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A RESIDUE CRITERION FOR STRONG
HOLOMORPHICITY

MATS ANDERSSON

Abstract. We give a local criterion in terms of a residue current
for strong holomorphicity of a meromorphic function on an arbi-
trary puredimensional analytic variety. This generalizes a result
by A Tsikh for the case of a reduced complete intersection.

1. Introduction

Let Z be an analytic variety in a neighborhood of the closed unit
ball in Cn. A germ of a holomorphic function φ on Zreg is said to be
(strongly) holomorphic on Z, φ ∈ OZ , if it is the restriction to Zreg of a
holomorphic function Φ defined in the ambient space. A meromorphic
function φ on Zreg is said to be meromorphic on Z, φ ∈ MZ , if it is
the restriction to Zreg of a meromorphic function in the ambient space.
This notion is robust and for various alternative definitions, see [10].
On the other hand there are several weaker notions of holomorphicity
of φ, but all of them imply that φ is at least meromorphic.

Suppose that Z is given by a complete intersection, Z = {F1 = · · · =
Fp = 0} and codimZ = p, and recall that we then have a well-defined
∂̄-closed (0, p)-current

µF = ∂̄
1

Fp

∧ . . .∧∂̄ 1

F1

,

the Coleff-Herrera product, [6], with support on Z. The following cri-
terion was proved by A Tsikh, [16]; see also [10]:

Assume that the Jacobian dF1∧ . . .∧dFp is non-vanishing on Zreg.
A meromorphic function φ on Z is (strongly) holomorphic on Z if and
only if the current φµF is ∂̄-closed.

The assumption on the Jacobian implies (and is in fact equivalent
to) that the annihilator of µF is precisely the sheaf IZ of holomorphic
functions that vanish on Z. The product φµF can be defined as the
principal value

(1.1) lim
ε→0

χ|h|>ε(g/h)µ
F ,
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2 MATS ANDERSSON

where g/h is a representation of φ. For the existence of this limit and
the independence of the representation of φ, see Section 3. For further
reference let us sketch a proof of Tsikh’s theorem: If φ is strongly
holomorphic, then it is represented by a function Φ that is holomorphic
in the ambient space, and since µF is ∂̄-closed it follows that φµF is.
Conversely, assume that φ = g/h where g, h are holomorphic in the
ambient space (and necessarily) h is generically non-vanising on Zreg.
Then formally at least, the assumption implies that

g∂̄
1

h
∧∂̄ 1

Fp

∧ . . .∧∂̄ 1

F1

= 0,

and since also h, F1, . . . , Fp form a complete intersection it follows from
the duality theorem, [8] and [12], that g is in the ideal generated by
h, F1, . . . , Fp, i.e., g = αh + α1F1 + · · · + αpFp. Thus φ = g/h = α on
Zreg so by definition φ ∈ OZ .

Remark 1. One should remark here that it is not possible to use the
Lelong current [Z]; in fact, the meromorphic functions φ such that φ[Z]
is ∂̄-closed form the wider class ω0

Z studied in [10]. �

In this paper we generalize Tsikh’s result in two ways. We consider
an arbitrary variety Z of pure codimension p, and we consider also the
the non-reduced case, i.e., instead of IZ we have an arbitrary pure-
dimensional coherent ideal sheaf J with zero variety Z. To formulate
our results we first have to discuss an appropriate generalization from
[3] of the Coleff-Herrera product above.

In a neighborhood X of the closed unit ball there is a free resolution

(1.2) 0 → O(EN)
fN−→ . . .

f3−→ O(E2)
f2−→ O(E1)

f1−→ O(E0)

of the sheaf O/J . Here O(Ek) is the free sheaf associated to the
trivial vector bundle Ek over X, and E0 ' C so that O(E0) ' O.
In [3] we defined, given Hermitian metrics on Ek, a residue current
R = Rp+Rp+1+· · · with support on Z, where Rk is a (0, k)-current that
takes values in Ek ' Hom (E0, Ek), such that a holomorphic function
φ is in J if and only if Rφ = 0. For simplicity we think that we have
some fixed global frames for Ek and choose the trivial metrics that they
induce. In this way we can talk about the residue current associated
with (1.2).

