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Jonatan Vasilis
Department of Mathematical Sciences
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Abstract

The sharp ring lemma states that if n > 3 cyclically tangent discs with
pairwise disjoint interiors are externally tangent to and surround the unit
disc, then no disc has a radius below cn = (F2

n−1+F2
n−2−1)−1 –where Fk

denotes the kth Fibonacci number – and that the lower bound is attained
in essentially unique Apollonian configurations.
Here we give a proof by transforming the problem to a class of strip

configurations, after which we closely follow Aharonov’s and Stephenson’s
method of proof [3].
Generalizations to three dimensions are discussed, a version of the ring

lemma in three dimensions is proved, and a natural generalization of the
extremal two-dimensional configuration – thought to be extremal in three
dimensions – is given. The sharp three-dimensional ring lemma constant
of order n is shown to be bounded from below by the two-dimensional
constant of order n − 1.

Keywords: ring lemma, circle packing, sphere packing, Apollonian.
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1Introduction

Consider the unit disc in R2 and a disc externally tangent to it. Succes-
sively add discs that are externally tangent to both the unit disc and the
previous disc, stopping when the first disc is intersected and the unit disc
is enclosed by the discs (figure 1). Ifn discs with pairwise disjoint interiors
surround the unit disc, how small can such a disc be? Let cn denote the
infimum of the radii. The sharp Rodin-Sullivan ring lemma gives that cn

is a reciprocal integer and also that the infimum is attained in essentially
unique configurations.
The observation that cn > 0 was made by Rodin and Sullivan [16]

in their proof of Thurston’s conjecture regarding the convergence of the
discrete Riemann mapping to its classical counterpart. Shortly afterwards,
Hansen [12] derived a configuration in which the infimum is attained and
gave a nonlinear recursion formula for calculating cn.
Aharonov [1] used the Descartes circle theorem – see below – to give a

closed expression for cn and also to prove that cn is a reciprocal integer
for all n > 3.
Later, Aharonov and Stephenson [3] (originally published in [2]) gave a

more detailed proof of the extremal configuration – including uniqueness
– and also showed that the extremal configuration is a special case of a
more general class of so-called Apollonian circle packings. They also
expressed cn in terms of Fibonacci numbers, cn = (F2

n−1 + F2
n−2 − 1 .)−1

Furthermore, they showed that the extremal configuration is also extremal
with respect to angles between the centers of two tangent discs, as seen
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Figure 1 Seven discs surround the unit disc. How large must the smallest disc be?

from the origin. Stephenson has also given a different proof [21], closer to
that of Hansen.
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2 Preliminaries

In general, we let r, r ′, ri and so on denote the radii of correspondingly
marked discs D, D ′, Di. Half-planes are considered to be discs of infinite
radius in R2 ∪ {∞}, and two such discs have disjoint interiors if they only
intersect at infinity, in which case they are also tangent. All discs are closed.

Definition. DiscsD1, . . . , Dn, n > 3, that have pairwise disjoint interiors
and are externally tangent to the unit disc D0 are said to surround D0 if,
after renumbering the discs counterclockwise by their tangency with D0:

(i) Di and Di+1 are tangent, and

(ii) αi 6 π, where αi is the length of the counterclockwise arc of D0

from Di ∩D0 to Di+1 ∩D0,
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where Dn+1 = D1 and i = 1, . . . , n.
Tangencies imposed by (i) are said to be ordinary tangencies, whereas

other tangencies between D1, . . . , Dn are said to be extra or non-trivial
tangencies.

Remark. If at most one of the discs has an infinite radius, condition (ii)
is equivalent to requiring that the discs separate D0 from infinity.

If a configuration of n discs surrounding the unit disc has extra tangen-
cies, we get a subconfiguration of k < n discs surrounding the unit disc
by removing the redundant discs.
Rodin and Sullivan proved [16] the following result.

The ring lemma. For each n > 3, let cn denote the infimum of the radii
among n discs surrounding the unit disc. Then cn > 0.

The sharp ring lemma states that cn = (F2
n−1 + F2

n−2 − 1 ,)−1 where Fk is
the kth Fibonacci number, and that this lower limit is attained in essentially
unique configurations, see section 3 for the precise statement.
We will use the Descartes circle theorem in the following special case,

where the balls are required to have pairwise disjoint interiors. Just as half-
planes are viewed as discs of infinite radius, half-spaces are considered
to be balls of infinite radius in R3 ∪ {∞}, having disjoint interiors if they
only intersect at infinity, in which case they are also tangent.

