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Abstract

When analyzing microarray data a primary objective is often to find differentially
expressed genes. With empirical Bayes and penalized t-tests the sample variances are
adjusted towards a global estimate, producing more stable results compared to ordinary
t-tests. However, for Affymetrix type data a clear dependency between variability and
intensity-level generally exists, even for logged intensities, most clearly for data at the
probe level but also for probe-set summarizes such as the MAS5 expression index. As a
consequence, adjustment towards a global estimate results in an intensity-level dependent
false discovery rate. We propose two new methods for finding differentially expressed
genes, Probe level Locally moderated Weighted median-t (PLW) and Locally Moderated
Weighted-t (LMW). Both methods use an empirical Bayes model taking the dependency
between variability and intensity-level into account. A global covariance matrix is also
used allowing for differing variances between arrays as well as array-to-array correlations.
PLW is specially designed for Affymetrix type arrays (or other multiple-probe arrays).
Instead of making inference on probe-set summaries, comparisons are made separately
for each perfect-match probe and are then summarized into one score for the probe-set.
The proposed methods are compared to 11 existing methods using five spike-in data sets.
PLW has the most accurate ranking of regulated genes in four out of the five data sets,
and LMW consistently performs better than all examined moderated t-tests when used on
RMA expression indexes. Supplementary material together with the R package plw with
functions for LMW and PLW is available at http://www.math.chalmers.se/∼astrandm.

1 Introduction

Microarrays are widely used for measuring gene expression in biomedical research. For the
purpose of finding differentially expressed genes there exist numerous methods. In early studies
genes where often ranked with respect to fold-change. Genes showing fold-change above 2 (or 3)
were regarded as potentially regulated and were selected for further investigation. The obvious
drawback with such an approach, as pointed out by many authors, is that genes with high
fold-change may also be highly variable and thus with low significance of the regulation. On
the other hand, since the number of replicates in many studies is small, variance estimators
computed solely within genes are not reliable in that very small values can occur just by chance.
As a consequence the ordinary t-test suffers from low power and is not a better option for
filtering out regulated genes.

Many methods have been proposed to improve on the variance estimator in order to find more
powerful statistical tests for differential expression. In empirical Bayes methods (Baldi and Long
2001, Lönnstedt and Speed 2002, Smyth 2004, Kristiansson et al. 2005, Sjögren et al. 2007) and
the penalized t-test suggested by (Opgen-Rhein and Strimmer 2007), the gene-specific variance
estimator is modified in order to produce more stable results. With proportions determined
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by the accuracy of the gene-specific variance estimators, a mixture of the gene-specific variance
estimator and a global variance estimate is used in place of the gene-specific variance estimator in
the denominator of the t-test. Similarly, in Efron et al. 2001, and in the Significance Analysis
of Microarrays (SAM) method (Tusher et al. 2001) a constant is added to the gene-specific
sample standard deviation.

Another approach is to pool variance estimators for genes having similar expression level,
thus modeling the variance as a function of intensity-level. For example Eaves et al. 2002,
use a weighted average of the gene-specific variance estimator and a pooled estimate based
on the 500 genes with most similar mean expression level, and Jain et al. 2003, suggest the
local-pooled-error method (LPE) where a variance function fitted to estimated variances and
mean intensities is used. Comander et al. 2004, pool genes with respect to minimum intensity
rather than mean intensity, and Hu and Wright 2007, use a hierarchical model with a linear
relationship between variance and intensity-level. Of these four methods, only the one suggested
by Hu and Wright 2007, takes the accuracy of the gene-specific variance estimators into account
when setting the weights for the gene-specific estimator and the pooled estimator, respectively.
On the other hand Hu and Wright 2007, only deal with a linear relationship between variance
and intensity-level.

The type of arrays considered in this article is the Affymetrix GeneChip arrays. These
arrays are one color arrays and each gene is represented by a set of probes, the probe-set,
consisting of 10-16 probe-pairs. Each probe-pair consists of one perfect match (PM) probe and
one mismatch (MM) probe. The probes are 25 bases long and the PM and MM probes have
identical sequences of bases except for the middle probe which in the MM probe is set to the
complementary base of that in the PM probe. The MM probes are thus designed to measure the
background intensity for the corresponding PM probe. The standard way of dealing with the
multiple-probes is to derive a summary measurement, an expression index, for each probe-set
(gene) and array (sample), for example using the RMA method (Irizarry et al. 2003) or the
Affymetrix MAS5 algorithm. The expression indexes are then used in downstream analysis by
only considering the expression index itself, the precision of the expression index is ignored.
However, in the fully Bayesian probe-level BGX model (Hein et al. 2005) information about the
accuracy of the expression index is obtained as a complete distribution which is subsequently
used when computing the posterior distribution of differential expression. Also, the probe-level
measurement error from the probabilistic probe-level model multi-mgMOS (Liu et al. 2005)
is used when computing the probability of positive log-ratio in the PPLR method (Liu et al.
2006).

