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Abstract

Two mathematical models developed as tools for solid waste planners in decisions concerning the
overall management of solid waste in a municipality are described. The models have respectively
been formulated as integer and mixed integer linear programming problems. The choice between
the two models from the practical point of view depends on theuser and the technology used.
One user may prefer to measure the transportation costs in terms of costs per trip made from
the waste source, in which case the first model is more appropriate. In this case we replace the
coefficients of the decision variables in the objective function with the total cost per trip from
the waste collection point. At the same time, instead of measuring the amount of waste using
the number of trucks used multiplied by their capacities, continuous variables can be introduced
to measure directly the amount of waste that goes to the plants and landfills. The integer linear
problem is then transformed into a mixed integer problem that gives better total cost estimates and
more precise waste amount measurements, but measuring transportation costs in terms of costs per
trip. For instance, at the moment the first model is more relevant to the Ugandan situation, where
the technology to measure waste as it is carried away from thewaste sources is not available.
Another user may prefer to measure the transportation costsin terms of costs per unit mass of
waste picked from the waste source, in which case the second model is more appropriate. The
models allow to plan the optimal number of landfills and the treatment plants, and to determine
the optimal quantities and type of waste that has to be sent totreatment plants, to landfills and to
recycling. It is also possible to determine the number and the type of trucks, as well as the number
and the type of replacement trucks and their depots. In either model there is one linear objective and
linear constraints that cover waste flows among the sources-plants-landfills, capacity, site selection,
environmental, and facility availability. The objective function in either model describes tipping
fees, total investment and maintenance costs, costs for buying/hiring trucks, transportation costs
as well as operational costs from the use of replacement trucks. The benefits from refused derived
fuel, energy generation, compost, and recycling are also incorporated in the objective function.
Validity and robustness tests conducted on the models, and applied on a hypothetical case study
are promising; the models can be used in important tools for planners in municipal solid waste
management in an urban environment. The models may as well beadapted for use in other areas
of application like industrial warehouse location and product distributions among industry agents.
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1 Introduction

1.1 Background to the study

The protection of the environment and natural resources is increasingly becoming very impor-
tant through environmentally sustainable waste management programs. It is necessary to follow,
on the part of waste managers, a sustainable approach to waste management and to integrate strate-
gies that will produce the best practicable option. This is avery challenging task since it involves
taking into account economic, technical, regulatory (normative), and environmental issues (Costi
et al [18]). Waste management can become more complex if social and political considerations are
also taken into account.

Municipal solid waste (MSW) management involves the collection of waste from its sources and
the transportation of waste to processing plants where it can either be converted into fuel (refuse
derived fuel), electrical energy, compost (stabilised organic material) or recycled for reuse. The
unrecoverable waste can either be transported directly from the waste sources to landfills or from
treatment plants to landfills. A careful planning is required in order to execute these activities in an
optimal way. Municipal solid waste has several sources suchas residential areas, commercial areas,
institutional environments, construction and demolitionareas, municipal services, etc. (Badran and
El-Haggar [3]).

1.2 Statement of the Problem

Kampala, the capital city of Uganda, has a population of morethan one million people, and it is
estimated that more than one thousand tons of MSW is generated per day. About half of the waste
generated is collected and disposed of at the only landfill atKiteezi. Limited treatment is done at
the landfill where some organic material is converted into compost; this is done in order to save the
water streams near the landfill. A limited amount of waste is picked by individuals that sell it to
some industries for reuse as raw material; this covers plastic bottles, tins and other metallic objects.
A limited amount of organic material is also picked by individuals as animal feeds to cattle, pigs
and dogs. Since less than half of the waste is collected and the waste is in the open, much of it
litters the city whenever the wind blows and whenever it rains. This explains the incidence of the
annual cholera outbreaks during the rainy seasons and the terrible stench from the city areas where
the waste accumulated has decayed.

Until recently, the City Council of Kampala has been the sole body dealing with waste man-
agement in the entire city. Privatization has now taken place and Kampala City Council plays the
overall supervisory role of making sure that the private companies follow the agreements made
with it. The city is currently composed of six divisions and there may be more than one company
in a single division. These companies are still in their infant stage and they currently collect and
transport MSW to the single landfill at Kiteezi. Optimization of solid waste management based
on operations research techniques has not yet been applied by any of the private companies. At
the moment none of the companies treats waste and the decisions are basically based on intuition
and experience. There is an urgent need to utilize scientifictechniques as decision support tools
in order to provide a healthy environment to all city dwellers and to optimally use the available
resources in the day to day management of waste.
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1.3 Objectives of the Study

The aim of this work is to present a detailed description of the mathematical models that can be
used as tools for decision makers of a municipality in the dayto day planning and management of
integrated programs of solid waste collection, incineration, recycling, treatment, and disposal. The
models can as well be used as design tools for the plants, landfills, and truck depots, in addition to
the day to day planning of municipal solid waste. The main focus of the models, whose structures
are described in this thesis, is to plan the MSW management, by defining the refuse flows that
have to be sent to recycling or to different treatment plants or landfills, suggesting the number,
the types, and the selection of plants or landfills that have to remain active at minimum total cost.
Several treatment plants and facilities will be included within the desired MSW mathematical
model: trucks for the transportation of waste, plants for recycling, production of refuse derived
fuel (RDF), and treatment of organic material; incineratorswith energy recovery; sanitary landfills;
standby trucks and their depots.

The application of the models may take some time as it may involve testing the models, and
the companies managing waste may need some time to implementthe proposals in the models
like setting up plants. The proposed models may as well undergo some modifications since almost
all companies managing waste in the city have small financialbudgets. What is likely to emerge
with time are companies that only collect and transport waste, companies that only treat waste,
and companies that only manage landfills. The models will however be a good starting point
towards a sustainable municipal solid waste management andan understanding of integral waste
management as a way of shaping the direction of municipal solid waste management in Ugandan
cities or towns.

Figure 1 shows a compact representation of the key components of the models where the nodes
stand for waste source locations (collection points), sanitary landfills, processing plants, and re-
placement trucks depot locations. The arrows from the truckdepots node to the other three nodes
indicate the flow of replacement trucks to those nodes. The arrows among waste sources, landfills,
and processing plants nodes indicate the flow of waste among these nodes.'
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Figure 1: A compact representation of key components in a decision support mathematical model.
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1.4 Justification

Waste management is very important for every country since it directly affects the health of her
people and their environment. For example in Uganda choleraoutbreaks are common in congested
areas, especially during the rainy season. It is imperativethat efficient municipal solid waste
management methods are put in place. Municipal solid waste also serves as an ambit for disease
vectors like rodents. Eutrophication, the increased presence of nutrients and its consequence has
been one of the most serious lake water quality problems overthe last decades. By allowing the
rotting municipal waste to enter water channels to our rivers and lakes, we risk losing our water
sources and fish because a fertile ground for water hyacinth and other water plants is generated.
This too impairs the health and the economic power of the state - wetlands that are so important
for a healthy environment are also affected by such waste. Noxious gases from rotting garbage
also end up in the atmosphere and can be deadly to human, animal, and plant life. With population
growth the land for waste disposal and agricultural production becomes scarce, and since it takes
long to reclaim land that has once been used for waste disposal, it becomes crucial to put in place
mechanisms for reducing waste to landfills.

