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Ideals of a C∗-algebra generated by an
operator algebra.

Kate Juschenko

Abstract

In this paper we consider ideals of a C∗-algebra C∗(B) generated
by an operator algebra B. A closed ideal J ⊆ C∗(B) is called K-
boundary ideal if the restriction of the quotient map on B has a com-
pletely bounded inverse with cb-norm equal to K−1. For K = 1
one gets the notion of boundary ideals introduced by Arveson. We
study the properties of K-boundary ideals and characterize them in
the case when operator algebra λ-norms itself. Several reformulations
of Kadison similarity problem are given. In particular, the affirma-
tive answer to this problem is equivalent to the statement that every
bounded homomorphism from C∗(B) onto B which is projection on B
is completely bounded.

1 Introduction.

An operator algebra is a subalgebra of B(H), the algebra of all bounded
operators on a Hilbert space H. The algebra Mn(B(H)) of n × n matrices
with entries in B(H) has a norm ‖·‖n via the identification of Mn(B(H)) with
B(Hn), where Hn is the direct sum of n copies of a Hilbert space H. If A is
a subalgebra of B(H) then Mn(A) inherits a norm ‖·‖n via natural inclusion
into Mn(B(H)). The norms ‖ · ‖n are called matrix norms on the operator
algebra A. The Blecher-Ruan-Sinclair Theorem [6] abstractly characterize
operator algebras in terms of matrix norms.

A linear mapping φ : A → B(H) induces a linear mapping

φ(n) : Mn(A) → B(
n⊕

i=1

H)
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via the formula φ(n)((aij)) = (φ(aij)) for every (aij) ∈ Mn(A). The map φ is
called completely bounded if there exists C such that ‖φ‖cb = sup

n
‖φ(n)‖ <

C < ∞, it is called completely contractive (isometric) if φ(n) is contractive
(corresp. isometric) for every n ∈ N.

The C∗-envelope of an operator algebra A, denoted by C∗
e (A), is a C∗-

algebra generated by i(A) for some completely isometric homomorphism i :
A → B(H) having the following universal property. For any completely
isomorphic homomorphism ρ : A → B(K) there exists a unique onto ∗-
homomorphism π : C∗(ρ(A)) → C∗

e (A) such that π(ρ(a)) = i(a) for every
a ∈ A.

In [1] Arveson defined a noncommutative analog of the Šilov boundary of
uniform algebra. It is known that the Šilov boundary of a uniform algebra A
is the closure of the Choquet boundary. The (irreducible) boundary represen-
tations of A correspond to points of the Choquet boundary. In noncommuta-
tive setting let B be an operator algebra in B(H) and C∗(B) be the C∗-algebra
generated by B in B(H). Then a closed (two-sided) ideal J of C∗(B) is called
boundary ideal if the canonical quotient map q : C∗(B) → C∗(B)/J is com-
pletely isometric on B. The Šilov boundary is a boundary ideal containing
all boundary ideals. It can be shown that the C∗-envelope of an operator
algebra B is the quotient of C∗-algebra generated by B by Šilov boundary
whenever the latter exists. Arveson showed the existence of C∗-envelopes for
admissible operator algebras developing theory of boundary representations
in [1]. The existence in full generality was shown in [11]. But the question
wether there are sufficiently many boundary representations to construct the
C∗-envelope was not settled until the works [7] and [2] appeared.

In this paper we study a generalization of boundary ideals. Namely, a
closed (two-sided) ideal J ⊂ C∗(B) will be called K-boundary ideal if a
canonical quotient map q : C∗(B) → C∗(B)/J restricted to B has a com-
pletely bounded inverse q|−1

B with completely bounded norm equal to K−1.
For K = 1 we obtain the boundary ideals of [1]. Surprisingly, there is no
analog of Šilov boundary for K-boundary ideals for K 6= 1. That is in gen-
eral there is no K-boundary ideal containing every other K-boundary ideal,
see Example 3.

As a corollary of [15] and the solution of Halmos problem [17] there exists
bounded homomorphism of the disk algebra A(D) into B(H) which is not
completely bounded. Adapting this result to the quotient maps in Example 5
we construct an operator algebra B and an ideal J such that q|−1

B is bounded
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but not completely bounded.
Further, we prove that if an operator algebra B λ-norms itself and J is

closed ideal of C∗-algebra generated by B such that the restriction of the
quotient map q : C∗(B) → C∗(B)/J has continuous inverse q|−1

B then q|−1
B is

completely bounded.
In Section 3 we consider the following problem raised by Kadison in 1955.