If J is Cohen-Macaulay, i.e., each stalk Jx is a Cohen-Macaulay ideal
in Ox, then we may assume that N = p and then R = Rp is ∂̄-closed.
In general, fk+1Rk+1− ∂̄Rk = 0 for each k which can be written simply
as ∇R = 0 if ∇ = f − ∂̄ and f = ⊕fk.

The assumption that J has pure dimension p means that in each
local ring Ox all the associated primes have codimension p. If Z is
reduced, i.e., Z ∼ IZ , then OZ = O/IZ , and in general we have
OZ = O/J .
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Let φ be a holomorphic in Z \ W where W is a subvariety of Z
with positive codimension. As in the reduced case we say that φ is
meromorphic if (locally) it is the restriction to Z \W of a meromorphic
function Φ in ambient space; thus Φ and Φ′ define the same φ if and
only if Φ − Φ′ belongs to J generically on Z. In Section 3 we give
a reasonable definition of φR for each meromorphic function φ on Z.
Here is our main result.

Theorem 1.1. Suppose that Z ∼ J has pure codimension p and let
R be the residue current associated to a resolution of O/J . Then a
meromorphic function φ on Z is (strongly) holomorphic if and only if

(1.3) ∇(φR) = 0.

If J is Cohen-Macaulay and N = p in (1.2), then R = Rp and so
(1.3) means that ∂̄(φR) = 0.

The reduced case of course corresponds to J = IZ .

Remark 2. If f1 = (F1, . . . , Fp) is a complete intersection, one can
choose (1.2) as the Koszul complex, and then the residue current is
precisely the Coleff-Herrera product µF , see, [3]. If J = IZ we thus
get back Tsikh’s theorem. �

As a corollary we obtain the following result due to Malgrange [11]
and Spallek [15]. One says that a function φ on Z is in Ck(Z) if it is
(locally) the restriction to Z of a Ck-function in the ambient space.

Corollary 1.2. Assume that Z has pure codimension and is reduced.
There is a natural number m such that if φ ∈ Cm(Z) is holomorphic
on Zreg then φ is strongly holomorphic on Z.

Let J be any ideal sheaf and let (1.2) be a resolution of O/J . Let
Zk be the analytic set where fk does not have have optimal rank. These
sets Zk are independent of the choice of resolution, ⊂ Zk+1 ⊂ Zk ⊂,
their union is equal to the zero set Z of J , and codimZk ≥ k for all
k. Moreover, if J has codimension p, then it is pure if and only if
codimZk ≥ k + 1 for all k > p, and J is Cohen-Macaulay if and only
if Zk = ∅ for k > p. All these facts are well-known and can be found
in, e.g., [9].

It is desirable to express the ideal J as

(1.4) J = ∩ν
1annµ`,

where µj are so-called Coleff-Herrera currents, µj ∈ CHZ , on Z, see
below for a definition. This is because a Coleff-Herrera current is ba-
sically a differentiated Lelong current so φ annihilating such a current
is an elegant intrinsic way to express that certain holomorphic differ-
ential operators applied to φ vanish on Z. If J has pure codimension
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then it turns out, see, e.g., [1], that J is equal to the annihilator of the
analytic sheaf

Hom (O/J , CHZ) = {µ ∈ CHZ ; J µ = 0}.

This sheaf turns out to be coherent, and therefore there is a finite
family of global sections in a neighborhood X of the closed unit ball
such that (1.4) holds. One can ask whether there is a criterion for
strong holomorphicity expressed in terms of the µ`.

Theorem 1.3. Assume that J has pure codimension p and that µ`,
` = 1, . . . , N , generate Hom (O/J , CHZ). Let φ be meromorphic, let
A be the smallest variety outside which φ is strongly holomorphic, and
assume that codim (A∩Zk) ≥ k+ 2 for k > p. Then φ is holomorphic
if and only if φµ` are ∂̄-closed for all `.