For Affymetrix type arrays a dependency between variability and intensity-level generally
exists, even for log-transformed data. Figure 1 shows scatter plots of sample variance versus
sample mean calculated on logged PM intensities (background corrected and normalized) and
three different expression indexes: RMA, GCRMA and MAS5. Except for the RMA expression
index a clear dependency between variability and intensity-level exists, with a unique signature
for each type of pre-processing of the raw CEL-file data. The GCRMA expression index shows
increasing variability with intensity-level while MAS5 shows the opposite relationship. As a
consequence, methods assuming constant variance as well as methods adjusting the gene-specific
variance (or standard deviation) estimators towards a global estimate suffer from intensity-level
dependent false discovery rates. Figure 2 shows an example where the moderated t-test in the
R-package LIMMA (Smyth 2004) was used on MAS5 expression indexes computed on a set of
replicated arrays. The false discovery rate obtained with LIMMA follows the same pattern as
in the right lower panel in Figure 1 where the same data set is used. In short, Figures 1 and 2
may be seen as a motivation for the proposed methods.

In this paper the hierarchical Bayesian model proposed by Kristiansson et al. 2005, is ex-
tended to incorporate the variability to intensity-level dependency. The Probe level Locally
moderated Weighted median-t method (PLW) applies the extended model to logged PM inten-

2



5 10 15

−
3

−
1

1 log2(PM)

5 10 15

−
3

−
1

1 log2(PM)

5 10

−
5

−
3

−
1

1

RMA

5 10

−
5

−
3

−
1

1

RMA

0 5 10

−
5

−
3

−
1

1 GCRMA

0 5 10

−
5

−
3

−
1

1 GCRMA

5 10 15

−
3

−
1

1 MAS5.0

5 10 15

−
3

−
1

1 MAS5.0

Figure 1: Scatter plots of sample variance (logged with base 2) against mean intensity for
logged PM intensities and three expression indexes. Left and right panels show data set A and
B, respectively (see Section 4.1).
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Figure 2: False discovery rate (α) calculated on re-sampled data and plotted against mean
intensity. Data sets of size 6 were sampled from the complete data set B (see Section 4.1) of
18 replicated arrays and then analyzed using the Affymetrix MAS5 algorithm followed by a
two group analysis of 3+3 arrays using the moderated t-test in the R-package LIMMA (Smyth
2004) and the proposed method LMW. False discovery rate were obtained by averaging over
the sampled data sets using loess-curves fitted to mean intensity and indicator of significance
(1 if the probe-set is among the 5% probe-sets with highest absolute statistic, 0 otherwise.)

sities resulting in moderated and weighted t-statistics for all PM probes. In the final step of
PLW the median t-statistic of all PM probes building up each probe-set is computed, and this
median is the value used for ranking the probe-sets with respect to differential expression.

The Locally Moderated Weighted-t method (LMW) is a more general method intended for
single probe type of arrays or summary measures of multiple probe type arrays, such as RMA
and MAS5. LMW use the same model as PLW but since only one t-statistic is obtained for each
probe-set no median is calculated. The proposed methods are compared with existing methods
on five publicly available spike-in data sets.

2 Methods

Given a set of n arrays let yip be the background corrected and normalized log-intensity on array
i for PM probe p and put yp = (y1p, . . . , ynp)

T . The PM probes are divided into G (disjoint)
probe-sets G1, . . . ,GG and thus there are a total of P = |G1|+ · · ·+ |GG| probes. For p = 1, . . . , P
assume

yp|cp ∼ Nn(µp, cpΣ)

cp ∼ Γ−1(1
2
m, 1

2
m · ν(µ̄p))