Is any bounded homomorphism π of a C∗-algebra A into B(H) is similar to
a ∗-homomorphism? The similarity above means that there exists an invert-
ible operator S ∈ B(H) such that S−1π(·)S is ∗-homomorphism. Haagerup
[10] showed that π is similar to a ∗-homomorphism if and only if it is com-
pletely bounded. Obviously, for this problem it is sufficient to consider only
faithful homomorphisms. Pitts [19] proved that every bounded faithful ho-
momorphism of a C∗-algebra has a completely bounded inverse. In Section 3
we show that for Kadison’s similarity problem it is sufficient to consider
bounded faithful homomorphisms that have completely contractive inverses.
As a corollary of this result we have that every bounded homomorphism of
a C∗-algebra is completely bounded if and only if every bounded homomor-
phism from C∗(B) onto B which is projection on B is completely bounded.

It was proved in [19] that bounded homomorphism π of a C∗-algebra A is
completely bounded if and only if π(A) λ-norms itself. Using this result and
Theorem 4 we have a reformulation of Kadison’s similarity problem in terms
of ideals of a C∗-algebra generated by an operator algebra, see Theorem 6.

In this paper all operator algebras are supposed to be unital and for a
given operator algebra A ⊆ B(H) the C∗-algebra generated by A in B(H)
is denoted by C∗(A).

We refer the reader to the books [8], [16] and [17] for precise definitions,
basic facts and terminology related to operator algebras, operator spaces and
completely bounded maps.

2 K-boundary Ideals.

In this section we define and investigate a generalization of boundary ideals.

Definition 1. Let B be a closed subalgebra of a unital C∗-algebra A such
that B contains the unit and generates A as a C∗-algebra. A closed ideal J
of A is called a K-boundary ideal if K > 0 is the greatest constant having

3



the following property

K · ‖a‖Mn(A) ≤ ‖a‖Mn(A/J) (1)

for every a ∈ Mn(B) and n ∈ N. In other words the canonical quotient map
q : A → A/J restricted to B is injective and has a completely bounded inverse
with completely bounded norm equal to K−1.

If C∗(B) is commutative then every ideal which satisfies inequality (1)
with n = 1 and K > 0 is automatically boundary ideal, i.e. K = 1. It
follows from the following observation.

Proposition 2. Let J be closed a ideal of C∗(B) and 0 < K < 1 be a greatest
constant satisfying inequality

K · ‖b‖C∗(B) ≤ ‖b‖C∗(B)/J

for every b ∈ B. Then there exists b ∈ B such that ‖b‖C∗(B) = 1 and
‖bn‖C∗(B) → 0 when n →∞.

Proof. Straightforward.

A boundary ideal is called Šilov boundary if it contains every other
boundary ideal. In the following example we present an operator algebra such
that the C∗-algebra it generates has K-boundary ideals (for some K < 1)
but does not have a K-boundary ideal that contains all K-boundary ideals.

Example 3. Consider

B = {
(

x1 x2 − x1

0 x2

)
⊕x1⊕x2⊕

(
y1 y2 − y1

0 y2

)
⊕y1⊕y2 : x1, x2, y1, y2 ∈ C}.

One can easily check that B is an algebra and the C∗-algebra generated by B
in M8(C) is M2(C)⊕C⊕C⊕M2(C)⊕C⊕C. Consider the following ideals

J1 = M2(C)⊕ 0⊕ 0⊕ 0⊕ C⊕ C,

J2 = 0⊕ C⊕ C⊕M2(C)⊕ 0⊕ 0.
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We have

‖
(

x1 x2 − x1

0 x2

)
⊕ x1 ⊕ x2 ⊕

(
y1 y2 − y1

0 y2

)
⊕ y1 ⊕ y2‖C∗(B)

= max{‖
(

x1 x2 − x1

0 x2

)
‖, ‖

(
y1 y2 − y1

0 y2

)
‖}

= max{‖
(

1 1
0 1

)(
x1 0
0 x2

)(
1 −1
0 1

)
‖, ‖

(
y1 y2 − y1

0 y2

)
‖}

≤ C ·max{‖
(

x1 0
0 x2

)
‖, ‖

(
y1 y2 − y1

0 y2

)
‖}

= C · ‖
(

x1 x2 − x1

0 x2

)
⊕ x1 ⊕ x2 ⊕

(
y1 y2 − y1

0 y2

)
⊕ y1 ⊕ y2‖C∗(B)/J1

Let q : C∗(B) → C∗(B)/J1 be the canonical quotient map. Using inequali-
ties above we have ‖b‖ ≤ C · ‖q(b)‖ for every b ∈ B. Thus the restriction of q
to B, q|B, is invertible map into M8(C) and it is easy to see that ‖q|−1

