{B} is isomorphic to a C^* -algebra \mathcal{A} we have that \mathcal{B} is semisimple Banach algebra. The image $\mathcal{C} = q \circ \check{\pi}(\mathcal{A})$ of bounded homomorphism $q \circ \check{\pi}$ of C^* -algebra \mathcal{A} is Banach algebra. By Johnson's theorem on uniqueness of norm topology on a semisimple Banach algebra (see [12]) the restriction of q to \mathcal{B} is bicontinuous isomorphism of \mathcal{B} and \mathcal{C} .

Assume that there exists $x \in ker(\rho) \setminus J$. Since \mathcal{B} generates $C^*_{max}(\mathcal{B})$ as a C^* -algebra we have that x is a uniform limit of polynomials $P_k(b_1, \ldots, b_{n_k}, b_1^*, \ldots, b_{n_k}^*)$, where $b_i \in \mathcal{B}$. Thus

$$q(P_k(b_1,\ldots,b_{n_k},b_1^*,\ldots,b_{n_k}^*)) = P_k(q(b_1),\ldots,q(b_{n_k}),q(b_1)^*,\ldots,q(b_{n_k})^*)$$

converge uniformly in $C^*_{max}(\mathcal{B})/J$. Clearly $q(b_j)^* = q(\tilde{b}_j)$ for some $\tilde{b}_j \in \mathcal{B}$ and the elements

$$P_k(q(b_1),\ldots,q(b_{n_k}),q(\widetilde{b}_1),\ldots,q(\widetilde{b}_{n_k})) = q(P_k(b_1,\ldots,b_{n_k},\widetilde{b}_1,\ldots,\widetilde{b}_{n_k}))$$

converge in \mathcal{C} . Since $q: \mathcal{B} \to \mathcal{C}$ is bicontinuous $P_k(b_1, \ldots, b_{n_k}, \tilde{b}_1, \ldots, \tilde{b}_{n_k}) \in \mathcal{B}$ converge to some element $y \in \mathcal{B}$. Clearly $x - y \in J$. Hence $y \in \mathcal{B} \setminus J$. Since $J \subseteq ker(\rho)$ and $x \in ker(\rho)$ we have $y \in ker(\rho)$ which is a contradiction. Thus $J = ker(\rho)$.

To prove the second statement of the theorem consider the canonical quotient map $q_{J'}: C^*_{max}(\mathcal{B}) \to C^*_{max}(\mathcal{B})/J'$ and let $x \in J' \setminus J$. Then xis a uniform limit of polynomials $P_k(b_1, \ldots, b_{n_k}, b_1^*, \ldots, b_{n_k}^*)$ and there are $\tilde{b}_j \in \mathcal{B}$ such that $q(b_j^*) = q(\tilde{b}_j)$. Then $q_{J'}(P_k(b_1, \ldots, b_{n_k}, b_1^*, \ldots, b_{n_k}^*)) =$ $q_{J'}(P_k(b_1, \ldots, b_{n_k}, \tilde{b}_1, \ldots, \tilde{b}_{n_k}))$ uniformly converges to 0. Thus $P_k(b_1, \ldots, b_{n_k}, \tilde{b}_1, \ldots, \tilde{b}_{n_k})$ converges to 0 in \mathcal{B} . Since

$$q(P_k(b_1,\ldots,b_{n_k},b_1^*,\ldots,b_{n_k}^*)) = q(P_k(b_1,\ldots,b_{n_k},\widetilde{b}_1,\ldots,\widetilde{b}_{n_k}))$$

converges to q(x) and we have q(x) = 0.

Another way to make $\check{\pi}^{-1}$ extendable to a *-homomorphism from C^* algebra generated by $\mathcal{B} = \check{\pi}(\mathcal{A})$ into \mathcal{A} is the following. Since $||a|| \leq ||\check{\pi}(a)||$ the embedding \mathcal{B} into $\mathcal{B} \oplus \mathcal{A}$ via $i : \check{\pi}(a) \mapsto \check{\pi}(a) \oplus a$ is completely isometric isomorphism. Let $\tau = (i \circ \check{\pi})^{-1}$. Then $\tau(\check{\pi}(a) \oplus a) = a$ and τ has a contractive extension, $\tilde{\tau}$, to the C^* -algebra generated by $i(\mathcal{B})$, such that $\tilde{\tau}(a_1 \oplus a_2) = a_2$ for every $a_1 \oplus a_2 \in C^*(i(\mathcal{B}))$. Since $\tilde{\tau}$ is unital and contractive we have that $\tilde{\tau}$ is a *-homomorphism.