The Descartes circle theorem. Suppose N + 2 pairwise tangent balls in
RN,N > 2, have pairwise disjoint interiors and inverse radii b1, . . . , bN+2.
Then N

∑
i b2

i = (
∑

i bi .)2

See [6] or [15] for an elementary proof 1 and [9–11, 13, 14] for considerable
generalizations. There is a converse statement [6, 14] – that is, given radii
that satisfy the equation we can construct the corresponding balls – but
we will only need this easy fact [15] in dimensions two and three: given
N + 1 pairwise tangent balls in RN with pairwise disjoint interiors, there
are precisely two spheres that are tangent, possibly internally, to each of

1 The original theorem has been rediscovered many times, but Soddy and Gosset brought it
to modern attention through the poems [19] and [8].
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the given balls without intersecting the interior or coinciding with the
boundary of any of the balls.
By introducing an extra tangency and using the Descartes circle theo-

rem, one may show that the ring lemma constant satisfies cn+1 < cn, but
we will not need this in order to prove the sharp ring lemma.

2.1 Apollonian configurations

The sharp ring lemma, which we will give a proof of below, gives that the
sharp value of the ring lemma constant is attained in essentially unique
configurations. Those configurations, which we will call Apollonian con-
figurations, are defined as follows.
We recursively construct a configuration of discs A1, A2, . . . such that

for each n > 3, the discsA1, . . . , An surround the unit discD0 (figure 2).
First, we let A1, A2, A3 be discs with pairwise disjoint interiors that are
externally tangent to the unit disc and where A1, A2 have infinite radii,
henceA3 has unit radius. Given discsA1, . . . , An, n > 3, we letAn+1 be
externally tangent to D0, An−1 and An.

Definition. A configuration ofn > 3 discs surrounding the unit disc is said
to be an Apollonian configuration if it is equal to A1, . . . , An – as defined
above – up to reflection and rotation.

We see that the Apollonian configurations of three discs are unique up to
rotation, and that Apollonian configurations of order four and higher are
uniquely determined by the position of the third and fourth largest discs,
corresponding to A3 and A4, respectively.

2.2 Method of proof

Wewill prove the sharp ring lemma using a compactness argument in strip
configurations, defined below. A more ‘dynamic’ approach, which we will
not use, is as follows. Noting that given k ∈ {3, . . . , n}, the radius of Ak

in an Apollonian configuration of n discs cannot be increased if A1, . . . ,

Ak−1 are fixed, it would be natural to try to successively modify the radii
in an arbitrary configuration in order to reduce it to a configuration
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A1

A5

A3

A6

A4
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D0

Figure 2An Apollonian configuration of six discs A1, . . . , A6 surrounding the unit
disc D0. The radius of A6 is the smallest possible for six discs surrounding
the unit disc.

having this property. That is, given discs D1, . . . , Dn surrounding D0 we
want to find a permutation (i1, . . . , in) of (1, . . . , n) such that in the kth

step the radius of Dik
is increased – forcing Dik+1

, . . . , Din
to change in

order to maintain the surround property – until Dik
touches the already

increasedDi1
, . . . , Dik−1

. For this smaller set of configurations, the sharp
ring lemma can be verified using amonotonicity property of the Descartes
circle theorem.
The difficulty with this approach is determining in what order tomodify

the discs, while preventing the smallest radius from increasing after all
the adjustments. Given the properties of the Apollonian configurations, a
natural candidate is to index by size, so that rik

> rik+1
. However, one

must be more careful as the following simple counterexample shows (fig-
ure 3). Let D1, . . . , D6 be discs surrounding the unit disc D0, numbered
clockwise by their tangency withD0, having radii r1 = r2 = +∞, r3 = 1,
r5 = 1

5 and where D3 and D5 share an extra tangency; we see that this
gives min(r4, r6) < 1

12 . The largest disc that can be increased without
decreasing the radius of a larger disc isD5, and increasing the radius of
this disc as much asD1,D2 andD3 allow, we see that the new radii satisfy
min(r4, r6) = 1

12 .
This method of proof was pursued in more detail by Hansen [12] and

Stephenson [21]. Here we will reduce the problem to a simpler class of
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D2
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(a)

D6

D2

D0 D3

D1

D4

D5

(b)

Figure 3 The radii of the discsD1, D2, D3 in (a) cannot be increased without decreas-
ing a larger disc. Increasing the largest remaining disc D5 until it is stopped
by D1, D2, D3 gives the configuration in (b), where min(r1, . . . , r6) has
increased.

strip configurations and then closely follow Aharonov’s and Stephenson’s
method of proof [3].

Definition. Sequentially tangent discs D1, . . . , Dn, n > 2, are said to lie
in a strip configuration if all discs lie between two parallel straight lines L1

and L2, have pairwise disjoint interiors and are tangent to L1, and moreover
D1, Dn are tangent to L2.
A tangency betweenDi andDi+1, i = 1, . . . , n−1, is said to be ordinary,

and other tangencies, except those with L1, are said to be extra tangencies.

