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Abstract

We use low order approximations, piecewise linear, continuous velocities and piece-
wise constant pressures to compute solutions to Brinkman’s equation of porous
media flow, applying an edge stabilization term to avoid locking. In order to han-
dle the limiting case of Darcy flow, when only the velocity component normal to
the boundary can be prescribed, we impose the boundary conditions weakly using
Nitsche’s method [7]. We show that this leads to a stable method for all choices
of material parameters. Finally we present some numerical examples verifying the
theoretical predictions and showing the effect of the weak imposition of boundary
conditions.

Key words: Brinkman model, Stokes–Darcy model, stabilized methods,finite
element, interior penalty method, Nitsche’s method

1 Introduction

The Brinkman equations model creeping flow in porous media and can be
seen as a mixture of Darcy’s equations and Stokes’ equations. The behavior of
solutions to the Brinkman equations will be controlled by the ratio of perme-
ability (in Darcy) to viscosity (Stokes), and it is desirable from a numerical
point of view to develop methods that can handle the whole range of possible
ratios, from the pure inviscid Darcy problem to the Stokes problem with full
(infinite) permeability. In doing so, we are led to formulate the Darcy equa-
tions in mixed form using velocities and pressure as variables, as is done in
the Stokes case. One problem that then arises is the fact that a good method



for the Stokes problem may perform badly, or not even work, in the case of
a mixed form of the Darcy problem, see Mardal, Tai, and Winther [6]. In [4],
this problem was overcome by using a stabilized method that was shown to be
convergent for both Darcy and Stokes; the same method will be used in the
present study. Another inconvenient fact, from the point of view of numerical
implementation, is that the Darcy equations do not admit the same boundary
conditions as the Stokes equations: in the Darcy case only the velocity normal
to the boundary can be prescribed, whereas no-slip boundary conditions are
usually employed for Stokes. In this paper we suggest a remedy to this last
inconvenience: the use of weakly prescribed Dirichlet boundary conditions for
the velocities using Nitsche’s method [7].

Weakly imposed Dirichlet boundary conditions have been shown to be ad-
vantageous for convection-diffusion problems with outflow layers, in the work
of Burman [3], in that it will lead to discontinuous jumps in the solution at
the boundary rather than forcing a continuous numerical solution to mimic
discontinuities. It has also been promoted by Bazilevs and Hughes [1] as an
alternative to wall function models in turbulent channel flow, allowing for
limited slip at the boundary. In these cases, the balance between a first order
term (convection) and a second order term (diffusion/viscosity) is the factor
that favors weak boundary conditions; in our case it is the balance between a
zero order term (in Darcy) and a second order term (in Stokes). The idea is
thus more general and its full potential awaits exploitation.

We will consider the following Brinkman model of porous flow

σu −∇ · (µ∇u) + ∇p = f in Ω,

∇ · u = 0 in Ω,
(1)

where Ω is an open, bounded subset of R
d, u denotes the average fluid velocity

in the porous medium, σ the viscosity divided by the permeability, µ the
effective viscosity, p the pressure, and f is a given forcing term. We assume
that Ω has polygonal boundary ∂Ω and that the boundary is divided into two
non-overlapping sets ∂Ω = ΓD ∪ ΓN . The respective boundary conditions are

u = u0 on ΓD,

µ∂nu − pn = g on ΓN ,
(2)

where g = gnn+µgt, with gn a scalar and gt a vector in the plane perpendicular
to n. In other words we prescribe only the normal component of the Neumann
condition in Darcy limit µ = 0. Furthermore we assume that the measure of
ΓD is not zero i.e. we always have some Dirichlet boundary.

The side condition ∇ · u = 0 requires that some care is taken in the choice of
approximating spaces in order to avoid over-constraining the problem. Here
we shall use a stabilized scheme proposed for Stokes by Hughes and Franca [5],
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and for Darcy by Burman and Hansbo [4]. In this paper we apply this mixed
stabilized method to the Brinkman equations with weakly imposed boundary
conditions and prove optimal a priori estimates in the energy norm. We also
give an a posteriori error estimate and adaptive algorithm for energy norm
control of the computational error. Finally, we give some numerical examples
showing the performance of the method and the adaptive algorithm.

2 Finite element formulation

In order to formulate our finite element method we first introduce the weak
formulation of problem (1). We introduce the Hilbert spaces

Wu0
= {v ∈ [H1(Ω)]d s.t. v|ΓD

= u0},

and

L2
0 = {q ∈ L2(Ω) s.t.

∫

Ω
q dx = 0}.

We denote the product space Wu0
×L2

0 by Wu0
and define the following norm

on Wu0
,

‖(u, p)‖2
W = σ‖u‖2

0,Ω + µ‖u‖2
1,Ω + ‖∇ · u‖2

0,Ω + ‖p‖2
0,Ω.

