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Abstract

The Spectral Problem is to describe possible spectra o(A;) for an irre-
ducible n-tuple of Hermitian operators s.t. A; +...4+ A, is a scalar operator.
In case when m; = |o(A;)| are finite and a rooted tree Ty, . m, with n
branches of lengths m1,...,m, is a Dynkin graph the explicit answer to the
Spectral Problem was given recently by the authors. In present work we solve
the Spectral Problem for all simply laced extended Dynkin graphs, i.e. when

(m1,...,mp) €{(2,2,2,2),(3,3,3),(4,4,2), (6,3,2)}.
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Introduction.

1. Let Aj, Ag, ..., A, be Hermitian m X m matrices with given eigen-
values: 7(4;) = {A(4;) > X(4;) > ... > An(4;)}. The well-known
classical problem about the spectrum of a sum of two Hermitian matrices
(Horn’s problem) is to describe possible values of 7(A;),7(A2),7(As) such
that A1 + Ay = As. In more symmetric setting one can seek for a connection
between 7(A1),7(A2),...,7(Ay) necessary and sufficient for the existence of
Hermitian operators such that A1 + Ao + ...+ A, = I for a fixed y € R.

A recent solution of this problem (see [4, 5] and others) gives a complete

description of possible 7(41),7(Az2),...,7(Ap) in terms of linear inequalities
conjectured by A. Horn.
2. A modification of Horn’s problem called henceforth the spectral problem
was considered in [6, 7]. Let A, Ag, ..., A, be bounded linear Hermitian
operators on a separable Hilbert space H. For an operator X denote by
o(X) its spectrum. Given My, Mo, ..., M, closed subsets of R and y € R the
problem is to determine whether there are Hermitian operators A;, Ao, ...,
A, on H such that 0(4;) CM; (1 <j<mn),and A1 +As+...+ A, =~1.

In this work the sets My, Mo, ..., M, will be finite. Even for finite M}, it
can be very complicated to describe such n-tuples of operators up to unitary
equivalence if | M| is large enough.

The essential difference with Horn’s classical problem is that we do not fix
the dimension of H (it may be finite or infinite) and the spectral multiplicities.
It seems that the solution of the spectral and strict spectral problems could not
be deduced directly from the Horn inequalities, since the number of necessary
inequalities increases with m.

3. The Spectral Problem can be stated in terms of x-representations of *-
algebras. Namely, let o) = (agj),agj), - ,a%) (1 < j < n) be vectors with
positive strictly decreasing coefficients. Put M; = o). Let us consider the
associative algebra defined by the following generators and relations (see. [10]):

AMI; 7Mn7'7:
C<p§1)7pg1)7"'7p’$}1,)17pg )7pg)7 '7p’$721,%’ "7p:([n)’ ()""’p’ST,,Z/2L|
ZZ%%—
1=1 k=1
S =enp =0k =1 omij A ki=1...,n).

k=1

Here e is the identity of the algebra. This is a *-algebra, if we declare all
generators to be self-adjoint.
A x-representation m of Az, .., determines an n-tuple of non-negative

operators AU) = =Y a (Z)Pk( ), where each of the families of orthoprojections,
{P; = m(p;), i = 1,...,k} forms a resolution of the identity and such that
AW 44 A = fyI. Moreover, o(AU)) C M;. And viceversa, any n-tuple
of Hermitian matrices A1), A®) ...~ A™ guch that A +.. .+ A™ =T and

o(AW) C M; determines a representation m of Az, a,,, by taking m(py G ))

(4)

to be the spectral projections corresponding to eigenvalues «;;’ respectively.



So in terms of x-representations, the spectral problem is a problem consisting
of the following two parts: 1) a description of the set 3., 1, .. m, of the

parameters 04(] ) , v for which there exist *-representations of Aps, .. a, - 2) a
description of *—representatlons 7 of the *-algebra Ans, ns,... .M,y

4. A natural way to try to solve the spectral problem is to describe all irre-
ducible *-representations up to unitary equivalence and then all x-representations
as sums or direct integrals of irreducible representations. Obviously if there
is a *-representation of the algebra Az, .. ar,y then there is its irreducible -
representation. Hence the set X, 1n,....m, coincides with the set of parameters
for which algebra Aps, ...,y has at least one irreducible *-representation;

The second part of the spectral problem could be formulated in the follow-
ing way: find the formulae for the irreducible *-representations of the algebra
A, .M, for parameters (Ag ),7) € Ym,,...m, Or at least present an algo-
rithm to construct such representations.

5. A key step in solving spectral problem is to describe the irreducible non-
degenerate representations. Let us call a *-representation 7 of the algebra
A, ,... .M,  non-degenerate if w(p (J)) # 0 for all £ and j.

Consider the following set: Xr—¢ = = {({)\gcj)},'yﬂ there is a mon-
degenerate *-representation of Anr,,...M,}; which depends only on (mq,
.., My). Every irreducible representation of the algebra A a,,. M,y iS

an irreducible non-degenerate *-representation of an algebra .AM Ly for
s

some subsets M C M;. Hence (Mi,...,Mp,v) € Sy, if there exist

(Ml, M v) € E\an LAk Thus the description of X, . ., follows from
L]seeey n

the description of E” kn where k; <m;,1 < j <n.
6. With an integer vector (mq, .. 'm,n) we will associate a non-oriented star-
shape graph G with n branches of the lengths mq, mo, ..., m, stemming from

a single root. The graph G and vector x = (ag ),agl), R %ﬁ, gZ), ,a%l,

. ,agn), . a%l,)l, 7) completely determine the algebra A, ... ar, y 50 we will
write Ag,, instead of Anr, .., -

Henceforth we will denote the set ¥ defined in 5 by ¥(G) where G is the
tree mentioned above. The spectral problem for operators on a Hilbert space
can be reformulated in the following way: 1) for a given graph G describe
the set ¥(G); 2) describe non-degenerate representations Aps,... ar,,y up to
unitary equivalence.

If the graph G is a Dynkin graph or extended Dynkin graph the problem
is greatly simplified. The algebras Ag,, associated with Dynkin graphs (resp.
extended Dynkin graphs) have a more simple structure than in other cases.
In particular, the algebras Ag , are finite dimensional (resp. have polynomial
growth) if and only if the associated graph is a Dynkin graph (resp. an
extended Dynkin graph) (see [12]).

Irreducible representations of the algebras associated with Dynkin graphs
exist only in certain dimensions that are bounded from above (see [9]). In
[6, 7, 8] we have given a complete description of ¥(G) for all Dynkin graphs G
and an algorithm for finding all irreducible representations. In present paper
we accomplish the same program for extended Dynkin graphs.

7. To solve the spectral problem for extended Dynkin graphs we will follow
the following scheme:



1.) As it was mentioned above it in suffices to describe the sets (M, ..., My,
«) for which there exist irreducible non-degenerate representations of the al-
gebra Ag . Any such representation is finite dimensional (see [11]).

2.) Using the connection between representation theory of Ag, and
locally-scalar representations of the associated graph (see s. 2) we can find
generalized dimensions of such representations of the algebra since they cor-
respond to the positive roots of the corresponding root system. The roots can
be real or imaginary.

3.) If the generalized dimension is a real root then such representation can
be obtained using Coxeter functors (see s. 1) starting from the simplest ones.

4.) If the generalized dimension is an imaginary root then the parameters
of the algebra belong to a certain hyperplane (see s.2). In this case the di-
mension of irreducible representation is the unique minimal imaginary root.
Since then the dimension is fixed the solution of the spectral problem could
be obtained by direct application of Horn’s inequalities.