Remark 3. If for instance J is Cohen-Macaulay, then Zk is empty for
k > p so the condition is fulfilled for any meromorphic φ. If h is
holomorphic and generically non-vanishing on Z, then ∂̄(1/h)∧µ` will
be Coleff-Herrera currents whose common annihilator is precisely the
ideal (h,J ), see Theorem 1.4 below. �

The proofs of our main results basically follow the outline of the proof
of Tsikh’s theorem above. Therefore one is led to discuss products of
residue currents of the type above. In case we just have two functions
g and h, then there exist analytic continuations so that one can define

∂̄
1

h
∧∂̄ 1

g
=
∂̄|h|2λ∧∂̄|g|2µ

gh
|µ=0|λ=0,

but the result in general depends on the order of the evaluations. How-
ever if g, h form a complete intersection, i.e., codim (Zg ∩ Zh) = 2,
then the product is robust; it is independent of the order, and one can
also, e.g., put λ = µ before taking λ = 0. See [14] for various other
definitions and the relation to the original definition in [6]. Consider
now two general ideal sheaves I and J , and assume that we have fixed
two resolutions g,O(Eg) and h,O(Eh) with associated currents Rg and
Rh. Following [4] we can define the product Rh∧Rg in analogous ways;
it is a current that takes values in Eg ⊗ Eh.

Theorem 1.4. Assume that I and J are ideal sheaves such that

(1.5) codim (ZI
k ∩ ZJ

` ) ≥ k + `, k, ` ≥ 1.

Then the annihilator of Rh∧Rg is equal to (I,J ). Moreover, the defi-
nition of this current is independent of the order of the limits.

In case both sheaves are Cohen-Macaulay and both resolutions have
minimal lengths, then Rh∧Rg coincides with the current obtained from
the tensor product of the resolutions.
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Remark 4. Let I = (g1) and J = (h1) be complete intersections, and
choose the Koszul complexes as resolutions. Then, see [3], Rg and Rh

are the Bochner-Martinelli type residues introduced in [13]. Moreover,
the tensor product of these resolutions is the Koszul complex generated
by (g1, h1), and so the last statement in the theorem means that this
product coincides with the Bochner-Martinelli residue associated with
(g1, h1). This fact is proved already in [17]. �

Corollary 1.5. Assume that I has pure codimension and let R be
the residue current associated with a resolution. If h is generically
nonvanishing on Z, then (h, I) coincides with the annihilator of

∂̄
1

h
∧R.

Remark 5. Theorem 1.4 extends in a quite obvious way, and with es-
sentially the same proof, to any finite number of ideal sheaves. �

For the proof of our main results we only need Corollory 1.5, but the
general result, Theorem 1.4, does not require much more effort, and
we provide a proof in Section 4. In the last section we then prove the
main results. However first we have to recall some material from [3]
and [4].

2. Some residue theory

The sheaf of Coleff-Herrera currents (or currents of residual type)
CHZ consists of all ∂̄-closed (0, p)-currents µ with support on Z such
that ψ̄µ = 0 for each ψ vanishing on Z, and which in addition fulfills
the so-called standard extension property, SEP, see below. Locally,
any µ ∈ CHZ can be realized as a meromorphic differential operator
acting on the current of integration [Z] (combined with contractions
with holomorphic vector fields), see [5].

In [4] we introduced the sheaf of hypermeromorphic currents HM
in X. It is a module over the sheaf E• of smooth forms, and closed
under ∂̄. For any T ∈ HM and variety V there exists a restriction
T |V that is in HM and has support on V , and T = T |V if and only
if T has support on V . Moreover, taking restriction commutes with
multiplication by smooth forms. If H is a holomorphic tuple such that
{H = 0} = V , then λ|H|2λT has a curren-valued analytuc continuation
to Reλ > −ε and

(2.1) T |X\V = |H|2λT
∣∣
λ=0

.

We say that a current T with support on a variety V has SEP (with
respect to V ) if T |W = 0 for each W ⊂ V with positive codimension.

Proposition 2.1. If µ ∈ HM with bidegree (∗, p) has support on a
variety V of codimension k > p then µ = 0. Furthermore, if V has
codimension p, then the sheaf of Coleff-Herrera currents CHV coincides
with the subsheaf of HM of ∂̄-closed (0, p)-currents with support on V .
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We first briefly recall the construction in [3]. Let

(2.2) 0 → EN
fN−→ . . .

f3−→ E2
f2−→ E1

f1−→ E0 → 0

be a generically exact complex of Hermitian vector bundles over X,
where E0 ' C for simplicity, let

(2.3) 0 → O(EN)
fN−→ . . .

f1−→ O(E0)

be the corresponding complex of locally free sheaves, and let J be the
ideal sheaf f1O(E1) ⊂ O. Then by the Buchsbaum-Eisenbud theorem,
see [9], (2.3) is a resolution of O/J if and only if codimZk ≥ k for
all k. Assume that (2.2) is pointwise exact outside the variety Z,
and over X \ Z let σk : Ek−1 → Ek be the minimal inverses of fk.
Then fσ + σf = I, where I is the identity on E = ⊕Ek, f = ⊕fk

and σ = ⊕σk. The bundle E has a natural superbundle structure
E = E+ ⊕ E−, where E+ = ⊕E2k and E− = ⊕E2k+1, and f and σ
are odd mappings with respect to this structure, see, e.g., [3] for more
details.