3 The sharp ring lemma in two dimensions

Aharonov and Stephenson proved the sharp ring lemma using two key
lemmas [3, lemmas 13 and 14], which in turn are proved by transforming
to a strip configuration. We prefer to transfer the original problem to
a single strip configuration – which Aharonov and Stephenson used to
describe the general Apollonian packing – and then proceed using their
method of proof.
Consider three sequentially tangent discs DI, DIII, DII – where the

III II
I

numbering is chosen to conform with the lemma below – that have pair-
wise disjoint interiors and are externally tangent to a half-plane in the
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DA
. . .h DB

2L

. . .
DII

DIII

DI

Figure 4The configuration of the lemma, where the discs DA, DI, DII, DB are se-
quentially tangent, andDIII is wedged between and tangent toDI andDII.
If only DI, DII and DIII vary, then the height h or radii rI, rII, rIII are
minimal only when DI and DII have an additional extra tangency.

given order. Since the center-to-center distance, as measured parallel to
the boundary of the half-plane, between two of the tangent discs with
radii r, r ′ is 2

√
r r ′ and since the discs DI, DII have disjoint interiors, we

see that√rIrIII +
√

rIIrIII >
√

rIrII. Hence, the smallest possible radius
ofDIII – given rI and rII – is determined by

√
rIII =

√
rIrII√

rI+
√

rII
, so that

DI and DII are tangent, with DIII wedged in between.2

Lemma. Suppose DI and DII are non-outermost discs that share an ordi-
nary tangency in a strip configuration. Construct a new strip configuration
by adding a disc DIII that shares an ordinary tangency with DI and DII.
Let h be the distance from the common line in the strip configuration to the
tangency betweenDI andDII. Suppose thath or one the of radii rI, rII, rIII

is minimal among the strip configurations obtained by varyingDI,DII and
DIII, while maintaining the extra tangency between DI and DII. Then DI

or DII has an additional extra tangency.

Proof. Let DA and DB be discs such that DA, DI, DIII, DII, DB are se-
quentially tangent discs with ordinary tangencies, and let 2L be the center-
to-center distance between DA and DB, as measured parallel to the com-
mon line in the strip configuration (figure 4).

2 This resulting configuration is a Japanese sangaku (�¹) problem [7, problem 1.1.1], [17],
engraved in the year 1824 on a tablet in the Gunma prefecture.
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We have that L =
√

rArI +
√

rIrII +
√

rIIrB, so that

√
rI =

L −
√

rIIrB√
rA +

√
rII

.

It is now clear that all configurations can be parameterized by rII ∈ [a, b],
0 < a 6 b constants, where rII ∈ {a, b} gives DI or DII an additional
extra tangency. Furthermore, by differentiating we see that rI is strictly
decreasing with rII, so the case when rI or rII is minimal follows.
By above for rIII and by geometry for h, we get

√
rIII =

( 1
√

rI
+

1
√

rII
,

)−1

h = 2
( 1

rI
+

1

rII
,

)−1

and the claim is that rIII and h have no minima for rII ∈ ]a, b[. To show
this we let t = 1√

rII
and note that it is sufficient that

d2

dt2

( 1√
rI(t)

+ t
)

=
2L(

√
rArB + L)

(Lt −
√

rB)3
,

1

2

d2

dt2

( 1

rI(t)
+ t2

)
=

( d
dt

( 1√
rI(t)

))2

+
1√
rI(t)

d2

dt2

( 1√
rI(t)

)
+ 1,

are strictly positive for t ∈
]

1√
b
, 1√

a

[
. Since Lt −

√
rB > 0, the claim

follows.

Proposition. If a configuration of n discs surrounds the unit disc, then
no disc has a radius below cn = (F2

n−1 + F2
n−2 − 1 ,)−1 where Fk is the

kth Fibonacci number. Furthermore, equality is achieved if and only if the
configuration is an Apollonian configuration.

Proof. Consider n > 3 discs surrounding the unit discD0. Take x̂ ̸= 0.
The reflection3 Φ in S(x̂, 1) – that is, the circle centered at x̂ with unit
radius – is a Möbius transformation4 satisfyingΦ−1 = Φ andΦ

(
S
(
(|x̂|±

3 In RN ∪ {∞}, the reflection Φ in the (N − 1)-dimensional sphere S(x0, r) is defined
as Φ(x) = x0 + r2

|x−x0|2 (x − x0) if x ̸= x0, ∞ and Φ(x0) = ∞, Φ(∞) = x0.
4 A transformation in the full Möbius group in the sense of Ahlfors [4], it is not sense-

preserving. In all dimensions, a generalized sphere – that is, a sphere or a plane – is
mapped to a generalized sphere.
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x̂
D0

D∗

(a)

x̂

D ′
0

D ′
∗

(b)

Figure 5(a) Seven discs surrounding the unit disc D0. The intersection between D0

and a disc D∗ is marked x̂. (b)The strip configuration given by reflecting
the discs in (a) in the unit circle centered at x̂.

r) x̂
|x̂| , r

))
= P

(
|x̂|± 1

2r

)
, where P(α) =

{
x ∈ R2; x · x̂

|x̂| = α
}
∪ {∞} is a

straight line.
Now let D∗ be one of the surrounding discs and x̂ its intersection with

D0. Transforming the configuration usingΦ gives a strip configuration
(figure 5), and the distance between x̂ and the half-planesD ′

∗ = Φ(D∗),
D ′

0 = Φ(D0) is h∗ = 1
2r∗

, h0 = 1
2r0

, respectively. Hence, r∗
r0

= h0

h∗
, so

that r∗
r0
is minimal precisely when h0

h∗
is.