B ‖ > 1.
By Smith’s theorem [22] the completely bounded norm of τ := q|−1

B equals to
the norm 8-th amplification. Therefore ‖τ‖cb = ‖τ (8)‖ ≥ ‖τ‖ > 1 and J1 is
K-boundary ideal with K = ‖τ‖−1

cb .
Similar arguments prove that J2 is a K-boundary ideal with the same

constant K. There is no K-boundary ideal that contains both ideals since the
sum of J1 and J2 is the whole C∗(B).

Let us note that inequality (1) with n = 1 may fail even when q|B is injec-
tive. The reason is that the image of a Banach subalgebra of a C∗-algebra A
under the quotient map is not necessarily closed. Consider for example the
C∗-algebra C(D2) of continuous function on the disk D2 of radius 2 and its
Banach subalgebra A(D2) of analytic functions on D2 which have continuous
extension on D2. Let D1 be the disk of radius 1 and the same center as D2.
The restriction of functions to D1 is a ∗-homomorphism π : C(D2) → C(D1)
and π(A(D2)) is not closed since there are analytic functions on D1 which
are not extendable to the analytic function on D2. Thus the quotient map
q : C(D2) → C(D2)/J , where J = ker(π), maps A(D2) into non-closed sub-
algebra in C(D2)/J . An example of a Banach operator algebra which is
isomorphic to a non-closed self-adjoint operator algebra via contractive iso-
morphism can be found in [13].

K-boundary ideals can be easily characterized in the case when B λ-norms
itself. Let us recall necessary definitions.
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For a given operator algebra B define norms ||| · |||n on Mn(B) via

|||X|||n = sup{‖RXC‖ : R ∈ M1,n(B), C ∈ Mn,1(B), ‖R‖ ≤ 1, ‖C‖ ≤ 1}.

Evidently |||X|||n ≤ ‖X‖n for every X ∈ Mn(B).
An operator algebra B λ-norms itself, see [20], if there exists λ > 0 such

that
λ · ‖X‖n ≤ |||X|||n

for every X ∈ Mn(B) and n ∈ N.
In the following we will need the notion of the maximal enveloping C∗-

algebra of an operator algebra. For a given operator algebra B there exists a
C∗-algebra, denoted by C∗

max(B), and a completely isometric homomorphism
i : B → C∗

max(B) such that i(B) generates C∗
max(B) as a C∗-algebra and has

the following universal property (see [3], [5]). If π : B → A is a completely
contractive homomorphism into a C∗-algebra A then there exists a unique
∗-homomorphism π̃ : C∗

max(B) → A extending π, i.e. π̃ ◦ i = π. Algebra
C∗

max(B) is called maximal enveloping C∗-algebra of B. The existence follows
from the following construction, see [?] for details.

Define a semi-norm on the algebraic free product of B and B∗ by

‖a‖B∗B∗ = sup{‖(π ∗ π∗)(a)‖ : π : B → B(H)

is completely contractive homomorphism}

The null-space of this norm is two-sided ideal J . Then B ∗ B∗/J is pre-C∗-
algebra and C∗

max(B) is its completion. Uniqueness of C∗
max(B) follows from

the universal property.

Theorem 4. If an operator algebra B λ-norms itself and i : B → B(H) is
completely isometric homomorphism then for every ideal J ⊂ C∗(i(B)) such
that the inequality

K ′ · ‖b‖C∗(i(B)) ≤ ‖b‖C∗(i(B))/J (2)

holds for every b ∈ B and some K ′ > 0 we have that J is K-boundary ideal
for some K ≥ λK ′.

Proof. Let X ∈ Mn(B), R ∈ M1,n(B), C ∈ Mn,1(B) and ‖R‖ ≤ 1, ‖C‖ ≤ 1.