The operator ∇ = f − ∂̄ acts as an odd mapping on C0,•(X,E),
the space of (0, ∗)-currents with values in E, and extends to an odd
mapping ∇End on C0,•(X,EndE), and ∇2

End = 0. If

u = σ + (∂̄σ)σ + (∂̄σ)2σ + · · ·

then ∇Endu = I in X \Z. One can define a canonical current extension
U of u across Z as the analytic continuation to λ = 0 of |F |2λu, where
F is any holomorphic function that vanishes on Z; e.g., F = f1 will do
if (2.3) is a resolution. In the same way we can define the current

R = ∂̄|F |2λ∧u|λ=0

with support on Z, and

(2.4) ∇EndU = I −R.

We have that

R =
∑

`

R` =
∑
`k

R`
k,

where R`
k is a (0, k − `)-current that takes values in Hom (E`, Ek), i.e.,

R`
k ∈ C0,k−`(X,Hom (E`, Ek)).

We also recall from [3] that if (2.3) is a resolution, then R` = 0 for
all ` ≥ 1. From [4] we know that both U g and Rg are in HM. Thus
R = R0 = Rp +Rp+1 + · · · .

Below we will consider analogues of R and U obtained in a different
way. The following proposition is proved precisely as Proposition 2.2
in [3].
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Proposition 2.2. Consider the generically exact complex (2.2) and
let U and R be any currents such that (2.4) holds. If R1 = 0 then
annR = J . If R` = 0 for all ` ≥ 1 then the associated sheaf complex
(2.3) is exact, i.e., a resolution of O/J .

3. Multiplication by meromorphic functions

For any hypermeromorphic current T and holomorphic function h
we defined in [4] product (1/h)T as the value at λ = 0 of |h|2λT . It
is again a hypermeromorphic current and it is clear that α(1/h)T =
(1/h)αT if α is smooth. Notice however, that in general it is not true
f(1/fg)T = (1/g)T .

Lemma 3.1. Suppose that Z ∼ J has pure codimension p and let R be
the residue current associated with a resolution (1.2). If h is generically
nonvanishing on Z, then (1/h)R has the SEP on Z.

Proof of Lemma 3.1. Assume that V ⊂ Z has positive codimension.
Then ((1/h)Rp)|V = 0 in view of Proposition 2.1. Outside the variety
Zp+1 we have that Rp+1 = αp+1Rp where αp+1 = ∂̄σp+1 is smooth, and
hence

((1/h)Rp+1)|V = ((1/h)αp+1Rp)|V =

(αp+1(1/h)Rp)|V = αp+1((1/h)Rp)|V = 0.

It follows that ((1/h)Rp+1)|V has support on Zp+1 which has codimen-
sion ≥ p + 2, and hence it vanishes by virtue of Proposition 2.1. Now
Rp+2 = αp+2Rp+1 outside Zp+2 that has codimension ≥ p + 3, and so
(g(1/h)Rp+2)|V = 0 by a similar argument. Continuing in this way the
lemma follows. �

Given a meromorphic function φ on Z we can define φR as g(1/h)R
if g/h represents φ. Since (1/h)R has the SEP also g(1/h)R has. Since
the difference of two representations of φ lies in J outside some V ⊂ Z
of positive codimension and JR = 0, it follows from the SEP that φR
is well-defined. Moreover, if ψ ∈ OZ , it follows that

ψ(φR) = (ψφ)R.

One can just as well, with some small extra effort, define φR as the
limit (1.1), see, e.g., [2].