(1)

where µp is the log-intensity profile for probe p across the n arrays with mean log-intensity
level µ̄p, Σ is an n × n covariance matrix, m is a real-valued parameter, and ν(·) is a smooth
real-valued function. Nn denotes an n-dimensional normal distribution, and Γ−1(a, b) denotes
the inverse-gamma distribution with shape parameter a and scale parameter b. A cubic spline
is used to parameterize the function ν(·). Given set of K interior spline-knots

ν(x) = exp{H(x)Tβ}

where β is a parameter vector of length 2K − 1 and H : R → R2K−1 is a set of B-spline basis
functions, see chapter 5 of Hastie et al. 2001.
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As in the model suggested by Kristiansson et al. 2005, model (1) makes use of a global
covariance matrix, thus allowing differing variances as well as correlations between arrays. To
account for the dependency between variability and intensity-level the scale-parameter of the
Γ−1-distribution depends on the mean log-intensity level µ̄p for the probe through the smooth
function ν.

We assume that the vector µp is determined by a full rank n × k design matrix D and a
parameter vector γp of length k. The aim is to estimate and test hypothesis for δp, a linear
combination of γp specified by a 1× k matrix C. In summary,

µp = Dγp and δp = Cγp .

For the special case of comparing two conditions, with n1 and n2 arrays from conditions 1 and
2, respectively, the design matrix D is an (n1 + n2)× 2 matrix. For example, with n1 = 3 and
n2 = 4 we can use

DT =

[
1 1 1 0 0 0 0
0 0 0 1 1 1 1

]
and γp =

[
γp1

γp2

]
and thus µp = (γp1, γp1, γp1, γp2, γp2, γp2, γp2)

T . With C = [−1 1] we have δp = γp2 − γp1, thus δp
is the logged fold change between conditions 2 and 1.

However, instead of estimating the parameters of model (1) we use a reduced model derived
from model (1) through a linear transformation of the vector yp. Define the n × n and n × 1
matrices

A0 = I −D(DTD)−1DT and B = D(DTD)−1CT .

Since A0 is of rank n − k only we let A be an n × (n − k) matrix whose column space equals
that of A0. With q = n − k + 1 form the n × q transformation matrix M and the vector zp of
length q

M = [A;B] and zp = MTyp (2)

giving the reduced model

zp|cp ∼ Nq

(
(0, . . . , 0, δp)

T , cpΣz

)
cp ∼ Γ−1(1

2
m, 1

2
m · ν(µ̄p))

(3)

where Σz = MT ΣM .
Model (3) is fitted using the EM algorithm (Dempster et al. 1977) as described in Section 3.

The cp’s are treated as missing data and we replace the unknown intensity-level for probe p,
µ̄p, with the observed mean intensity across arrays, ȳp. Given estimators of the parameters Σz,
m, and β we proceed as if these parameters are known, and weighted moderated t-tests are
computed for each probe p. The unbiased minimum variance estimator of δp is

δ̂p = (λT Σ−1
z λ)−1λT Σ−1

z zp (4)

where λ is the vector (0, . . . , 0, 1)T of length q. The weighted moderated t-statistic is defined as

t̃p =

√
q +m− 1

(λT Σ−1
z λ)−1

δ̂p√
m exp{H(ȳp)Tβ}+ RSSp

(5)

and under H0: δp = 0 it can be shown that t̃p is t-distributed with q+m−1 degrees of freedom.
Here

RSSp = zT
p

(
Σ−1 − Σ−1λ(λT Σ−1λ)−1λT Σ−1

)
zp (6)

is the weighted residual sum of squares. See Kristiansson et al. 2006, for details. The PLW
statistic for the probe-set G is then defined as

PLWG = median
{
t̃p : p ∈ G

}
. (7)
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3 Parameter estimation

The q × q covariance matrix Σz of model (3) is divided according to

Σz =

[
ΣA ΣAB

ΣT
AB σ2

B

]
where ΣA is the covariance matrix for all but the last dimension of zp and σ2

B is the variance of the
last dimension (indexes A and B refer to the corresponding sub-matrices of the transformation
matrix M in (2)). Model (3) is fitted in two steps. First the parameters m, β and the sub-
matrix ΣA are estimated by dropping the last dimension of the vectors zp. Since model (3) is
not identifiable without a restriction on the function ν or the covariance matrices Σz we use
the restriction trace(ΣA) = q − 1. Secondly, the parameters m and β are held fixed and Σz is
estimated using the complete zp vectors. Temporarily the assumption of no regulated genes is
used (δp = 0 for all probes) and Σz is estimated under the restriction that the trace of the ΣA

part should be equal to q − 1.
In step 1, we let xp denote the sub-vector of zp obtained by dropping the last element. Under

model (3) xp is distributed according to model (1) with Σ = ΣA, µp = 0, n = q−1, and using the
EM-algorithm an iterative procedure for estimating m, β and ΣA is obtained. Given estimates
of the previous iteration, m0, β0 and ΣA0, updated estimates are found as follows. Let

wp =
m0 + q − 1

xT
p Σ−1

A0xp +m0 exp{H(ȳp)Tβ0}
.