1 Locally-scalar graph representations and
representations of the algebras generated by
orthoprojections.

The main tools for our classification are Coxeter functors for locally-scalar
graph representations. They allow one to construct all representations starting
from the simplest ones which correspond to the vertices of the graph. First
we will recall a connection between category of *-representation of algebra
Anry,....m,  associated with the graph G and locally-scalar representations of
the graph G. For more details see [6].

The Coxeter functors could be constructed directly on the categories of
representations of algebras Az, .., (see [10]) but the simplest representa-
tions of a graph do not correspond to representations of corresponding algebra.
This force us to use graph representation terminology and techniques.

Henceforth we will use definitions, notations and results about representa-
tions of graphs in the category of Hilbert spaces found in [9].

A graph G consists of a set of vertices Gy, a set of edges G, and a map
¢ from G. into the set of one- and two-element subsets of G, (the edge is
mapped into the set of incident vertices). Henceforth we consider connected
finite graphs without cycles (trees). Fix a decomposition of G, of the form

[ ]

[¢]
G, = G, UG, (unique up to permutation) such that for each a € G, one
of the vertices from &(«) belongs to G, and the other to G,. Vertices in G,
L]

will be called even, and those in the set G, odd. Let us recall the definition
of a representation II of a graph G in the category of Hilbert spaces H. Let
us associate with each vertex g € G, a Hilbert space II(g) = H, € Ob¥,
and with each edge v € G, such that e(y) = {g1,92} a pair of mutually
adjoint operators II(y) = {T'y, g,, I'gs,: }, where Ty, g, : Hy, — Hg,. We now
construct a category Rep(G,H). Its objects are the representations of the
graph G in H. A morphism C : II — II is a family {Cy}4eq, of operators
Cy : II(g) — II(g) such that the following diagrams commute for all edges



Yg2,91 € Ge:
F92191
Hgl ? ng

| |

T , ~
Hgl 25 H92
Let M, be the set of vertices connected with g by an edge. Let us define

the operators
Ag= )" TygTyy,.
g’EMg

A representation IT in Rep(G, H) will be called locally-scalar if all operators
Ay are scalar, Ay = aylp,. The full subcategory Rep(G,?H), the objects of
which are locally-scalar representations, will be denoted by Rep G and called
the category of locally-scalar representations of the graph G.

Let us denote by Vi the real vector space consisting of sets = (z4) of
real numbers z4, g € G,. Elements x of Vg we will call G-vectors. A vector
x = (z4) is called positive, z > 0, if  # 0 and z4 > 0 for all g € G,. Denote
V4 ={z € Vg|z > 0}. If I is a finite dimensional representation of the graph
G then the G-vector (d(g)), where d(g) = dimII(g) is called the dimension
of I. If Ay = f(g)Im, then the G-vector f = (f(g)) is called the character
of the locally-scalar representation II and II is called the f-representation in
this case. The support G of II is {g € G,|II(g) # 0}. A representation IT
is faithful if G = G,. A character of the locally-scalar representation II is
uniquely defined on the support GI! and non-uniquely on its complement. In
the general case, denote by {fn} the set of characters of II. For each vertex
g € Gy, denote by o, the linear operator on Vg given by the formulae:

(042)g = zg if g #9,

(0g2)g = —x4 + Z Ty

9'€EMy

The mapping o, is called the reflection at the vertex g. The composition of
all reflections at odd vertices is denoted by ¢ (it does not depend on the order

of the factors), and at all even vertices by ¢. A Coxeter transformation is

¢ = c¢, ¢! = ¢¢. The transformation ¢ (¢) is called an odd (even) Coxeter

map. Let us adopt the following notations for compositions of the Coxeter
maps: ¢ = ...ccc (k factors), ¢ = ...cce (k factors), k € N.

Any real function f on G, can be identified with a G-vector f = (f(g))qeq, -
If d(g) is the dimension of a locally-scalar graph representation II, then

fi)(g) = T Lew AT € 1
d(g), if g € Gy,

I 12)
d(g)a if g € Gy.

For d € Z/, and f € Vi, consider the full subcategory Rep(G,d, f) in
Rep G (here ZZ; is the set of positive integer G-vectors), with the set of



objects ObRep(G,d, f) = {II|dimII(g) = d(g),f € {fu}}. All representa-
tions TT from Rep(G,d, f) have the same support X = Xy = GI = {g €
Gy|d(g) # 0}. We will consider these categories only if (d, f) € S = {(d, f) €

ZE x Vid(g) + flg) > 0,9 € Gy} Let X = XN Gy, X = XN Gy
Rep.(G,d, f) C Rep(G,d, f) ( Rep.(G,d, f) C Rep(G,d, f)) is the full sub-
category with objects (II, f) where f(g) >0ifg € X (f(g) >0if g € X). Let

So={(d,f) € S|f(g) >0ifge X4}, Se={(d, f) € S|f(9) >0ifge X4}
Put

84(1)9) = Talg) = {"‘f o), ifg€Xe (13)
f(g)a lfg ¢ Xda

(o) = Falo) = {"(f o) Ho€ Ta (1.4
f(g)a lfg ¢ Xd-

Let us denote

.(k) [ o L]
ca (f) = "'ng(d)cg(d)cd(f) (k factors)

o(k) o . o
ca (f) = "'622(d)cé(d)cd(f) (k factors)

The even and odd Coxeter reflection functors are defined in [9],

F: Repy(G, d, f) — Rep, (G, &(d), fo)  if (d, f) € S

F : Rep.(G,d, f) — Rep (G, &(d), f4)  if (d, f) € S

[e]
These functors are equivalences of the categories. Let us denote Fy(II) =

o @ O

... FFF(II) (k factors), Fy(II) = ... FFF(II) (k factors), if the compositions
exist. Using these functors, an analog of Gabriel’s theorem for graphs and their
locally-scalar representations has been proven in [9]. In particular, it has been
proved that any locally-scalar graph representation decomposes into a direct
sum (finite or infinite) of finite dimensional indecomposable representations,
and all indecomposable representations can be obtained by odd and even
Coxeter reflection functors starting from the simplest representations II; of

the graph G (Ily(g) = C, Il (¢') = 0 if g # ¢'; g,9' € Go).

2 Representations of algebras generated
by projections.

We can assume that each set Mj, Mo, ..., M,, contains zero (this can be
achieved by a translation). Henceforth, M; = «9) U {0}. For three oper-
ators we will use a, 3, § instead of a(!), a?, a(®). By x we will denote the

vector (alaOQa"'aakaﬁl’ﬁ%"'aﬂl,é‘laé% EERY 5m7 ’Y)
Let us consider a tree G with vertices {g;,i =0,...,k + 1+ m} and edges

Vgig;-



O 9k+i1+1
S Gk+l+m—1

9k+l+m

g1 9k—1 Gk 90
O. .

9k+1 Gk+1-19k+1
OO S

We will denote the algebra A, a0,y 38 Ag y-

Definition 1. An irreducible finite dimensional *-representation 7 of the al-
gebra Ag,, such that

w(p) 0 (1<i<k), m(g)#0 (1<j<I), n(sd) #0 (1<d<m)

and
k l

Z (p:) # Z Z m(sa) # I
d=1

i=1 j=1

will be called non-degenerate. By RepAG,X we will denote the full subcategory
of non-degenerate representations in the category RepAg,, of x-representations
of the *-algebra Ag,, in the category H of Hilbert spaces.