A brief survey of the main approaches proposed in the literature for solid waste management
(SWM) models, during the last two decades, is made in Section 2. Section 3 discusses the math-
ematical modelling of the municipal solid waste managementproblem. The model formulations
are described in Sections 3.1 and 3.3 while the analyses of the models are outlined in Sections
3.2 and Section 3.4. The case study through which the validity and robustness of the models are
tested is described in Section 4. The examples used to illustrate how the models can be solved are
given in Section 3.5. The data used in the case study is presented in Section 4.1 while the results
from the validity and robustness tests of the models are discussed in Sections 4.2 and 4.3. The
programming language and the solver used are briefly described in Section 5. The conclusions and
future developments are presented in Section 6.

2 Annotated Bibliography

The effective application of SWM mathematical models as tools for decision making by munic-
ipal solid waste planners, in developing countries, is still a big challenge. A considerable amount
of research has been done in the last two decades on various aspects of SWM, and a number of eco-
nomically based optimization models for waste streams allocation and collection vehicle routes,
have been developed. Owing to an increasing awareness of environmental protection and con-
servation of natural resources, rising prices of raw materials, and energy conservation concerns,
the current research in SWM is now guided by the aim of designing comprehensive models that
take into account multi-disciplinary aspects involving economic, technical, regulatory, and envi-
ronmental sustainability issues.

The solid waste models that have been developed in the last two decades have varied in goals
and methodologies. Solid waste generation prediction, facility site selection, facility capacity ex-
pansion, facility operation, vehicle routing, system scheduling, waste flow and overall system
operation, have been some of these goals (Badran and El-Haggar [3]).

Some of the techniques that have been used include linear programming, integer programming,
mixed integer programming, non-linear programming, dynamic programming, goal programming,
grey programming, fuzzy programming, quadratic programming, stochastic programming, two-
stage programming, and interval-parameter programming, geographic information systems (Ghose
et al [24] and Hasit Warner [27]).
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The main objective of most of the models developed has been tominimize cost. Some models
are dynamic, while others are static (Badran and EL-Haggar [3]). Morrissey and Browne [49]
have classified municipal waste management models into three categories on the basis of decision
making criteria: cost benefit analysis, life cycle analysis, and multi-criteria decision making.

A detailed description of the mathematical models that havemost inspired the development of
the models presented in Section 3 is made below, while the other relevant and interesting models
are mentioned at the end of this section.

Costi et al [18] have proposed a mixed integer nonlinear programming decision support model
to help decision makers of a municipality in the developmentof incineration, disposal, treatment,
and recycling integrated programs. In that model several treatment plants and facilities have been
considered: separators, plants for producing refuse derived fuel (RDF), incinerators with energy
recovery, plants for treatment of organic material, and sanitary landfills. The main objective of that
model is to plan the municipal solid waste (MSW) management, define the refuse flow that has
to be sent to recycling or to different treatment or disposal landfills, and to determine the optimal
number, the kinds, and the localization of the plants that are to be active. Some of the decision
variables in the model are binary while others are continuous. The objective consists of all possible
economic costs and subjected to technical, regulatory (normative), and environmental constraints.
In particular, pollution and impacts induced by the overallsolid waste management system, are
considered through the formalization of constraints on incineration, emissions and on negative
effects produced by disposal or other forms of treatments like RDF chemical composition. A case
study, relevant to the municipality of Genova, Italy, has been presented.

Fiorucci et al [22] have presented a mixed integer nonlinearprogramming decision support
model for assisting planners in decisions regarding the overall management of solid waste at a
municipal level. By using that model, an optimal number of landfills and treatment plants, optimal
quantities and the characteristics of refuse that have to besent to treatment plants, to landfills and
to recycling can be determined. Various classes of constraints are considered in the problem for-
mulation, considering the regulations about the minimum requirements for recycling, incineration
process requirements, sanitary landfill conservation, andmass balance. The objective function is
composed of recycling, transportation and maintenance costs. The model has been tested on the
municipality of Genova, Italy. Unlike Costi et al [18], Fiorucci et al [22], have not considered con-
straints associated with the environmental impact due to incineration, production of refuse derived
fuel (RDF), or stabilized organic material (SOM).

Badran and El-Haggar [3] have proposed a mixed integer linearprogramming model for the
optimal management of municipal solid waste at Port Said, Egypt. The idea is to choose a com-
bination of collection stations from the possible locations in such a way as to minimize the daily
transportation costs from the districts to the collection stations, from the collection stations to
composting plants and landfills, and from the collection stations to landfills. The constraints of the
single objective (i.e. total cost) are the capacity constraints for the collection stations, compost-
ing plants, and landfills. The model tests show positive results that can result in profit from the
collection fees and the sales of sorted recyclable material.

Daskalopoulos et al [19] have presented a mixed integer linear programming model for the man-
agement of MSW streams, taking into account their rates and compositions, as well as their adverse
environmental impacts. Using this model, they identify theoptimal combination of technologies
for handling, treatment and disposal of MSW in a better economical and more environmentally
sustainable way. The single objective is composed of costs per tonne of waste treated at the recy-
cling, composting, incinerating plants, and landfills. Theconstraints of the objective are capacity
constraints for the plants and landfills. The model has been applied to the management of MSW
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in the UK. The findings have revealed that the current costs favour the landfill option of managing
the MSW. It is however noted that the impact of a potential levy on waste land filled, can reduce
the gap between the costs of land filling and the other alternative waste-treatment technologies.

Chang and Chang [6] have presented a non-linear programming model for municipal solid waste
management based on the minimization of an overall cost considering energy and material recovery
requirements. A set of continuous decision variables that express material flows to the various
facilities are defined. Presorting facilities (separators) are part of the model. The objective function
includes transportation, treatment, and fixed and operational costs, and takes into account possible
benefits from the sale of electric energy and recyclable raw materials. The problem constraints
cover mass balance, incinerator and landfill capacities, and minimum energy recovery constraints.
The proposed model has been tested in the Taipei metropolitan region, Taiwan. The tests are
encouraging.