Remark 6. Let φ be holomorphic in Z \ V , where V has positive codi-
mension and contains Zsing. If φ is meromorphic on Z, then we have
seen that φR has a natural current extension from X\V across V . Also
the converse holds. In fact, one can always find a holomorphic form α
with values in Hom (Ep, E0) such that Rp · α = [Z], see [1]. Therefore,
if φR has an extension across V also φ[Z] has, and it then follows from
[10] that φ is meromorphic. �
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4. Tensor products of resolutions

Assume that O(Eg
k), gk and O(Eh

` ), h` are resolutions of O/I and
O/J , respectively. We can define a complex (2.3), where

(4.1) Ek =
⊕

i+j=k

Eg
i ⊗ Eh

j ,

f = g + h, or more formally, f = g ⊗ IEh + IEg ⊗ h, such that

f(ξ ⊗ η) = gξ ⊗ η + (−1)deg ξξ ⊗ hη.

One extends (4.1) to current-valued sections ξ and η and deg ξ means
total degree. It is natural to write ξ∧η rather than ξ⊗η, and of course
we can define η∧ξ as (−1)deg ξdeg ηξ∧η.

Taking H = h1 and following, e.g., the proof of Proposition 2.1 in
[4] we can define hypermeromorphic currents

Uh∧Rg = |H|2λuh∧Rg|λ=0, Rh∧Rg = ∂̄|H|2λuh∧Rg|λ=0.

We let
U = Ih∧U g + Uh∧Rg, R = Rh∧Rg.

Analogously with G = g1 we define

Rg∧Uh = ∂̄|G|2λ∧ug∧Uh, Rg∧Rh = ∂̄|G|2λ∧ug∧Rh.

Lemma 4.1. With the assumptions in Theorem 1.4 we have that

(4.2) ∇EndU = I −R

and

(4.3) Uh∧Rg = Rg∧Uh.

Proof. We first claim that

(4.4) |H|2λRg|λ=0 = Rg.

This is equivalent to saying that the restriction Rg|Zh of Rg to Zh =
{H = 0} vanishes. To see this, first notice that Rg

1|Zh = 0 since it is
a hypermeromorphic (0, 1)-current with support on Zg

1 ∩ Zh
1 which by

assumption has codimension at least 2. Outside Zg
2 we can multiply

with αg
2 and get that Rg

2|Zh = 0 there. Thus Rg
2|Zh = 0 has support

on Zg
2 ∩Zh

1 and again it must vanish for degree reasons. Continuing in
this way (4.4) follows. Now, since ∇EndR

g = 0, for λ >> 0 we have

∇End

(
|H|2λuh∧Rg

)
= |H|2λIh∧Rg − ∂̄|H|2λ∧uh∧Rg,

and in view of (4.4) therefore

(4.5) ∇End(U
h∧Rg) = Ih∧Rg −Rh∧Rg.

From this (4.2) follows. In the same way

(4.6) ∇End(R
g∧Uh) = Rg∧Ih −Rg∧Rh.

Notice that

(4.7) (Uh)0
1∧(Rg)0

1 − (Rg)0
1∧(Uh)0

1 = 0
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outside Zh
1 since (Uh)0

1 is smooth there. On the other hand, both terms
have support on Zg

1 . Thus the left hand side is a hypermeromorphic
(0, 1)-current with support on Zg

1 ∩Zh
1 . Since this set has codimension

at least 2, the current must vanish identically. Outside Zh
`+1 we have

(4.8) αh
`+1(U

h
` ∧Rg) = Uh

`+1∧Rg, αh
`+1(R

g∧Uh
` ) = Rg∧Uh

`+1

where αh
`+1 is smooth. Similarly, outside Zg

k+1 we have

(4.9) αg
k+1(U

h∧Rg
k) = Uh∧Rg

k+1, αg
k+1(R

g
k∧U

h) = Rg
k+1∧U

h.

Now assume that we have proved that

(4.10) (Uh)0
`∧(Rg)0

1 − (Rg)0
k∧(Uh)0

1 = 0

when ` + k < m and suppose that ` + k = m. If say ` = 1 then
(4.10) holds at least outside Zh

1 . Moreover, in view of (4.9) it holds
outside Zg

m by the induction hypothesis. Thus the current in (4.7) has
support on Zh

1 ∩ Z
g
m−1. If ` > 1, for similar reasons, it follows that

(4.10) holds outside Zh
` ∩Z

g
k . Since the current has bidegree (0,m− 1)

and codim (Zh
` ∩Z

g
k) ≥ `+k = m it must vanish. Thus we have proved

that

(Uh)r∧(Rg)s = (Rg)r∧(Uh)s

for r = s = 0. The general case follows in the same way. �

Along the same lines one can verify that

(4.11) Uh∧Rg = |H|2λuh∧∂̄|G|2λ∧ug
∣∣
λ=0

.