Let m be a *-representation of Ag, on a Hilbert space Hy. Put P; =
m(pi), 1 <i <k, Q =m(g;), 1 <j<I 8 =mn(st), 1 <t < m. Let
Hp, = Sm P, H;; = SmQ);, H;, = SmS;. Denote by I'p,, I'y;, T's, the
corresponding natural isometries Hy,, — Hy, Hy;, — Ho, Hs, — Ho. Then,
in particular, I') I',, = Ip,_ is the identity operator on Hp, and I',,I'). = P;.
Similar equahtles hold for the operators I'y, and T'y; Usmg T we construct a
locally-scalar representation II of the graph G.

Let I';; : H; — H; denote the operator adjoint to I'j;; : H; — Hj, i.e
Fij = F;z Put

II(go) = HY = H,,
I(gy) = H% = Hy, ® Hp, ® ... ® Hp,
M(gk—1) = H% ' = Hp, ®...® Hy, , ® Hp,,
(gx—2) = H%**=H,, ®H,, ®...® Hp,_,,

In these equalities the summands are omitted from left and from right in
turns. Analogously, we define subspaces II(g;) for i = K+ 1,...,k + [ and
i=k+1+1,...,k + 1+ m. Define the operators I'y, 4, : H9% — H9, where
i € {k,k +1,k+ 1+ m}, by the block-diagonal matrices

Lgogr = [VarTp, [Vaalp,| - . [VarTy,],
90,9k+1 - [\/7Fq1| /62Fq2| | /Bqul]a
F90’9k+l+m = [\/Trml 52FS2| <. | V 5mPsm]-



Now we define the representation II on the edges vVgo.9:5 Yg0,9%117 Y90,95110m PY
the rule

I(Ygo,0¢) = {Tg0,0x> Lgrrg0 )+
H(790=9k+1) = {Fgo,gk+l’ ng+lago}’

H(790,9k+l+m) = {Fgo,gk+l+m’ ng+l+mago}'

It is easy to see that

PQO:nggkago + F90,9k+lrgk+la90 + F9079k+l+mrgk+l+ma90 = IYIHQO N

Let Op,o denote the operators from the zero space to H, and Oy i denote
the zero operator from H into the zero subspace. For the operators I'y, g, :
HY% — HY% with 1,5 # 0, put

gk 1,9k — = O »Hp, D Vol — OQIH,,Z .OVar — OékIHpk, (2.1)

ng_l,gk_z =4\ Qo — akIHp2 D...0\/ag_1— OékIHpk_l D OHpk,O, (22)
F.‘lk—?,,gk_z = Oo,sz DV ay — a3IHp3 D...0\ag — ak_lIHPk—l’ (2.3)

The corresponding operators for the rest of the edges of G can be constructed

analogously. One can check that the operators I'g, o, where I'g, 5, = T'g. ., de-

fine a locally-scalar representation of the graph G with the following character

f: f(go) =~ and

flgr) = fgk+1) = B, f(Gr+14m) = 61,
flgk—1) = a1 — ey, f(Gr+1-1) = B — By, f(Grti4m—1) = 01 — Om,
flgr—2) = a2 — a, f(Gkt1-2) = B2 — By, f(Gkt14m—2) = 02 — 6m,
flgp—3) = a2 —ap—1,  flgrri=3) = P2 — Bi—1,  [(Grti4m—3) = 02 — 1,
flgra)=as—ar1,  flgrri-4)=Bs—Bi1,  flGr+iem-4) =03 — dm1,

And vice versa, if a locally-scalar representation of the graph G with the
character f(g;) = z; € R* corresponds to a non-degenerate representation of
Ag,y, then one can check that

a1 = Tk,
Qg =T — T 1,002 = Tfp — Tp—1 + T2,
Q1 =Tfp — Tp—1 + Tk—2 — T_3,

Q3 =T —Tp 1+ Tkp-2— Th-3+ Tk—4,

Here z; = 0 if j < 0. Analogously one can find §; and é;. We will denote II
by ®(m).



Let m and 7 be non-degenerate representations of the algebra P, g5, and
Cp an intertwining operator for these representations; this is a morphism from
7 to 7 in the category Rep G), Cy : Hy — Hy, Com = 7Cy. Put

Cp, =T, CoTy,, Cp, = Hp, — Hy,, 1 <4 <k,
Cyy =T3.Coly;,Cyy : Hyy — Hyy, k+1 <5 <k+1,

J

Cs, =T%,Co0s,,Cs, s Hy, = Hy k+14+1<t <k+1+m,

Put

Cc90) = ¢, : H90) 5 Fl90),
C9r) — Cop®Cp, ®...0Ch, H%) 5 floe)
C9k-1) — Cpy®...®Cp_, ®Cp, : H9x-1) f{(gkﬂ),
C(gk72) = sz D Cp3 D...P Cpk—l : H(gk72) — _ﬁ(gk—Z)’

Analogously one can construct the operators C(9) for i € {k +1,....k+1+
m}. It is routine to check that the operators {C(gi)}0§i§k+l+m intertwine

the representations IT = ®(r) and II = ®(7). Put ®(Cy) = {Cég<’2<k+l+m}.
Thus we have defined a functor @ : RepAg,, — RepG, see [7]. Moreover, the
functor @ is univalent and full. Let P/{E)(G,d, f) be the full subcategory of
irreducible representations of Rep(G,d, f). II € Ob I/{a)(G,d,f), flg:) == €
R*,d(g;) = d; € Ny, where f is the character of I, d its dimension. It easy
to verify that the representation II is isomorphic (unitary equivalent) to an
irreducible representation from the image of the functor @ if and only if

0<z1 <22< ... <T;0 < Tpp1 < Tppg2 < .. < Tpyss (2.4)

0 < Zprit1 < Tyiro < oo < Thtltm; (2.5)
0<d <dp <...<dp<dp;0<dpy1 <dgy2<...< (2.6)
di11 < do; 0 < diy141 < dgyiv2 < - < dggigem < dp. (2.7)

(All matrices of the representation of the graph G, except for Ty, g, Ty, g0
Loogrirr Lanrnngor Loosgisisms L gesismigos €a0 be brought to the ”canonical”
form (2.1) by admissible transformations. Then the rest of the matrices will
naturally be partitioned into blocks, which gives the matrices I'p,,T'y,, I's,;, and
thus the projections P;, Q);, R;). An irreducible representation IT of the graph
G satisfying conditions (2.4)—(2.7) will be called non-degenerate. Let

dim Hp, = n;,1 <1 < k;
dim Hy, = ng4j,1 <j <1
dim Hg, = ngypye, 1 <t <my
dim Hy = nyg.

The vector n = (ng,n1,-..,Nk11+m) is called the generalized dimension of the
representation 7 of the algebra Ag,. Let II = ®(m) for a non-degenerate



representation of the algebra Ag .y, d = (di, ..., dgti+m,do) be the dimension
of TI. Tt is easy to see that

ni+mne+...+ng = dg, (2.8)
ng+...+np 1+nx = dg_1, (29)
nog+...4+np 1 = dp_o, (2.10)
ny+...+ng o+nx 1 = dig_3, (2.11)
Thus
ny = dk — dkfl, (2.12)
ng = dg_1—dg_a, (2.13)
ne = dk,Q — dk,3, (2.14)
Analogously one can find ngy1, ..., ngyy from diq,...,dgq; and ngigqq, - -,
Nti+m from diyi41, - -+ dktitm

Denote by RepG the full subcategory in Rep G of non-degenerate locally-
scalar representations of the graph G. As a corollary of the previous arguments
we obtain the following theorem.

