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Abstract

We consider a fractional order integro-differential equation with a weakly
singular convolution kernel. The equation with homogeneous Dirichlet bound-
ary conditions is reformulated as an abstract Cauchy problem, and well-
posedness is verified in the context of linear semigroup theory. Then we
formulate a continuous Galerkin method for the problem, and we prove sta-
bility estimates. These are then used to prove a priori error estimates. The
theory is illustrated by a numerical example.
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1 Introduction

For better understanding of the main work that has been done in the pre-
sented paper, we bring some basic concepts to see how and why the fractional
order differential/integral operators may be used to model viscoelastic ma-
terials. Afterwards, we prepare the basic aspects of the linear semigroup
theory to make the first part of the paper more understandable for whom
may not be familar with the concept. It is assumed that the reader is rather
familiar with the finite element methods, especially the continuous Galerkin
method.

2 Fractional calculus

Generalization have always been an intereting subject in mathematics. One
example is gamma function

Γ(x) =

∫ ∞

0
tx−1e−tdt, x > 0,

which interpolates between the factorials. Another one is the fractional dif-
ferential/integral operators which interpolates between integer order differ-
ential/integral operators. In fact analytic continution of the gamma function
for x ≤ 0 plays an important role when we construct the theory of fractional
order differential/integral operators from the corresponding integer order
operators.

2.1 Fractional differential/integral operators

We recall the Cauchy’s formula for repeated integration

D−nf(x) =

∫ x

0

∫ xn−1

0
· · ·

∫ x1

0
f(x0) dx0 · · · dxn−2 dxn−1

=
1

(n− 1)!

∫ x

0

f(t)

(x− t)1−n
dt, n = 1, 2, · · · ,

with D0f(x) = f(x). Replacing the integer number n with the real number
α and the discrete factorial (n− 1)! with the continuous gamma function Γ,
we obtain the Riemann-Liouville fractional integral

D−αf(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, α > 0,

where α is the order of integration. Note that the convolution kernel 1
Γ(α)x1−α

is singular but integrable.
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The same definition can be used for fractional differentiation of order α
by a formal replacement of −α by α (α 6= 1, 2, 3, · · · )

Dαf(x) =
1

Γ(−α)

∫ x

0

f(t)

(x− t)1+α
dt, α > 0.

The convolution integral above is in general divergent and needs to be in-
terpreted in the sense of its regularization. A convergent expression for the
fractional derivative operator is obtained by splitting the derivative operator
into an integer order derivative and a fractional integral operator

Dα = DN−ρ = DND−ρ,

where N is the integer that satisfies α < N < α + 1 and 0 < ρ < 1.
Specializing to 0 < α < 1, which is the interesting interval in viscoelasticity,
we can write the definition of the fractional derivative as

Dαf(x) =
1

Γ(1− α)

d

dt

[
∫ x

0

f(t)

(x− t)α
dt

]

. (2.1)

We note that the fractional order differential operator is not a local operator
as the integer order differential operator is, i.e., the derivative depends on all
function values from its lower limit t = 0 up to the evaluation point t = x.

In contrast to the term “fractional” the fractional order exponent α can
be irrational and even complex. However, in this context we take it to be
real.

The text books [27] and [31] are concerened with the definitions and the
properties of fractional order differential/integral operators. A survey of the
many different applications which have emerged from fractional calculus is
given in [29].

3 Fractional order linear viscoelasticity

Linear viscoelasticity in combination with fractional order operators, i.e., the
fractional order viscoelastic model, have attracted considerable attention
in the last decades. The fractional order viscoelastic model is capable of
describing the behavior of many viscoelastic materials.

A perfectly elastic material does not exist since in reality: inelasticity
is always present. This inelasticity leads to energy dissipation or damping.
Therefore, for a wide class of materials it is not sufficient to use an elastic
constitutive model to capture the mechanical behavior. In order to replace
extensive experimental tests by numerical simulations there is a need for an
accurate material model. Therefore viscoelastic constitutive models have
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frequently been used to simulate the time dependent behavior of polymeric
materials. The classical linear viscoelastic models that use integer order
time derivatives in the constitutive laws, require an excessive number of
parameters to accurately predict observed material behavior.

Bagley and Torvik [8] used fractional derivatives to construct stress-
strain relationships for viscoelastic materials. The advantage of this ap-
proach is that very few empirical parameters are required (two elastic con-
stants, one relaxation constant and the fractional order exponent).

When this fractional derivative model of viscoelasticity is incorporated
directly into the structural equations a time differential equation of non-
integer order higher than two is obtained. One consequence of this is that
initial conditions of fractional order higher than one are required. The
problems with initial conditions of fractional order have been discussed by
Enelund and Olsson [17] and also by Bagley [7] and by Beyer and Kempfle
[10]. To avoid the difficulties with fractional order initial conditions some
alternative formulations of the fractional derivative viscoelastic model are
used in structural modeling. The first form, that we will use, is based on
a convolution integral formulation with a singular kernel of Mittag-Leffler
type (see [17], [14] and [4]). The second form involves fractional integral op-
erators rather than fractional derivative operators (see [13]). And the third
form uses internal variables, see [15], [16] and [1]. The main advantage of
these forms is that they lead to well-posed initial value problems.

We recall that a fractional order differential operator is not a local op-
erator, i.e., the derivative depends on the whole history of the function.
This increases the complexity of mathematical analysis and the numerical
computations of fractional order viscoelastic models.

For extensive overviews, analysis of the fractional order viscoelastic mod-
els, the hereditary theory of linear viscoelasticity and the history of linear
viscoelasticy the reader is referred to [6], [12], [30] and [1].

3.1 Convolution integral formulation

Let σij and ui denote the usual stress tensor and displacement vector and
define the linear strain tensor:

εij =
1

2

(∂ui

∂xj

+
∂uj

∂xi

)

.

With the decompositions

sij = σij −
1
3σkkδij , eij = εij −

1
3εkkδij ,
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we formulate the constitutive equations, see [8],

sij(t) + τα1

1 Dα1

t sij(t) = 2G∞eij(t) + 2Gτα1

1 Dα1

t eij(t),

σkk(t) + τα2

2 Dα2

t σkk(t) = 3K∞εkk(t) + 3Kτα2

2 Dα2

t εkk(t),

with initial conditions

sij(0+) = 2Geij(0+), σkk(0+) = 3Kεkk(0+),

meaning that the initial response follows Hooke’s elastic law. Note that we
have two relaxation times, τ1, τ2 > 0, and fractional orders of differentiation,
α1, α2 ∈ (0, 1), where the fractional order derivative is defined by (2.1).

We solve for σ by means of Laplace transformation, [17]:

sij(t) = 2G
(

eij(t)−
G−G∞

G

∫ t

0
f1(t− s)eij(s) ds

)

,

σkk(t) = 3K
(

εkk(t)−
K −K∞

K

∫ t

0
f2(t− s)εkk(s) ds

)

,

where

fi(t) = −
d

dt
Eαi

(

−
( t

τi

)αi
)

and

Eα(t) =
∞
∑

n=0

tn

Γ(1 + αn)

is the Mittag-Leffler function [9]. We make the simplifying assumption (syn-
chronous viscoelasticity):

α = α1 = α2, τ = τ1 = τ2, f = f1 = f2.

Then we may define a parameter γ, a kernel β, and the Lamé constants µ, λ,

γ =
G−G∞

G
=

K −K∞

K
, β(t) = γf(t), µ = G, λ = K − 2

3G,

and the constitutive equations become

σij(t) =
(

2µεij(t) + λεkk(t)δij

)

−

∫ t

0
β(t− s)

(

2µεij(s) + λεkk(s)δij

)

ds.

Note that the viscoelastic part of the model contains only three parameters:

0 < γ < 1, 0 < α < 1, τ > 0.
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The kernel is weakly singular:

β(t) = −γ
d

dt
Eα

(

−
( t

τ

)α)

= γ
α

τ

( t

τ

)−1+α

E′
α

(

−
( t

τ

)α)

≈ Ct−1+α, t → 0,

and we note the properties

β(t) ≥ 0,

‖β‖L1(R+) =

∫ ∞

0
β(t) dt = γ

(

Eα(0)− Eα(∞)
)

= γ < 1.

Various properties (e.g., regularity and convergence) of the memory kernel
function β have been investigated in [17].

The equations of motion now become:

ρui,tt − σij,j = fi, in Ω,

ui = 0, on ΓD,

σijnj = gi, on ΓN.

Considering also initial values for displacement u and velocity ut, this can
be written as

ρutt(x, t)−∇ · σ0(u; x, t)

+

∫ t

0
β(t− s)∇ · σ1(u; x, s) ds = f(x, t) in Ω× I,

u(x, t) = 0 on ΓD × I,

σ(u; x, t) · n(x) = g(x, t) on ΓN × I,

u(x, 0) = u0(x) in Ω,

ut(x, 0) = v0(x) in Ω,

(3.1)

which is equation (1.1) in the appended paper and is a Volterra type integro-
differential equation.

We should mention that there are also models with exponential kernels,
smooth kernels, which describe polymeric materials, e.g., natural and syn-
thetic rubber. The drawback with this kind of model is that it requires a
large number of exponential kernels to describe the behavior of the mate-
rials. This is the reason for introducing kernels of Mittag-Leffler type or
fractional operators. In [17] and [6] Enelund and Adolfsson have shown that
the classical viscoelastic model based on exponential kernels can describe the
same viscoelastic behavior as the fractional model if the number of kernels
tend to infinity.
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4 Semigroups of linear operators

Semigroup theory is the abstract study of first-order ordinary differential
equations with values in Banach spaces, driven by linear, but possibly un-
bounded, operators. This approch provides an elegant alternative to some
of the well-posedness theory for evolution equations that is one of the many
applications that the theory has in different branches of analysis (such as
harmonic analysis, approximation theory and many other subjects). In this
section we outline the basics of the theory, without any proof, and present
as well the Lumer-Phillips theorem, which will be used in §2 of the the
appended article.

Troughout this section we let X denote a real Banach space.

For more complete and advanced details of the theory and its application
to partial differential equations one may refer to [28] and [18].