Now we can summarize our observations in several reformulations of the Kadison's similarity problem.

Theorem 8. The following are equivalent:

- (i) Kadison's conjecture has affirmative answer,
- (ii) for every operator algebra \mathcal{B} and every bounded homomorphism ρ : $C^*(\mathcal{B}) \to \mathcal{B}$, such that $\rho(b) = b$ for every $b \in \mathcal{B}$, ρ is completely bounded.
- (iii) if \mathcal{B} is an operator algebra and $\rho: C^*_{max}(\mathcal{B}) \to \mathcal{B}$ is bounded homomorphism such that $\rho(b) = b$ for every $b \in \mathcal{B}$ and the restriction of ρ to \mathcal{B}^* is completely isometric then ρ is completely bounded.
- (iv) if an operator algebra \mathcal{B} is isomorphic to a C^{*}-algebra and $J \subset C^*(\mathcal{B})$ is a closed ideal such that

$$C \cdot \|b\|_{C^*(\mathcal{B})} \le \|b\|_{C^*(\mathcal{B})/J}$$

for every $b \in \mathcal{B}$ and some C > 0, then J is a K-boundary ideal.

Proof. Evidently (i) \Rightarrow (ii) and (ii) \Rightarrow (iii).

(iii) \Rightarrow (i). Let $\pi : \mathcal{A} \to B(H)$ be bounded injective homomorphism from C^* -algebra \mathcal{A} . By Theorem 6 and considerations preceding Theorem 8 we have bounded injective J-symmetric homomorphism $\check{\pi} : \mathcal{A} \to B(H \oplus H)$ and completely isometric homomorphism $i : \check{\pi}(\mathcal{A}) \to C^*_{max}(\check{\pi}(\mathcal{A}))$. Let $\rho = i \circ \check{\pi}$ and $\mathcal{B} = \rho(\mathcal{A})$. Then $\|\rho\|_{cb} = \|\pi\|_{cb}$ and $\rho^{-1} : \mathcal{B} \to \mathcal{A}$ extends to *-homomorphism $\tau : C^*_{max}(\mathcal{B}) \to \mathcal{A}$. Thus we have bounded homomorphism

$$\rho \circ \tau : C^*_{max}(\mathcal{B}) \to \mathcal{B}$$

such that $\rho \circ \tau(b) = b$ for every $b \in \mathcal{B}$. Consider the restriction of $\rho \circ \tau$ to B^* . Let $(b_{ij})_{i,j} \in M_n(\mathcal{B}^*)$ then $b_{ij} = \rho(a_{ij})^*$ for some $a_{ij} \in \mathcal{A}$. Since $\check{\pi}$ is *J*-symmetric we have

$$\begin{aligned} \|\rho \circ \tau\|_{B^*}^{(n)}((\rho(a_{ij})^*)_{i,j})\| &= \|(\rho \circ \tau(\rho(a_{ij})^*))_{i,j}\| \\ &= \|(\rho(\tau(\rho(a_{ij}))^*))_{i,j}\| \\ &= \|(\rho(a_{ij}^*))_{i,j}\| = \|(\check{\pi}(a_{ij}^*))_{i,j}\| \\ &= \|(J \otimes I_n)(\check{\pi}(a_{ij})^*)_{i,j}(J \otimes I_n)\| \\ &= \|(\check{\pi}(a_{ij})^*)_{i,j}\| = \|(\check{\pi}(a_{ji}))_{i,j}\| \\ &= \|(\rho(a_{ji}))_{i,j}\| = \|(\rho(a_{ij})^*)_{i,j}\|.\end{aligned}$$

Thus $\rho \circ \tau|_{B^*}$ is a complete isometry. By (iii) $\rho \circ \tau$ is completely bounded. Then \mathcal{B} is similar to some C^* -algebra \mathcal{C} , i.e. there exists $S \in B(K)$ such that $\mathcal{B} = S\mathcal{C}S^{-1}$. Since $AdS \circ \rho : \mathcal{A} \to \mathcal{C}$ is bounded isomorphism between two C^* -algebras by Gardner's theorem [9] we have that $AdS \circ \rho$ is similar to *-homomorphism which proves similarity of ρ to *-homomorphism.