Similarities and differences between the current work and the foregoing lit-
erature survey

Costi et al [18] have presented a comprehensive mixed integernonlinear programming problem,
whose planning horizon is a year. They give a detailed description of environmental constraints
that cover RDF constraints, incineration constraints, and SOM constraints.

The nonlinearity of their model consists in the nature of thedecision variables used. These
decision variables are percentages (fractions) of waste that has to be sent to various plants and
landfills in their model. The interaction between these percentages generates their products that
appear in the objective function, in the regulatory (normative) constraints, in the technical and
environmental constraints. Probably the choice of the variables is due to the desired goal, and
consequently nonlinearity is inevitable. Transformationto a linear model may require change of
variables.

In contrast to the work of Costi et al [18], we present two models; the first model is an integer
linear programming problem. Some of the variables in this model measure the number of trucks
(including replacement trucks) used per day. The amount of waste transported is then determined
by multiplying the number of trucks of a given type used between any two nodes by the capacity
of a single truck, and by the expected number of trips a singletruck of that type makes per day
between those nodes. The binary variables used in the model decide the existence of a plant of a
given type, and a landfill of a given type or size.

The second model is a mixed integer linear programming problem where the continuous vari-
ables measure the amount of waste that flows between the nodeswhile the integer variables mea-
sure the number of trucks used per day. The binary variables,like in the first model, decide the
existence of a plant or a landfill.

We have two models because of the realization that some usersmay want to measure transporta-
tion costs in terms of costs per trip from a waste collection point, in which case the first model is
more appropriate. Others may prefer to measure the transportation costs in terms of costs per unit
waste carried away from a waste collection point, in which case the second model is more appro-
priate. For instance, the first model is more desirable for the Ugandan situation since it is not yet
possible to measure waste as it is transported from the wastecollection points.

The planning horizon in both models is a day; decisions are tobe taken on a day to day ba-
sis. This means a continuous monitoring and collection of data in order to make the required
adjustments. This flexibility may be lost in a long period horizon model. In addition to the daily
operational utility of the models, they can as well be used asdesign tools for the plants, landfills,
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and truck depots. Apart from the transportation costs, installation and operational costs for plants
and landfills, and benefits from recycling, RDF sales, SOM sales, and energy sales, the objective
function also includes truck purchase costs as well as costsdue to the presence of replacement
trucks depots.

Since our desire is not only that of locating plants and deciding waste flows to these plants and
landfills, special attention has been given to deciding the number and the type of trucks that are
used to transport a given type of waste from the waste collection points to the plants or landfills.
Replacement trucks are also considered with the observationof possible breakdowns of the opera-
tional trucks. This is an aspect that is missing in the surveyed works, and since transportation costs
play a big part in the daily operational costs, it is important that a waste management planner has
a tool as a basis for the trucks deployed.

Although regulatory, technical, and environmental constraints are not comprehensively consid-
ered in our models as by Costi et al [18] and Fiorucci et al [22],it is our belief that they can be
handled in detail without affecting the linearity of the models. The regulatory constraints give
the minimum percentage of waste recycling; these percentages are proportions of the total waste
generated. The technical constraints not only deal with plant capacities but also deal with the
minimum amount of waste that has to be sent to the plants if these plants are to be economically
beneficial. The environmental constraints are necessary tolimit emissions during the combustion
processes at incinerators, and to limit the presence of noxious substances in the RDF and in the
SOM. Along the same line leachate and biogas production at landfills can be studied.

Unlike in the model of Costi et al [18], waste flows from RDF, recycling, and SOM plants to
incinerators are not considered in our models. These are left out in order to first develop the key
elements that deal with the determination of trucks used in the daily transportation exercise. These
missing elements can however be incorporated by defining newsets of variables to cover the waste
flows from the RDF plants, from the recycling plants, and from the SOM plants to the incinerators,
since the aim is to recover as much waste as possible.

One similarity between our models and that of Costi et al [18] is that collection costs from waste
sources to collection points are not part of the models. Other similarities are that our models are
all static and deterministic (Murty [51]), and single objectives that minimize total costs are used.
A major similarity is that the goal is to present integrated models that are comprehensive.

The model of Fiorucci et al [22] can be derived from that of Costi et al [18] by ignoring environ-
mental constraints. Like in the model of Costi et al [18], the nonlinearity of their model consists
in the nature of the decision variables used. These decisionvariables are percentages (fractions)
of waste that has to be sent to various plants and landfills in their model. The interaction between
these percentages generates their products that appear in the objective function, in the regulatory
(normative) constraints, and in the technical constraints.

The model of Chang and Chang [6] minimizes overall cost (takinginto account energy and ma-
terial recovery) through the solution of a nonlinear programming problem. Unlike Costi et al [18],
their model does not cater for regulatory and environmentalconstraints while technical constraints
are not as extensively described as done by Costi et al [18]. Wepresent linear models, and go at
length in dealing with the waste transportation by determining the truck types and numbers as well
as considering replacement trucks in our models. We also show environmental constraints can be
included.

Badran and El-Haggar [3] present a mixed integer linear programming model whose objective
covers collection costs from the districts to collection stations, transportation costs from collection
stations to either composting plants or to landfills. Benefitsfrom the sale of compost and recy-
clable material are incorporated into the objective function. Binary variables are used to decide the
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existence of collection stations. Incineration, recycling, and RDF production are not part of the
model. Regulatory, technical, and environmental constraints are not covered in the model. Unlike
Badran and El-Haggar [3], waste collection from the sources of generation is not considered in our
models, and collection points are assumed to be known. Recycling, refused derived fuel, and en-
ergy generation are considered in our models. The determination of trucks as well as replacement
trucks used everyday is not considered by Badran and El-Haggar [3]. Our models are linear like
their model.

The model of Daskalopoulos et al [19] does not cover collection and transportation costs. Reg-
ulatory and technical constraints are not considered either. The costs in the objective function cater
for the environmental considerations related to the emission of greenhouse gases. These costs are
evaluated by costing all possible environmental damages that are associated with the waste man-
agement options, like potential crop yield reduction, forest damage, sea level rise, and damage to
human health. Unlike our models where several aspects of waste management planning are consid-
ered, the model of Daskalopoulos [19] is restricted to wastetreatment and environmental impact.
Such a model can be useful to companies that solely deal with municipal solid waste treatment. It
can also be expanded to cater for the missing elements.

ReVelle [53] presents a survey on the applications of operations research to a variety of envi-
ronmental problem areas like water resource management, water quality management, solid waste
operation and design, cost allocation for environmental facilities, and air quality management. He
notes that despite four decades of such activities, challenging operational research problems still
remain in all of those areas. The open problems described include the design of rationing strategies
in a system of parallel reservoirs, hydro power production planning, simultaneous siting and effi-
ciency determination of waste water treatment plants, design of the sequence of facilities in solid
waste collection/disposal system, the achievement of equity as well as rationality in cost alloca-
tion, the planning of cost allocation when demands change over time, and the siting of air quality
monitoring stations.