4.1 Definitions and properties

Definition 4.1. A one parameter family T (t), 0 ≤ t < ∞, of bounded linear
operators from the Banach space X to X is a semigroup of bounded linear
operator on X if

(i) T (0) = I, (I is the identity operator on X),

(ii) T (t + s) = T (t)T (s), for every t, s ≥ 0 (the semigroup property).

Definition 4.2. The linear operator A defined by

Ax = lim
t↘0

T (t)x− x

t
=

d+T (t)x

dt
|t=0 for x ∈ D(A),

is the (infinitesimal) generator of the semigroup T (t), where D(A) is the
domain of A defined by

D(A) =
{

x ∈ X : lim
t↘0

T (t)x− x

t
exists

}

.

Definition 4.3. A semigroup T (t), 0 ≤ t < ∞, of bounded linear operators
on X is a strongly continuous semigroup if

lim
t↘0

T (t)x = x ∀x ∈ X.

A strongly continuous semigroup of bounded linear operators on X will be
called a C0 semigroup. If moreover ‖T (t)‖ ≤ 1 for t ≥ 0 it is called a C0

semigroup of contractions.
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Lemma 4.1. Let the linear operator A be the generator of a C0 semigroup
T (t). Then for x ∈ D(A), T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x.

Definition 4.4. For every x ∈ X we define the duality set F (x) ⊂ X∗ by

F (x) =
{

x∗ : x∗ ∈ X∗ and 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2
}

,

where X∗ denotes the dual of X. And we note that by Hahn-Banach theorem
F (x) 6= ∅ for every x ∈ X.

Definition 4.5. A linear operator A is dissipative if for every x ∈ D(A)
there is a x∗ ∈ F (x) such that 〈Ax, x∗〉 ≤ 0.

Lemma 4.2. Let A be dissipative with R(I − A) = X. If X is reflexive
then D(A) is dense in X, i.e., D(A) = X.

We use the first part of the following theorem in §2 in the appended
paper.

Theorem 4.1. (Lumer-Phillips). Let A be a linear operator with dense
domain D(A) in X.

(a) If A is dissipative and there is a λ > 0 such that R(λI − A) = X,
then A is the infinitesimal generator of a C0 semigroup of contractions on
X.

(b) If A is the infinitesimal generator of a C0 semigroup of contractions
on X, then R(λI −A) = X for all λ > 0 and A is dissipative. Moreover, for
every x ∈ D(A) and every x∗ ∈ F (x), 〈Ax, x∗〉 ≤ 0.

4.2 The abstract Cauchy problem

Let A be a linear operator from D(A) ⊂ X into X. Given x ∈ X the abstract
Cauchy problem for A with initial data x consists of finding a solution u(t)
to the initial value problem

d

dt
u(t) = Au(t) + f(t), t > 0,

u(0) = x,
(4.1)

where f : [0, T ) → X. And by a solution we mean an X-valued function
u(t) such that u(t) is continuous for t ≥ 0, continuously differentiable and
u(t) ∈ D(A) for t > 0 and (4.1) is satisfied. Note that since u(t) ∈ D(A)
for t > 0 and u is continuous at t = 0, (4.1) cannot have a solution for
x /∈ D(A).
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From Lemma 4.1 it is clear that if A is the (infinitesimal) generator of
a C0 semigroup T (t), the abstract Cauchy problem (4.1) when f = 0 has a
solution, namely, u(t) = T (t)x, for every x ∈ D(A). So T (t) is called the
operator solution. It can be proved that the solution is unique.

Definition 4.6. A function u which is differentiable almost everywhere on
[0, T ] such that u′ ∈ L1(0, T ; X) is called a strong solution of (4.1) if u(0) = x
and u′(t) = Au(t) + f(t) a.e. on [0, T ].

In the following lemmas we find the sufficient assumptions under which
we get a unique strong solution of (4.1).

Lemma 4.3. If A generates a C0 semigroup T (t), f is differentiable a.e. on
[0, T ] and f ′ ∈ L1(0, T ; X) then for every x ∈ D(A) the initial value problem
(4.1) has a unique strong solution.

In general, the Lipschitz continuity of f on [0, T ] is not sufficient to
assure the existence of a strong solution of (4.1) for x ∈ D(A). However, if
X is reflexive, for instance a Hilbert space, and f is Lipschitz continuous on
[0, T ] that is

‖f(t1)− f(t2)‖ ≤ C|t1 − t2| for t1, t2 ∈ [0, T ],

then by a classical result f is differentiable a.e. and f ′ ∈ L1(0, T ; X). There-
fore Lemma 4.3 implies the following.

Lemma 4.4. Let X be a reflexive Banach space and A generates a C0

semigroup T (t) on X. If f is Lipschitz continuous on [0, T ] then for every
x ∈ D(A) the initial value problem (4.1) has a unique strong solution u on
[0, T ] given by the variation of constants formula

u(t) = T (t)x +

∫ t

0
T (t− s)f(s) ds.

4.3 Application to partial differential equations

One important application of the theory of linear semigroups is analysing
partial differential equations, e.g., well-posedness and numerical solution. In
order to reformulate a PDE’s into a first-order ordinary differential equation,
an abstract Cauchy problem, we need to construct suitable spaces and a
suitable linear operator A. It should be noticed in the previous sections
that an important property for a linear operator A is to generate a C0

semigroup (of contractions) of T (t). This is what we have done, inspired
by [19], in §2 of the appended paper to prove well-posedness and regularity
properties.

8



To make reading §2 of the paper independent of looking for the theorems
in [28], we correspond the important lemmas and theorems in this draft with
the main ones in [28] as follows:

here Lemma 4.2 Theorem 4.1 Lemma 4.3 Lemma 4.4
m m m m m

[28] Theorem 1.4.6 Theorem 1.4.3 Corollary 4.2.10 Corollary 4.2.11

5 Earlier works

A lot of work have been done during the last decades regarding well-posedness
of the fractional order linear viscoelasticity and also several methods have
been investigated to solve these kinds of models numerically. We try to give
just some references to earlier works, but it does not seem to be possible to
give a complete list.

Thomée and McLean [25] have proved the existence, uniqueness and
regularity of the solution of a reformed model of (3.1) by means of Fourier
series. One can also see [11] where Desch and Fašanga have used the context
of analytic semigroups.

For more details on semidiscretization in time or space and the relevant
methods that have been used, namely discontinuous Galerkin approximation
as well as first and second-order backward difference methods in time or
continuous Galerkin approximation in space, we refer to, e.g., [5], [2], [3],
[21], [34], [26] and [25].

Numerical methods for quasistatic viscoelasticity problems, i.e., ρutt ≈ 0,
have been studied, e.g., in [3] and [33] where basically they have used discon-
tinuous Galerkin approximation in time and continuous Galerkin approxi-
mation in space.

The drawback of the fractional order viscoelastic models is that the whole
strain history must be saved and included in each time step that is due to
the non-locality of the fractional order differential operators. The most com-
monly used algorithms for this integration are based on Lubich convolution
quadrature [23] for fractional order operators. One example of the applica-
tion of this approch to integro-differential equations with a memory term is
in [24]. The Lubich convolution quadrature requires uniformly distributed
time steps or alternatively logarithmically distributed time steps as outlined
in [20]. These are cumbersome restrictions because it is not possible to
use adaptivity and goal oriented error estimation. Some efficient numeri-
cal algorithms to overcome the mentioned problem of Lubich convolution
quadrature can be found in [32] and [22]. Also sparse quadrature as a pos-
sible way to overcome the problem with the growing amount of data, that
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has to be stored and used in each time step, has been studied in [26], [2] and
[3]. In this approach variable time steps can be used.

6 Summary of the appended paper

In the appended paper we prove well-posedness of the problem in the context
of linear semigroup theory as well as regularity properties. We formulate
a continuous Galerkin method of arbitray order q in time and continuous
Galerkin approximation of any order p in space. The stability property is
investigated and some a priori error estimates, for the linear case p = q = 1,
that are optimal in L∞(L2) and L∞(H1) are obtained for displacement and
velocity, respectively. At the end we illustrate the theory for the linear case
p = q = 1 by a simple but realistic numerical example. In the presented
work we only study the original form of the numerical method and we do not
discuss fast or adaptive strategies such as sparse quadrature and adaptive
strategy based on a posteriori error estimates, e.g., [25], [2] and [3], to speed
up the performance and decreasing the neccessary memory. We postpone
this to the forthcoming work.
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THE CONTINUOUS GALERKIN METHOD FOR AN

INTEGRO-DIFFERENTIAL EQUATION MODELING

DYNAMIC FRACTIONAL ORDER VISCOELASTICITY

STIG LARSSON AND FARDIN SAEDPANAH

Abstract. We consider a fractional order integro-differential equation
with a weakly singular convolution kernel. The equation with homo-
geneuos Dirichlet boundary conditions is reformulated as an abstract
Cauchy problem, and well-posedness is verified in the context of linear
semigroup theory. Then we formulate a continuous Galerkin method for
the problem, and we prove stability estimates. These are then used to
prove a priori error estimates. The theory is illustrated by a numerical
example.