(iv) \Rightarrow (ii). Since $ker(\rho)$ is ideal of $C^*(B)$ and satisfies conditions of (iv) we have that $ker(\rho)$ is a K-boundary ideal. Therefore ρ is completely bounded.

(i) \Rightarrow (iv). In [19] it was proved that if Kadison conjecture has affirmative answer then every Banach operator algebra which is isomorphic to a C^* algebra λ -norms itself for some $\lambda > 0$. By Proposition 4 we have that ideal of (iv) is a K-boundary ideal.

Remark 9. By example 5 we have that in condition (iv) of Theorem 8 it is not enough to require \mathcal{B} be isomorphic to a semi-simple Banach algebra.

Question. Note that ρ in Theorem 8 (ii) is \mathcal{B} -bimodule map. Let \mathcal{C} and \mathcal{D} be C^* -algebras. In [23] Smith proved that if $\tau : \mathcal{C} \to B(H)$ is bounded \mathcal{D} -bimodule map and \mathcal{D} has cyclic vector then τ is completely bounded and

 $\|\tau\|_{cb} = \|\tau\|$. Is Smith's theorem true if \mathcal{D} is an operator algebra with cyclic vector?

References

- ARVESON W., Subalgebras of C*-algebras, Acta Math., 123, 141–224 (1969)
- [2] ARVESON W., The noncommutative Choquet boundary, arXiv: math/0701329.
- BLECHER D., Completely bounded characterization of operator algebras, Math. Ann., 303, 227–240 (1969)
- BLECHER D., Modules over operator operator algebras and maximal C^{*}dilation, J. Funct. Anal., 169, no. 1, 251–288 (1999)
- [5] BLECHER D., PAULSEN V., Explicit Construction of Universal Operator Algebras and Applications to Polynomial Factorization, Proc. AMS, 112, no. 3, 839–850 (1991)
- [6] BLECHER D., RUAN Z.-J., SINCLAIR A., A characterization of operator algebras, J. Funct. Anal., 89, 188–201 (1990)
- [7] DRITSCHEL M., MCCULLOUGH S., Boundary representations for families of representations of operator algebras and spaces, J. Operator Theory, 53, no. 1, 159–167 (2005)
- [8] EFFROS E., RUAN Z.-J., Operator spaces, London Mathematical Society Monographs. New Series, 23, The Clarendon Press, Oxford University Press, New York (2000)
- [9] GARDNER T., On isomorphisms of C^{*}-algebras, Amer. J. Math., 87, 384–396 (1965)
- [10] HAAGERUP U., Solution of the similarity problem for cyclic representations of C*-algebras, Ann. of Math. 118, p. 215–240 (1983)
- [11] HAMANA M., Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci., 15, 773–785 (1979)

- [12] JOHNSON B., The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73, 537-539 (1967)
- [13] JUSCHENKO E., POPOVYCH S., Matrix Ordered Operator Algebras, Chalmers & Göteborg University math. preprint (2007)
- [14] KISSIN E., SHULMAN V., Representations on Krein spaces and derivations of C^{*}-algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics 89, (1997)
- [15] PAULSEN V., Every completely polynomially bounded operator is similar to a contaraction, J. Funct. Anal. 55, no. 1, 1–17 (1984)
- [16] PAULSEN V., Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics 78 Cambridge University Press, Cambridge (2002)
- [17] PISIER G., Similarity problems and completely bounded maps. Second, expanded edition. Includes the solution to "The Halmos problem"., J. Amer. Math. Soc. 10, 351–369 (1997)
- [18] PISIER G., A polynomially bounded operator on Hilbert space which is not similar to a contraction, Lecture Notes in Mathematics, 1618, Springer-Verlag, Berlin (2001)
- [19] PITTS D., Norming algebras and automatic complete boundedness of isomorphism of operator algebras, arXiv: math.OA/0609604 (2006)
- [20] POP F., SINCLAIR A., SMITH R., Norming C*-algebras by C*subalgebras, J. Funct. Anal., 175, no.1, 168–196 (2000)
- [21] SHULMAN V., On representations of C^{*}-algebras on indefinite metric spaces, Mat. Zametki, 22, 583–592 (1977)
- [22] SMITH R., Completely bounded maps between C*-algebras, J. London Math. Soc. 27, 157–166 (1983)
- [23] SMITH R., Completely bounded maps and the Haagerup tensor product, J. Funct. Anal. 102, no.1, 156–175 (1991)