The updated estimate of ΣA is

Σ̂A =
1

P

P∑
p=1

wpxpx
T
p (8)

and the updated estimate of β is found by numerical maximization of the function

h(β) =
1

P

P∑
p=1

(
H(ȳp)

Tβ − wp exp{H(ȳp)
Tβ}

)
.

With β̂ equal to the updated estimate of β let

S = h(β̂) + ψ

(
m0 + q − 1

2

)
− log(m0 + q − 1) +

1

P

P∑
p=1

log(wp)

where ψ(x) = d
dx

log Γ(x) is the digamma function. The updated estimate of m is then found
using numerical maximization of the function

f(m) = m
(

log(m) + S
)
− 2 log

(
Γ(m/2)

)
.

In step 2 a similar iterative procedure is used to estimate Σz. With Σz0 denoting the estimate
of Σz from the previous iteration and with wp re-defined as

wp =
m̂+ q

zT
p Σ−1

z0 zp + m̂ exp{H(ȳp)T β̂}

where m̂ and β̂ are the estimates obtained in step 1, an updated estimate of Σz is computed
according to (8) with zp replacing xp. In order for the estimators of ΣA and Σz, in step 1 and
2, respectively, to comply with the trace restriction the updated estimates are scaled at the end
of each iteration. See supplementary material for more details.
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4 Results and discussion

4.1 Data sets

The two data sets used in Figures 1 and 2 are publicly available at the Gene Expression Om-
nibus repository (http://www.ncbi.nlm.nih.gov/geo/) with series or sample reference number
indicated below. Data set A consists of the 18 arrays from the severe group of the COPD data
set (Spira et al. 2004) (series reference number GSE1650), where Affymetrix arrays of type
HG U133A were used. In data set B the 18 arrays with normal tissue where selected from a
lung tumor data set (Stearman et al. 2005) (sample reference numbers GSM47958-GSM47976,
excluding GSM47967). Here the HG-U95A arrays were used.

Five spike-in data sets were used to evaluate the proposed methods. In the Affymetrix U95
and 133A Latin Square data sets (http://www.affymetrix.com/support/datasets.affx) arrays of
type HG-U95A and HG-U133A, respectively, were used. The Affymetrix U95 data set consists
of data from 59 arrays divided into 19 groups of size 3, and one group of size 2. From the 20
groups there are 178 possible pair-wise group comparisons each with 16 (Cope et al. 2004) known
differentially expressed genes among the 12626 genes present on the arrays. The Affymetrix 133A
data set comprise data from 42 arrays with a total of 22300 probe-sets of which 42 were spiked
in at known concentration. The 42 arrays are divided into 14 groups of size 3 and thus there are
91 possible pair-wise group comparisons. As done in the Affycomp II assessments (Cope et al.
2004) we exclude 271 probe-sets which are likely to cross-hybridize to spike-in probe-sets. The
sequence of each spike-in clone was blasted against all HG-U133A target sequences (∼600bp
regions from which probes are selected). A threshold of 100bp identified 271 probe-sets which
are available in the affycomp R-package.

From the Gene Logic (http://www.gene logic.com/newsroom/studies/) Tonsil and AML
data sets all groups with 3 replicated arrays were used, giving a total of 12 and 10 groups,
respectively. For these data there are 11 genes spiked in at known concentration, which can be
studied in 66 and 45 pair-wise group comparisons, respectively. Both data sets were obtained
using the Affymetrix HG-U95A arrays having 12626 genes.