1. Introduction

R. L. Bagley and P. J. Torvik [5] have proved that fractional order oper-
ators (integrals and derivatives) are very suitable for modeling viscoelastic
materials. Basic equations of the viscoelastic dynamic problem, with surface
loads, can be written in the strong form,

(1.1)

ρü(x, t)−∇ · σ0(u;x, t)

+

∫ t

0
β(t− s)∇ · σ1(u;x, s) ds = f(x, t) in Ω× I,

u(x, t) = 0 on ΓD × I,

σ(u;x, t) · n(x) = g(x, t) on ΓN × I,

u(x, 0) = u0(x) in Ω,

u̇(x, 0) = v0(x) in Ω,

(through out this text we use ’·’ to denote ’ ∂
∂t ’) where u is the displacement

vector, ρ is the (constant) mass density, f and g represent, respectively, the
volume and surface loads, σ0 and σ1 are the stresses according to

(1.2)
σ(t) = σ0(t)−

∫ t

0
e(t− s)σ1(s) ds, with

σ0(t) = 2µ0ε(t) + λ0trε(t)I, σ1(t) = 2µ1ε(t) + λ1trε(t)I,
1
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where λ0 > λ1 > 0 and µ0 > µ1 > 0 are elastic constants of Lamé type,
ε is the strain which is defined through the usual linear kinematic relation
ε = 1

2(∇u+ (∇u)T ), and e is the convolution kernel

e(t) = −
d

dt

(

Eα(−(t/τ)α)
)

=
α

τ

( t

τ

)α−1
Ėα(−(t/τ)α)

≈ Ct−1+α, t→ 0.
(1.3)

Here τ > 0 is the relaxation time and Eα(x) =
∑∞

k=0
xk

Γ(1+αk) is the Mittag-

Leffler function of order α ∈ (0, 1), and γ is introduced to be γ = µ1

µ0
= λ1

λ0
< 1,

so we have σ1 = γσ0 and we define β(t) = γe(t). The convolution term is
weakly singular and β ∈ L1(0,∞) with

∫∞

0 β(t) dt = γ. And we introduce
the function

(1.4) ξ(t) = γ −

∫ t

0
β(s)ds =

∫ ∞

t
β(s) ds,

which is decreasing with ξ(0) = γ, lim
t→∞

ξ(t) = 0, so that 0 < ξ(t) ≤ γ.

We let Ω ⊂ R
d, d = 2, 3, be a bounded domain with boundary Γ =

ΓD ∪ ΓN where ΓD and ΓN are disjoint and meas(ΓD) 6= 0. We intro-
duce the function spaces H = L2(Ω)d, HΓN = L2(ΓN )d and V = {v ∈
H1(Ω)d : v |ΓD

= 0}. We denote the norms in H and HΓN by ‖·‖ and
‖·‖ΓN

, respectively, and we equip V with the inner product a(·, ·) and norm
‖v‖2

V = a(v,v). We also define a bilinear form (with the usual summation
convention)

(1.5) a(v,w) =

∫

Ω

(

2µ0εij(v)εij(w) + λ0εii(v)εjj(w)
)

dx, v,w ∈ V ,

which is coercive on V . Setting Au = −∇·σ0(u) with dom(A) = H2(Ω)d∩V
such that a(u,v) = (Au,v) for sufficiently smooth u,v ∈ V , we can write
the weak form of the equation of motion (1.1) as: Find u(t) ∈ V such that
u(0) = u0, u̇(0) = v0 and,

ρ(ü(t),v) + a(u(t),v)−

∫ t

0
β(t− s)a(u(s),v) ds

= (f(t),v) + (g(t),v)ΓN
, ∀v ∈ V,

(1.6)

with (g(t),v)ΓN
=
∫

ΓN
g(t) · v dS. For more details see [4], [1], [2], [3] and

references therein.
We define u1 = u and u2 = u̇, and henceforth we set f 2 = f . Then

we can write the weak form (1.6) as: Find u1(t), u2(t) ∈ V such that
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u1(0) = u0, u2(0) = v0 and,

a
(

u̇1(t),v1

)

− a
(

u2(t),v1) = 0,

ρ(u̇2(t),v2) + a(u1(t),v2)−

∫ t

0
β(t− s)a(u1(s),v2) ds

= (f2(t),v2) + (g(t),v2)ΓN
, ∀v1,v2 ∈ V.

(1.7)

In the next section, using (1.6) with g = 0 (Γ = ΓD),we reformulate
the problem as an abstract Cauchy problem and prove well-posedness. We
also discuss the regularity properties and we obtain some regularity esti-
mates. In §3 we use (1.7) to formulate a continuous Galerkin method based
on polynomials of degree at most q in time, and polynomials of degree at
most p in space. Then in §4 we show stability estimates for the continuous
Galerkin method, and in §5 we use them to prove a priori error estimates,
for the linear case p = q = 1, that are optimal in L∞(L2) and L∞(H1).
Finally, in §6,we illustrate the theory for the linear case by computing the
approximated solutions of (1.1) in a simple but realistic numerical example.
In this paper we only study the original form of the numerical method and
we do not discuss fast or adaptive strategies such as sparse quadrature or
adaptive strategy based on a posteriori error estimates, e.g., [8], [1] and [2].
We postpone this to the forthcoming work. We also do not discuss adap-
tive, fast and oblivious convolution quadrature [10] and [7], to speed up the
performance and decreasing the necessary memory.

2. Existence and uniqueness

In this section, using the theory of linear operator semigroups, we show
that there is a unique solution of (1.6) for t ≥ 0, when g = 0 (Γ = ΓD),
provided the data is regular enough. The techniques are adapted from [6].

We consider the strong form of (1.6), for any fixed T > 0, that is

(2.1) ρü(t) +Au(t)−

∫ t

0
β(t− s)Au(s) ds = f(t), 0 < t < T,

with the initial data

(2.2) u(0) = u0, u̇(0) = v0.

We extend u by u(t) = h(t) for t < 0 with h to be chosen. Then adding

−
∫ 0
−∞

β(t− s)Ah(s) ds to both sides of (2.1), changing the variables in the

convolution terms and defining w(t, s) = u(t)− u(t− s), we get

ρü(t) + γ̃Au(t) +

∫ ∞

0
β(s)Aw(t, s) ds = f(t)−

∫ ∞

t
β(s)Ah(t− s) ds,

(2.3)
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where γ̃ = 1− γ = 1−
∫∞

0 β(s) ds.

2.1. An abstract Cauchy problem. We choose h(·) = u0 in (2.3), so
that

ρü(t) + γ̃Au(t) +

∫ ∞

0
β(s)Aw(t, s) ds = f̃(t),(2.4)

where, in view of (1.4),

(2.5) f̃(t) = f(t)−Au0ξ(t).

Then we reformulate the equation (2.4) as an abstract Cauchy problem and
prove well-posedness.

We set v = ρu̇ and define the Hilbert spaces

W = L2
β(0,∞;V ) =

{

w : (0,∞) → V : ‖w‖2
W = ρ

∫ ∞

0
β(s)‖w(s)‖2

V ds <∞
}

,

Z = V ×H ×W =
{

z = (u,v,w) : ‖z‖2
Z = γ̃ρ‖u‖2

V + ‖v‖2 + ‖w‖2
W <∞

}

.

So the inner products inW and Z are, respectively, (·, ·)W = ρ
∫∞

0 β(s)a(·, ·) ds
and 〈(·, ·, ·) , (·, ·, ·)〉Z = γ̃ρa(·, ·) + (·, ·) + (·, ·)W .

We also define the linear operator A : dom(A) → Z such that, for z =
(u,v,w)

Az =

(

1

ρ
v , −A

(

γ̃u+

∫ ∞

0
β(s)w(s) ds

)

,
1

ρ
v −Dw

)

,

with

dom(A) =
{

(u,v,w) ∈ Z : v ∈ V, γ̃u+

∫ ∞

0
β(s)w(s) ds ∈ dom(A),

Dw ∈W, w(0) = 0
}

,

where

Dφ =
∂

∂s
φ with dom(D) = {φ ∈W : Dφ ∈W and φ(0) = 0}.

Then (2.4), with the initial values (2.2), can be written as an abstract Cauchy
problem

ż(t) = Az(t) + F (t), 0 < t < T,

z(0) = z0,
(2.6)

where F (t) = (0 , f̃(t) , 0) and z0 =
(

u0, v0, w0(·)
)

with

(2.7) w0(·) = w(0, ·) = 0,

since w(0, s) = u(0)− u(−s) = u(0)− h(−s) = u0 − u0 = 0. We also note
that w(t, 0) = u(t)− u(t) = 0.
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A function z which is differentiable a.e. on [0, T ] such that ż ∈ L1([0, T ];Z)
is called a strong solution of the initial value problem (2.6) if z(0) = z0,
z(t) ∈ dom(A), and ż(t) = Az(t) + F (t) a.e. on [0, T ].

Remark: By a solution of (1.6) we mean a weak solution in the way that
is defined in (1.6), and by a solution of (2.1), that is often called strong

solution in the literature, we mean a function u such that

(2.8) u(t) ∈ dom(A), ü(t) ∈ H and Au ∈ L1([0, T ];H),

and also satisfies (2.1) a.e. on [0, T ] and the initial conditions (2.2). Hence-
forth, to avoid confusion, we call a weak solution of (1.6) and a strong
solution of (2.1) just a solution of the relevant problem. We note that a
solution u of (2.1) is also a solution of (1.6), when Γ = ΓD.

Lemma 1. Let z = (u,v,w) be a strong solution of (2.6). Then u is a

solution of (2.1) with initial data (2.2).

Proof. For a given strong solution z of (2.6), considering (2.7), we get
u(0) = u0 and v(0) = v0, which are the initial conditions (2.2). Indeed for
u ∈ V , v ∈ V (since z ∈ dom(A)) and w ∈W the components of the strong
solution z of (2.6), we have

u̇(t) =
1

ρ
v,

v̇(t) = −A
(

γ̃u(t) +

∫ ∞

0
β(s)w(t, s) ds

)

+ f̃(t),

ẇ =
1

ρ
v −Dw.

The first and the third equation with initial value (2.7) imply that w(t, s) =
u(t) − u(t − s). This and the fact that (2.4) is obtained from the first two
equations, imply that u satisfies (2.1) a.e. on [0, T ] by backward calculations
from (2.3). From the definition of the operator A and its domain we deduce
(2.8), and this completes the proof. 2

Theorem 1. There is a unique solution u = u(t) of (2.1)–(2.2) for all

u0 ∈ dom(A) and v0 ∈ V , if f : [0, T ] → H is Lipschitz continuous.

Moreover, we have the regularity estimate

(2.9) ‖u‖V + ‖u̇‖ ≤ C
(

‖u0‖H2(Ω)d + ‖v0‖+

∫ t

0
‖f‖ ds

)

.

Proof. For any u0 ∈ dom(A) and v0 ∈ V , considering (2.7), we have z0 =
(

u0,v0,w0(·)
)

∈ dom(A). We first show that F in (2.6) is differentiable a.e.

on [0, T ] and Ḟ ∈ L1([0, T ];Z). We then show that the linear operator A is
an infinitesimal generator of a C0 semigroup T (t) on Z. These prove that
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there is a unique strong solution of (2.6) by [9], Corollary 4.2.10, and the
proof of the first part is complete by Lemma 1.