Theorem 1. Let Ag,y be associated with a graph G. The functor ® is an
equivalence between the category R—ep.AG,X of non-degenerate *-representations
of the algebra Ag, and the category RepG of non-degenerate locally-scalar
representations of the graph G.

Let us define the Coxeter functors for the *-algebras Ag,, by putting
U=0"1F% and ¥ = o~ 'FO.
Utilizing the results of [9] we will present a description of x-representation

of the x-algebras A, and hence a complete solution of the Spectral Problem
for the simply laced extended Dynkin graphs which are listed below.

Df)i}‘ﬂ Es E Er I

Eg I

3 Spectral problem for algebras associated
with extended Dynkin graphs.

Let us recall a few facts about root systems associated with extended Dynkin
diagrams. Let G be a simple connected graph. Then its Tits form is

qg(a) = Z a% — % Z o (a € Vg).

i€Gy BEGe,{i,j}=¢€(B)

10



The symmetric bilinear form is (o, 8) = g(a+ ) —qg(a) —q(B). Vector a € Vg
is called sincere if each component is non-zero.

It is well known that for Dynkin graphs (and only for them) bilinear form
(+,-) is positive definite. The form is positive semi-definite for extended Dynkin
graphs. And in the letter case Rad g = {v|q(v) = 0} is equal to Z¢ where ¢
is a minimal imaginary root. For other graphs (which are neither Dynkin nor
extended Dynkin) there are vectors o > 0 such that ¢(«) < 0 and (o, €;) <0
for all j.

For an extended Dynkin graph G a vertex j is called eztending if §; = 1.
The graph obtained by deleting extending vertex is the corresponding Dynkin
graph. The set of rootsis A = {a € Vg|a; € Z for all i € Gy, a # 0,g(a) < 0}.
A root « is real if g(a) = 1 and imaginary if ¢(a) = 0. Every root is either
positive or negative, i.e. all coordinates are simultaneously non-negative or
non-positive.

For our classification purposes we will need the following fact (see [2]): for
an extended Dynkin graph the set A U {0}/ZJ is finite. Moreover, if e is an
extending vertex then the set Ay = {a € AU{0}|a. = 0} is a complete set of
representatives of the cosets from AU{0}/Zd. If « is a root then a+ ¢ is again
a root. We call a coset o+ dZ the d-series and a coset o+ 207 the 2§-series. If
«a is a root then its images under the action of the group generated by ¢ and
¢ will be called a Coxeter series or C-series for short. It turns out that each
(C-series decomposes into a finite number of §-series or 2d-series of roots.

Note that to find formulae of the locally-scalar representations of a given
extended Dynkin graph we need to consider two principally different cases: the
case when the vector of generalized dimension is a real root and the case when
it is an imaginary root. In the letter case the vector of parameters y must
satisfy (in order for the representations to exist) a certain linear relation which
is obtained by taking traces from the both sides of the equation A1 +...+ A, =
~vI. Hence x must belong to a ceratin hyperplane hg which depends only on
the graph G. A simple calculation yields that for extended Dynkin graphs
Dy, Eg, E7, FEg these hyperplanes are the following;:

D, Es E; FEg

a; + B1 + o +a + | a1 + a2 + | a1 + ax +
+m=2y|pL + B2 +| a3 + f1 + | a3 + au +
d14+02=3y | P + B3 + | 2(B1+P2)+
261 =4y 361 = 6y

It is know (see [12]) that in case x € hg the dimension of any irreducible
representation is bounded (by 2 for 134, by 3 for Eﬁ, by 4 for E; and by 6 for
1778). Thus in case x € hg we can describe the set of admissible parameters
x using Horn’s inequalities. In case x ¢ hy the dimension of any irreducible
locally-scalar representation is a real root. In what follows we will relay on
the following result due to V.Ostrovskij [11]

Theorem 2. Let m be an irreducible *-representation of the algebra Ag .y
associated with extended Dynkin graph G and T corresponding representation
of the graph G. Then either generalized dimension d of T is a singular root
or vector-parameter x € hg.

Hence we will solve the spectral problem if we describe the parameters y
for which there are locally-scalar representations with vector of generalized

11



dimension being real singular roots and, separately, parameters belonging to
the hyperplane hg for which there exist representations of the algebra.

In the next sections we will do the following: we know how to construct
all irreducible locally-scalar representations of Dynkin graphs with the aid of
Coxeter reflection functors starting from the simplest ones. In particular, we
can find their dimensions and characters [9]. Next we single out non-generate
representations and apply the equivalence functor @, see Theorem 1.

For a vector v = (vp,...,v,) and 0 < s < n we will write v >, 0 if v; >0
for all j # s and vg = 0. If IT € Rep(G, w, &) is a locally-scalar representation
of a graph G with w being a singular root then e; = ¢k (w) or ej = cx(w) for
some positive integer k and a coordinate vector e;. Thus there is a locally-
scalar representation II' € Rep(G,e;,¢’) such that applying corresponding

sequence of Coxeter functors ... FF or . FF to II' we obtain II and hence

° k [e]
w belong to C-orbit of e; and c((j (&) = §’ ( a (&) =& Thus the necessary

and sufficient conditions on £ for the representatlon II to exist can be written
as

o(k) .
cq (€) 250, cplw) = ey, (3.1)

or ( )
cq (€) >0, cx(w) = e (3.2)

Let C; denote the C-orbit of e;. It can be checked by direct computations
that for each extended Dynkin graph every C-orbit is a union of finite number
of d-series or 2d-series of roots, i.e. C = (vg + €dZ)U ... U (v, + €6Z) where

o

e € {1,2} and ¢(va,) = vors1, ¢(v2r—1) = vor (or ¢(var) = vort1, c(vor_1) =
vgr). We have presented this finite sequences (vy,...,v,) in the tables at
the end of the paper. Elements of C-series can be written then as wy =
Vk mod (m+1) T e[mLH]é where [z] denote the integer part of x.

Let ¢ be minimal such that w; is non-degenerate then w; is also non-
degenerate for all [ > ¢. We will denote by D;; the matrix which transform
the character of a locally-scalar graph representation with dimension w; to

the one with dimension e;, i.e. Dj(z1,%2,...,%n, z0)" = (21,25, ..., 24, 2()"
where (2,2}, ..., 2%, z{) obtained from (z1,z9, ..., 7,79) by applying the

corresponding sequence of Coxeter maps that transform vy, to e;.

By Theorem 1 there is an equivalence functor ® which assigns to every
representation m € Ag,, of generalized dimension (ly,...,[,) a unique locally-
scalar representation of graph G with a character (z1,...,%,,z¢) and dimen-
sion (v1,...,vn,v0). Let My denote the transition matrix which transform the
vector x to (z1,...,Zn,Zo). Let My be the transition matrix which transforms
generalized dimension (v1,...,v,,vy) of a graph representation to generalized
dimension (l1,...,l,) of the corresponding algebra representation. Then gen-
eralized dimension [ of an irreducible representation m Rep Ag, is of the form
Maw where w in non-degenerate root of root system associated with graph G
and conditions (3.1), (3.2) give the following necessary and sufficient condi-
tions on y of existence of representation in dimension /

o(k)

12



or
o(k)
cg Myx >; 0.