Consider the bilinear form

B[(u, p), (v, q)] = (µ∇u,∇v)0,Ω +(σu, v)0,Ω− (p,∇·v)0,Ω− (q,∇·u)0,Ω. (3)

The weak formulation of (1) now takes the form, find (u, p) ∈ Wu0
such that

B[(u, p), (v, q)] = (f , v)0,Ω + (g, v)0,ΓN
∀(v, q) ∈ W0. (4)

Let T h be a conforming, shape regular triangulation of Ω. With K we denote
an element of the triangulation and with E an edge/face of the triangulation.
By hK and hE we denote the size of an element or edge/face, respectively, and
by h we denote the size of the largest element in T h. We introduce the two
classical finite element spaces of piecewise linears and piecewise constants

V h = {v s.t. v|K ∈ P1(K), v ∈ C0(Ω)},

Qh = {q s.t. q|K ∈ P0(K),
∫

Ω
q dx = 0}.

The velocity field will be sought in W h = [V h]d and the pressure field in Qh.
In analogy with the notation above we use the notation Wh := W h ×Qh. We
introduce the following bilinear and linear forms on which we will base our
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finite element method:

Bh[(u, p), (v, q)] = (µ∇u,∇v)0,Ω + (σu, v)0,Ω

− (p,∇ · v)0,Ω − (q,∇ · u)0,Ω − Jh(p, q)

− (µ∂nu, v)0,ΓD
− (µu, ∂nv)0,ΓD

+ (µγµh
−1u, v)0,ΓD

+ (p, v · n)0,ΓD
+ (u · n, q)0,ΓD

+ (γσh
−1u · n, v · n)0,ΓD

(5)

and

Lh[(v, q)] := (f , v)0,Ω + (g, v)0,ΓN
− (u0, ∂nv)0,ΓD

+
(
u0, µγµh

−1v
)

0,ΓD

+ (u0 · n, q)0,ΓD
+ (u0 · n, γσh−1v · n)0,ΓD

,
(6)

where
Jh(p, q) = δ

∑

(E∈T h)\∂Ω

hE([p], [q])0,E, (7)

with [·] denoting the jump over the element edge (taken on the interior edges
only). Above, and in what follows, in the inner product h = h(x) i.e. h cor-
respond to the element under integration, not to the global maximum. We
propose the following finite element formulation: find (uh, ph) ∈ Wh such that

Bh[(uh, ph), (vh, qh)] = Lh[(vh, q)] ∀(vh, qh) ∈ Wh. (8)

This finite element formulation is simply the standard Galerkin formulation
with Nitsche boundary conditions and the penalizing term Jh(p, q) added. In
the following we will assume that the pressure is in H1(Ω): then the penalizing
term is consistent and we have the following

Lemma 2.1 If (u, p) is a weak solution to (1) with (u, p) ∈ W ×H1(Ω)∩L2
0

then

Bh[(u − uh, p − ph), (vh, qh)] = 0 ∀(vh, qh) ∈ Wh. (9)

Proof. Immediate by noting that if p ∈ H1(Ω) then the trace of p is well
defined and hence Jh(p, qh) = 0 for all qh ∈ Qh.

�

3 Stability

Since it is a well known fact that the above choice of finite element spaces
results in an ill posed discrete problem if used in a standard Galerkin method,
the crucial point is to show that our stabilization operator Jh(p, q) introduces
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sufficient coupling between the degrees of freedom in the pressure field such
that an inf–sup condition is satisfied. This was done for Darcy in [4], using the
standard way of handling Dirichlet boundary conditions. Here, we extend the
analysis of [4] to the Brinkman model with weakly imposed Dirichlet boundary
conditions.

In the analysis, we will use the following norms:

‖(u, p)‖2
h := ‖(u, p)‖2

W + Jh(p, p) + µ‖u‖2
1/2,h,ΓD

+ ‖u · n‖2
1/2,h,ΓD

, (10)

|||(u, p)|||2h := ‖(u, p)‖2
h + µ‖u‖2

−1/2,h,ΓD
, (11)

where

‖v‖2
1/2,h,ΓD

:= (h−1v, v)0,ΓD
and ‖v‖2

−1/2,h,ΓD
:= (h v, v)0,ΓD

.

Note that the norms contain the L2–norm of ∇ · u; this term is superfluous
for Stokes since we already control the H1–norm of the velocities, but of vital
importance for Darcy. In fact, the control of the divergence is what allows us
to prove optimal error estimates in the energy norm for sufficiently regular
solutions. In what follows we will use the following well known estimates:

(∂nv, w)0,∂Ω ≤ ‖∂nv‖−1/2,h,∂Ω‖w‖1/2,h,∂Ω ∀v, w ∈ V h, (12)

‖∂nv‖2
−1/2,h,∂Ω ≤ CI‖∇v‖2

0,Ω ∀v ∈ V h, (13)

‖∇ · v‖2
−1/2,h,∂Ω ≤ CII‖∇ · v‖2

0,Ω ∀v ∈ V h. (14)

Note that due to estimate (13) the norms ‖ · ‖h and ||| · |||h are equivalent
on the finite element subspace.