1. By assumption f is Lipschitz continuous on [0, T ]. Hence f is differen-

tiable a.e. on [0, T ] and ḟ ∈ L1([0, T ];H), since H is a Hilbert space. Since

ξ̇(t) = −β(t) by (1.4), from (2.5) we get

˙̃
f(t) = ḟ(t) +Au0β(t),

which shows that f̃ is differentiable a.e. on [0, T ]. Thus F is differentiable

a.e. on [0, T ] and Ḟ ∈ L1([0, T ];Z).
2. We use the Lumer-Philips Theorem [9] to show that A generates a C0

semigroup on Z (in fact, A generates a C0 semigroup of contractions on Z).
To this end we first justify that A is dissipative. For z = (u,v,w) ∈ dom(A)
we have

〈Az, z〉Z = γ̃a(u,v)−
(

A
(

γ̃u+

∫ ∞

0
β(s)w(s)

)

ds,v
)

+
(1

ρ
v −Dw,w

)

W

= −ρ

∫ ∞

0
β(s)a(Dw(s),w(s)) ds = −

1

2
ρ

∫ ∞

0
β(s)D‖w(s)‖2

V ds.

To prove that the last term is non-positive, and hence A is dissipative, we
consider for ε > 0,

∫ ∞

ε
β(s)D‖w(s)‖2

V ds = lim
M→∞

∫ M

ε
β(s)D‖w(s)‖2

V ds

= lim
M→∞

β(M)‖w(M)‖2
V − β(ε)‖w(ε)‖2

V

−

∫ ∞

ε
β′(s)‖w(s)‖2

V ds

≥ −β(ε)‖w(ε)‖2
V ,

using the facts that β′(s) < 0 and limM→∞ β(M)‖w(M)‖2
V = 0, since

∫∞

0 β(s)‖w(s)‖2
V ds <∞. Sincew(ε) =

∫ ε
0 Dw(s) ds, by the Cauchy-Schwarz

inequality we have

‖w(ε)‖2
V ≤

(

∫ ε

0
‖Dw(s)‖V ds

)2
≤

∫ ε

0

1

β(s)
ds

∫ ε

0
β(s)‖Dw(s)‖2

V ds,

and consequently we get
∫ ∞

ε
β(s)D‖w(s)‖2

V ds ≥ −

∫ ε

0

β(ε)

β(s)
ds

∫ ε

0
β(s)‖Dw(s)‖2

V ds.

But β(ε)
β(s) ≤ 1, which yields

∫ ε
0

β(ε)
β(s) ds ≤

∫ ε
0 ds = ε, so that

∫ ∞

ε
β(s)D‖w(s)‖2

V ds ≥ −ε

∫ ε

0
β(s)‖Dw(s)‖2

V ds.
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Since (u,v,w) ∈ dom(A) implies Dw ∈ W , i.e.,
∫ ε
0 β(s)‖Dw(s)‖2

V ds <∞.
Therefore

〈Az, z〉Z ≤ −
1

2
ρ lim

ε↘0
ε

∫ ε

0
β(s)‖Dw‖2

V ds = 0,

and A is dissipative.
Next we show that R(I−A) = Z. To see this, for an arbitrary (φ,ψ,ω) ∈

Z we must find (u,v,w) ∈ dom(A) such that (I −A)(u,v,w) = (φ,ψ,ω),
that is,

u−
1

ρ
v = φ,

v +A
(

γ̃u+

∫ ∞

0
β(s)w(s) ds

)

= ψ,

w −
1

ρ
v +Dw = ω.

(2.10)

From the first and third equations and w(0) = 0 we get

v = ρ(u− φ),

w(s) =

∫ s

0
er−s

(1

ρ
v + ω(r)

)

dr.

Substituting these into the second equation of (2.10), we get

ρ(u− φ) +A
(

γ̃u+

∫ ∞

0
β(s)

∫ s

0
er−s

(

u− φ+ ω(r)
)

dr ds
)

= ψ,

and hence

(2.11) u+ κAu = φ+
1

ρ

(

ψ +

∫ ∞

0
β(s)e−s

∫ s

0
erA

(

φ− ω(r)
)

dr ds
)

,

where κ = 1
ρ

(

1 −
∫∞

0 β(s)e−sds
)

. Now we need to show that this equation

has a solution. We define

∆ = I + κA.

Consider the bilinear form

(u,v)∆ = (u,v) + κa(u,v) for u,v ∈ V,

and the linear form

L(v) = (φ,v) +
1

ρ
(ψ,v) +

1

ρ

∫ ∞

0
β(s)e−s

∫ s

0
era
(

φ− ω(r),v
)

dr ds.
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Then for some positive constants C1, C2 and C3 by the boundedness and
coercivity of a(·, ·)

|(u,v)∆| ≤ C1‖u‖V ‖v‖V for u,v ∈ V,

(u,u)∆ ≥ C2‖u‖
2
V for u ∈ V,

|L(v)| ≤ C3‖v‖V for v ∈ V.

Therefore by Riesz representation theorem, there is a unique solution of the
problem: find u ∈ V such that,

(u,v)∆ = L(v) ∀v ∈ V,

that implies there is a unique solution of the problem (2.11). Hence R(I −
A) = Z.

Since Z is a Hilbert space, it follows from [9], Theorem 1.4.6, that dom(A) =
Z. So we have verified all the hypotheses of the Lumer-Philips theorem to
complete the first part of the proof.

3. Now we have the unique strong solution of (2.6), i.e.,

z(t) = T (t)z0 +

∫ t

0
T (t− s)F (s) ds,

and ‖T (t)‖Z ≤ 1, since A generates a C0 semigroup of contractions. There-
fore we have

‖z‖Z ≤ ‖T (t)‖Z‖z
0‖Z +

∫ t

0
‖T (t− s)F (s)‖Z ds ≤ ‖z0‖Z +

∫ t

0
‖F (s)‖Z ds.

Then considering v = ρu̇, z0 = (u0, v0, 0) and ‖F (s)‖Z = ‖f̃(s)‖ = ‖f(s)−
Au0ξ(s)‖, we have
(

γ̃ρ‖u‖2
V + ρ2‖u̇‖2 + ρ

∫ ∞

0
β(s)‖w(s)‖2

V ds
)1/2

≤
(

γ̃ρ‖u0‖2
V + ‖v0‖2

)1/2
+

∫ t

0

(

‖f(s)‖+ ‖u0‖H2(Ω)dξ(s)
)

ds.

Consequently, we have the estimate(2.9) with C = C(γ̃, ρ, T ). 2

Remark: Due to singularity of the kernel β at the origin, ξ = ξ(t) in (1.4)
is not Lipschitz continuous. With a smoother kernel β, ξ = ξ(t) would be
Lipschitz continuous so that we could get a unique strong solution of (2.6)
by [9], Corollary 4.2.11, instead of [9], Corollary 4.2.10, when f is Lipschitz
continuous on [0, T ].

2.2. Regularity. By Theorem 1 there is a unique solution of (1.6), if the
data are smooth enough. To find sufficient conditions on the data for more
regularity, we assume that the data are smooth enough to justify the follow-
ing calculations.
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We first choose h(t) = tv0 in (2.3), so that

ρü(t) + γ̃Au(t) +

∫ ∞

0
β(s)Aw(t, s) ds = f̆(t),(2.12)

where

(2.13) f̆(t) = f(t)−Av0

∫ ∞

t
(t− s)β(s) ds.

Then differentiating the equation (2.12) in time we get

(2.14) ρ
...
u(t) + γ̃Au̇(t) +

∫ ∞

0
β(s)Aẇ(t, s) ds =

˙̆
f(t),

which, with an underline instead of one time derivative, can be written as

(2.15) ρü(t) + γ̃Au(t) +

∫ ∞

0
β(s)Aw(t, s) ds = f̆(t),

with the initial values

(2.16) u(0) = u0 = v0 , u̇(0) = v0 =
1

ρ

(

f(0)−Au0
)

,

and

(2.17) f̆(t) =
˙̆
f(t) = ḟ(t)−Av0ξ(t),

and w = ẇ(t, ·) = u̇(t)− u̇(t− ·) = u(t)− u(t− ·), so that w(t, 0) = 0.
Then, in the same way as in §2.1 with v = ρu̇, we can reformulate (2.15)–

(2.16) as the abstract Cauchy problem

ż(t) = A z(t) + F̆ (t), 0 < t < T,

z(0) = z0,
(2.18)

where F̆ (t) = (0 , f̆(t) , 0) and z0 =
(

u0, v0, w0(·)
)

with

(2.19) w0(·) = w(0, ·) = 0,

since w(0, s) = u(0)− u(−s) = u(0)− d
dth(t− s) |t=0= v0 − v0 = 0.

Lemma 2. Let z = (u,v,w) be a strong solution of (2.18). Then u(t) =

u0 +
∫ t
0 u(s) ds is a solution of (2.1) with initial data (2.2).

Proof. For a given strong solution z of (2.18), considering (2.16) and
(2.19), we have

(

u̇(0),
1

ρ

(

f(0)−Au(0)
)

, 0
)

=
(

v0,
1

ρ

(

f(0)−Au0
)

, 0
)

,
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that gives us the initial data (2.2). Then since ż(t) = A z(t) + F̆ (t) a.e. on
[0, T ], we have

u̇(t) =
1

ρ
v ,

v̇(t) = −A
(

γ̃u(t) +

∫ ∞

0
β(s)w(t, s) ds

)

+ f̆(t),

ẇ =
1

ρ
v −Dw.

The third equation with initial value (2.19) has the unique solution w(t, s) =
u(t) − u(t − s) that implies, after integrating with respect to t, w(t, s) =
u(t) − u(t − s). And the first two equations give us (2.14) recalling the

notation φ = φ̇(t). Then integrating (2.14), we obtain

ρü(t)− ρü(0) + γ̃Au(t)− γ̃Au(0) +

∫ t

0

∫ ∞

0
β(s)ADrw(r, s) ds dr

= f̆(t)− f̆(0).