Step 1: Extremal configurations are uniquely attained for minimal h0.

Without changing r∗
r0
, we may rescale so that h0 + h∗ = 2.

Since D ′
0 and x̂ are separated by discs, h0 must be larger than or equal

to the shortest distance between D ′
0 and the intersection between two of

the discs in the strip configuration, where equality is possible only if x̂ is
the intersection between two discs. However, placing x̂ at the intersection
between any two discs in the strip configuration gives two half-planes
under Φ as well as preserves the surround property.
Hence, we may assume that x̂ is the intersection between two discs in

the strip configuration, and we should find the smallest value of h0 in
strip configurations with n− 1 discs between the lines. Given the smallest
value of h0, we have that cn = h0

2−h0
.

Since, by the ring lemma, cn > 0 we immediately get a strictly pos-
itive lower bound on h0 as well as the radii in the strip configurations.
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We can also see this directly by considering sequentially tangent discs
D̃1, . . . , D̃n−1 in a strip configuration, where the outermost discs D̃1

and D̃n−1 have unit radius, and observe that
√

r̃1r̃i 6
√

r̃1r̃2 + · · · +√
r̃i−1r̃i. From the fact that there exists a constant C1 > 0 with r̃1 > C1

– in fact, r̃1 = 1 – we recursively get that r̃i → 0+ as r̃2 → 0+. However,
since r̃n−1 = 1, we see that there must be a lower bound C2 > 0 on the
radius r̃2, and, by repeating the argument, we get r̃i > Ci > 0.
In order to simplify the notation, we drop the prime and allow ourselves

below to ambiguously also let Di denote D ′
i = Φ(Di), and so on.

Step 2:Theminimal radius in strip configurations is uniquely attained
in Apollonian configurations.

Before showing that Apollonian configurations uniquely determine the
smallest height h0, we show that they uniquely determine the smallest
radius among all the strip configurations.
Let sn be the infimum of all radii in strip configurations with n − 1

discs between the two lines and let an be the corresponding infimum over
radii in Apollonian configurations of n discs under Φ, in both cases after
rescaling so that the straight lines are at a distance 2 from each other. The
latter is attained by letting x̂ in the original configuration be the intersec-
tion between D0 and the smallest disc, and we see that the configuration
of n − 1 > 3 discs between the lines contains the configuration of n − 2

discs5 (figure 6).
The casesn = 3, 4 are trivial. Suppose the claim is true forn = 3, . . . , k,

and consider the case n = k + 1, having k > 4 discs between two lines.
By compactness, an extremal configuration is attained, giving the smallest
possible radius. Let D̃ be the smallest disc in the strip configuration and
call its neighbors DI, DII with radii sk+1 = r̃ 6 rI 6 rII.
We show that rI > sk = ak and rII > sk−1 = ak−1, so that, by the

considerations before the lemma, r̃ > ak+1 where the minimality of r̃

guarantees equality and, hence, also guarantees that rI = ak, rII = ak−1.

5 Furthermore, the configuration is a subset of the Ford circles. In particular, the coordinates
of the tangencies with the common line can be arranged in a Farey sequence [5].
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x̂

Figure 6An Apollonian configuration with six discs surrounding the unit disc (fig-
ure 2) after reflection in a disc with unit radius centered at the intersection
between the unit disc and the smallest disc.

Clearly, only the larger disc DII can be an outermost disc, and we first
assume it is not. The minimality of r̃ gives that D̃ does not lie in a proper
subconfiguration, hence it has no extra tangencies, and, using the lemma
twice, we see that DI and DII have extra tangencies. In particular,DI is
in a k-configuration, so that rI > sk = ak.
Consider first the case whereDI andDII are not tangent. Since D̃ does

not lie in a proper subconfiguration, the extra tangency of the larger disc
DII must encompass both DI and D̃. Hence, DII is in a p-configuration,
where p 6 k−1, so in particular rII > sk−1 = ak−1, which is the desired
inequality.
Secondly, consider the case when DI and DII are tangent, with D̃

wedged in between, so thatDI andDII share an extra tangency. By the
lemma, DI or DII has an additional extra tangency. IfDII has the addi-
tional extra tangency, it lies in a p-configuration, with p 6 k − 1, so that
rII > sk−1 = ak−1, and, since rII > rI, we get the same inequality if
instead DI has an additional extra tangency.
The easy case whereDII is an outermost disc remains. Obviously rII =

1 > sk−1 = ak−1, and using the lemma once we also see that DI has an
extra tangency, so that rI > sk = ak.
Consequently, sk+1 = r̃ = ak+1 and also rI = ak, rII = ak−1,

in particular DI and DII must be tangent. Hence, DI is a disc in a k-
configuration with rI = ak = sk, and, by the uniqueness for k-configu-
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rations, it must be an Apollonian configuration, giving uniqueness in the
case k + 1 as well.
The claim follows by induction.