In the following, we will let C denote a generic positive constant whos value
may change from instance to instance.

The main result of this section is the following theorem, assuring the well-
posedness of our discretization.

Theorem 3.1 Assume γµ > CI and γσ > 0. Then the finite element formu-

lation (8) satisfies the following inf–sup condition

α‖(uh, ph)‖h ≤ sup
(vh,qh)∈Wh

Bh[(uh, ph), (vh, qh)]

‖(vh, qh)‖h
, ∀(uh, ph) ∈ Wh.

Proof. The idea of the proof is to aquire control of the different terms of the
energy norm with different choises of test functions and finally combine the
choises using the linearity of the bilinear form.
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Step 1. Taking first (vh, qh) = (uh,−ph) we obtain

Bh[(uh, ph), (uh,−ph)] = µ‖∇uh‖2
0,Ω + σ‖uh‖2

0,Ω + Jh(ph, ph)

− 2
(
µ∂nu

h, uh
)

0,ΓD

+ γµµ‖u
h‖2

1/2,h,ΓD
+ γσ‖u

h · n‖2
1/2,h,ΓD

.

Using Young’s inequality and estimates (12) and (13) we get

Bh[(uh, ph), (uh,−ph)] ≥
(
1 −

CI

ǫ

)
µ‖∇uh‖2

0,Ω + σ‖uh‖2
0,Ω + Jh(ph, ph)

+ (γµ − ǫ)µ‖uh‖2
1/2,h,ΓD

+ γσ‖u
h · n‖2

1/2,h,ΓD
,

where ǫ > 0 is a parameter from Young’s inequality. Our assumption is that
γµ > CI . Therefore we can choose CI < ǫ < γµ and we have

Bh[(uh, ph), (uh,−ph)] ≥ C1µ‖∇uh‖2
0,Ω + σ‖uh‖2

0,Ω + Jh(ph, ph)

+ C2µ‖u
h‖2

1/2,h,ΓD
+ γσ‖u

h · n‖2
1/2,h,ΓD

.
(15)

Step 2. We are still missing the control of the pressure and the divergence of the
velocity. To gain control over the pressure we note that as a consequence of the
surjectivity of the divergence operator there exists a function vp ∈ [H1

0 (Ω)]d

such that ∇ · vp = ph and

‖vp‖1,Ω ≤ C‖ph‖0,Ω. (16)

Let πhvp denote the Scott–Zhang interpolant (cf. [2]) of vp onto [V h
0 ]d, where

V h
0 := {v s.t. v|K ∈ P1(K), v ∈ C0(Ω), v = 0 on ∂Ω}.

By the stability of the interpolant we have

‖πhvp‖1,Ω ≤ c̃‖ph‖0,Ω. (17)

We now choose the test function to be (vh, qh) = (−πhvp, 0). Adding

0 = ‖ph‖2
0,Ω − (ph,∇ · vp)0,Ω

and recalling that πhvp vanishes on the boundary we obtain

Bh[(uh, ph), (−πhvp, 0)] = −µ
(
∇uh,∇πhvp

)

0,Ω
− σ

(
uh, πhvp

)

0,Ω
+ ‖ph‖2

0,Ω

+
(
ph,∇ · (πhvp − vp)

)

0,Ω
+ µ

(
uh, ∂nπhvp

)

0,ΓD

.

Integrating the fourth term by parts on each element K we get

Bh[(uh, ph), (πhvp, 0)] = −µ
(
∇uh,∇πhvp

)

0,Ω
− σ

(
uh, πhvp

)

0,Ω
+ ‖ph‖2

0,Ω

+
∑

K∈T h

1

2

([
ph
]
, (πhvp − vp) · n

)

0,∂K
+ µ

(
uh, ∂nπhvp

)

0,ΓD

.
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Splitting the inner products using Schwarz inequality, followed by Young’s
inequality, we have

Bh[(uh, ph), (πhvp, 0)]

≥ −
1

2ǫ
µ‖∇uh‖2

0,Ω −
ǫ

2
µ‖∇πhvp‖

2
0,Ω −

1

2ǫ
σ‖uh‖2

0,Ω −
ǫ

2
σ‖πhvp‖

2
0,Ω

+ ‖ph‖2
0,Ω −

1

2ǫ
µ‖uh‖2

1/2,h,ΓD
−

ǫ

2
µ‖∂nπ

hvp‖
2
−1/2,h,ΓD

−
1

2δǫ
Jh(ph, ph) −

ǫ

2

∑

(E∈T h)\∂Ω

hE‖(π
hvp − vp) · n‖2

0,E.