The Golden Spike (Choe et al. 2005) consists of 6 arrays of type Drosgenome1 divided into
2 groups of equal size. The samples used in this experiment consist of mRNA from 3866 genes,
of which 1331 are differentially expressed between the groups. The Drosgenome1 array has a
total of 14010 genes, thus 10144 of these should not be expressed, 2535 should be expressed but
not regulated, and 1331 should be expressed and regulated. It has been observed that the 2535
genes make these data atypical (Irizarry et al. 2006). We have chosen to exclude the 2535 genes
from the analysis, thus only using 11475 genes of which 1331 are known to be regulated. Also,
since all 1331 genes are up-regulated it is necessary to take special care in the normalization.
In place of the quantile normalization method, the default for the RMA method, we used the
contrast normalization (Åstrand 2003) and fitted the normalization curve using PM probes
from the 11475 unregulated genes only. To present comparable result only, methods relying on
a normalization procedure at the probe-set level (PPLR and BGX) and methods for which the
default normalization method is not the quantile method (logit-t) were excluded when analyzing
this data set.

4.2 Comparison with existing methods

Using the spike-in data sets listed above the proposed methods, PLW and LMW were compared
with 11 existing methods for ranking genes. The 11 methods include ranking with respect
to: observed fold change (FC), ordinary t-test, the moderated t-test in the R-package LIMMA
(Smyth 2004), the weighted moderated t-test in the R-package WAME.EM (Åstrand et al.
2007), Efron’s penalized t-test (Efron et al. 2001) and the Shrink-t method (Opgen-Rhein and
Strimmer 2007) in the R-package st, the SAM method (Tusher et al. 2001) in the R-package
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Table 1: Area under ROC curves up to 100 false positives rounded to nearest integer value with
an optimum of 100. Numbers within parenthesis are within data set ranks for the methods
compared. Methods are ordered with respect to mean rank across data sets.

Affy- Affy- Gene Gene
metrix metrix Golden Logic Logic

Method U95 133A Spike Tonsil AML
PLW 96(1) 93(5) 40(1) 87(1) 86(1)
LMW 96(2) 94(1) 32(3) 84(3) 80(4)
LPE 94(4) 93(9) 38(2) 84(2) 85(2)
WAME 95(3) 94(2) 32(7) 81(5) 78(7)
Efron-t 94(5) 93(3) 32(5) 79(7) 79(5)
FC 92(10) 93(4) 31(9) 83(4) 85(3)
LIMMA 94(6) 93(6) 32(8) 76(8) 75(8)
logit-t 94(8) 92(10) -(-) 80(6) 79(6)
SAM 94(7) 93(7) 32(5) 74(10) 74(9)
Shrink-t 94(9) 93(8) 32(4) 75(9) 73(10)
PPLR 88(11) 90(11) -(-) 71(11) 69(11)
t-test 85(12) 86(12) 25(10) 57(12) 52(12)
# of genes 12626 22029 11475 12626 12626
# of spikes 16 42 1331 11 11
# of groups 20 14 2 12 10

samr, and the Local-pooled-error test (Jain et al. 2003) in the R-package LPE. All these methods
(including LMW) were applied to RMA expression indexes obtained using the R-package affy,
while PLW was applied to logged PM intensities, background corrected and normalized using
the default methods of RMA. With LMW 4-6 spline-knots (depending on the number of probe-
sets) were used for the function ν, whereas 12 knots were used in PLW (the spline-knots are
set using an internal function in the R package plw). Note that the RMA method was applied
only to the arrays involved in each group comparison, as opposed to running the RMA method
using all arrays of each data set.

We also compared with the PPLR method (Liu et al. 2006) applied to the expression index
and probe-level measurement error of the multi-mgMOS model (Liu et al. 2005) available in
the R-package puma, the logit-t procedure implemented in the R-package plw according to the
description in Lemon et al. 2003, and the BGX method (Hein et al. 2005) as implemented in
the R-package bgx.

Due to long computer run times the comparison with the BGX method is restricted to the
Gene Logic AML data set using a subset of probe-sets only (the run time for one single analysis
of 6 arrays with all 12626 probe-sets is more than 24 hours). The subset of size 1011 consists
of probe-sets number 6000-7002 (excluding 6030, 6367, and 6463) together with the 11 spiked
probe-sets and the same subset was used in Hein et al. 2005. The probe-set numbering is as
obtained when loading data into R using the R-package affy.

For each spike-in data set and method ROC-curves were calculated. Also, for the analysis
using a complete set of probe-sets, the area (AUC) under the ROC curve up to 25, 50, 100 and
200 false positives was computed. In the comparison with BGX using only 1011 probe-sets,
AUC was computed up to 2, 4, 8 and 16 false positives in order to cover the same false positive
range as for the complete probe-set comparisons.