Step 3: The minimal height h0 is uniquely attained in Apollonian con-
figurations.

By compactness, an extremal configuration is attained, giving theminimal
height h0 for n − 1 discs between two lines. As noted above, x̂ is the
intersection between two discs DI, DII.
Recall that h0 = 2

(
1
rI

+ 1
rII

)−1 and by step 2, we have that rI, rII >
sn = an. Furthermore, since h0 is minimal, the lemma requires DI or
DII to have an extra tangency or to be an outermost disc; in either case
we get max(rI, rII) > sn−1 = an−1. By the minimality of h0 we get
h0 = 2

(
1

an
+ 1

an−1
,

)−1 so in particular min(rI, rII) = sn = an.
Hence, Apollonian configurations give the smallest height h0, and since

an extremal radius sn = an is attained in such configurations we get
uniqueness by step 2.

Extremal radii

Letting xn = 1√
an+1

, we showed above that xn = xn−1 + xn−2, n > 3,
where x1 = x2 = 1; hence xn = Fn, the nth Fibonacci number, and an =

1
F2

n−1

.The height forn−1 discs, corresponding ton discs surrounding the

unit disc, is then given by h0 = 2
(

1
an

+ 1
an−1

)−1
= 2 (F2

n−1 + F2
n−2 ,)−1

and it immediately follows that the extremal radius, given by h0

2−h0
, is

cn = (F2
n−1 + F2

n−2 − 1 .)−1
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4The ring lemma in three dimensions

4.1Introduction

A generalization of the ring lemma to three dimensions should determine
the infimum of the radii for a set of n balls with pairwise disjoint interiors
surrounding the unit ball. It is not clear, however, in what sense a finite
set of balls should ‘surround’ the unit ball. For instance, given any finite
number of balls tangent to the unit ball, one can always find a smooth
curve starting on the unit sphere that escapes to infinity without passing
through any of the balls.

4.2Surrounding and hiding packings

All balls are closed, and we remind that we view half-spaces as balls of
infinite radius in R3 ∪ {∞}, having disjoint interiors if they only intersect
at infinity, in which case they are also tangent.
For each set of balls B1, . . . , Bn we define a combinatorial complex

K(B1, . . . , Bn) of vertices, edges and faces as follows: start with n vertices
v1, . . . , vn, add edges between vi, vj, i ̸= j if Bi, Bj are tangent, i, j =

1, . . . , n, and faces given by every set of three edges corresponding to
three pairwise tangent balls.

Definition. Suppose B1, . . . , Bn, n > 4, are balls with pairwise disjoint
interiors that are externally tangent to the unit ball B0. We say that the
balls B1, . . . , Bn surround B0 if K(B1, . . . , Bn), as defined above, has a
subcomplex, containing all the vertices, that triangulates the unit sphere,
and if the triangulation can be embedded without overlap in the unit sphere
in such a way that:

(i) vi is the point of tangency between B0 and Bi,

(ii) each edge is a shortest path on the unit sphere between its endpoints,
and

(iii) the faces are spherical triangles Tijk satisfying area(Tijk) 6 2π.

If, additionally, every straight half-line starting at the origin intersects B1 ∪
· · · ∪ Bn, we say that B1, . . . , Bn hide B0.

17



Condition (iii) gives the convexity property that between any two points
in Tijk there is a shortest path on the unit sphere that is contained in Tijk,
and consequently that any shortest path strictly shorter than π between
points in Tijk is contained in Tijk.
Remark. In two dimensions, unless two of the discs are half-planes, no
curve starting on the unit disc can escape to infinity without passing
through one of the surrounding discs. Hence, a hide property is less
interesting in two dimensions.
Remark. Portions of lattice structures such as hexagonal close packing or
face-centered cubic – lattices which are of great practical importance – do
not satisfy this definition. In fact, both packings can be realized as stacked
layers of identical balls forming a hexagonal pattern, making each ball
tangent to twelve others. If we select a ball, corresponding to the unit ball
and consider the balls tangent to it, six of the balls form a closed chain
around the original ball and the other six are divided between two layers,
each containing three balls. The above definition only considers groups
of three pairwise tangent balls, and we see that we get six ‘holes’ formed
between groups of four cyclically tangent balls. We may, however, add a
ball in each ‘hole’ in order to satisfy the definition.