Using estimate (13) and the stability of the interpolate (17) we get

Bh[(uh, ph), (πhvp, 0)]

≥ −
1

2ǫ
µ‖∇uh‖2

0,Ω −
1

2ǫ
σ‖uh‖2

0,Ω +
(
1 −

ǫ

2
(µc̃ + σc̃ + µc̃CI)

)
‖ph‖2

0,Ω

−
1

2ǫ
µ‖uh‖2

1/2,h,ΓD
−

1

2δǫ
Jh(ph, ph) −

ǫ

2

∑

(E∈T h)\∂Ω

hE‖(π
hvp − vp) · n‖2

0,E.

To conclude we need the following trace inequality, cf. [8],

‖w · n‖2
0,∂K ≤ C(h−1‖w‖2

0,K + h‖w‖2
1,K) ∀w ∈ [H1(K)]d, (18)

from which we deduce, using (16),

∑

(E∈T h)\∂Ω

hE‖(π
hvp − vp) · n‖2

0,E ≤ C
∑

K∈T h

‖vp‖
2
1,Ω ≤ C‖ph‖2

0,Ω.

Using the inequality above we obtain

Bh[(uh, ph), (πhvp, 0)] ≥ −
1

2ǫ
µ‖∇uh‖2

0,Ω −
1

2ǫ
σ‖uh‖2

0,Ω

+
(
1 −

ǫ

2
(µc̃ + σc̃ + µc̃CI + C)

)
‖ph‖2

0,Ω

−
1

2ǫ
µ‖uh‖2

1/2,h,ΓD
−

1

2δǫ
Jh(ph, ph).

Setting 0 < ǫ < 2/(µc̃ + σc̃ + µc̃CI + C) we finally have

Bh[(uh, ph), (πhvp, 0)] ≥ −C3µ‖∇uh‖2
0,Ω − C3σ‖u

h‖2
0,Ω + C4‖p

h‖2
0,Ω

− C3µ‖u
h‖2

1/2,h,ΓD
−

C3

δ
Jh(ph, ph).

(19)

Step 3. The divergence of the velocity is already contained in the H1–norm of
the velocity if µ > 0 but we want to have the control of the divergence even if
µ = 0.
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The control of ‖∇ ·uh‖2
0,Ω is obtained choosing (vh, qh) = (0,−∇ ·uh), which

leads to

Bh[(uh, ph), (0,−∇ · uh)]

= ‖∇ · uh‖2
0,Ω + Jh(ph,∇ · uh) −

(
∇ · uh, uh · n

)

0,ΓD

≥ ‖∇ · uh‖2
0,Ω −

∑

(E∈T h)\∂Ω

ξ

2
δ‖∇ · uh‖2

−1/2,h,E −
1

2ξ
Jh(ph, ph)

−
ξ

2
‖∇ · uh‖2

−1/2,h,ΓD
−

1

2ξ
‖uh · n‖2

1/2,h,ΓD
.

Using estimate (14) we get

Bh[(uh, ph), (0,−∇ · uh)] ≥

(
1 −

ξ

2
CII(1 + δ)

)
‖∇ · uh‖2

0,Ω

−
1

2ξ
Jh(ph, ph) −

1

2ξ
‖uh · n‖2

1/2,h,ΓD
.

(20)

Step 4. Now we have control over all the terms in the energy norm sepa-
rately. Finally we take (vh, qh) = (βuh − πhvp, βph −∇ · uh). Combining the
results (15), (19) and (20) we get

Bh[(uh, ph), (vh, qh)]

≥ (βC1 − C3) µ‖∇uh‖2
0,Ω + (β − C3) σ‖uh‖2

0,Ω + C4‖p
h‖2

0,Ω

+

(
1 −

ξ

2
CII(1 + δ)

)
‖∇ · uh‖2

0,Ω +

(
β −

1

2ξ
−

C3

δ

)
Jh(ph, ph)

+ (βC2 − C3) µ‖uh‖2
1/2,h,ΓD

+

(
βγ0 −

1

2ξ

)
‖uh · n‖2

1/2,h,ΓD
.

The fourth term on the right hand side is positive if the parameter from
Young’s inequality is ξ < 2

CII (1+δ)
. With this the rest of the terms are positive

if β > C3

C1

, β > C3, β > CII(1 + δ) + C3

δ
, β > C3

C2

, and β > CII (1+δ)
γ0

. Then we
have that

Bh[(uh, ph), (vh, qh)] ≥ |||(uh, ph)|||2h
and the claim follows since there exists C > 0 such that |||(uh, ph)|||h ≥
C|||(vh, qh)|||h.