ROC curves for a subset of the compared methods are found in Figure 3 and AUC values up
to 100 false positives from the complete probe-set analysis are found in Table 1 (ROC curves for
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all methods and AUC up to 25, 50, 200 false positives are available as supplementary material).
Overall the methods taking the variability-to-intensity-level dependency into account (PLW,
LMW and LPE) perform better than the other methods, with the proposed method PLW having
the highest AUC on four of the five data sets. Ranking genes with respect to FC performs quite
well on the Affymetrix U133A and the two Gene Logic data sets but not on the other two data
sets. Among the penalized and moderated t-test methods, WAME and Efron-t consistently
perform better than the other ones. However, the difference between these methods for the two
Affymetrix Latin Square and the Golden Spike data sets are small, compared to the difference in
AUC obtained using the two Gene Logic data sets. Thus, the two Gene Logic data sets appear
slightly different from the other three. The PPLR method based on the multi-mgMOS model
(Liu et al. 2005) was ranked as number eleven with only the ordinary t-test having lower AUC
values.

The ROC curves obtained using the subset of 1011 probe-sets from the Gene Logic AML
data set are found in the lower right panel of Figure 3. The PLW method shows consistently
higher true positive rate compared with BGX and the AUC up to 8 false positives (scaled so
that optimum is 100) is 84 and 75 for PLW and BGX, respectively.

The second proposed method LMW differs from existing moderated and penalized t-test
in that the global variance estimator (which gene-specific estimators are adjusted towards)
varies with intensity-level. Actually this is the only difference between LMW and the WAME
method. The LPE method also uses a global variance estimator that varies with intensity-
level. But opposed to using a weighted mean of the global and gene-specific estimator, only
the global estimator is used in the denominator of the LPE statistic. Thus for genes with
similar intensity-level, LPE is basically identical to ranking using fold change. Hence, since
LMW consistently performs better than WAME, and LPE has higher AUC than fold change
in four of the five data test, modeling the global variance estimator as a function of intensity
is worthwhile doing. Further, having in mind that the GCRMA and MAS5 expression indexes
showed a clear dependency between variability and intensity-level in Figure 1, whereas the RMA
expression index only showed a weak dependency, this kind of variance modeling might be even
more important in analysis based on GCRMA or MAS5 expression indexes.

Also, Figure 2 shows that the false discovery rate obtained by adjusting towards a global
estimate that varies with intensity-level results in a much more stable false discovery rates
compared to using a (truly) global estimate.

Both logit-t and PLW do inference on background corrected and normalized logged PM
intensities resulting in multiple statistics which are then summarized into one by the median
statistic for each probe-set, in contrast to first summarizing PM intensities and then doing
inference. With this being the only difference between PLW and LMW, and one of the differences
between logit-t and the ordinary t-test using RMA expression indexes (they also use different
background correction and normalization methods), we find that computing statistics for each
PM probe and then summarizing shows better performance compared to the other option.

More complicated models often come with the prize of longer computer run times. Of the
methods evaluated the BGX model and the PPLR method together with the multi-mgMOS
model are the most computer intense ones. The computer run time for one single two group
analysis of 3+3 HG-U95A arrays with data from 12626 genes is more than 24 hours with BGX
and 1.5 hours for PPLR+multi-mgMOS (using the recommended EM method of PPLR) on a
2.2 GHz AMD Opteron machine. The corresponding time (including pre-processing of PM and
MM data) is 2-3 minutes for PLW and 9 seconds for the moderated t-test in LIMMA.

5 Conclusion

We have presented two new methods for ranking genes with respect to differential expression:
Probe level Locally moderated Weighted median-t (PLW) and Locally Moderated Weighted-
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t (LMW). Both methods perform very well compared to existing methods with PLW having
the most accurate ranking of regulated genes in four out of five examined spike-in data sets.
With LMW we show that introducing an intensity-level dependent scale parameter for the
prior distribution of the gene-specific variances improves the performance of the moderated
t-test. Also, compared to the moderated t-statistic, LMW shows a much more stable false
discovery rate across intensity-levels when used on MAS5 expression indexes. In the PLW
method inference is performed directly on logged PM intensities and the median of the resulting
moderated t-statistics for each probe-set is used to find differentially expressed genes. Overall
the PLW method performs better than all compared methods and thus probe-level inference
appears to be preferable over the standard approach using gene expression indexes for inference.
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