6



Since the canonical quotient map is completely contractive we have

‖RXC‖C∗(i(B)) = ‖
∑
i,j

RiXijCj‖C∗(i(B))

≤ 1

K ′ · ‖
∑
i,j

RiXijCj‖C∗(i(B))/J

=
1

K ′ · ‖RXC‖C∗(i(B))/J

≤ 1

K ′ · ‖X‖Mn(C∗(i(B))/J).

Taking supremum over all R and C we have

λK ′ · ‖X‖Mn(C∗(i(B))) ≤ ‖X‖Mn(C∗(i(B))/J).

Thus J is K-boundary ideal for some K ≥ λK ′.

The example of a semi-simple operator algebra which does not λ-norm
itself was given in [19]. In the following we present slightly simplified proof of
this result and construct an operator algebra and ideal such that inequality
(1) is valid for n = 1 but not for all n ≥ 1.

Example 5. An operator T ∈ B(H) is called polynomially bounded opera-
tor if there exists a bounded homomorphism uT : A(D) → B(H) such that
uT (p) = p(T ) for every polynomial p. An operator T is called completely
polynomially bounded if uT is completely bounded. In [15] it was shown that
T is completely polynomially bounded if and only if T is similar to a con-
traction. There exists a polynomially bounded operator which is not similar
to a contraction, see [17]. Thus there is T ∈ B(H) such that uT is bounded
but not completely bounded homomorphism. Since T is polynomially bounded
we have that σ(T ) ⊆ D. Let U be unitary operator such that σ(U) = T.
Then uT⊕U is bounded but not completely bounded and T ⊆ σ(T ⊕ U). Thus
‖uT⊕U(f)‖ ≥ ‖f‖ for every f ∈ A(D) and B = uT⊕U(A(D)) is a Banach
algebra. Since u−1

T⊕U : B → A(D) acts into commutative C∗-algebra we
have ‖u−1

T⊕U‖cb = ‖u−1
T⊕U‖ ≤ 1. Let i : B → C∗

max(B) be embedding of B
into its maximal enveloping C∗-algebra and let τ : C∗

max(B) → C(D) be ∗-
homomorphism extending u−1

T⊕U ◦ i−1 : i(B) → A(D). Since τ(C∗
max(B)) is

a C∗-algebra generated by A(D) we have that τ is surjective. Consider a
canonical quotient map

q : C∗
max(B) → C∗

max(B)/ ker(τ) ' C(D).
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Then there is K̃ > 0 such that

K̃‖b‖C∗max(B) ≤ ‖b‖C∗max(B)/ ker(τ).

Since q|−1
B = i ◦ uT⊕U is not completely bounded we have that ker(τ) is not

a K-boundary ideal. Thus Theorem 4 implies that uT⊕U(A(D)) does not λ-
norm itself.

3 K-boundary Ideals and the Similarity Prob-

lem.

Let A be a C∗-algebra and π : A → B(H) be a bounded homomorphism. It
was shown in [19] that π(A) is a Banach algebra. Moreover, if π is injective
then it has a completely bounded inverse, see [19], [13]. Define π̌ : A →
B(H ⊕H) by the following rule:

π̌(a) = π(a)⊕ π(a∗)∗.

Evidently π is completely bounded iff π̌ is completely bounded. Thus by
theorem of Haagerup (see [10]) we have that π is similar to ∗-homomorphism
iff π̌ is such. A simple proof of this fact which does not use the Haagerup’s
results can be found in [21] (see also [14]).

Let J be a unitary operator. A homomorphism π : A → B(H) is called
J-symmetric if π(a∗) = Jπ(a)∗J∗ for every a ∈ A.

Let J : B(H⊕H) → B(H⊕H) be unitary operator defined by J(x⊕y) =
y ⊕ x. Then π̌(a∗) = π(a∗)⊕ π(a)∗ = Jπ(a)∗J∗ and π̌ is J-symmetric.

Theorem 6. If π : A → B(H) is bounded injective homomorphism then π̌
has a completely contractive inverse.

Proof. Let B = π̌(A) and r(a) denotes the spectral radius of a ∈ A. Since
B is a Banach algebra and isomorphism preserves the spectrum we have
σMn(A)(a) = σMn(π̌(A))(π̌

(n)(a)) and

‖a‖2 = ‖a∗a‖ = r(a∗a)

= r(π̌(n)(a∗a)) ≤ ‖π̌(n)(a∗a)‖
≤ ‖π̌(n)(a∗)‖ · ‖π̌(n)(a)‖
= ‖(J ⊗ In)π̌(n)(a)∗(J ⊗ In)‖ · ‖π̌(n)(a)‖
≤ ‖π̌(n)(a)‖2,
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for every a ∈ Mn(A). Thus the inverse homomorphism π̌−1 : B → A is
completely contractive.