�

Note that the Nitsche stability parameter γσ forcing the Darcy problems
boundary conditions has no lower bound. This holds even on Darcy limit
µ = 0.

In the rest of the paper we assume that the stability requirement is satisfied,
i.e. we make the following assumption.

Assumption 3.2 The real parameter γµ satisfies γµ > CI .
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4 Error analysis

4.1 A priori estimates

First of all, we note that applying the trace inequality (18) we easily derive the
following approximation property for couples of functions (u, p) ∈ [H2(Ω)]d ×
H1(Ω),

|||(u − πhu, p − πhp)|||h ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω), (21)

where (πhu, πhp) ∈ Wh denotes the interpolates. Without proof we also state
the continuity of the bilinear form.

Lemma 4.1 For all (u, p), (v, q) ∈ W it holds

Bh[(u, p), (v, q)] ≤ C|||(u, p)|||h|||(v, q)|||h. (22)

The main result in this section is the following lemma.

Lemma 4.2 Assume that the solution (u, p) to the problem (1) resides in

[H2(Ω)]d × H1(Ω) ∩ L2
0(Ω); then the finite element solution (8) satisfies the

error estimate

‖(u − uh, p − ph)‖h ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω).

Proof. In view of the approximation property (21) we only need to show the
inequality for |||(uh−πhu, ph−πhp)|||. By the stability, see Theorem 3.1, there
exist a pair (vh, qh) ∈ Wh such that ‖(vh, qh)‖h = 1 and

‖(uh − πhu, ph − πhp)‖h ≤ α−1Bh[(uh − πhu, ph − πhp), (vh, qh)].

Using the Galerkin orthogonality, see Lemma 2.1, we obtain

‖(uh − πhu, ph − πhp)‖h ≤ α−1Bh[(u − πhu, p − πhp), (vh, qh)].

Furthermore, using the continuity of the bilinear form, equation (22), and
recalling that the energy norms are equivalent in the finite element subspace,
we have

‖(uh − πhu, ph − πhp)‖h ≤ α−1C|||(u − πhu, p − πhp)|||h.

Now the claim follows by the approximation property (21).
�
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4.2 A posteriori estimate

In this section we propose and prove the a posteriori estimate in the energy
norm. In what follows we will need two meshes. The original mesh T h and
mesh T h/2 derived from the original mesh by splittig the elements. By pair
(uh, ph) we denote the solution on the mesh T h and by (uh/2, ph/2) the solution
on the mesh T h/2. The proof is based on the following saturation assumption.

Assumption 4.3 (Saturation assumption) There exists 0 < β < 1 such

that

‖(u − uh/2, p − ph/2)‖h/2 ≤ β‖(u − uh, p − ph)‖h. (23)

The residual based elementwise estimator is defined as

EK [(uh, ph)]2 :=
h2

K

µ + σh2
K

‖∇ · µ∇uh − σuh − ∇̂ph + f‖2
0,K + ‖∇ · uh‖2

0,K

+ µhE‖
[
∂nuh

]
‖2

0,∂K\∂Ω + hE‖
[
ph
]
‖2

0,∂K\∂Ω

+ µhE‖gt − ∂nuh + (∂nuh · n)n‖2
0,∂K∩ΓN

+ µh−1
E ‖u0 − uh‖2

0,∂K∩ΓD

+ hE‖gn + ph − µ∂nuh · n‖2
0,∂K∩ΓN

+ h−1
E ‖u0 · n − uh · n‖2

0,∂K∩ΓD
,

(24)

where the approximate gradient of pressure ∇̂ph ∈ W h is defined as the solu-
tion to

(−∇̂ph, v)0,Ω = (ph,∇ · v)0,Ω − (ph, v · n)0,∂Ω ∀v ∈ W h. (25)

We then have the following result.

Theorem 4.4 Under the Assumptions 3.2 and 4.3 it holds

‖(u − uh, p − ph)‖h ≤ C




∑

K∈T h

EK [(uh, ph)]2




1/2

. (26)

Proof. Step 1. Denote H := h/2. By the triangle inequality and the saturation
assumption 4.3 we have

‖(u − uh, p − ph)‖h ≤
1

1 − β
‖(uH − uh, pH − ph)‖H . (27)

Hence it is sufficient to bound ‖(uH − uh, pH − ph)‖H . By the stability, The-
orem 3.1, we know that there exists (vH , qH) ∈ WH such that

α‖(uH − uh, pH − ph)‖H ≤ BH [(uH − uh, pH − ph), (vH , qH)] (28)
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and ‖(vH , qH)‖H = 1. Let (vh, qh) ∈ Wh be an interpolate to (vH , qH) ∈ WH .
To simplify the notation we denote

w := vH − vh and r := qH − qh.