4.3 Lemma for the lower bound

Take x̂ ̸= 0. Denote by Φ the reflection in S(x̂, 1) – that is, the sphere cen-
tered at x̂ with unit radius – which is a Möbius transformation satisfying
Φ−1 = Φ and Φ

(
S
(
(|x̂| ± r) x̂

|x̂| , r
))

= P
(
|x̂| ± 1

2r

)
, where P(α) =

{
x ∈

R3; x · x̂
|x̂| = α

}
∪ {∞} is a plane. Furthermore, we let r, r ′, ri and so on

denote the radii of correspondingly marked balls B, B ′, Bi.

Lemma. Suppose B1, . . . , Bn surround B0. Let B∗ be one of the surround-
ing balls and x̂ its intersection withB0. Denote byΦ the reflection in S(x̂, 1).
If the spherical triangle Tpqr contains the antipode of x̂, then 1

r′i
+ 1

r′j
> 4

for all i, j ∈ {p, q, r} with r ′i, r
′
j < +∞ and i ̸= j, where r ′i is the radius of

Φ(Bi).

Proof. Transforming the configuration using Φ gives a kind of three-
dimensional ‘strip configuration’ where the balls tangent to B∗ form a

18



x̂

L

B∗

B0

(a)

B ′
0

x̂

L

B ′
∗

(b)

Figure 7Portion of a packing when transformed byΦ, the reflection in S(x̂, 1). In (b),
x̂ and B ′∗ have been shifted towards B ′0 for clarity. The line L – which in
(a) passes through x̂ and its antipode – is invariant as a set under the
transformation.

closed chain of balls tangent to the half-spaces B ′∗ = Φ(B∗) and B ′0 =

Φ(B0).
For purposes of orientation, we consider B ′0 to lie below B ′∗ – a point x

lies below another point x ′, and x ′ above x, if x is closer to the boundary
of B ′0 than x ′ is – and in the original configuration we let x̂ be the north
pole of B0 (figure 7).
To simplify the notation, we renumber so that (p, q, r) = (1, 2, 3). If

Bi, Bj, i ̸= j, are tangent at t̃ij we let tij =
t̃ij

|t̃ij|
, which is the point on B0

closest to the tangency between Bi and Bj.
Suppose first that B∗ ̸= Bi, i = 1, 2, 3. Referring to the ‘strip configura-

tion’ – figure 7 (b) – consider the three planesP ′12, P ′13, P ′23 that are parallel
to the boundary of B ′0 and where P ′ij passes through B ′i ∩ B ′j. Aiming to
show that x̂ = Φ(∞) lies on or above at least one of the planes, we assume
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B2

B0

t12

H

α2B1

t01

Figure 8 The plane through the tangencies between B0, B1 and B2 determines a great
circle onB0. Noticing that the half-spaceH, which enclosesB1 and is tangent
to the same ball at B0 ∩ B1, contains B1 ∩ B2, we see that the angle α2 is
acute.

this is not the case. Then the planes P ′ij are mapped by Φ to spheres that
contain Bi ∩ Bj, are tangent to B∗ at x̂ and enclose B∗\{x̂}, and it follows
that t12, t13 and t23 lie in the interior of the northern hemisphere. We
obtain the required contradiction by showing that the spherical triangle
T123 cannot enclose the south pole −x̂, contradicting the construction.
Since the points of tangencies between the balls B1, B2, B3 lie on the

northern hemisphere ofB0, we see that atmost one of them can be tangent
to the southern hemisphere of B0. If all balls B1, B2, B3 are tangent to the
northern hemisphere, we obtain the contradiction immediately, hence we
may assume without loss of generality that B1 is tangent to the interior
of the southern hemisphere of B0. Consider first the plane through the
tangencies betweenB0,B1 andB2 (figure 8).The plane passes through the
center of B0 and determines a great circle on B0. We see that the length
α2 of the shortest path on the unit sphere between t01 and t12, satisfies
α2 < π

2 , and the same holds for the correspondingly defined length α3.
Thepoints t12 and t13 lie on the northern hemisphere, andwe claim that

since the lengths α2, α3 satisfy max(α2, α3) < π
2 , the spherical triangle

T123 cannot enclose −x̂. First, note that it is sufficient to consider the
spherical triangle contained in T123 that has vertices t12, t13, t01, where
we may assume that t12 and t13 lie on the equator. Suppose now that the
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south pole is contained in this smaller triangle. Since the triangle does
not contain a great circle, a shortest path on the unit sphere from t01 to
the south pole – a path which lies within the triangle – may be extended
within the triangle along its great circle until it intersects the side between
t12 and t13 at a point x. The intersection is at a right angle, and, without
loss of generality, we may assume that the shortest path between x and
t13 is shorter than π