Assume that π̌ is as in Theorem 6. Let i : B → C∗
max(B) be the canon-

ical inclusion of B into its maximal enveloping C∗-algebra. Replacing π̌
by i ◦ π̌, which does not effect completely boundedness of π̌, we have that
π̌(A) generate its maximal enveloping C∗-algebra. Therefore by universal
property of the maximal enveloping C∗-algebra π̌−1 can be extended to a
∗-homomorphism ρ : C∗

max(B) → A. Now we have C∗
max(B)/ker(ρ) ' A and

K̃ · ‖b‖C∗max(B) ≤ ‖b‖C∗max(B)/ker(ρ) ≤ ‖b‖C∗max(B) (3)

for every b ∈ B and some K̃ > 0.
Note that π̌ is completely bounded if and only if ker(ρ) is a K-boundary

ideal for some K > 0.

Proposition 7. The kernel of ρ is the ideal J generated by {π̌(a)− π̌(a∗)∗ :

a ∈ A}. If a closed ideal J ′ satisfies (3) for some K̃ > 0 and J ⊆ J ′ then
J = J ′.

Proof. Since ρ is a ∗-homomorphism ρ(π̌(a)− π̌(a∗)∗) = 0 and J ⊆ ker(ρ).
Let us prove the converse inclusion. Let q : C∗

max(B) → C∗
max(B)/J be a

canonical quotient map. Since B is isomorphic to a C∗-algebra A we have
that B is semisimple Banach algebra. The image C = q ◦ π̌(A) of bounded
homomorphism q ◦ π̌ of C∗-algebra A is Banach algebra. By Johnson’s the-
orem on uniqueness of norm topology on a semisimple Banach algebra (see
[12]) the restriction of q to B is bicontinuous isomorphism of B and C.

Assume that there exists x ∈ ker(ρ) \ J . Since B generates C∗
max(B)

as a C∗-algebra we have that x is a uniform limit of polynomials Pk(b1, . . .,
bnk

, b∗1, . . . , b
∗
nk

), where bi ∈ B. Thus

q(Pk(b1, . . . , bnk
, b∗1, . . . , b

∗
nk

)) = Pk(q(b1), . . . , q(bnk
), q(b1)

∗, . . . , q(bnk
)∗)

converge uniformly in C∗
max(B)/J . Clearly q(bj)

∗ = q(̃bj) for some b̃j ∈ B
and the elements

Pk(q(b1), . . . , q(bnk
), q(̃b1), . . . , q(̃bnk

)) = q(Pk(b1, . . . , bnk
, b̃1, . . . , b̃nk

))

converge in C. Since q : B → C is bicontinuous Pk(b1, . . . , bnk
, b̃1, . . . , b̃nk

) ∈ B
converge to some element y ∈ B. Clearly x− y ∈ J . Hence y ∈ B \ J . Since
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J ⊆ ker(ρ) and x ∈ ker(ρ) we have y ∈ ker(ρ) which is a contradiction.
Thus J = ker(ρ).

To prove the second statement of the theorem consider the canonical
quotient map qJ ′ : C∗

max(B) → C∗
max(B)/J ′ and let x ∈ J ′\J . Then x

is a uniform limit of polynomials Pk(b1, . . . , bnk
, b∗1, . . . , b

∗
nk

) and there are

b̃j ∈ B such that q(b∗j) = q(̃bj). Then qJ ′(Pk(b1, . . . , bnk
, b∗1, . . . , b

∗
nk

)) =

qJ ′(Pk(b1, . . . , bnk
, b̃1, . . . , b̃nk

)) uniformly converges to 0. Thus Pk(b1, . . ., bnk
,

b̃1, . . . , b̃nk
) converges to 0 in B. Since

q(Pk(b1, . . . , bnk
, b∗1, . . . , b

∗
nk

)) = q(Pk(b1, . . . , bnk
, b̃1, . . . , b̃nk

))

converges to q(x) and we have q(x) = 0.