Proof of Theorem 1.4. Applying∇End to (4.3) we get by (4.5) and (4.6)
that

(Ih −Rh)∧Rg = Rg∧(Ih −Rh)

and thus

(4.12) Rh∧Rg = Rg∧Rh.

Using (4.11) it also follows that

Rh∧Rg = ∂̄|H|2λ∧uh∧∂̄|G|2λ∧ug|λ=0.

Since (Rg)s = 0 for s ≥ 1 we have that

R =
∑
s,r≥0

(Rh)r∧(Rg)s =
∑
r≥0

(Rh)m∧(Rg)0.

However, in view (4.12) we thus have that

R = (Rh)0∧(Rg)0 = R0

i.e., Rm = 0 for m ≥ 1. From Proposition 2.2 we now conclude that
O(E), f is a resolution and annR = (I,J ).

Finally, assume that I and J are Cohen-Macaulay sheafs and the
resolutions O(Eg), g and O(Eh), h have minimal lengths codim I and
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codimJ , respectively. Then the product resolution O(E), f has (mini-
mal) length p = codim I+codimJ . Let U f , Rf denote the currents as-
sociated with this complex. Then Rf as well as Rh∧Rg are ∂̄-closed hy-
permeromorphic currents of bidegree (0, p) with support on Z = Zg∩Zh

which has codimension p, and hence they are Coleff-Herrera currents,
according to Proposition 2.1. Moreover,

∇End(U
f − Uh∧U g) = Rf −Rh∧Rg.

It follows from [1] (analogously as for a complete intersection in [2])
that Rf −Rh∧Rg must vanish. �

Remark 7. If O(Eg), g and O(Eh), h are resolutions one can verify
(without residue calculus) that product complex is a resolution as well
if and only if (1.5) holds. Since this should be well-known we just
sketch an argument: It is not too hard to see that (for each fixed point
x)

(4.13) Hm(Eh ⊗ Eg) = ⊗`+k=mH
`(Eh)⊗Hk(Eg).

For instance, one can choose Hermitian metrics on Eg and Eh. If
h∗ and h∗ and f ∗ = g∗ + h∗ are the induced adjoint mappings and
∆f = ff ∗ + f ∗f , etc, then ∆f = ∆g + ∆h. As usual each class in
Hm(Eh ⊗ Eg) has a unique harmonic representative

v =
∑

`+k=m

ξ`∧ηk.

However, it is easily verified that ∆fv = 0 if and only if ∆gξ` = 0 =
∆hηk for all `, k. Thus (4.13) follows.

Let ZI
k and ZJ

` be the varieties associated to the sheaves I and J .
Since O(Eg), g is exact, it follows that Hk(Eg) = 0 at a given point x
if and only if x /∈ ZI

k and similarly for Eh. In view of (4.13), therefore
Hm(E) 6= 0 at x if and only if

x ∈ ∪`+k=mZ
I
k ∩ ZJ

` .

Thus codimZm ≥ m for all m if and only if (1.5) holds, and in view
of the Buchsbaum-Eisenbud theorem, see [9], therefore O(E), f is a
resolution if and only if (1.5) holds. �

5. Proofs of the main results

We begin with

Proof of Theorem 1.1. If φ is strongly holomorphic, then it is repre-
sented by a function Φ that is holomorphic in a neighborhood of Z.
Thus ∇(φR) = ∇(ΦR) = Φ∇R = 0.

Now assume that ∇(φR) = 0 and φ is represented by g/h. Then by
Leibniz’ rule, see [4], we have that

0 = ∇(g(1/h)R) = −g∂̄ 1

h
∧R.



11

This means that g annihilates the current ∂̄(1/h)∧R, and by Corol-
lary 1.5 therefore g = αh + ψ, where ψ ∈ J . It follows that g/h − α
belongs to J outside the zero set of h, and hence by definition φ is
strongly holomorphic. �

Since φR is a well-defined, we also have a well-defined current

∂̄φ∧R = −∇(φR) = g∂̄
1

h
∧R = ∂̄|h|2λ∧g

h
R|λ=0.