By scaling arguments one obtains

(σ + µh−2
K )‖w‖2

0,K + ‖∇ · w‖2
0,K + ‖r‖2

0,K + µhK‖∂nw‖2
0,∂K + hK‖r‖2

0,∂K

+ µh−1
K ‖w‖2

∂K + h−1
K ‖w · n‖2

∂K ≤ C‖(vH , qH)‖2
H ≤ C. (29)

Combining equations (27) and (28), and using the interpolate to split the
bilinear form into two parts, we get

C‖(u − uh, p − ph)‖h ≤ BH [(uH − uh, pH − ph), (vH , qH)]

= BH [(uH − uh, pH − ph), (w, r)] + BH [(uH − uh, pH − ph), (vh, qh)]

= W1 + W2.

(30)

Step 2. We bound the terms W1 and W2 separately, starting with W1. Since
(uH , pH) is the solution to the problem, we have

W1 = LH [(w, r)] − BH [(uh, ph), (w, r)]

= (f , w)0,Ω + (g, w)0,ΓN
+ (u0, γµµH−1w)0,ΓD

− (u0, µ∂nw)0,ΓD

+ (u0 · n, γσH
−1w · n)0,ΓD

+ (u0 · n, r)0,ΓD

− (µ∇uh,∇w)0,Ω − (σuh, w)0,Ω + (ph,∇ · w)0,Ω + (∇ · uh, r)0,Ω

+ JH(ph, r) + (µ∂nuh, w)0,ΓD
+ (µuh, ∂nw)0,ΓD

− (γσµH−1uh, w)0,ΓD

− (ph, w · n)0,ΓD
− (uh · n, r)0,ΓD

− (γσH−1uh · n, w · n)0,ΓD
.

(31)

Integrating the term −(µ∇uh,∇w)0,Ω by parts in each element, and using the
definition of approximate gradient of pressure (25) we get

W1 = (f + ∇ · µ∇uh − σuh − ∇̂ph, w)0,Ω + (∇ · uh, r)0,Ω

−
∑

E\∂Ω

(
[
µ∇uh · n

]
, w)0,E +

∑

E\∂Ω

(
[
ph
]
, w · n)0,E + JH(ph, r)

+ (g + phn − µ∂nu
h, w)0,ΓN

− (u0 − uh, µ∂nw)0,ΓD

+ (u0 − uh, γµµH−1w)0,ΓD
+ (u0 · n − uh · n, r)0,ΓD

+ (u0 · n − uh · n, γσH
−1w · n)0,ΓD

.

(32)
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We split equation (32) into smaller pieces

Z1 := (f + ∇ · µ∇uh − σuh − ∇̂ph, w)0,Ω

Z2 := (∇ · uh, r)0,Ω + JH(ph, r)

Z3 := −
∑

E\∂Ω

(
[
µ∇uh · n

]
, w)0,E +

∑

E\∂Ω

(
[
ph
]
, w · n)0,E

Z4 := (g + phn − µ∂nu
h, w)0,ΓN

Z5 := −(u0 − uh, µ∂nw)0,ΓD
+ (u0 − uh, γµµH−1w)0,ΓD

Z6 := (u0 · n − uh · n, r)0,ΓD
+ (u0 · n − uh · n, γσH

−1w · n)0,ΓD
.

Next we bound the terms Zi using the the Schwarz inequality for both inner
products and sums.

Z1 ≤




∑

K∈T H

(σ + µh−2
K )−1‖f + ∇ · µ∇uh − σuh − ∇̂ph‖2

0,K





1

2

·




∑

K∈T H

(σ + µh−2
K )‖w‖2

0,K





1

2

(33)

Z2 ≤




∑

K∈T H

‖∇ · uh‖2
0,K





1

2




∑

K∈T H

‖r‖2
0,K





1

2

+ JH(ph, ph)
1

2 JH(r, r)
1

2 (34)

Z3 ≤




∑

(E∈T H)\∂Ω

µhE‖
[
∂nuh

]
‖2

0,E





1

2




∑

(E∈T H)\∂Ω

µh−1
E ‖w‖2

0,E





1

2

+




∑

(E∈T H)\∂Ω

hE‖
[
ph
]
‖2

0,E





1

2




∑

(E∈T H)\∂Ω

h−1
E ‖w · n‖2

0,E





1

2

(35)

The term Z4 is first split into normal and tangential components.