2 and also exclude the trivial case x = t13. Letting
a, b, c be the lengths of the sides opposite to x, t13 and t01, respectively,
the spherical Pythagorean theorem yields cosa = cosb cos c. We have
that a < π

2 , b 6 π, c 6 π
2 , hence cosa > 0 and cos c > 0, so that b < π

2 ,
which is impossible since the corresponding shortest path passes through
both the equator and the south pole.
Now consider the case where B∗ = Bi for some i; without loss of

generality we may assume that B∗ = B3. Using the previous construction
of P ′12, we again assume that x̂ lies strictly below P ′12, and, as above, it
follows that t12 lies on the northern hemisphere of B0. Furthermore, we
see that the projection x 7→ x

|x| on B0 of the entire ball B3 = B∗ lies on
the northern hemisphere of B0, hence so does t13, t23. Again this means
that the spherical triangle T123 determined by B1, B2, B3 cannot enclose
−x̂.
Hence x̂ – which is a distance 1

2 from B ′0 – must lie on or above at least
one plane P ′ij. Since the distance between P ′ij and B ′0 is 2

(
1
r′i

+ 1
r′j

,
)−1 just

like in the two-dimensional case, we get the desired inequality.

Remark. We see that the proof gives a useful geometrical interpretation
of the lemma: In the ‘strip configuration’ – figure 7 (b) – the point x̂ is
never closer to B ′0 than is the point of tangency between two balls, balls
which in the original setting – figure 7 (a) – determine two vertices of a
spherical triangle containing the antipode of x̂.

4.4The Apollonian packings in three dimensions

The Apollonian packings – the extremal packings in the two-dimensional
case – have a natural generalization to three dimensions. We start with
four pairwise tangent ballsA1, . . . , A4 with pairwise disjoint interiors that
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are externally tangent to the unit ball A0 and have radii a1 = a2 = +∞
and a3 = a4 = 1, respectively. Then, in the smallest pockets, we add
balls having pairwise disjoint interiors with the previous, starting with
A5 tangent to A0, A2, A3 and A4, or – equivalently in terms of radii –
A1 instead of A2. The ball A6 is tangent to A0, A3, A4 and A5; A7 is
tangent to A0, A4, A5 and A6, or equivalently A3 instead of A4. Having
determinedA1, . . . , An,n > 7, the next ballAn+1 is tangent toA0,An−2,
An−1 and An. The radius of the ball An is denoted an.
We see that an Apollonian packing A1, . . . , An of n > 4 balls defined

in this way surrounds, but does not hide,A0 in the sense above. However,
the only unhidden portion of A0 is along the great circle parallel to the
two half-spaces, and, without breaking the surround property, we can add
four balls with unit radius to hide the portion not already hidden by A1

and A2.

4.5 The ring lemma in three dimensions

Proposition. For eachn > 4, let cn(R3) denote the infimum over the radii
among all balls B1, . . . , Bn surrounding the unit ball. The constant cn(R3)

is bounded from below by the two-dimensional ring lemma constant for
n − 1 discs and from above by the smallest radius in an Apollonian packing
of n balls, that is cn−1(R2) 6 cn(R3) 6 an.

Proof. The upper bound follows immediately since an Apollonian pack-
ing of n > 4 balls surrounds B0. Now take n > 4 and suppose that
B1, . . . , Bn surround B0.
Let x̂ be the point of tangency between B0 and one of the balls having

the minimal radius among B1, . . . , Bn. The distance between x̂ and the
half-spaces B ′∗ = Φ(B∗),B ′0 = Φ(B0) is h∗ = 1

2r∗
,h0 = 1

2r0
, respectively.

Hence, r∗
r0

= h0

h∗
, so that r∗

r0
is minimal precisely when h0

h∗
is, and, without

changing r∗
r0
,wemay rescale so thath0+h∗ = 2.Thus, for the lower bound,

we should show that the smallest value of h0 satisfies h0

2−h0
> cn−1(R2).

By the geometrical interpretation of the lemma, we have that h0 is
greater than the distance between B ′0 and B ′i ∩ B ′j, for some tangent balls
B ′i, B

′
j. We may take a non-self-intersecting edge path vi1

, . . . , vi, vj, . . . ,
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vik
, where r ′i1

= r ′ik
= 1. Hence we get a chain of k tangent balls B ′i1

,

. . . , B ′ik
, and we may construct a straight chain where all tangencies with

B ′0 lie on a straight line as follows. Start with B ′i1
, B ′i2

and move B ′i3
while

keeping the tangency with B ′i2
so that its tangency with B ′0 lies on the line

determined by B ′i1
∩ B ′0 and B ′i2

∩ B ′0. Note that the interiors of B ′i1
and

B ′i3
are still disjoint, since the center-to-center distance increases with

the center-to-center distance measured parallel to the boundary of B ′0.
Recursively, this yields a straight chain.
Considering the plane through all the points of tangencies between

B ′0, B ′i1
, . . . , B ′ik

, we get a two-dimensional strip configuration, so, by the
two-dimensional ring lemma, the distance d between B ′0 and B ′i ∩ B ′j –
which is less than h0 – must satisfy d

2−d > ck+1(R2), and we see that
h0

2−h0
> ck+1(R2). Since there are n − 1 balls between the half-spaces,

of which we may discard at least one of the three or more balls that have
unit radius, we see that k 6 n − 2, so that h0

2−h0
> cn−1(R2), giving the

desired lower bound on cn(R3).