Proof of Corollary 1.2. First assume that φ is (strongly) smooth and
holomorphic on Zreg. It is well-known that each weakly holomorphic
function on Z (i.e., φ holomorphic on Zreg and locally bounded at
Zsing) is meromorphic, see, e.g., [7]. Therefore, we have a priori two
definitions of φR; either as multiplication of smooth function times R
or as multiplication by the meromorphic function φ. However, they
coincide on Zreg and by the SEP therefore they coincide even across
Zsing. Therefore also the two possible definitions of ∇(φR) = −∂̄φ∧R
coincide. Since φ is holomorphic on Zreg it follows that ∂̄φ∧R has
support on Zsing. On the other hand,

(∂̄φ∧R)|Zsing
= ∂̄φ∧RZsing

= 0

by the SEP, and hence ∇(φR) = −∂̄φ∧R = 0. Now the corollary
follows from Theorem 1.1 with m = ∞. However, a careful inspection
of all arguments reveals that only a finite number of derivatives (not
depending on φ) come into play. We omit the details. �

Proof of Theorem 1.3. The hypothesis means that 0 = ∂̄(φµ) for all
µ ∈ Hom (O/J , CHZ). It is proved in [1] that each current µ in
Hom (O/J , CHZ) can be written µ = ξRp for some ξ ∈ O(E∗) such
that f ∗p+1ξ = 0 and conversely for each such ξ the current µ = ξRp is
in Hom (O/J , CHZ). Here f ∗k are the induced mapping(s) on the dual
complex O(E∗

k). Thus

0 = ∂̄φ∧ξRp

for each such ξ. At a given stalk outside Zp+1, the ideal Jx is Cohen-

Macaulay, so if we choose a minimal resolution O(Ẽ), f̃ there it will
have length p. If R̃p denotes the resulting (germ of a) residue current,
then the hypothesis implies that

0 = ∂̄φ∧R̃p

since then trivially f̃ ∗p+1ξ = 0 for each ξ ∈ O(Ẽ∗
p). However, Rp = αR̃p,

where α is smooth, see [3]. It follows that ∂̄φ∧Rp vanishes outside
Zp+1. Since Rp+1 = αp+1Rp outside Zp+1 it follows that also ∂̄φ∧Rp+1

has support on Zp+1. However, it is clear that ∂̄φ∧R must have support
on A. Using the hypothesis codim (A∩Zk) ≥ k+2 for k > p, it follows
by induction that ∂̄φ∧R = 0. Thus φ is strongly holomorphic according
to Theorem 1.1. �
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méromorphe, Lect. Notes in Math. 633, Berlin-Heidelberg-New York (1978).

[7] J-P Demailly: Complex Analytic and Differential Geometry, Monograph
Grenoble (1997).

[8] A. Dickenstein & C. Sessa: Canonical representatives in moderate coho-
mology, Invent. Math. 80 (1985), 417–434..

[9] D. Eisenbud: Commutative algebra. With a view toward algebraic geometry,
Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.

[10] G. Henkin & M. Passare: Abelian differentials on singular varieties and
variations on a theorem of Lie-Griffiths, Invent. math. 135 (1999), 297–328.

[11] B. Malgrange: Sur les fonctions différentiables et les ensembles analy-
tiques, Bull. Soc. Math. France 91 (1963), 113–127.

[12] M. Passare: Residues, currents, and their relation to ideals of holomorphic
functions, Math. Scand. 62 (1988), 75–152.

[13] M. Passare & A. Tsikh & A. Yger: Residue currents of the Bochner-
Martinelli type, Publ. Mat. 44 (2000), 85-117.

[14] H. Samuelsson: Regularizations of products of residue and principal value
currents, J. Funct. Anal. 239 (2006), 566–593.
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E-mail address: matsa@math.chalmers.se


	PREPRINT 2007:40
	MATS ANDERSSON
	Department of Mathematical Sciences
	Division of Mathematics
	Preprint 2007:40
	Department of Mathematical Sciences
	Division of Mathematics
	Chalmers University of Technology and Göteborg University
	ISSN 1652-9715