Let us note that there are no irreducible *-representations of the algebra
Ag,y of generalized dimension Myw where w is a real regular root. For x & hg
this follows from Theorem 2. If x € hg and 7 € Rep(Ag,y) of dimension Myw
then since w + k§ belong to C-orbit of w for arbitrarily large k£ we obtain
by applying Coxeter functors that there exists an irreducible representation
of Ag, in arbitrarily large dimension. This contradicts the fact that Ag
is PI-algebra for every x € hg and thus generalized dimension of 7 can not
correspond to a real regular root.

The explicit results of the communications of C-orbits, matrices My, My,
etc. are gathered in the tables at the end of the paper. In the following
sections we present explicit answer to the Spectral problem for all extended
Dynkin graphs.

4 Representations of .A54 v

The parameters x = («,f3,&,d,7) of the algebra ‘A54x and the vector of
generalized dimension n = (nq,...,n4,n9) will be plotted on the associated
graph according to the following picture:

n3 )
D,
a B
ni no n2
nal &

The category of non-degenerate x-representations of Af)4 X is equivalent to

the category of non-degenerate locally-scalar representations of the graph Dy
with the character and generalized dimension given on the following picture:

ds; @9
D,
o B
dy dyp do
dy L&

Obviously the transition matrix My such that M¢(x) = (z1, %2, ..., T4, To)
and the transition matrix My such that My(ds,...,ds,do)T = (n1,...,n4,m0)7
are identity matrices.

For IT € Rep(G, d, f) with sincere d the Coxeter map C'C' transform char-

acter £ = (x1,...,%4,20) by multiplying from the left the vector-column z on
_ 0O 0 o0 o
the matrix M, = o o -1 o 1 |.
0 0 0 —1 1
-1 -1 -1 —1 3

13



It is easy to check that the Jordan form of M, is

J=—-1®-10 -1 J5(1),

J2(1):((1) 1)

Theorem 3. Let d() ,(:)mod me T g k -1 for k > k; where 'ug) is the s-th
vector in the set C; from the table 8, my = |Ct| and di =5, dy = 2.

If the vector x € h5 s b€ X does not satisfy cn + B1 + 01+ m = 2 then
the algebra A54’ has an irreducible non-degenerate representation in a gen-
eralized dimensions v if and only if for some t € {0,1} and some k > dy,

v = Mdd,(ct) and Ay px > 0 where the matriz Ay, is taken from table 8. Such

representation is unique. If x satisfies aqr + B1 + 01 +m1 = 2y then irreducible
non-degenerate representations of A=  may exist only in the generalized di-

where

Da)x
Mension 5alg(D4)- They exist if and only if x satisfies conditions H54.

5 Representations of AE6 v
The parameters x = (a1, 2,p1,02,01,02,7) of the algebra Az . and the
vector of generalized dimension d = (dy,...,dgs,dp) will be plotted on the
associated graph according to the following picture:

ns 62
FEg algebra,

neQ 01
(o%) (03] Y B1 B2
[ O O L J
n1 n2 ng Mg N3

The category of non-degenerate x-representations of A o x is equivalent to the

category of non-degenerate locally-scalar representations of the graph Eﬁ with
the character and generalized dimension given on the following picture:

ns +ne P o1 — d2

E’G graph
(1% (51
o @ g Y 51 51 B2

N2 n1+mng No n3+n4 Ny

It is easy to see that transition matrix My such that My (x) = (z1, 22, ..., %6, Zo)

is block-diagonal
My ="Ts1 ®Ts1®Ts,1 D1,

1 -1
na- (1)

14

where



The transition matrix My such that My(dy,...,ds, do)T = (n1,...,n6,n0)7 is
also block-diagonal
Ml;l = T6,2 &) T6’2 ©® Ts’g ®1,

01
na=(01).

For IT € Rep(G, d, f) with sincere d the Coxeter map C'C' transform char-
acter £ = (x1,...,27,20) by multiplying from the left the vector-column z on
the matrix M, = SJS~! where the Jordan form

where

J=—101(1)0z2020Zd7,

n0=(g 1)

Theorem 4. Let for k € {0,1,2} d,(:) = v,(ct)mod me T [mit]& for k > k; where
'Ugt) is the s-th vector in the set Cy from the table 9, m; = |Cy| and dy = 4,
dy =14, dy = 7.

If the vector x € hEa’ i.e x does not satisfy

where

and z = 1/2(—1 — iv/3).

ai+ag + B+ P2+ 61 + 02 = 3y (5.1)

then the algebra ‘AEe, has an irreducible non-degenerate representation in a
generalized dimensions v if and only if for some t € {0,1,2} and some k >
dy v = TMdd,(:) where transposition T € {(1,3),(1,5),(2,4),(2,6)} permutes
the coordinates of the vector Mdd,(:) and Aqx7x >¢ 0 where the matriz Ay
is taken from table 9. Such representation is unique. If x satisfies (5.1)
then irreducible non-degenerate representations of AEG,X may ezist only in the

generalized dimension 04(Eg). They exist if and only if x satisfies conditions
H .
Eg

6 Representations of AE7X°

The parameters x = (a1, a2, as, f1, B2, 83, 9,7) of the algebra AE7 N and the
vector of generalized dimension d = (dy,ds,...,d;) will be plotted on the
associated graph according to the following picture:

E; algebra n® &
a3 o Y B B Bs
e O @ O ® O L
ny  ng N3 ng 7N ns T4

The category of non-degenerate x-representations of A Frx is equivalent to the

category of non-degenerate locally-scalar representations of the graph E7 with
the character and generalized dimension given on the following picture:

15



E7 graph n@ s
I'Y B1 B~ B3 B2— P
O @ O J

7
n2 ng+n3 ni+ N0 N4+ ns+ng N5
ne +ng +n5+ ng

Q9 — (3 0] — (g O
[ O 4

It is easy to see that transition matrix M such that My (x) = (z1, 22, ..., 27, %0)
is block-diagonal
Mf = diag (Tl,Tl, 1, 1),

where
01 -1
T = 1 0 -1
1 0 O
The transition matrix My such that My(dg,ds,...,d7)T = (ng,n1,...,n7)7 is

also block-diagonal
M, ! = diag (T», T», 1),

where

Ty =

- o O
_ = =
— = O

For IT € Rep(G, d, f) with sincere d the Coxeter map CC' transform char-
acter z = (z1,...,27,20) by multiplying from the left the vector-column z on
the matrix M, = SJS~! where the Jordan form

J =diag (=1, -1, Jo(1), —i,4,1/2(=1 — iv/3),1/2(—1 + iV/3)),

J2(1):((1) 1)

Theorem 5. Let for k € {0,1,2,3,7,8} d;ct) = Ul(ct)mod my T et[m%]é for k> k;

where uﬁ” is the s-th vector in the set C; from the table 10, my = |Cy| and
d():4, d1 :27, d2:14, d3 :9, d7:11, d8:6, ej:1 Zf] ¢{2,5} and
€2 = €5 = 2.