The other relevant solid waste management models are outlined below under the following
seven distinct traits:

1) Linear models; 2) Nonlinear models; 3) Dynamic models; 4)Static models; 5) Stochastic mod-
els; 6) Deterministic models; 7) Multi-objective models; 8) Single objective models.

The models under trait one include Badran and El-Haggar [3], Daskalopoulos et al [19], Alidi
[1], Amouzegar and Moshirvaziri [2], Bloemhof-Ruwaard et al [4], Caruso et al [5], Chang et al
[7], Chang and Davila [9], Chang et al [11], Chang et al [12], Changand Wang [13], Chang and
Wang [14], Chang and Wang [15], Chang and Wang [17], Davila and Chang [20], Everett and
Modak [21], Gottinger ([25], [26]), Huang et al [28], Huang et al [29], Huang et al [30], Huang et
al [32], Huang et al [33], Huang et al [34], Huang et al [35], Huang et al [37], Huang et al [38],
Huang et al [39], Hsin-Neng and Kuo-hua [40], Kühner and Harrington [42], Kulcar [43], Li and
Huang [44], Li et al [45], Maqsood and Huang [46], Marks and Liebman [47], Nie et al [52], and
Solano et al ([54], [55]).

Under trait two there is Costi et al [18], Fiorucci et al [22], Chang and Chang et al [6], Chang
et al [8], Chang and Wang [16], Huang et al [31], Huang et al [36], Minciardi et al [48], and Wu et
al [57].

In trait three there is Chang et al [11], Chang et al [12], Chang and Wang [13], Chang and Wang
[15], Huang et al [32], Huang et al [34], and Kühner and Harrington [42].

Trait four comprises Costi et al [18], Fiorucci et al [22], Daskalopoulos et al [19], Alidi [1],
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Amouzegar and Moshirvaziri [2], Badran and El-Haggar [3], Bloemhof-Ruwaard et al [4], Caruso
et al [5], Chang and Chang et al [6], Chang et al [7], Chang et al [8],Chang and Davila [9], Chang
and Wang [14], Chang and Wang [16], Chang and Wang [17], Davila and Chang [20], Everett and
Modak [21], Gottinger ([25], [26]), Huang et al [28], Huang et al [29], Huang et al [30], Huang et
al [31], Huang et al [33], Huang et al [35], Huang et al [36], Huang et al [37], Huang et al [38],
Huang et al [39], Hsin-Neng and Kuo-hua [40], Kühner and Harrington [42], Kulcar [43], Li and
Huang [44], Li et al [45], Maqsood and Huang [46], Marks and Liebman [47], Minciardi et al [48],
Nie et al [52], and Solano et al ([54], [55]), and Wu et al [57].

Trait five consists of Chang et al [7], Chang and Wang [16], Chang and Wang [17], Davila and
Chang [20], Huang et al [28], Huang et al [29], Huang et al [30],Huang et al [31], Huang et al [32],
Huang et al [33], Huang et al [34], Huang et al [35], Huang et al[36], Huang et al [37], Huang et
al [38], Huang et al [39], Li and Huang [44], Li et al [45], Maqsood and Huang [46], Nie et al [52],
and Wu et al [57].

Under trait six there is Costi et al [18], Fiorucci et al [22], Daskalopoulos et al [19], Alidi [1],
Amouzegar and Moshirvaziri [2], Badran and El-Haggar [3], Bloemhof-Ruwaard et al [4], Caruso
et al [5], Chang and Chang et al [6], Chang et al [8], Chang and Davila [9], Chang et al [11], Chang
et al [12], Chang and Wang [13], Chang and Wang [14], Chang and Wang [15], Everett and Modak
[21], Gottinger ([25], [26]), Hsin-Neng and Kuo-hua [40], Kühner and Harrington [42], Kulcar
[43], Marks and Liebman [47], Minciardi et al [48], and Solano et al ([54], [55]).

Under trait seven there is Alidi [1], Caruso et al [5], Chang et al [7], Chang and Wang [14],
Chang and Wang [17], and Minciardi et al [48].

Under trait eight there is Costi et al [18], Fiorucci et al [22], Daskalopoulos et al [19], Amouze-
gar and Moshirvaziri [2], Badran and El-Haggar [3], Bloemhof-Ruwaard et al [4], Chang and
Chang et al [6], Chang et al [8], Chang and Davila [9], Chang et al [11], Chang et al [12], Chang
and Wang [13], Chang and Wang [15], Chang and Wang [16], Davila and Chang [20], Everett and
Modak [21], Gottinger ([25], [26]), Huang et al [28], Huang et al [29], Huang et al [30], Huang et
al [31], ,Huang et al [32], Huang et al [33], Huang et al [34], Huang et al [35], Huang et al [36],
Huang et al [37], Huang et al [38], Huang et al [39], Hsin-Nengand Kuo-hua [40], K̈uhner and
Harrington [42], Kulcar [43], Li and Huang [44], Li et al [45], Maqsood and Huang [46], Marks
and Liebman [47], Nie et al [52], Solano et al ([54], [55]), and Wu et al [57].
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3 Models of the Problem

Building an exhaustive SWM management model is a very complex process as it is necessary
to simultaneously consider conflicting objectives; such problems are usually characterized by an
intrinsic uncertainty in estimates of costs and environmental impacts. A wide knowledge and a
comprehensive analysis of all possible treatment processes of materials constituting the waste is
required. The waste which is not recycled should be treated or disposed of at sanitary landfills.
Since the aim is to minimize waste disposal and hence prolongthe life span of landfills, an incre-
ment in recycling, refuse derived fuel (RDF) production, andenergy generation may conflict. This
is because these processes compete for waste with low humidity and high heating value like paper
and plastic. Thus an optimal flow of waste to the plants is required; to achieve this it is necessary
to express the humidity and heat values of each type of waste in the model (see Costi et al [18]
and Fiorucci et al [22]). A detailed analysis will be considered in the future modifications of the
model; processing plants are not yet part of waste management programs in Ugandan towns.

Furthermore, the benefits from waste recovery are measured in terms of income per unit (ton) of
waste used in recycling, production of RDF, compost production, and energy. The environmental
impact is dealt with by restricting the gaseous emissions from the plants as well the chemical
composition of RDF and stabilized organic material (SOM); a detailed chemical characterization
of these noxious materials (as done by Costi et al [18]) will bea point in the future modifications of
the model. In general, municipal solid waste treatment covers paper, plastic, glass, metals, organic
material, wood, inert material, scraps, and textile.