(2.20)

From (2.12) for t = 0, we have

ρü(0) + γ̃Au(0) +

∫ ∞

0
β(s)Aw(0, s) ds = f̆(0).(2.21)

And the integral in(2.20) is
∫ t

0

∫ ∞

0
β(s)ADrw(r, s) ds dr =

∫ ∞

0
β(s)

∫ t

0
ADrw(r, s) dr ds

=

∫ ∞

0
β(s)Aw(t, s) ds

−

∫ ∞

0
β(s)Aw(0, s) ds.

(2.22)

Hence (2.20), considering (2.21), (2.22) and w(t, s) = u(t)− u(t− s), gives
(2.12), that implies u satisfies (2.1) a.e. on [0, T ] by backward calculations
from (2.3). Finally from the definition of the operator A and its domain we
deduce (2.8), and this complete the proof. 2

In the next theorem we find the circumstances under which, there is a
unique solution of (2.1) with more regularity.

Theorem 2. There is a unique solution u = u(t) of (2.1)–(2.2) for all

v0 ∈ dom(A), Au0 ∈ V and f(0) ∈ V , if ḟ : [0, T ] → H is Lipschitz

continuous. Moreover, we have the regularity estimate

(2.23) ‖u̇‖V + ‖ü‖ ≤ C
(

‖u0‖H2(Ω)d + ‖v0‖H2(Ω)d + ‖f(0)‖+

∫ t

0
‖ḟ‖ ds

)

.
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Proof. 1. From the assumptions on u0, v0 and f(0) and recalling (2.16),
we have z0 =

(

u0,v0,w0(·)
)

∈ dom(A). Also considering

˙̆
f(t) = f̈(t) +Av0β(t),

obtained from (2.17), and the assumptions on v0 and ḟ , F̆ is differentiable

a.e. on [0, T ] and
˙̆
F ∈ L1([0, T ];Z). Then, since the linear operator A is an

infinitesimal generator of a C0-semigroup (of contractions) T (t) on Z by the
second step of the proof of Theorem 1, there is a unique strong solution of
(2.18) by [9], Corollary 4.2.10. Hence the first part of the proof is complete
by Lemma 2.

2. We have the unique strong solution of (2.18), i.e.

z(t) = T (t)z0 +

∫ t

0
T (t− s)F̆ (s) ds,

with ‖T (t)‖Z ≤ 1, since A generates a C0−semigroup of contractions. Then
we have

‖z‖Z ≤ ‖z0‖Z +

∫ t

0
‖F̆ (s)‖Z ds.

Therefore considering v = ρu̇, z0 = (u0, v0, 0) and ‖F̆ (s)‖Z = ‖f̆(s)‖ =

‖ḟ(s)−Av0ξ(s)‖, we have
(

γ̃ρ‖u̇‖2
V + ρ2‖ü‖2 + ρ

∫ ∞

0
β(s)‖ẇ(s)‖2

V ds
)1/2

≤
(

γ̃ρ‖v0‖2
V +

1

ρ2
‖f(0)−Au0‖2

)1/2
+

∫ t

0

(

‖ḟ(s)‖+ ‖v0‖H2(Ω)dξ(s)
)

ds.

Consequently, for some C = C(γ̃, ρ, T ), we get (2.23). 2

2.3. Higher regularity. We want to generalize the procedure in §2.1 and
§2.2 to obtain higher regularity. To this end we choose, for n ≥ 2,

h(t) =
tn

n!
un(0),

in (2.3) to get

ρü(t) + γ̃Au(t) +

∫ ∞

0
β(s)Aw(t, s) ds = f(t)−Aun(0)

∫ ∞

t

(t− s)n

n!
β(s) ds,

where by φn(t) we mean ∂n

∂tnφ(t), considering the trivial cases φ0 = φ and

φ1 = φ̇. The cases n = 0 and n = 1 have already been discussed in the
previous sections.

Then differentiating n times with respect to t, we have

(2.24) ρün(t) + γ̃Aun(t) +

∫ ∞

0
β(s)Awn(t, s) ds = fn(t)−Aun(0)ξ(t),
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with initial values

(2.25) un(0) = u0
n and un+1(0) = u̇n(0) = v0

n,

where

um(0) =
1

ρ

(

fm−2(0)−Aum−2(0)
)

, for 2 ≤ m ≤ n+ 1,

is obtained from (2.1) and (2.2) by recursion, and implies that for n =
2k (k = 1, 2, · · · )

(2.26) un(0) =
Ak

ρk
u0 +

k
∑

j=1

(−1)j−1A
j−1

ρj
f2k−2j(0),

and for n = 2k + 1 (k = 1, 2, · · · )

(2.27) un(0) =
Ak

ρk
v0 +

k
∑

j=1

(−1)j−1A
j−1

ρj
f2k−2j+1(0).

Similar to §2.1 and §2.2 we can reformulate (2.24)–(2.25) as an abstract
Cauchy problem

żn(t) = Azn(t) + Fn(t), 0 < t < T,

zn(0) = z0
n,

(2.28)

where Fn(t) = (0 , fn(t)−Aun(0)ξ(t) , 0) and z0
n =

(

u0
n, v

0
n, w

0
n(·)

)

with

(2.29) w0
n(·) = wn(0, ·) = 0,

since wn(0, s) = un(0)− un(−s) = un(0)− ∂n

∂tnh(t− s) |t=0= u0
n − u

0
n = 0.

We also note that wn(t, 0) = un(t)− un(t) = 0.

Theorem 3. Let ∂n

∂tnf = fn : [0, T ] → H be Lipschitz continuous. Recalling

dom(A) = H2(Ω)d ∩ V , we also assume that:

for n = 2k (k = 1, 2, · · · )

Aku0 ∈ dom(A), Akv0 ∈ V,

f2k−2j(0) ∈ H
2j(Ω)d ∩ V, f2k−2j+1(0) ∈ H

2j−1(Ω)d ∩ V,

for j = 1, · · · , k,

(2.30)

and for n = 2k + 1 (k = 1, 2, · · · )

Akv0 ∈ dom(A), Aku0 ∈ V,

f2k−2j+1(0) ∈ H
2j(Ω)d ∩ V, for j = 1, · · · , k,

f2k−2j+2(0) ∈ H
2j−1(Ω)d ∩ V, for j = 1, · · · , k + 1,

(2.31)
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where Hm(Ω)d is the standard Sobolev space with the standard norm denoted

by ‖·‖m.

Then there is a unique solution of (2.1)–(2.2). Moreover, for some C =
C(γ̃, ρ, T ):

‖un‖V + ‖un+1‖ ≤ C

(

‖u0‖2k+2 + ‖v0‖2k +
k
∑

j=1

‖f2k−2j(0)‖2j

+
k
∑

j=1

‖f2k−2j+1(0)‖2j−2 +

∫ t

0
‖fn(s)‖ ds

)

,

(2.32)

for n = 2k (k = 1, 2, · · · ), and

‖un‖V + ‖un+1‖ ≤ C

(

‖u0‖2k+2 + ‖v0‖2k+2 +
k
∑

j=1

‖f2k−2j+1(0)‖2j

+
k+1
∑

j=1

‖f2k−2j+2(0)‖2j−2 +

∫ t

0
‖fn(s)‖ ds

)

,

(2.33)

for n = 2k + 1 (k = 1, 2, · · · ).

Proof. 1. The assumptions in Theorem 1 and Theorem 2 are fulfilled
from the given hypothesis here, respectively, for even and odd n. Therefore
existence and uniqueness of the solution u of (2.1)–(2.2) is proved.

2. To prove the regularity estimates (2.32) and (2.33) we need to find a
strong solution of (2.28). To this end, we note that z0

n =
(

u0
n, v

0
n, w

0
n(·)

)

=
(

u0
n, v

0
n, 0

)

∈ dom(A) by (2.29) and the fact that u0
n ∈ dom(A) and v0 ∈ V ,

since assumptions (2.30) and (2.31) and recalling (2.26) and (2.27).
The next step is to show that Fn = (0, fn −Au0

nξ(t), 0) is differentiable
a.e. on [0, T ] and Fn ∈ L1([0, T ];Z). Since, by assumption, fn is Lipschitz
continuous into Hilbert space H, fn is differentiable a.e. on [0, T ] and fn ∈

L1([0, T ];H). Indeed ξ(t) is differentiable a.e. on [0, T ] and ξ̇(t) = −β(t) ∈
L1([0, T ]) from (1.4), and we also have Au0

n ∈ H by assumptions (2.30)
and (2.31) and considering (2.26) and (2.27). These give us the desired fact
about Fn.

Finally, considering the fact that the linear operator A is an infinitesimal
generator of a C0-semigroup (of contractions) T (t) on Z by Theorem 1,
there is a unique strong solution zn(t) = (un(t), vn(t), wn(t, ·)) ∈ dom(A)
of (2.28), by [9], Corollary 4.2.10, so that

zn(t) = T (t)z0
n +

∫ t

0
T (t− s)Fn(s) ds,
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with ‖T (t)‖Z ≤ 1. Then taking Z-norm ‖·‖Z of both sides the equation and
recalling vn = ρu̇n, z0

n =
(

u0
n, v

0
n, 0

)

and ‖Fn(s)‖Z = ‖fn(s) − Au0
nξ(s)‖,

we have
(

γ̃ρ‖un‖
2
V + ‖vn‖

2 + ρ

∫ ∞

0
β(s)‖wn(s)‖2

V ds
)1/2

≤
(

γ̃ρ‖u0
n‖

2
V + ‖v0

n‖
2
)1/2

+

∫ t

0

(

‖fn(s)‖+ ‖Au0
n‖ξ(s)

)

ds.

Hence for some C = C(γ̃, ρ, T ) we get

‖un‖V + ‖un+1‖ ≤ C
(

‖u0
n‖2 + ‖v0

n‖+

∫ t

0
‖fn(s)‖ ds

)

,

that implies the desired estimates (2.32) and (2.33), considering (2.25),
(2.26) and (2.27) and the assumptions (2.30) and (2.31). 2

Remark: Inspired by Lemma 1 and Lemma 2, one may prove (by in-
duction) that for any strong solution zn =

(

un, vn, wn(·)
)

, u is a solution
of (2.1)–(2.2). This, of course, gives an alternative to prove existence and
uniqueness of u in Theorem 3.