If the vector x &€ ha i.e x does not satisfy

where

o1 +og +az+ B+ Po+ B3+ 200 =4y (6.1)

then the algebra AE7,X has an irreducible non-degenerate representation in
a generalized dimensions v if and only if for some t € {0,1,2} and some
kE>dv= TMdd,(:) where transposition T € {(1,4),(2,5),(3,6)} permutes
the coordinates of the vector Mdd,(:) and A pTx >¢ 0 where the matriz Ay
is taken from table 10. Such representation is unique. If x satisfies (6.1)

then irreducible non-degenerate representations of AE7 x may ezist only in the

generalized dimension (5alg(E7). They exist if and only if x satisfies conditions
H .
Ey
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7 Representations of Aﬁg v

The parameters x = (a1, ag, as, aq, as, b1, P2,0,7) of the algebra 'AES N and
the vector of generalized dimension d = (d, ..., dg,dy) will be plotted on the
associated graph according to the following picture:

Eg algebra

ng 1)
Qs Qy a3 Q3 ai Y B B2
@ O ©® O o O o O
ni n2 ng Ny ns no nr Ne

The category of non-degenerate x-representations of A oy is equivalent to the

category of non-degenerate locally-scalar representations of the graph Eg with
the character and generalized dimension given on the following picture:

Eg graph ng® &

a3 — Q4o — Qg — a5 @) — Q5 Q1 Y Br Pr— P
¢ O @ O @ O @ O
nsg ny+mn4 mo+ng no+ng ny+neg 7No ng + ny ny

+1y4 +n4+ +nz+
ns ng + N5

It is easy to see that transition matrix M such that M¢(x) = (z1, z2, ..., %8, Zo)
is block-diagonal
Mf = dlag (TQ,T:),, 1, 1),

where
001 -1 0
010 -1 0 1 1
To,=101 0 0 -1 ,T3:<1 0).
100 0 -1
100 0 O
The transition matrix My such that My(dy,...,ds,do)’ = (n1,...,ng,m0)7 is
also block-diagonal
M;! = diag (Ty, T5, 1,1),
where
00100
00110 01
»h=]101110 ,T5:<1 1).
01111
11111

For II € Rep(G, d, f) with sincere d the Coxeter map C'C transform char-
acter £ = (z1,...,27,20) by multiplying from the left the vector-column z on
the matrix M, = SJS~! where the Jordan form

J = dlag (—1, Jg(l), 1/2(—1 - ’L\/g), 1/2(_1 + i\/§)745<27g3744)1
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where

m0=(g 1)

and ( is a prime root of unity of degree 5

Theorem 6. Let for k € {0,1,...,8} dg) = Ul(ct)mod me + et[mit]é for k > ki
where 'ugt) is the s-th vector in the set C; from the table 10, m; = |Cy| and
(ko,...,ks) = (10,65,34,23,14,13,28,17,19), ¢, = 1 if j & {4,7} and e4 =
€7 = 2.

If the vector x € hES, i.e x does not satisfy

a1+ ag + as + as + 2(B1 + B2) + 361 = 6y (7.1)

then the algebra AE&X has an irreducible non-degenerate representation in a
generalized dimensions v if and only if for some t € {0,1,...,8} and some
k>div= Mdd,(:) and Agxx >t 0 where the matriz Ay y is taken from ta-
ble 11. Such representation is unique. If x satisfies (7.1) then irreducible
non-degenerate representations of AE&X may exist only in the generalized di-

mension (5alg(E’g). They exist if and only if x satisfies conditions Hﬁg.
In the following tables coordinates of the root vectors (vi,...,v,,vg) cor-
respond to the enumeration of vertices shown on the pictures in sections 4-7.

We will omit the parentheses and commas in the vectors to shorten notations.
If a coordinate is not a decimal digit we will take it in parentheses.

8 Table. C-orbits and matrices A, ; for Dy.

1. A consists of 25 §-orbits.
2. A is a union of 5 C-series consisting of singular roots and 6 d-series of
regular roots from the set

+ {10011,10101,11001,00111,
01011,01101}

and one §-series of imaginary roots.
3. C¢ :10000,10001,01111,01112. Cvy = vy,-..,Cv3 = vy + 6.
4. Cp : 00001,11111. Cvy = v1,Cv1 = vy + 9.

5.
Arx = Aoy =
Co3CMy itk =2s CoIM; itk =2s
D1’5 3 . ’ DO’Q 1 b . ;
C* ™My ifk=2s-1 CCMy ifk=2s+1
D5 = Doo =

-2 -1 -1 -1
-1 0 -1 -1
-1 -1 0 -1
-1 -1 -1 0
-3 -1 -1 -1

BN NN W

OOOI
-
colo

-
oloo
-
‘OOO
-

0

)
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6. dug(Da) = (1,1,1,1;2).
Hyperplane conditions H Bt

a+B+E>y,a+é+d>yv,a+B+d>y,B+E+> .

9 Table. C-orbits and matrices A, ; for EG.

1. A consists of 73 d-orbits.
2. A is a union of 7 C-series consisting of singular roots and 11 J-series of
regular roots from the set

+ {0001111,0011011,0100111,0101012,0111001,
0111122,0112112}

and one §-series of imaginary roots.

3. Cy:

1000000, 1100000, 0100001, 0001011, 0011111, 0111111,
1101012, 1201012, 1211112, 1112122, 0112123, 0212123.

o

CUOZ’Ul,...,CUH =g + 0.
4. 021

0100000, 1100001,1101011,0111112,0112122,1112123.

Cvy =v1,...,Cvs = v+ 4.
5. Cp:
0000001, 0101011,1111112,1212122.

Cvg=wv1,...,Cvg =v9+6

6.
Ay = Aoy =
s—T7 : — 2 .
C Mf if k=2s D 04 sCMf lkaQS,
1,14 _7 b . ’ 2,7 A . ’
CT'CMy ifk=2s+1 C* My if k =2s—1.
C?* My ifk=2s
Aok =Doay o _
C*CM;y ifk=2s+1
D114 Dy7 =
1 -3 1 -2 1 -2 4 1 -1 0 -1 0 -1 2
2 -5 2 -3 2 -3 6 2 -3 1 -2 1 —2 4
1 -2 0 -1 1 -2 3 1 -1 0 0 1 -1 1
1 —4 1 -3 2 -3 6 y 1 —2 1 —1 1 —2 3 ’

1 -2 1 -2 0 -1 3 1 -1 1 -1 0 0 1
1 —4 2 -3 1 -3 6 1 —2 1 —2 1 —1 3
2 -7 2 —4 2 —4 9 2 —4 1 —2 1 —2 5

0 -1 0 0 0 0 1

0 -1 1 -1 1 -1 2

D 0 0 0 -1 0 0 1

= 1 —1 0 -1 1 —1 2

04 0 0 0 0 0o -1 1

i -1 1 -1 0 -1 2

1 —2 1 -2 1 —2 4



7. Sug(Es) = (1,1;1,1;1,1;3).
Hyperplane conditions H By

ar+ B > v,a1 + B2+ 02 > v,a1 + 61 >y, + Br + G2 >,
ag+ P2+ 01> 7,81 +61> 7,01 +ag+ f1+ P2+ 2 > 2y,
a1+ as+ 01+ 6 >2y,a1 +ag+ Po+ 01+ b2 > 2y, 1 + B1 + P2 + 51 > 27,
a1+ P14+ 81+ 02 > 2y, a0+ B+ P2+ 61 + 52 > 2.

10 Table. C-orbits and matrices A, ; for Er.

1. A consists of 63 d-orbits.
2. A'is a union of 7 C-series consisting of singular roots and 11 §-series of
regular roots from the set

{00011111,00100112, 00101101, 00112212, 01100101,
01101111,01111212,01201223,01211112, 01212313}

and one §-series of imaginary roots.