Figure 2 illustrates some of the key components in the decision support mathematical model.
The variablesx andy along the arcs give the waste flow amounts in terms of numbers of trucks,
while then variables give the numbers of replacement trucks. These decision variables have to
be determined in the optimization process. Each of these variables is explained below in Section
3.1. The total daily waste production enters the sources where it is separated and then sent to the
plants. Ideally, waste is separated at separators which areplants distinct from waste sources. In
the proposed model, these sources can as well be assumed to beseparators from where metals are
taken to recycling, and organic material is taken for compost (SOM) production. Part of the waste
with low humidity and high heating value is sent to incinerators for energy generation, or sent for
RDF production, or disposed of in a sanitary landfill.

Recycling is considered for paper, glass, plastic, wood, organic material, and textiles. The
fuel from RDF producing plants is sold while the scraps are sent to an incinerator or landfill. The
generated energy is sold while the scraps are sent to a landfill. The SOM joins the market while the
scraps are taken to an incinerator or landfill. Waste flows (scraps) from recycling, RDF producing
plants, and SOM producing plants to incinerators will not beincorporated in the model.

With increased environmental concerns and shortage of landfor landfills, waste disposal at
landfills should be done for only unrecoverable waste; this can be achieved by restricting the
maximum daily amount of waste flow to a landfill considering the amount of waste that saturates
a landfill (in tons) and the minimum allowed time (in days) to saturate a landfill (Costi et al [18]).
From this, landfill saturation constraints can be determined.

3.1 First Model Formulation

The model has been formulated as an integer linear programming problem (see Wolsey [56]).
It has been presented as a decision making tool in the planning and management of integrated pro-
grams of solid waste collection, transportation, incineration, recycling, composting, and disposal.
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Figure 2: A detailed representation of key components in a decision support mathematical model.
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The waste collection component has not been considered but several treatment plants and facilities
have been included within the proposed model: trucks for thetransportation of waste; replacement
trucks and their depots; incinerators with energy recovery; sanitary landfills; plants for recycling,
production of RDF, and treatment of organic material.

The objective function consists of total cost owing to investment and management costs, trans-
portation costs, operational costs from the use of replacement trucks, benefits from energy genera-
tion, RDF production, compost, and recycling. The constraints include waste flow constraints due
to the movement of waste among sources and plants and landfills as well as capacity, site selec-
tion, facility availability, environmental, and landfill saturation constraints. Constraints owing to
the utilization of replacement trucks have also been included.

It is assumed that a waste manager in a municipality has a database of all the parameters on the
computer well written in AMPL language as well as the model where all this data is supposed to
be fed for a solution whenever required. There should also bean AMPL compatible solver like
CPLEX on the computer. The advantage of having a database in AMPL is that it is easy to modify
according to the changes in the parameters, and because modification of data does not require an
expert in programming but one who can enter/change data in a proper way. The first use of the
model determines all costs including investment costs; thesubsequent uses, depending on whether
significant changes have been observed in some of the key parameters, determine transport and
operational costs, etc. The location of facilities will have been done in the first application of
the model. Decisions are taken whenever required by considering the results. In the day to day
application of the models, it may be more orderly and cheaperto hire replacement trucks instead
of buying them.

The model has been built upon the following assumptions:

1. “Waste source” are located at the centres of waste generating areas.

2. Waste separation is done at the waste source locations (collection points). In other words,
we can identify these sources with separators in this case. In practice sources and separators
are distinct.

3. Waste handling operations proposed in the model are to be executed daily.

The ambiguity of the first assumption is that “radii” of wastegenerating areas are not specified;
the point is that if the areas are almost “circular” and the “radii” are “small”, then the waste
collection points at the centres are uniformly accessible from within the areas. The drawback is
that the shapes and sizes of the waste areas can be very erratic so that the accessibility of the waste
collection points at the centres may not be uniform from within the entire area; some of the waste
may then not reach these collection points.

The advantage of the second assumption is that no money is then spent on establishing sepa-
rators; it is however largely dependent on the cooperation of waste generators, the volume/weight
and nature of waste generated. The most realistic option maybe to have separators in the model,
to which some of the waste is channelled for separation before transportation to recycling, SOM
and RDF producing, and incinerating plants.

The third assumption is advantageous for daily heavy waste producing waste sources; the draw-
back is that waste sources that require weekly or monthly collections are not directly catered for
in the model. Probably in the daily utilization of the model,some of the parameters (like costs) of
such waste sources can be considered as “zeroes” until the days when they require collections.
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Indices

i = 1, 2, . . . , I: location of waste sources (collection points).

j = 1, 2, . . . , J: location of incinerators.

k = 1, 2, . . . ,K: location of sanitary landfills.

r = 1, 2, . . . ,R: location of replacement trucks depots.

m = 1, 2, . . . ,M: location of refuse derived fuel (RDF) plants.

h = 1, 2, . . . ,H: location of composting (stabilized organic material, SOM) plants.

s = 1, 2, . . . , S : location of recycling plants.

l = 1, 2, . . . , L: truck type.

g = 1, 2, . . . ,G: waste type.

Variables

X̃l
i jg, X̂l

img, X̌l
ihg, X̆l

isg, Xl
ikg: respectively total number of trips made by trucks of typel used every-

day to carry waste of typeg from waste sourcei to an incinerator atj, an RDF plant atm, an SOM
plant ath, a recycling plant ats, and a landfill atk.

x̃l
i jg, x̂l

img, x̌l
ihg, x̆l

isg, xl
ikg: respectively number of trucks of typel used everyday to carry waste of

typeg from waste sourcei to an incinerator atj, an RDF plant atm, an SOM plant ath, a recycling
plant ats, and a landfill atk.

Ỹ l
jkg, Ŷ l

mkg, Y̌ l
hkg, Y̆ l

skg: respectively total number of trips made by trucks of typel used everyday
to carry waste of typeg from an incinerator atj, an RDF plant atm, an SOM plant ath, and a
recycling plant ats to a landfill atk.

ỹl
jkg, ŷl

mkg, y̌l
hkg, y̆l

skg: respectively number of trucks of typel used everyday to carry waste of type
g from an incinerator atj, an RDF plant atm, an SOM plant ath, and a recycling plant ats to a
landfill at k.

ñl
r j, n̂l

rm, ňl
rh, n̆l

rs, n̄l
rk, nl

ri: respectively number of trucks of typel used everyday from a replace-
ment trucks depot atr to an incinerator atj, an RDF plant atm, an SOM plant ath, a recycling
plant ats, a landfill atk, and a waste source ati.

z̃ j, ẑm, žh, z̆s, zk, źr: 0-1 variables indicating respectively, the presence of anincinerator atj, an
RDF plant atm, an SOM plant ath, a recycling plant ats, a landfill atk, and a replacement trucks
depot atr.

w̃ j, ŵm, w̌h, w̆s, tk: amount of waste transported everyday respectively, to an incinerator atj, an
RDF plant atm, an SOM plant ath, a recycling plant ats, and a sanitary landfill atk.