3. The continuous Galerkin method

Recalling the function spaces H = L2(Ω)d, HΓN = L2(ΓN )d and V =
{v ∈ H1(Ω)d : v|ΓD

= 0} (d = 2, 3), we provide some definitions which will
be used in the forthcoming discussions.

Let 0 = t0 < t1 < · · · < tn−1 < tn < · · · < tN = T be a partition of the
time interval I = [0, T ]. To each time subinterval In = (tn−1, tn) of length
kn = tn − tn−1, associate a triangulation Th,n of Ω with meshsize function
hn defined by

(3.1) hn(x) = diam(K) , where K ∈ Th,n and x ∈ K,

for all x ∈ Ω, and for p ≥ 1 corresponding finite element space V
(p)
h,n of

vector-valued continuous piecewise polynomials in Ω of degree at most p,
that vanish on ΓD (This requires that the mesh is adjusted to fit ΓD.). We
also define the spaces, for q ≥ 0,

W (q,p) =
{

w : w|Ω×In
= wn ∈W (q)

n , n = 1, . . . , N
}

,

where, with P
d
q the set of all vector-valued polynomials of degree at most q,

W (q,p)
n =

{

w : w(x, ·) ∈ P
d
q(In), w(·, t) ∈ V

(p)
h,n , (x, t) ∈ Ω× In,

}

.

Note that w ∈ W (q,p) may be discontinuous at t = tn, and w ∈ W (0,p) is
piecewise constant in time. In the sequel we write W (q) = W (q,p) for short.
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The Ritz (elliptic) and orthogonal projections Rh,n : V → V
(p)
h,n , Ph,n :

H → V
(p)
h,n and Pk,n : L2(In)d → P

d
q−1(In) are defined, respectively, by

a(Rh,nv − v,χ) = 0, ∀v ∈ V and χ ∈ V
(p)
h,n ,

(Ph,nv − v,χ) = 0, ∀v ∈ H and χ ∈ V
(p)
h,n ,

∫

In

(Pk,nv − v) ·ψ dt = 0, ∀v ∈ L2(In)d and ψ ∈ P
d
q−1(In) .

(3.2)

Correspondingly, we define Rhv and Phv for t ∈ In (n = 1, · · · , N), by

(Rhv)(t) = Rh,nv(t) and (Phv)(t) = Ph,nv(t), and also Pkv ∈
∏N

n=1 P
d
q−1(In)

by Pkv = Pk,n(v|In
) on In. We also define the orthogonal projections, Rn :

L2(In, V ) → W
(q−1)
n , Pn : L2(In, H) → W

(q−1)
n and PΓN

n : L2(In, H
ΓN ) →

W
(q−1)
n , such that

∫

In

a(Rnu− u,ψ) dt = 0, ∀ψ ∈W (q−1)
n , u ∈ L2(In, V ) ,

∫

In

(Pnu− u,ψ) dt = 0, ∀ψ ∈W (q−1)
n , u ∈ L2(In, H) ,

∫

In

(PΓN

n u,ψ) dt =

∫

In

(u,ψ)ΓN
dt, ∀ψ ∈W (q−1)

n , u ∈ L2(In, H
ΓN ) .

(3.3)

Correspondingly, we define R : L2(I, V ) → W (q−1), P : L2(I,H) → W (q−1)

and PΓN : L2(I,H
ΓN ) →W (q−1) in the obvious way.

One can easily show that

(3.4) R = RhPk = PkRh , P = PhPk = PkPh ,

and ∀u ∈W
(q)
n , v ∈W

(q−1)
n ,

(3.5)

∫

In

(u,v) dt =

∫

In

(Pk,nu,v) dt,

(3.6)

∫

In

a(u,v) dt =

∫

In

a(Pk,nu,v) dt.

We introduce the linear operator Ah,n,r : V
(p)
h,r → V

(p)
h,n by

a(vr,wn) = (Ah,n,rvr,wn) ∀vr ∈ V
(p)
h,r , wn ∈ V

(p)
h,n .

We set Ah,n = Ah,n,n, with discrete norms

|vn|h,l = ‖A
l/2
h,nvn‖ =

√

(vn, Al
h,nvn) , vn ∈ V

(p)
h,n and l ∈ R ,
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and Ah so that Ahv = Ah,nv for v ∈ V
(p)
h,n . For later use in our error analysis

we note that

PhA = AhRh.

We define the bilinear form B : W × W → R, and the linear forms
L, L̂ : W → R by

B(u,v) =
N
∑

n=1

∫

In

−a(u2,v1) + a(u̇1,v1) + ρ(u̇2,v2) + a(u1,v2) dt

−

N
∑

n=1

∫

In

∫ t

0
β(t− s)a

(

u1(s),v2(t)
)

ds dt,

L(w) =
N
∑

n=1

∫

In

(f2,w2) + (g,w2)ΓN
dt,

L̂(w) =
N
∑

n=1

∫

In

a(f1,w1) + (f2,w2) + (g,w2)ΓN
dt,

where W is the space of pairs of vector-valued functions u = (u1, u2) that
are piecewise smooth with respect to the temporal mesh. We may note that
(W (q))2 ⊂ W for q ≥ 0.

The continuous Galerkin method of degree (q, p) is based on the varia-

tional formulation (1.7) and reads: Find U = (U1, U2) ∈
(

W (q)
)2

such that,
for n = 1, · · · , N ,

∫

In

a(U̇1, V1)− a(U2, V1) dt = 0,

∫

In

(

ρ(U̇2, V2) + a(U1, V2)−

∫ t

0
β(t− s)a

(

U1(s), V2(t)
)

ds
)

dt

=

∫

In

(f2, V2) dt+

∫

In

(g, V2)ΓN
dt, ∀(V1, V2) ∈

(

W (q−1)
n

)2
,

U+
1,n−1 = Rh,nU

−
1,n−1 , U+

2,n−1 = Ph,nU
−
2,n−1 ,

(3.7)

where U−1,0 = u0, U−2,0 = v0. Then U ∈
(

W (q)
)2

, which was defined in (3.7),
satisfies:

B(U,PkV ) = L(PkV ), ∀V ∈
(

W (q)
)2
,

U+
1,n−1 = Rh,nU

−
1,n−1 , U+

2,n−1 = Ph,nU
−
2,n−1 ,

U−1,0 = u0, U−2,0 = v0,

where PkV = (PkV1,PkV2).
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Since the variational form (1.7) can be written as: Find u ∈ W such that

B(u,v) = L(v), ∀v ∈ W,

we may, for later reference, note the Galerkin orthogonality

(3.8) B(U − u,PkV ) = 0, ∀V ∈
(

W (q)
)2
.

For q = p = 1, considering the fact that functions in W
(0,p)
n are constant

with respect to time, we can write (3.7) as

Ah,n(U−1,n − U+
1,n−1)−

kn

2
Ah,n(U−2,n + U+

2,n−1) = 0,

Ah,n

(

(
kn

2
− γω−n,n)U−1,n + (

kn

2
− γω+

n,n−1)U
+
1,n−1

)

+ ρ (U−2,n − U+
2,n−1)

= Hn + bn,

where

bn = kn(Pnf2 + PΓN

n g),

Hn = γ
n−1
∑

r=1

krAh,n,r(ω
−
n,r + ω+

n,r−1),

ω−n,r =

∫

In

∫ tr∧t

tr−1

β(t− s)ψ−r (s) ds dt , tr ∧ t = min(tr, t),

ω+
n,r−1 =

∫

In

∫ tr∧t

tr−1

β(t− s)ψ+
r−1(s) ds dt,

and ψ−n , ψ
+
n−1 are the linear Lagrange basis functions on In, so that, for

i = 1, 2,

Ui(x, t) |Ω×In
= ψ+

n−1(t)U
+
1,n−1(x) + ψ−n (t)U−1,n(x).

If we do not change the mesh, or just refine the mesh from a time step to

the next, that is V
(p)
h,n−1 ⊂ V

(p)
h,n , then Rh,n and Ph,n reduce to the identity,

i.e., Ui,n = U−i,n = U+
i,n, (n = 0, 1, . . . , N , i = 1, 2).

From now on, we assume that V
(p)
h,n−1 ⊂ V

(p)
h,n , n = 2, . . . , N . So we have

defined the initial values of the discrete form to be U1(·, 0) = u0
h = Rh,1u

0

and U2(·, 0) = v0
h = Ph,1v

0. In this case U in continuous with respect to t.
We also consider a modified problem by adding an extra load function,

say f1 = f1(t), to the first equation of (3.7). This kind of problem will
occur in our error analysis below. Then the continuous Galerkin method of
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order (q, p) is: Find U ∈
(

W (q)
)2

such that, for n = 1, · · · , N ,
∫

In

a(U̇1, V1)− a(U2, V1) dt =

∫

In

a(f1, V1) dt,

∫

In

(

ρ(U̇2, V2) + a(U1, V2)−

∫ t

0
β(t− s)a

(

U1(s), V2(t)
)

ds
)

dt

=

∫

In

(f2, V2) dt+

∫

In

(g, V2)ΓN
dt , ∀(V1, V2) ∈

(

W (q−1)
n

)2
,

U1, U2 continuous at tn−1,

U1(·, 0) = u0
h = Rh,1u

0 , U2(·, 0) = v0
h = Ph,1v

0 .

(3.9)

Then U satisfies:

B(U,PkV ) = L̂(PkV ), ∀V ∈
(

W (q)
)2
,

U1, U2 continuous at tn−1,

U1(., 0) = u0
h , U2(., 0) = v0

h .

(3.10)

4. Stability estimates

In the next theorem we prove an energy identity for problem (3.9) which
will be used for proving the error estimates in the next section.