Again, we may use the Descartes circle theorem to see that cn+1(R3) <

cn(R3). Letting hn = hn(R3) be the infimum over the radii among all
balls B1, . . . , Bn hiding the unit ball, we have that cn(R3) 6 hn 6 an−4,
where the last inequality holds for n > 8.

4.6Numerical values

To calculate the radii ai in the Apollonian packing, it is easiest to use
the Descartes circle theorem, which gives that 3(b2

0 + b2
n−2 + b2

n−1 +

b2
n + b2

n+1) = (b0 + bn−2 + bn−1 + bn + bn+1 ,)2 where bi = ,ai
−1

and, as in [1], we subtract the equations for n and n + 1 to get – using
the fact that bn+2 ̸= bn−2 – the linear recurrence equation bn+2 =

b0 − bn−2 + bn−1 + bn + bn+1, which is related to [18, A052527]. We
have that b0 = 1, b1 = b2 = 0, b3 = b4 = 1, hence bn ∈ N. Solving the
recurrence equation gives that

bn = C1(α + β)n +
C2

(α + β)n
+ (−1)n(C3 cosnγ + C4 sinnγ) − 1,
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Table 1 The sharp constant cn(R3) in the three-dimensional ring lemma satisfies
cn−1(R2) 6 cn(R3) 6 an.

n 1/an 1/cn−1(R2)

4 1 1
5 3 4
6 6 12
7 10 33
8 19 88
9 33 232
10 57 609
11 100 1596

where

α =

√
13 + 1

4
, β =

√√
13 − 1

8
, γ = arccos ,2β−1

C1,2 =
1

2
+

1√
13
∓ 1

2

√
2
√

13 + 7

13
,

C3 = 1 −
2√
13
, C4 = −

√
2
√

13 − 7

13
,

and we see that bn =
[
C1(α + β)n

]
− 1, n > 4, where [x] is the integer

closest to x.
The first few upper and lower bounds of cn(R3) are summarized in table 1.

4.7 Discussion

There are several potential ways to improve the lower bound. The present
methodmay be improved by using a better upper estimate in the following
problem.

Problem. Given a triangulation with n vertices of a two-dimensional
topological disc, how long can the shortest edge path be that is non-self-
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intersecting, that starts and ends on the boundary, and that passes through
a given edge?
In the proposition, we only noted that one never has to pass throughmore
than n − 1 vertices.
Still, one should probably not expect significant improvements – in

particular not for large n – using only two-dimensional estimates. Instead
one should exploit the fact that each interior ball B ′ in the ‘strip configu-
rations’ is tangent to three or more sequentially tangent balls, B ′1, . . . , B ′k.
Assuming all radii r ′i are bounded from below, the lower bound on r ′

given by the requirement that B ′ is tangent to two of the balls, is less than
what the stronger6 requirement of tangency with all of the balls gives.
In two dimensions, each disc has exactly two required tangencies, and

varying those two discs is in essence what gives the sharp ring lemma. In
three dimensions, however, each ball can have arbitrarily many tangencies
that are part of the triangulation, and this is – intuitively speaking – the
reason a sharp result cannot be immediately obtained in the same manner
as in two dimensions. It seems likely, however, that using more than three
tangencies for the smallest ball is inefficient, but a proof is somewhat
complicated due to the sensitivity of ball packings: there is no immediate
guarantee that a change of radius will maintain the surround property or
even the tangency pattern.
Conjecture. cn(R3) = an, hn+4 = an, attained in essentially unique
configurations.
We see that our estimate yields c4(R3) = 1, and considering the ‘strip
configuration’, it is easy to see that c5(R3) = 1

4 .
Finally we note that the lemma in section 4.3 does not directly show that

an extremal three-dimensional packing has two half-spaces. Although
one may move x̂ to the intersection between two balls in the ‘strip con-
figuration’ without increasing the ratio r∗

r0
, it is not obvious that doing so

preserves the surround property.

6 In fact, we have the following result due to Soddy [20]: Given three pairwise tangent balls
B1, B2, B3 with pairwise disjoint interiors, a fourth ball B4 can be tangent to all three
balls only if its radius is sufficiently large. In fact, the minimal radius is attained precisely
when B4 lies in the plane through the points of tangencies between B1, B2, B3, and the
minimal radius can be calculated using the two-dimensional Descartes circle theorem.
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