Tl : The number of trucks of typel used everyday.

T : The total number of trucks (excluding replacement trucks)used everyday.

(RT )l : The number of replacement trucks of typel required everyday.
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Input Data /Parameters

ãl
i j, âl

im, ǎl
ih, ăl

is, al
ik: expected number of trips a truck of typel can make respectively, per day

between waste source ati and an incinerator atj, an RDF plant atm, an SOM plant ath, a recycling
plant ats, and a landfill atk.

b̃l
jk, b̂l

mk, b̌l
hk, b̆l

sk: expected number of trips a truck of typel can make respectively, per day between
an incinerator atj, an RDF plant atm, an SOM plant ath, a recycling plant ats, and a landfill atk.

αl: capacity (in tonnes) of a truck of typel.

pl: probability that a truck of typel breaks down in a day.

Ωe: upper limit for noxious substancee; e = 1, 2, . . . , E.

ēl
rk, ẽl

r j, êl
rm, ěl

rh, ĕl
rs, èl

ri: respectively the cost of moving a truck of typel from a replacement
trucks depot atr to a landfill atk, an incinerator atj, an RDF plant atm, an SOM plant ath, a
recycling plant ats, and a waste source ati.

c̃l
i j, ĉl

im, čl
ih, c̆l

is, cl
ik: respectively transportation cost per unit of waste carried by a truck of typel

from a waste source ati to an incinerator atj, an RDF plant atm, an SOM plant ath, a recycling
plant ats, and a landfill atk.

d̃l
jk, d̂l

mk, ďl
hk, d̆l

sk: respectively transportation cost per unit of waste carried by a truck of typel
from an incinerator atj, an RDF plant atm, an SOM plant ath, and a recycling plant ats to a
landfill at k.

c̃ j, ĉm, čh, c̆s: revenue respectively, per unit of waste at an incinerator at j, an RDF plant atm, an
SOM plant ath, and a recycling plant ats.

fl: the cost of buying a new truck of typel, l = 1 . . . , L.

di: amount of waste at sourcei.

ρ̃ j, ρ̂m, ρ̌h, ρ̆s: fraction (%) of unrecovered waste respectively, at an incinerator atj, an RDF plant
at m, an SOM plant ath, and a recycling plant ats that requires disposal to a landfill.

Q̃ j, Q̂m, Q̌h, Q̆s, Q̄k, Q́r: capacity per day respectively, for an incinerator atj, an RDF plant atm,
an SOM plant ath, a recycling plant ats, a landfill atk, and a replacement trucks depot atr.

δ̃ j, δ̂m, δ̌h, δ̆s, δ̄k, δ́r: respectively fixed cost incurred in opening an incineratorat j, an RDF plant
at m, an SOM plant ath, a recycling plant ats, a landfill atk, and a replacement trucks depot atr.

γ̃ j, γ̂m, γ̌h, γ̆s, γ̄k: respectively variable cost incurred in handling a unit of waste at an incinerator
at j, an RDF plant atm, an SOM plant ath, a recycling plant ats, and a landfill atk.

µ̃e
j, µ̂

e
m, µ̌

e
h, µ̆

e
s, µ̄

e
k: respectively amount of noxious materiale generated (per unit of waste) at an

incinerator atj, an RDF plant atm, an SOM plant ath, a recycling plant ats, and a sanitary landfill
at k; e = 1, 2, . . . , E.

Objective Function

The objective function represents the overall daily waste management costs; the first compo-
nent gives the investment and waste handling expenses as well as transportation costs, the second
component gives expenses owing to the use of replacement trucks, and the third component the
income from waste products like refuse derived fuel and energy.

The first componentF1 refers to the overall costs; the first part deals with the investment and
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management expenses while the second is concerned with the transportation costs. The two parts
are separated by two sets of square brackets in (1). In this function we have the fixed cost pa-
rametersδ, and the variable cost parametersγ. The variablesX andY have been defined at the
beginning of Section 3.1.

F1(z,w, X,Y) = [
∑

j

(δ̃ jz̃ j + γ̃ jw̃ j) +
∑

m

(δ̂mẑm + γ̂mŵm)

+
∑

h

(δ̌hžh + γ̌hw̌h) +
∑

s

(δ̆sz̆s + γ̆sw̆s) +
∑

k

(δ̄kzk + γ̄ktk)]

+ [
∑

gli j

c̃l
i jαlX̃

l
i jg +

∑

glim

ĉl
imαlX̂

l
img +

∑

glih

čl
ihαlX̌

l
ihg +

∑

glis

c̆l
isαlX̆

l
isg

+
∑

glik

cl
ikαlX

l
ikg +

∑

gl jk

d̃l
jkαlỸ

l
jkg +

∑

glmk

d̂l
mkαlŶ

l
mkg +

∑

glhk

ďl
hkαlY̌

l
hkg

+
∑

glsk

d̆l
skαlY̆

l
skg] (1)

ComponentF2 concerns the total costs owing to the presence of replacement trucks (or standby
trucks). ComponentF3 gives the total cost for buying all trucks required in the daily management
of waste. ComponentB gives the benefits at the plants owing to the production of electric energy,
compost, refuse derived fuel, and recycled material.

F2(n, z) =
∑

rkl

ēl
rkn̄

l
rk +

∑

r jl

ẽl
r jñ

l
r j +

∑

rml

êl
rmn̂l

rm +
∑

rhl

ěl
rhňl

rh

+
∑

rsl

ĕl
rsn̆

l
rs +

∑

ril

èl
rin

l
ri +

∑

r

δ́rźr (2)

F3(x, y, n) =
∑

l

fl(Tl + (RT )l) (3)

B(w) =
∑

j

c̃ j(1 − ρ̃ j)w̃ j +
∑

m

ĉm(1 − ρ̂m)ŵm +
∑

h

čh(1 − ρ̌h)w̌h

+
∑

s

c̆s(1 − ρ̆s)w̆s (4)

So the objective functionF, to be minimized, is

F = F1 + F2 + F3 − B (5)
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Constraints

In general, the constraints include those linking waste flowamong sources and plants and land-
fills, as well as capacity, site selection, facility availability, environmental, and landfill saturation
constraints. The desire in constraint (6) is to clear all thewaste generated at the source (collection
point) i. So the total waste moved from each waste collection pointi should at least be equal to the
amount of waste found at that point.