Z4 = (µgt − µ∂nu
h + µ(∂nuh · n)n, w · t)0,ΓN

+ (gn + ph − µ∂nu
h · n, w · n)0,ΓN

= Z4,n + Z4,t. (36)

Z4,n ≤




∑

(E∈T H)∩ΓN

µhE‖gt − ∂nuh + (∂nu
h · n)n‖2

0,E





1

2

·




∑

(E∈T H)∩ΓN

µh−1
E ‖w‖2

0,E





1

2

(37)
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Z4,t ≤




∑

(E∈T H)∩ΓN

hE‖gn + ph − µ∂nuh · n‖2
0,E





1

2

·




∑

(E∈T H)∩ΓN

h−1
E ‖w · n‖2

0,E





1

2

(38)

Z5 ≤




∑

(E∈T H)∩ΓD

µh−1
E ‖u0 − uh‖2

0,E





1

2




∑

(E∈T H)∩ΓD

µhE‖∂nw‖2
0,E





1

2

+




∑

(E∈T H)∩ΓD

µh−1
E ‖u0 − uh‖2

0,E





1

2




∑

(E∈T H)∩ΓD

µh−1
E ‖w‖2

0,E





1

2

(39)

Z6 ≤




∑

(E∈T H)∩ΓD

h−1
E ‖u0 · n − uh · n‖2

0,E





1

2




∑

(E∈T H)∩ΓD

hE‖r‖
2
0,E





1

2

+




∑

(E∈T H)∩ΓD

h−1
E ‖u0 · n − uh · n‖2

0,E





1

2




∑

(E∈T H)∩ΓD

h−1
E ‖w · n‖2

0,E





1

2

(40)

By the interpolation estimate (29) and since (uh, ph) has same values on both
meshes, we find that

W1 ≤ C




∑

K∈T H

EK [(uh, ph)]2




1/2

≤ C




∑

K∈T h

EK [(uh, ph)]2




1/2

. (41)

Step 3. Now we have bounded the term W1 and next we bound the term W2.
Since both (uh, ph) and (uH , pH) are solutions to the problem on different
meshes, we get

W2 = LH [(vh, qh)] − BH [(uh, ph), (vh, qh)]

− Lh[(vh, qh)] + Bh[(uh, ph), (vh, qh)]. (42)

Below we will denote with subscripts h and H the mesh that we are currently
integrating on, e.g. ( · , · )0,ΓD,h

. Since (uh, ph) and (vh, qh) have same values
on both meshes, we have

W2 = Jh(ph, qh) − JH(ph, qh)

+ (uh − u0, γµµh−1vh)0,ΓD,h
+ (uh · n − u0 · n, γσh

−1vh · n)0,ΓD,h

− (uh − u0, γµµH−1vh)0,ΓD,H
− (uh · n − u0 · n, γσH

−1vh · n)0,ΓD,H
.

(43)
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Recall that h = 2H to get

W2 = JH(ph, qh) − (uh − u0, γµµ(2H)−1vh)0,ΓD,H

− (uh · n − u0 · n, γσ(2H)−1vh · n)0,ΓD,H
. (44)

Using the Schwarz inequality we obtain

W2 ≤ C



JH(ph, ph)
1

2 JH(qh, qh)
1

2

+




∑

(E∈T H)∩ΓD

µh−1‖uh − u0‖
2
0,E





1

2




∑

(E∈T H)∩ΓD

µh−1‖vh‖2
0,E





1

2

+




∑

(E∈T H)∩ΓD

h−1‖uh · n − u0 · n‖2
0,E





1

2




∑

(E∈T H)∩ΓD

h−1‖vh · n‖2
0,E





1

2



.

(45)

Since ‖(vH , qH)‖H = 1 the stability of the interpolate gives

W2 ≤ C




∑

K∈T H

EK [(uh, ph)]2




1/2

≤ C




∑

K∈T h

EK [(uh, ph)]2




1/2

. (46)

Step 4. Now all the pieces are ready and we only need to combine equa-
tions (30), (41) and (46) to get the desired result.

�

5 Numerical Examples

In this section we illustrate the method and analytical results with numerical
examples. We concentrate on showing that the results hold with viscosity
µ ≥ 0, including Darcy limit µ = 0. Furthermore, we compare the results with
the traditional boundary conditions.

Our model problem is

u −∇ · µ∇u + ∇p = 0 in Ω,

∇ · u = 0 in Ω.

First we compute the convergence rate of the error in the energy norm with
different values of viscosity µ. Our domain Ω is the unit square with Dirichlet

14



boundary conditions computed from the known exact solution;

p = − sin(x) sinh(y) − (cos(1) − 1)(cosh(1) − 1) and

u = −∇p =




cos(x) sinh(y)

sin(x) cosh(y)


 .

Since the pressure p is harmonic, the solution is independent of the viscosity.
In Figure 1 are the exact pressure and velocity fields of the model problem. In
all the subsequent computations Nitsche stability parameters are γµ = 2 and
γσ = 1, and the divergence stability parameter is

δ =





1 for µ ≥ 0.1

10 for 0 ≤ µ < 0.1 .