3. Cy:
10000000, 11000000, 01100000, 00100001, 00000111,
00001111,00111101,01111101,11101111,11100112,
01200112,01201112,11111212,11112212,01212212,
01211213,11201223,12201223,12311213, 12312213,
12212323, 11212324, 01312324, 02312324.

Cuy :111,...,6'1)23 =y + 6.

4. Cy:

01000000, 11100000, 11100001,01100111,00101112,
00111212,01112212,11212212,12211213, 12301223,
12301224,12311324,12313324,12323424,12323425,
12413435, 13412436, 23512436, 24513436, 24523536,
23524537, 13524647, 13524648, 23624648.

Cvozvl,...,01)23=1)0+2(5.
5. 03:

00100000,01100001,11100111,11101112,01211212,
01212213,11212323,12212324.

Cvozvl,...,éw:vo—l—é.
6. C7:

00000010, 00000011, 00100101,01101101,11111111,
11111112,01201212,01201213,11211223, 12212223,
12312313,12312314.
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o]
Cvg=wv1,...,Cv11 = vy + 6.

7. C() :
00000001,00100111,01101112,11211212, 12212213,
12312323.
L ] o
Cvg =v1,...,Cvs = v+ 0.
8.
Ay = Aoy =
ha . T—s : _
CsMUOMy if k= 2s My itk=2s
D197 “ ] ) 2,144 ® . ) ;
C* "My ifk=2s—-1 CC~ "My ifk=2s+1
Az = A7y =
L] o
Cs—°CM; ifk=2s CC* My ifk=2s
D39 s , ) Drunq ” o i ;
Cs5M;  ifk=2s—1 CosM; ifk=2s—1
Cs3M;  ifk=2s
Agyx = Dgg 5 _
Ccs- CMf ifk=2s+1
Dy o7 = D314 =
-1 2 —4 -1 2 -3 -2 5 -1 1 -1 -1 2 -2 -1 2
—2 4 -7 —2 4 —5 -3 8 —1 2 -3 —2 3 —4 —2 5
-2 5 —10 -2 5 -7 -5 12 -1 3 —4 -3 4 -5 -2 6
-1 2 -3 -1 1 -2 -2 4 0 0 -1 -1 1 -1 -1 2
-1 3 —6 -2 3 -5 -3 8 bl 0 1 -2 -1 2 -3 -2 4 Y
-2 4 -9 -3 5 -7 -5 12 -1 2 -3 -2 3 -5 -2 6
—2 3 —6 —1 3 —5 -3 8 —1 2 -3 —1 2 -3 —1 4
-3 6 —13 -3 6 -9 —6 16 -2 4 -5 -3 4 —6 -3 8
D39 = D711 =
1 —1 1 1 —1 2 1 -2 0 1 —1 —1 1 —1 0 1
1 -2 3 2 -3 4 2 —4 -1 2 -2 -1 1 -2 -1 3
2 -3 5 2 —4 6 4 -7 -1 2 -3 -1 2 —4 -1 5
0 0 1 0 -1 2 1 -2 -1 1 -1 0 1 -1 0 1
1 -1 3 1 -2 3 2 —4 ) -1 1 -2 -1 2 -2 -1 3 b
2 -3 5 1 -3 5 3 —6 —1 2 —4 —1 2 -3 —1 5
1 -2 3 1 -2 3 3 —4 -1 2 -3 -1 2 -3 -1 4
3 —4 6 2 -5 7 5 —8 -1 3 -5 -1 3 -5 -2 7
0 0 —1 0 0 0 0 1
0 0 -1 0 1 -1 -1 2
0 1 —2 —1 2 -2 —1 3
. 0 0 0 0 0 -1 0 1
D8,6 - o 1 -1 o o0 -1 -1 2
-1 2 -2 0 1 -2 -1 3
-1 1 -1 -1 1 -1 -1 2
—1 2 -3 —1 2 -3 -2 5

Satg = (1,1,1,1,1,1,2;4).

Hyperplane conditions H By

ar+ P2 >7,0+ar >vy,00+ 61 >7,0 +ag+ B3 > 7,
d+az+P2>70+p1>70+a1+ax+ B2 > 2y,
dtart+as+p1>2y,0+an+ag+Pe+Ps>2y,0+a1+p1+ B3> 2y,
d+as+as+ B+ P3>27,0+as+ B+ P2 > 27,
dtart+art+az+fi+Pe>37,20+a1+az+ a3+ B2+ B3 > 3y,
0+ar+as+ P14+ B2+ B3> 37,20 + a1 +as+ B+ B3 > 3,
20+a1+az+ 51+ B2 >3v,20 +as+az+ B+ P2+ P > 3y
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11 Table. C-orbits and matrices A; ; for Eg.

1. A consists of 241 §-orbits.
2. A is a union of 8 C-series consisting of singular roots and 28 ¢-series of
regular roots from the set

+{000000000, 000010112,000111111,000121223,001111101,
001121213,001220112,001232324,011110101,011121112,
011221212,011231324, 012221223, 012341224,012342425}.

and one §-series of imaginary roots.

3. Cq:

100000000, 110000000, 011000000, 001100000, 000110000,
000010001, 000000111,000001111, 000011101, 000110101,
001110011,011110011,111110101,111111101,011111111,
001110112,000120112,000121112, 001111212, 011111212,
111121112, 111220112, 012220112, 012221112, 111221212,
111121213,011121223,001221223, 001231213, 011231213,
112221223, 122221223, 122231213, 112331213, 012331223,
012231224, 111231324, 111232324, 012232324, 012331324,
112341224, 122341224, 123331324, 123332324, 122342324,
112341325,012341335, 012342335, 112342425, 122342425,
123342335, 123441335, 123451325, 123452325, 123442435,
123342436, 122352436, 112452436, 013452436, 023452436.

Cvg =v1,...,Cvs9 = vg + 6.
4. Cy:

010000000, 111000000, 111100000, 011110000, 001110001,
000110111, 000011112,000011212,000111212, 001121112,
011220112,112220112,122221112,122221212,112221213,
011231223,001231224,001231324, 011232324, 112232324,
122331324, 123341224, 123441224, 123441324, 123342325,
122342435,112342436, 012352436, 012452436, 113452436.

Cvg = v1,...,Cvog = vg + 0.
5. C3:

001000000, 011100000,111110000,111110001,011110111,
001111112,000121212,000121213,001121223,011221223,
112231213,122331213,123331223,123331224,122341324,
112342325,012342435, 012342436, 112352436, 122452436.

o L]
Cvg =wv1,...,Cvig = v + 0.
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6. 042

000100000, 001110000, 011110001, 111110111, 111111112,
011121212, 001221213, 001231223, 011231224, 112231324,
122332324, 123342324, 123441325, 123451335, 123452336,
123452536, 123453537, 123463547, 123562548, 124572548,
134673548, 235673648, 245673649, 245683659, 23578365(10),
13579375(10), 13579475(11), 23579486 (11), 24579486(12),
2467(10)486(12).

CUO:U1,...,CU29:U0+25.
7. Cs :

000010000, 000110001,001110111,011111112, 111121212,
111221213,012231223, 012331224, 112341324, 122342325,
123342435, 123442436.

Cvg =v1,...,Cv11 = v + 6.
8. 06:

000001000, 000001100, 000000101, 000010011, 000110011,
001110101,011111101,111111111,111110112, 011120112,
001221112,001221212,011121213, 111121223, 111221223,
012231213,012331213, 112331223, 122231224, 122231324,
112332324, 012342324, 012341325, 112341335, 122342335,
123342425, 123442425, 123452335, 123451336, 123451436.