∑

gl j

αlX̃
l
i jg +

∑

glm

αlX̂
l
img +

∑

glh

αlX̌
l
ihg +

∑

glh

αlX̆
l
isg +

∑

glk

αlX
l
ikg ≥ di, i = 1, . . . , I (6)

In constraints (7)-(10), it is meant that the waste generated by a processing plant is disposed of
in a landfill (or tip). Thus the amount of waste carried away from every plant to a landfill, should
at least be equal to the amount of waste found at that plant. Itis important to note that the weight
of waste carried by a truck in a single trip (from a given source) is at most equal to its capacity,
depending on the waste type and its amount; so the inequalities in (6) and (7)-(10) make sense.

ρ̃ jw̃ j ≤
∑

gkl

αlỸ
l
jkg, j = 1, . . . , J (7)

ρ̂mŵm ≤
∑

gkl

αlŶ
l
mkg, m = 1, . . . ,M (8)

ρ̌hw̌h ≤
∑

gkl

αlY̌
l
hkg, h = 1, . . . ,H (9)

ρ̆sw̆s ≤
∑

gkl

αlY̆
l
skg, s = 1, . . . , S (10)

Constraint (11) means that the amount of noxious material must not exceed National Environ-
mental Management Authority or international levels,Ωe.

∑

j

µ̃e
j(1 − ρ̃ j)w̃ j +

∑

m

µ̂e
m(1 − ρ̂m)ŵm +

∑

h

µ̌e
h(1 − ρ̌h)w̌h

+
∑

s

µ̆e
s(1 − ρ̆s)w̆s +

∑

k

µ̄e
ktk ≤ Ωe, e = 1, . . . , E (11)

In constraints (12)-(15) the maximum capacities for the processing plants are accounted for.
These constraints mean that the amount of waste taken to these plants should not exceed the plant
capacities. In constraint (16) the same thing is done for sanitary landfills.

w̃ j ≤ Q̃ jz̃ j, j = 1, . . . , J (12)

ŵm ≤ Q̂mẑm, m = 1, . . . ,M (13)

w̌h ≤ Q̌hžh, h = 1, . . . ,H (14)

w̆s ≤ Q̆sz̆s, s = 1, . . . , S (15)

tk ≤ Q̄kzk, k = 1, 2, . . . ,K (16)
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Constraint (17), means that the total number of replacement trucks of typel cannot be less than
the expected number of daily truck breakdowns of the typel. With constraint (18), we ensure that
there is at least one depot for the replacement trucks. In constraint (19) we codify that the number
of trucks in a depot cannot exceed its capacity. Constraint (20) means that the total number of
replacement trucks is not too big compared to the total number of trucks used per day.

∑

rk

n̄l
rk +

∑

r j

ñl
r j +

∑

rm

n̂l
rm +

∑

rh

ňl
rh +

∑

rs

n̆l
rs +

∑

ri

nl
ri ≥ plTl,

l = 1, . . . , L (17)

R∑

r=1

źr ≥ 1 (18)

∑

lk

n̄l
rk +

∑

l j

ñl
r j +

∑

lm

n̂l
rm +

∑

lh

ňl
rh +

∑

ls

n̆l
rs +

∑

lri

nl
ri ≤ Q́rźr,

r = 1, . . . ,R (19)∑

r

Q́rźr ≤ T (20)

Constraints (21)-(29) mean that once the flow to either plant or sanitary landfill is positive, that
plant or landfill must actually exist. The variablesX andY have been defined at the beginning
of Section 3.1 and under definitions (51)-(59). We note here,as an example, that the expression
i, ( j) = 1, . . . , I, (J) means thati ranges from 1 up toI and j ranges from 1 up toJ.

αlX̃
l
i jg ≤ Q̃ jz̃ j, l = 1, . . . , L, i, ( j) = 1, . . . , I, (J), g = 1, . . . , G (21)

αlX̂
l
img ≤ Q̂mẑm, l = 1, . . . , L, i, (m) = 1, . . . , I, (M), g = 1, . . . ,G (22)

αlX̌
l
ihg ≤ Q̌hžh, l = 1, . . . , L, i, (h) = 1, . . . , I, (H), g = 1, . . . , G (23)

αlX̆
l
isg ≤ Q̆sz̆s, l = 1, . . . , L, i, (s) = 1, . . . , I, (S ), g = 1, . . . , G (24)

αlX
l
ikg ≤ Q̄kzk, l = 1, . . . , L, i, (k) = 1, . . . , I, (K), g = 1, . . . , G (25)

αlỸ
l
jkg ≤ Q̄kzk, l = 1, . . . , L, j, (k) = 1, . . . , J, (K), g = 1, . . . , G (26)

αlŶ
l
mkg ≤ Q̄kzk, l = 1, . . . , L, m, (k) = 1, . . . , M, (K), g = 1, . . . , G (27)

αlY̌
l
hkg ≤ Q̄kzk, l = 1, . . . , L, h, (k) = 1, . . . , H, (K), g = 1, . . . , G (28)

αlY̆
l
skg ≤ Q̄kzk, l = 1, . . . , L, s, (k) = 1, . . . , S , (K), g = 1, . . . , G (29)

Variable Conditions

The variables in constraints (30)-(38) are defined as non-negative integers. These give the num-
ber of trucks used between two nodes in the model per day, excluding replacement trucks.

x̃l
i jg, integer ≥ 0, i, ( j) = 1, . . . , I, (J), l = 1, . . . , L, g = 1, . . . , G (30)
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x̂l
img, integer ≥ 0, i, (m) = 1, . . . , I, (M), l = 1, . . . , L, g = 1, . . . , G (31)

x̌l
ihg, integer ≥ 0, i, (h) = 1, . . . , I, (H), l = 1, . . . , L, g = 1, . . . , G (32)

x̆l
isg, integer ≥ 0, i, (s) = 1, . . . , I, (S ), l = 1, . . . , L, g = 1, . . . , G (33)

xl
ikg, integer ≥ 0, i, (k) = 1, . . . , I, (K), l = 1, . . . , L, g = 1, . . . , G (34)

ỹl
jkg, integer ≥ 0, j, (k) = 1, . . . , J, (K), l = 1, . . . , L, g = 1, . . . , G (35)

ŷl
mkg, integer ≥ 0, m, (k) = 1, . . . ,M, (K), l = 1, . . . , L, g = 1, . . . , G (36)

y̌l
hkg, integer ≥ 0, h, (k) = 1, . . . ,H, (K), l = 1, . . . , L, g = 1, . . . , G (37)

y̆l
skg, integer ≥ 0, s, (k) = 1, . . . , S , (K), l = 1, . . . , L, g = 1, . . . , G (38)