Theorem 4. Let U = (U1, U2) be the solution of (3.9). Then for any

l ∈ R , T > 0, we have the equality

ρ|U2,N |
2
h,l + ξ̃(T )|U1,N |

2
h,l+1 +

∫ T

0
β|U1|

2
h,l+1 dt

+

∫ T

0

∫ t

0
β(t− s)Dt|W1(t, s)|

2
h,l+1 ds dt

= ρ|v0
h|

2
h,l + |u0

h|
2
h,l+1

+ 2

∫ T

0
(Pf2, A

l
hU2) dt+ 2

∫ T

0
(PΓNg, Al

hU2) dt

+ 2

∫ T

0
ξ̃a(Rf1, A

l
hU1) dt

+ 2

∫ T

0

∫ t

0
β(t− s)a

(

Rf1(t), A
l
hW1(t, s)

)

ds dt,

(4.1)

where W1(t, s) = U1(t)− U1(s) and, recalling (1.4),

(4.2) ξ̃(t) = ξ(t) + 1− γ,

with 0 < 1− γ < ξ̃(t) ≤ 1. All terms on the left hand side are non-negative.
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Proof. Throughout the proof we take into account that Ui (i = 1, 2) are

continuous, hence piecewise differentiable, so that U̇i exist a.e. in [0, T ]. We
organize our proof in 6 steps.

1. Expressing U2 in terms of U1. For any n = 1, · · · , N the first equation
of (3.9) may be written as,

∫

In

a(U2, V1) dt =

∫

In

a(U̇1 −Rnf1, V1) dt, ∀V1 ∈W
(q−1)
n .

Then by (3.6)
∫

In

a(Pk,nU2, V1) dt =

∫

In

a(U̇1 −Rnf1, V1) dt, ∀V1 ∈W
(q−1)
n .

Therefore, we get

(4.3) PkU2(t) = U̇1(t)−Rf1(t), t ∈ I.

2. Recalling the definitions of the orthogonal projections P and P ΓN in
(3.3) and the functions W1 and ξ̃, we can write the second equation of (3.9)
in the form

∫ T

0

(

ρ(U̇2, V2) + ξ̃(t)a(U1, V2) +

∫ t

0
β(t− s)a

(

W1(t, s), V2(t)
)

ds
)

dt

=

∫ T

0

(

(Pnf2, V2) + (PΓN

n g, V2)
)

dt, ∀V2 ∈W
(q−1) .

Then choosing V2 = Al
hPkU2 gives us

∫ T

0
ρ(U̇2, A

l
hPkU2) dt+

∫ T

0
ξ̃(t)a(U1, A

l
hPkU2) dt

+

∫ T

0

∫ t

0
β(t− s)a

(

W1(t, s), A
l
hPkU2(t)

)

ds dt

=

∫ T

0

(

(Pf2, A
l
hU2) + (PΓNg, Al

hU2)
)

dt.

(4.4)

There are three terms in the left hand side of the above equation.

3. Using (3.5) and U̇2(t) ∈W
(q−1), we can write the first term of the left

hand side of (4.4) as
∫ T

0
ρ
(

U̇2, A
l
hPkU2

)

dt = ρ

∫ T

0

(

U̇2, A
l
hU2

)

dt =
ρ

2

∫ T

0
Dt|U2|

2
h,l dt

=
ρ

2

N
∑

n=1

(

|U2,n|
2
h,l − |U2,n−1|

2
h,l

)

=
ρ

2

(

|U2,N |
2
h,l − |v

0
h|

2
h,l

)

,
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where in the last equality we have used the continuity of U2 in time, due to

the assumption V
(p)
h,n−1 ⊂ V

(p)
h,n .

4. With (4.3), we can write the second term as

∫ T

0
ξ̃a
(

U1, A
l
hPkU2

)

dt =
1

2

N
∑

n=1

∫

In

ξ̃Dt|U1|
2
h,l+1 dt−

∫ T

0
ξ̃a(U1, A

l
hRf1) dt.

Then we integrate by parts in the first term of the right hand side and use

the facts that
˙̃
ξ(t) = −β(t) and ξ̃(0) = 1, to get

∫ T

0
ξ̃a
(

U1, A
l
hPkU2

)

dt =
1

2

N
∑

n=1

(

ξ̃(tn)|U1,n|
2
h,l+1 − ξ̃(tn−1)|U1,n−1|

2
h,l+1

)

−
1

2

N
∑

n=1

∫

In

˙̃
ξ|U1(t)|

2
h,l+1 dt−

∫ T

0
ξ̃a(U1, A

l
hRf1) dt

=
1

2

(

ξ̃(T )|U1,N |
2
h,l+1 − |u

0
h|

2
h,l+1

)

+
1

2

∫ T

0
β|U1(t)|

2
h,l+1 dt−

∫ T

0
ξ̃a(Rf1, A

l
hU1) dt ,

where again we used the continuity of U1.
5. Consider now the third term in the left hand side of (4.4). Using (4.3)

and the fact that Ẇ1(t) = U̇1(t) we have

∫ T

0

∫ t

0
β(t− s)a

(

W1(t, s), A
l
hPkU2

)

ds dt

=
1

2

∫ T

0

∫ t

0
β(t− s)Dt|W1(t, s)|

2
h,l+1ds dt

−

∫ T

0

∫ t

0
β(t− s)a

(

Al
hW1(t, s), Rf1(t)

)

ds dt.

The first term of the right hand side is non-negative. To prove this, for a
fixed mesh, take ε ∈ (0, t). Then
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∫ T

0

∫ t−ε

0
β(t− s)Dt|W1(t, s)|

2
h,l+1 ds dt

=

∫ T−ε

0

∫ T

s+ε
β(t− s)Dt|W1(t, s)|

2
h,l+1dt ds

=

∫ T−ε

0
β(T − S)|W1(T, s)|

2
h,l+1 ds

−

∫ T−ε

0
β(ε)|W1(s+ ε, s)|2h,l+1 ds

−

∫ T−ε

0

∫ T

s+ε
β̇(t− s)|W1(t, s)|

2
h,l+1dt ds

≥ −β(ε)

∫ T−ε

0
|W1(s+ ε, s)|2h,l+1 ds ,

(4.5)

where we changed the order of the integrals in the first equation, we inte-
grated by parts in the next one , and we considered the facts that β̇(t) ≤ 0

and β(t) ≥ 0 for the last inequality. Then usingW1(s+ε, s) =
∫ s+ε
s DtW1(t, s) dt

and the Cauchy-Schwarz inequality we get

|W1(s+ ε, s)|2h,l+1 ≤
(

∫ s+ε

s
|DtW1(t, s)|h,l+1 dt

)2

≤

∫ s+ε

s

dt

β(t− s)

∫ s+ε

s
β(t− s)|DtW1(t, s)|

2
h,l+1 dt.

So (4.5) can be written as

∫ T

0

∫ t−ε

0
β(t− s)Dt|W1(t, s)|

2
h,l+1 ds dt

≥ −

∫ T−ε

0

(
∫ s+ε

s

β(ε)

β(t− s)
dt

∫ s+ε

s
β(t− s)|DtW1(t, s)|

2
h,l+1 dt

)

ds

≥ −ε

∫ T−ε

0

∫ s+ε

s
β(t− s)|DtW1(t, s)|

2
h,l+1 dt ds,

since β(ε)
β(t−s) ≤ 1. Obviously, for a fixed mesh, the last integral in the right

hand side is bounded by

∫ T

0

∫ T

s
β(t− s)|DtW1(t, s)|

2
h,l+1 dt ds <∞.
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Therefore, letting ε→ 0 we get
∫ T

0

∫ t

0
β(t− s)Dt|W1(t, s)|

2
h,l+1 ds dt ≥ 0 .

6. Putting the results from steps 3, 4 and 5 into (4.4) completes the proof.
Remark: In [4] the auxiliary function w(t, s) = u(t) − u(t − s), was

used the same as in our §2, to obtain stability estimates for the spatially
semidiscrete finite element method. This does not work here because U1(t)−

U1(t− s) does not belong to W (q) if the temporal mesh is non-uniform.
From now on we specialize to the case p = q = 1. We use (4.1) to obtain

a stability estimate to be used in the error analysis. To this end, from (4.1)
with g = 0, we have

ρ|U2,N |
2
h,l + ξ̃(T )|U1,N |

2
h,l+1 ≤ ρ|v0

h|
2
h,l + |u0

h|
2
h,l+1 + 2

∫ T

0
(Al

hPf2, U2) dt

+ 2

∫ T

0
a(Al

hRf1, U1) dt

+ 2

∫ T

0

∫ t

0
β(t− s)a

(

Al
hRf1(t),W1(t, s)

)

ds dt.

Therefore using (3.4), 1− γ < ξ̃(t) ≤ 1 and
∫ t
0β(s) ds ≤ γ, we get

ρ|U2,N |
2
h,l + (1− γ)|U1,N |

2
h,l+1

≤ ρ|v0
h|

2
h,l + |u0

h|
2
h,l+1 + 2

∫ T

0
(A

l/2
h PkPhf2, A

l/2
h U2) dt

+ 2

∫ T

0
a(A

l/2
h PkRhf1, A

l/2
h U1) dt

+ 2

∫ T

0

∫ t

0
β(t− s)a

(

A
l/2
h PkRhf1(t), A

l/2
h W1(t, s)

)

ds dt

≤ ρ|v0
h|

2
h,l + |u0

h|
2
h,l+1 + 2

∫ T

0
|PkPhf2|h,l|U2|h,l dt

+ 2

∫ T

0
|PkRhf1|h,l+1|U1|h,l+1 dt

+ 2γ

∫ T

0
|PkRhf1(t)|h,l+1 max

0≤s≤T
|W1(t, s)|h,l+1 dt

≤ ρ|v0
h|

2
h,l + |u0

h|
2
h,l+1 +

1

2
ρmax

[0,T ]
|U2|

2
h,l + C

(

∫ T

0
|PkPhf2|h,l dt

)2

+
1

2
(1− γ) max

[0,T ]
|U1|

2
h,l+1 + C

(

∫ T

0
|PkRhf1|h,l+1 dt

)2
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where C = C(ρ, γ). Using that, for q = 1, we have

max
[0,T ]

|Ui| ≤ max
[0,T ]

|Ui,n|,

and
∫ T

0
|Pkf | dt ≤

∫ T

0
|f | dt,

and that the above inequality holds for arbitrary N , we conclude in a stan-
dard way

|U2,N |h,l + |U1,N |h,l+1

≤ C

(

|v0
h|h,l + |u0

h|h,l+1 +

∫ T

0

(

|Rhf1|h,l+1 + |Phf2|h,l

)

dt

)

,
(4.6)

with C = C(ρ, γ).