In Figure 2 are the convergence rates of the method. We see that the con-
vergence rate is O(h) with all the values of viscosity, even on Darcy limit, as
predicted by Lemma 4.2.

Next we compare the Nitsche method to the traditional boundary conditions.
Here our domain is the unit square and we use the following boundary condi-
tions

u = 0 on {x ∈ (0, 1), y = 0} and {x ∈ (0, 1), y = 1},

gn = 1, gt = 0 on {x = 0, y ∈ (0, 1)},

gn = 0, gt = 0 on {x = 1, y ∈ (0, 1)}.

The stability parameters are as before. In Figure 3 are the velocities with
different values of viscosity. We see that the traditional method cannot produce
slip boundary conditions of the Darcy problem unless the viscosity is equal to
zero. On the other hand, Nitsche’s method moves continuously towards the
slip boundary conditions as the viscosity diminishes. In Figure 4 we have the
velocity profile in x-direction at line x = 0.5. We notice that the traditional
method has oscilations in the velocity near the boundaries in the case of small
viscosity. In Figure 5 we have the velocity in y-direction at same line x = 0.5.
The velocity in y-direction should be zero, but with traditional boundary
conditions and with small viscosity there is also oscillation in the velocity in
y-direction. These oscillations are due to the fact that the problem is very
close to Darcy problem but the traditional way of prescribing the boundary
conditions does not allow slip in tangential direction before the viscosity is
equal to zero.

We think that the previous example clearly illustrates the shortcoming of the
traditional boundary conditions in the Brinkman problem; the whole range
of viscosity cannot be used. From the non-physical oscillations it is obvious
that the results are not accurate or reliable near the boundaries with the

15



traditional no-slip boundary conditions if the viscosity is small. Refining the
mesh pushes the inaccuracy closer to the boundary but will not remove the
problem. Nitsche’s method handles these difficulties even on a coarse mesh.

Finally we test the adaptive refinement based on the elementwise a poste-
riori error estimator. The domain is Ω = (−1, 2) × (0, 1) and the boundary
conditions are

u = 0 on {x ∈ (−1, 2), y = 0} and {x ∈ (−1, 2), y = 1},

gn = 1, gt = 0 on {x = −1, y ∈ (0, 1)},

gn = 0, gt = 0 on {x = 2, y ∈ (0, 1)}.

The idea is to mimic fluid flow in porous medium with a crack in the middle
of the domain. Most of the domain is a porous medium, governed by Darcy
equation, but on a small crack the viscosity also has an effect. In other words,
the viscosity is a function µ = µ(x, y), see Figure 6. Here the divergence
stability parameter is δ = 5. In Figure 7 we have the velocity and pressure
on a well adapted mesh. In Figure 8 we first have the initial mesh and error
distribution, and then the mesh and the error distribution after two rounds
of adaptive refinement. We notice that the adaptive scheme detects the steep
changes in the viscosity and refines there.

In numerical tests not shown here we have noticed that the a posteriori esti-
mator needs a rather smooth pressure field if the viscosity is small, especially
near the boundaries. This is because the residual inside the elements in the a
posteriori estimator is of the form ‖uh + ∇̂ph‖2

0,K if the viscosity and load are
zero (or very small). There are no powers of h in the coefficient; therefore the
approximate negative gradient of pressure −∇̂ph has to be close to the velocity.
To this end we need a smoother pressure which is obtained by using a larger
stability parameter δ. However, using too large a stability parameter may re-
sult in compressible flow. The problem is worse near the boundaries since the
approximate gradient is essentially computed from the pressure jumps, and
on the boundary we do not have a value for the jump.
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Fig. 2. The converence of the error in the energy norm for various values of viscosity
parameter. The convergence rates are given in the legend. Notice that even the Darcy
limit case, µ = 0, converges with the optimal speed of O(h).
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Fig. 3. Velocity fields of the model problem, on the left using the traditional and
on the right using Nitsche boundary conditions. From top to bottom viscosity µ

has values 0.1, 0.001, and 0. The lengths of the vectors are scaled differently on
each row. For size of the velocity, see the velocity profile figures below. Notice the
difference in the solutions near the boundaries on the middle row.
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Fig. 4. The velocity profile to x-direction at line x = 0.5 with different values of
viscosity µ. The solid line is computed with Nitsche boundary conditions and the
dashed line with the traditional boundary conditions. Notice the oscillations with
the traditional method near the boundary with small µ.
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Fig. 5. The velocity profile to y-direction at line x = 0.5 with different values of
viscosity µ. The solid line is computed with Nitsche boundary conditions and the
dashed line with the traditional boundary conditions. Notice the oscillations with
the traditional method near the boundary with small µ.
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Fig. 6. The viscosity function µ(x, y) in the adaptive test with varying viscosity.
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