Another way to make π̌−1 extendable to a ∗-homomorphism from C∗-
algebra generated by B = π̌(A) into A is the following. Since ‖a‖ ≤ ‖π̌(a)‖
the embedding B into B ⊕A via i : π̌(a) 7→ π̌(a)⊕ a is completely isometric
isomorphism. Let τ = (i◦π̌)−1. Then τ(π̌(a)⊕a) = a and τ has a contractive
extension, τ̃ , to the C∗-algebra generated by i(B), such that τ̃(a1 ⊕ a2) = a2

for every a1 ⊕ a2 ∈ C∗(i(B)). Since τ̃ is unital and contractive we have that
τ̃ is a ∗-homomorphism.

Now we can summarize our observations in several reformulations of the
Kadison’s similarity problem.

Theorem 8. The following are equivalent:

(i) Kadison’s conjecture has affirmative answer,

(ii) for every operator algebra B and every bounded homomorphism ρ :
C∗(B) → B, such that ρ(b) = b for every b ∈ B, ρ is completely bounded.

(iii) if B is an operator algebra and ρ : C∗
max(B) → B is bounded homomor-

phism such that ρ(b) = b for every b ∈ B and the restriction of ρ to B∗
is completely isometric then ρ is completely bounded.

(iv) if an operator algebra B is isomorphic to a C∗-algebra and J ⊂ C∗(B)
is a closed ideal such that

C · ‖b‖C∗(B) ≤ ‖b‖C∗(B)/J

for every b ∈ B and some C > 0, then J is a K-boundary ideal.
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Proof. Evidently (i)⇒(ii) and (ii)⇒(iii).
(iii)⇒(i). Let π : A → B(H) be bounded injective homomorphism from

C∗-algebra A. By Theorem 6 and considerations preceeding Theorem 8 we
have bounded injective J-symmetric homomorphism π̌ : A → B(H ⊕ H)
and completely isometric homomorphism i : π̌(A) → C∗

max(π̌(A)). Let ρ =
i ◦ π̌ and B = ρ(A). Then ‖ρ‖cb = ‖π‖cb and ρ−1 : B → A extends to
∗-homomorphism τ : C∗

max(B) → A. Thus we have bounded homomorphism

ρ ◦ τ : C∗
max(B) → B

such that ρ ◦ τ(b) = b for every b ∈ B. Consider the restriction of ρ ◦ τ to
B∗. Let (bij)i,j ∈ Mn(B∗) then bij = ρ(aij)

∗ for some aij ∈ A. Since π̌ is
J-symmetric we have

‖ρ ◦ τ |(n)
B∗ ((ρ(aij)

∗)i,j)‖ = ‖(ρ ◦ τ(ρ(aij)
∗))i,j‖

= ‖(ρ(τ(ρ(aij))
∗))i,j‖

= ‖(ρ(a∗ij))i,j‖ = ‖(π̌(a∗ij))i,j‖
= ‖(J ⊗ In)(π̌(aij)

∗)i,j(J ⊗ In)‖
= ‖(π̌(aij)

∗)i,j‖ = ‖(π̌(aji))i,j‖
= ‖(ρ(aji))i,j‖ = ‖(ρ(aij)

∗)i,j‖.

Thus ρ ◦ τ |B∗ is a complete isometry. By (iii) ρ ◦ τ is completely bounded.
Then B is similar to some C∗-algebra C, i.e. there exists S ∈ B(K) such
that B = SCS−1. Since AdS ◦ ρ : A → C is bounded isomorphism between
two C∗-algebras by Gardner’s theorem [9] we have that AdS ◦ ρ is similar to
∗-homomorphism which proves similarity of ρ to ∗-homomorphism.

(iv)⇒(ii). Since ker(ρ) is ideal of C∗(B) and satisfies conditions of (iv) we
have that ker(ρ) is a K-boundary ideal. Therefore ρ is completely bounded.

(i)⇒(iv). In [19] it was proved that if Kadison conjecture has affirmative
answer then every Banach operator algebra which is isomorphic to a C∗-
algebra λ-norms itself for some λ > 0. By Proposition 4 we have that ideal
of (iv) is a K-boundary ideal.

Remark 9. By example 5 we have that in condition (iv) of Theorem 8 it is
not enough to require B be isomorphic to a semi-simple Banach algebra.

Question. Note that ρ in Theorem 8 (ii) is B-bimodule map. Let C and
D be C∗-algebras. In [23] Smith proved that if τ : C → B(H) is bounded
D-bimodule map and D has cyclic vector then τ is completely bounded and
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‖τ‖cb = ‖τ‖. Is Smith’s theorem true if D is an operator algebra with cyclic
vector?
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