5. A priori error estimates

To simplify the notation we denote the Sobolev norms ‖·‖Hi(Ω) by ‖·‖i.

We define the standard interpolant Ikv ∈W
(1) by

(5.1) Ikv(tn) = v(tn), n = 0, 1, · · · , N.

By standard arguments in approximation theory we see that, for q = 0, 1,

(5.2)

∫ T

0
‖Ikv − v‖i dt ≤ Ckq+1

∫ T

0
‖Dq+1

t v‖i dt, for i = 0, 1, 2,

where

k = max
1≤n≤N

kn.

We assume the elliptic regularity estimate ‖v‖2 ≤ C‖Av‖, ∀v ∈ dom(A) ,
so that the following error estimates for the Ritz projection (3.2), hold true

(5.3) ‖Rhv − v‖ ≤ Chs‖v‖s , ∀v ∈ Hs ∩ V, s = 1, 2.
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Theorem 5. Assume q = p = 1 and let u and U be the solutions of (1.7)
and (3.9). Then, with e = U − u and C = C(ρ, γ), we have

‖e2,N‖ ≤ Ch2
(

‖v0‖2 + ‖u2,N‖2 +

∫ T

0
‖u̇2‖2 dt

)

+ Ck2

∫ T

0

(

|D2
tu2|1 + ‖D2

tu1‖2

)

dt,

|e1,N |1 ≤ Ch
(

‖u1,N‖2 + ‖v0‖1 +

∫ T

0
‖u̇2‖1 dt

)

+ Ck2

∫ T

0

(

|D2
tu2|1 + ‖D2

tu1‖2

)

dt,

‖e1,N‖ ≤ Ch2
(

‖u1,N‖2 +

∫ T

0
‖u2‖2 dt

)

+ Ck2

∫ T

0

(

‖D2
tu2‖+ |D2

tu1|1
)

dt.

Proof. We set

(5.4) e = θ + η + ρ = (U − πu) + (πu− Ju) + (Ju− u),

for some suitable operators π and J which will be specified in terms of
the time interpolant Ik in (5.1) and projectors Rh and Ph in (3.2), so that

πu ∈W (1) and η and ρ will correspond to the temporal and spatial errors,
respectively. Due to (5.2)–(5.3) we just need to estimate θ. To this end,
using the Galerkin orthogonality (3.8) and the definition of θ, we get

B(θ,PkV ) = −B(η,PkV )−B(ρ,PkV )

=

∫ T

0
a(η2,PkV1)−a(η̇1,PkV1)−ρ(η̇2,PkV2)−a(η1,PkV2) dt

+

∫ T

0

∫ t

0
β(t− s)a

(

η1(s),PkV2(t)
)

ds dt

+

∫ T

0
a(ρ2,PkV1)−a(ρ̇1,PkV1)−ρ(ρ̇2,PkV2)−a(ρ1,PkV2) dt

+

∫ T

0

∫ t

0
β(t− s)a

(

ρ1(s),PkV2(t)
)

ds dt

=
10
∑

j=1

Ej , ∀V ∈
(

W (1)
)2
.

(5.5)
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We consider two different choices of the operators π and J . In order to prove
the first two error estimates we set, for i = 1, 2,

θi = Ui − IkRhui, ηi = (Ik − I)Rhui, ρi = (Rh − I)ui.

Integrating by parts in E2 and E3 with respect to time and using (5.1)
we have for both cases

(5.6) E2 = E3 = 0.

Moreover, by the definitions of η and ρ, we have

E6 = E7 = E9 = E10 = 0.

Therefore,

B(θ,PkV ) =

∫ T

0
a(η2,PkV1) dt

+

∫ T

0

(

a
(

− η1 +

∫ t

0
β(t− s)η1(s)ds,PkV2

)

− ρ
(

ρ̇2,PkV2

)

)

dt

= L̂(PkV ), ∀V ∈
(

W (1)
)2
,

which is of the form (3.10) with f 1 = η2, f2 = Ah

(

− η1 +
∫ t
0β(t −

s)η1(s) ds
)

− ρρ̇2 and g = 0.
Applying the stability inequality (4.6) with l = 0, and considering the

fact that |·|0,h = ‖·‖ and |·|h,1 = |·|1, we have

‖θ2,N‖+|θ1,N |1

≤ C
(

‖θ2(0)‖+ |θ1(0)|1

)

+ C

∫ T

0
|Rhη2|1 dt

+ C

∫ T

0

(

‖PhAhη1‖+
∥

∥

∥
PhAh

∫ t

0
β(t− s)η1(s) ds

∥

∥

∥
+ ρ‖Phρ̇2‖

)

dt,

where θ1(0) = 0, since U1(0) = Rh,1u
0. Since |Rhv|1 ≤ |v|1, ‖Phv‖ ≤

‖v‖, ∀v ∈ V and RhAh = PhA, we have

|Rhη2|1 = |(Ik − I)Rhu2|1 ≤ |(Ik − I)u2|1,

‖PhAhη1‖ = ‖Ahη1‖ = ‖(Ik − I)AhRhu1‖ = ‖(Ik − I)PhAu1‖

≤ ‖(Ik − I)Au1‖ ≤ C‖(Ik − I)u1‖2,
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and

∫ T

0

∥

∥

∥
PhAh

∫ t

0
β(t− s)η1(s) ds

∥

∥

∥
dt ≤

∫ T

0

∥

∥

∥
Ah

∫ t

0
β(t− s)η1(s) ds

∥

∥

∥
dt

≤ C

∫ T

0

∫ t

0
β(t− s)‖(Ik − I)u1(s)‖2 ds dt

≤ C

∫ T

0
β(t)dt

∫ T

0
‖(Ik − I)u1‖2 dt

≤ Cγ

∫ T

0
‖(Ik − I)u1‖2 dt.

Therefore by θ = e− η − ρ, η(tn) = 0 and θ1(0) = 0, we get

‖e2,N‖ ≤ ‖ρ2,N‖+ Cθ2(0)

+ C

∫ T

0

(

|(Ik − I)u2|1 + ‖(Ik − I)u1‖2 + ‖(Rh − I)u̇2‖
)

dt,

|e1,N |1 ≤ |ρ1,N |1 + Cθ2(0)

+ C

∫ T

0

(

|(Ik − I)u2|1 + ‖(Ik − I)u1‖2 + ‖(Rh − I)u̇2‖
)

dt,

wich implies the first two estimates by (5.2) and (5.3).
Finally, we choose

θ1 = U1 − IkRhu1, η1 = (Ik − I)Rhu1, ρ1 = (Rh − I)u1,

θ2 = U2 − IkPhu2, η2 = (Ik − I)Phu2, ρ2 = (Ph − I)u2.

By the definitions of Rh and Ph in (3.2), this implies

E7 = E8 = E9 = E10 = 0,

and we still have (5.6). Therefore, (5.5) becomes

B(θ,PkV ) =

∫ T

0
a(η2 + ρ2,PkV1) dt

+

∫ T

0
a
(

− η1 +

∫ t

0
β(t− s)η1(s)ds,PkV2

)

dt

= L̂(PkV ), ∀V ∈
(

W (1)
)2
,

which is of the form (3.10) with f 1 = η2 + ρ2, f2 = Ah

(

− η1 +
∫ t
0β(t −

s)η1(s) ds
)

and g = 0.
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Again applying the stability inequality (4.6), this time with l = −1, and
using |·|h,0 = ‖·‖, we have

‖θ1,N‖ ≤ C

∫ T

0

(

‖Rhη2‖+ ‖Rhρ2‖
)

dt

+ C

∫ T

0

(

|PhAhη1|h,−1 + |PhAh

∫ t

0
β(t− s)η1(s)ds|h,−1

)

dt,

where we used that θ(0) = 0, since U1(0) = Rh,1u
0 and U2(0) = Ph,1v

0.
Then, since

‖Rhη2‖ = ‖(Ik − I)Phu2‖ ≤ ‖(Ik − I)u2‖,

‖Rhρ2‖ = ‖Ph(I −Rh)u2‖ ≤ ‖(Rh − I)u2‖,

|PhAhη1|h,−1 = |AhRh(Ik − I)u1|h,−1 = |Rh(Ik − I)u1|h,1 ≤ |(Ik − I)u1|1 ,

and
∫ T

0
|PhAh

∫ t

0
β(t− s)η1(s) ds|h,−1 dt ≤

∫ T

0

∫ t

0
β(t− s)|(Ik − I)u1(s)|1 ds dt

≤ γ

∫ T

0
|(Ik − I)u1|1 dt,

we conclude

‖e1,N‖ ≤ ‖ρ1,N‖+ C

∫ T

0

(

‖(Ik − I)u2‖+ ‖(Rh − I)u2‖+ |(Ik − I)u1|1

)

dt,

which implies the last estimate by (5.2) and (5.3). 2

6. Numerical example

In this section we demonstrate the numerical method by solving a simple
but realistic example for a two dimensional structure, see Figure 1 (a), using
piecewise linear polynomials, i.e., q = p = 1.

We consider the initial conditions: u(x, 0) = 0m, u̇(x, 0) = 0m/s, the
boundary conditions: u = 0 at x = 0, g = (0,−1)Pa at x = 1.5 and zero on
the rest of the boundary. The volume load is assumed to be f = 0N/m3.
And the model parameters are: γ = 0.5, τ = 0.25, ν = 0.3, E = 5MPa and
ρ = 7000 kg/m3. The deformed mesh at t/τ = 9 for α = 1/2 is displayed
in Figure 1 (b), with the displacement magnified by the factor 105, and the
computed vertical displacement at the point (1.5, 1.5) for different α are
shown in Figure 2.
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Figure 1. (a) Undeformed mesh. (b) Deformed mesh at
t/τ = 9 for α = 1/2.
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Figure 2. Vertical displacement for different α.
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