Cvg=wv1,...,Cvog = vg + 6.
9. C7:

000000100, 000001101,000011111, 000110112, 001120112,
011221112, 112221212, 122221213, 122231223, 112331224,
012341324, 012342325, 112342435, 122342436, 123352436,
123552436, 124562436, 134562437, 234562547, 234563548,
134573648, 124673649, 124683659, 13468365(10),
23568375(10), 24578475(10), 24679475(10), 24689375(11),
2468(10)376(11), 2468(10)476(12).

C’UO Z’Ul,...,C’Ugg =U0+2(5.
10. Cg:

000000010, 000000011, 000010101, 000111101,001111111,
011110112,111120112,111221112,012221212, 012221213,
111231223,111231224,012231324,012332324112342324,
122341325, 123341335, 123442335, 123452425, 123452426.
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o

Cvg =1, ..

9. C():

.,Cvi19 = vg + 9.

000000001, 000010111,000111112,001121212,011221213,
112231223,122331224, 123341324, 123442325,123452435.

CU() = V1,y--
10.

.,Cvg =vg+ 6.

CsTOMy itk = 2s,
5139 .
O~ M;

A7y =

I

C9CM; if k = 2s,
7,17
Cs—QMf

-3
-6
-8
—10
—12
-5
—10

SaN®woNe s N I

—15

-1
-3
—4
-5
-6
-2
—4
-3
-6

|
w
N S R N

-3

BTN DOt N

Aoy =
i cslM
ifk=2s f
. 3 2,34 17 o
fk=2s—-1 Cs C’Mf
Ay =
. s—T7
if k = 2s C*= My
. 3 4,14 7 o
ifk=2s—1 C*'C My
Agx =
Cs 1My
) ) 6,28 "
ifk=2s—1. Cs C’Mf
Agy =
Cs_loch
) ) 8,19 10
ifk=2s—1. C* "My
CSM;  ifk=2s
Ao x = Do, 10 L )
C*7CM; ifk=2s+1
Dy 34 =
4 —6 2 —4 -3 7 —1 1 —2 3
8 —11 4 -7 -5 12 -1 2 —4 5
11 —16 5 —10 —8 18 -1 3 —6 7
14 —21 7 —14 —10 24 -2 4 -7 8
17 —26 9 —17 —13 30 s -2 4 -8 10
7 —10 3 -7 -5 12 —1 2 -3 4
13 —20 7 —14 —10 24 -1 3 —6 8
10 —15 5 —10 —8 18 -1 2 -5 6
20 —31 10 —20 —15 36 -2 4 -9 12
Dyja =
-2 0 -1 -1 2 0 1 -1 1 -1
—4 1 —2 —2 4 —1 2 —2 2 —2
—6 2 —4 -3 7 -1 2 -3 3 -3
-7 3 -5 -3 8 —1 2 -3 4 —5
-8 3 —6 —4 10 s -1 2 -3 4 —6
-3 1 -2 -2 4 0O 0 -1 2 -2
-7 2 —4 -3 8 0 1 —2 3 —4
-5 2 —4 -2 6 -1 1 -1 2 -3
—10 4 -7 -5 12 —1 2 -3 4 —6
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ifk=2s
ifh=2s4+1

if k= 2s
ifk=2s4+1

ifk=2s
ifk=2s4+1

if k = 2s,
if k=2s—1.

-3
—4
-5
-7
-8
-3
-7
-5

—-10

—8
—10
—13

-5
—10

TN W B AW -

—15

-2
-3

-2
-3
-3
-1
-3
-2
—4

-3
-1
-2

W N NN -=O
OB TN R N -

—4

b



0 0 (0] 1 -1 0 -1 0 1 -1 1 -1 2 -2 (0] -1 -1 2
0 1 -1 2 -2 0 -1 -1 2 -1 2 -3 4 —4 1 -2 -2 4
-1 2 -2 3 -3 1 -2 -1 3 -1 3 —4 5 —6 1 -3 —4 7
-1 2 -3 4 —4 1 -3 -2 5 -2 4 -5 6 -8 2 -5 -5 10
-1 2 -3 5 —6 2 —4 -3 7 y -2 4 —6 8 —11 2 —6 —6 13
0 0 —1 2 —2 1 —1 —1 2 —1 2 -3 4 -5 1 -3 -3 6
0 1 —2 3 —4 2 -3 —2 5 —1 3 -5 7 -9 2 —6 -5 11
-1 1 -1 2 -3 1 -2 -2 4 -1 2 —4 5 —6 1 —4 —4 8
—1 2 -3 5 -7 2 —4 —3 8 —2 4 -7 10 —13 3 —8 —8 16
D717 = Dg 19 =
0 1 -1 1 -1 0 0 -1 1 -1 1 -1 1 -1 1 -1 0 1
-1 2 -2 2 -2 1 -1 -1 2 -1 1 -2 2 -2 1 -2 -1 3
-1 2 -3 3 -3 1 -2 -2 4 -1 1 -2 3 —4 2 -3 -2 5
-1 2 -3 4 -5 2 -3 -3 6 -1 2 -3 4 —6 2 —4 -2 7
-1 3 —4 5 -7 2 —4 -3 8 y -1 3 —4 5 -7 3 —6 -3 9
0 1 -2 3 -3 1 -2 -1 3 0 1 -2 3 -3 1 -2 -1 3
-1 3 —4 5 —6 2 —4 -3 7 -1 2 -3 5 —6 2 -5 -2 7
-1 2 -2 3 —4 1 -3 -2 5 -1 2 -3 4 -5 2 —4 -2 6
-1 4 -5 6 -8 3 —6 —4 10 -2 4 -5 7 -9 3 -7 —4 11
0 0 0 0 -1 0 0 0 1
0 0 0 0 -1 1 -1 -1 2
0 0 0 1 -2 1 -2 -1 3
D 0 1 -1 2 -3 1 -2 -2 4
— -1 2 -2 3 —4 2 -3 -2 5
0’10 -1 1 -1 1 -1 0 -1 -1 2
-1 1 -2 3 -3 1 -2 -2 4
0 1 -2 2 -2 1 -2 -1 3
—1 2 -3 4 -5 2 —4 -3 7

11. by = (1,1,1,1,1,2,2,3,6).

Hyperplane conditions H e

d+ag >, 0+B1 >, a3+p1 >, 3d+as+ag+as+as+261+282 > 57,
0+ar+as+p1>2y, a1+ P>, 0+as+ P>, d+as+as+ B > 27,
0tas+ B+ P2 > 2y, 20+as+az+Bi+ P2 > 3y, 20+ a1 +au+ P+ B2 > 3,
0t+ai+aztas+pB1+08 > 3y, d+ayit+ag+as+B1+62 > 3y, 6+agt+as+[1+
Bo > 27,20+ +as+astas+ L1+ 02 > 4y, 20+as+as+as+ 01+ P62 > 3,
20+ oo +az+as+ 261 + P2 > 4y, 20 + a1 +az + a5+ 261 + B2 > 4y,
30+ art+astast+as+281+ 52 > 5y, 20+a1 +as+ag+ag+as+281+ 62 > 5y,
20+ a1 +ast+oag+ 1+ 202 > 4y,30 + a1 +as + az +ag+ 1+ 262 > 5y,
20+a1+ast+ast+as+pP1+2062 > 4y, 20+ a1 +ag+az+as+2081 +282 > 5y,
0+ a; +ag+ P > 2y
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