The variables in constraints (39)-(44) are defined as non-negative integers. These give the num-
ber of replacement trucks required everyday in the waste management program. We note that the
breakdown of a truck can occur anywhere in the road network followed by the trucks. For purposes
of locating the truck depots, it is assumed that these breakdowns occur at either a waste collection
point or at a plant or at a landfill.

n̄l
rk, integer ≥ 0, r, (k) = 1, . . . ,R, (K), l = 1, . . . , L (39)

ñl
r j, integer ≥ 0, r, ( j) = 1, . . . ,R, (J), l = 1, . . . , L (40)

n̂l
rm, integer ≥ 0, r, (m) = 1, . . . ,R, (M), l = 1, . . . , L (41)

ňl
rh, integer ≥ 0, r, (h) = 1, . . . ,R, (H), l = 1, . . . , L (42)

n̆l
rs, integer ≥ 0, r, (s) = 1, . . . ,R, (S ), l = 1, . . . , L (43)

nl
ri, integer ≥ 0, r, (i) = 1, . . . ,R, (I), l = 1, . . . , L (44)

The variables in (45)-(50) are defined as boolean. These are used to determine the existence of
either a plant or a landfill.

z̃ j ∈ {0, 1}, j = 1, . . . , J (45)

ẑm ∈ {0, 1}, m = 1, . . . ,M (46)

žh ∈ {0, 1}, h = 1, . . . ,H (47)

z̆s ∈ {0, 1}, s = 1, . . . , S (48)

zk ∈ {0, 1}, k = 1, . . . ,K (49)

źr ∈ {0, 1}, r = 1, . . . ,R (50)

Definitions

In equations (51)-(59) the expected number of trips made perday by the trucks of typel from
waste sources to plants, waste sources to landfills, and plants to landfills are given.

X̃l
i jg = ãl

i j x̃
l
i jg, l = 1, . . . , L, i, ( j) = 1, . . . , I, (J), g = 1, . . . , G (51)

X̂l
img = âl

im x̂l
img, l = 1, . . . , L, i, (m) = 1, . . . , I, (M), g = 1, . . . , G (52)
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X̌l
ihg = ǎl

ih x̌l
ihg, l = 1, . . . , L, i, (h) = 1, . . . , I, (H), g = 1, . . . , G (53)

X̆l
isg = ăl

is x̆
l
isg, l = 1, . . . , L, i, (s) = 1, . . . , I, (S ), g = 1, . . . , G (54)

Xl
ikg = al

ikxl
ikg, l = 1, . . . , L, i, (k) = 1, . . . , I, (K), g = 1, . . . , G (55)

Ỹ l
jkg = b̃l

jkỹ
l
jkg, l = 1, . . . , L, j, (k) = 1, . . . , J, (K), g = 1, . . . , G (56)

Ŷ l
mkg = b̂l

mkŷ
l
mkg, l = 1, . . . , L, m, (k) = 1, . . . , M, (K), g = 1, . . . , G (57)

Y̌ l
hkg = b̌l

hky̌
l
hkg, l = 1, . . . , L, h, (k) = 1, . . . , H, (K), g = 1, . . . , G (58)

Y̆ l
skg = b̆l

sky̆
l
skg, l = 1, . . . , L, s, (k) = 1, . . . , S , (K), g = 1, . . . , G (59)

Definitions (60)-(63), also mentioned at the beginning of Section 3.1, indicate the amount of
waste transported to processing plants while definition (64) gives the amount of waste from all
waste sources to a landfillk. Similarly, definition (65) indicates the amount of waste disposed of
in a sanitary landfillk everyday. Equation (66) gives the total amount of waste collected from all
waste sources per day; this excludes waste generated by the plants. In equation (67) we give the
total number of trucks of typel used per day in the model and, in definition (68) the total number
of trucks required per day for the transportation, treatment, and disposal of waste is determined. In
definition (69) the number of replacement trucks of typel in each depot is given, and in equation
(70) the total number of replacement trucks in all depots is determined. It is assumed that the
trucks are fully loaded as they leave the waste collection points.

w̃ j =
∑

gli

αlX̃
l
i jg, j = 1, . . . , J (60)

ŵm =
∑

gli

αlX̂
l
img, m = 1, . . . ,M (61)

w̌h =
∑

gli

αlX̌
l
ihg, h = 1, . . . ,H (62)

w̆s =
∑

gli

αlX̆
l
isg, s = 1, . . . , S (63)

wk =
∑

gli

αlX
l
ikg, k = 1, . . . ,K (64)

tk = wk +
∑

gl j

αlỸ
l
jkg +

∑

glm

αlŶ
l
mkg +

∑

glh

αlY̌
l
hkg +

∑

gls

αlY̆
l
skg, k = 1, . . . ,K (65)

W =
∑

j

w̃ j +
∑

m

ŵm +
∑

h

w̌h +
∑

s

w̆s +
∑

k

wk (66)

Tl =
∑

gi j

x̃l
i jg +

∑

gim

x̂l
img +

∑

gih

x̌l
ihg +

∑

gis

x̆l
isg +

∑

gik

xl
ikg +

∑

g jk

ỹl
jkg

+
∑

gmk

ŷl
mkg +

∑

ghk

y̌l
hkg +

∑

gsk

y̆l
skg, l = 1, . . . , L (67)
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T =
∑

l

Tl (68)

(RT )l =
∑

rk

n̄l
rk +

∑

r j

ñl
r j +

∑

rm

n̂l
rm +

∑

rh

ňl
rh +

∑

rs

n̆l
rs +

∑

ri

nl
ri, l = 1, . . . , L (69)

RT =
∑

l

(RT )l (70)

3.2 Analysis of the First Model

As mentioned at the beginning of Section 3.1, the model has been formulated as an integer linear
programming problem (Wolsey [56]). The constraints include waste flow constraints for sources
and plants and landfills, capacity, site selection, facility availability, environmental, and landfill
saturation constraints. Truck flow constraints for replacement trucks from depots to landfills, waste
sources, and processing plants have also been included.

We have a single objective function that covers the overall economic cost in the model. Accord-
ing to Costi et al [18], the definition of a decision model concerning the design of an urban solid
waste management system would require the use of multi-objective decision concepts and tech-
niques. Our model, like that of Costi et al [18], is particularly oriented to real-world applications;
the multi-objective nature is taken into account by considering a single optimization objective com-
prising the overall economic cost, and transforming all other objectives (on pollution containment,
impact minimization, etc) into constraints. Through theseconstraints it becomes easier to deal
with regulations that specify bounds on the release of pollutants and other negative effects on the
environment.

It is a deterministic model with integral decision variables; this was motivated by the desire of
not only measuring waste quantities handled but also count the number of trucks of every type
being used in the model. For instance in equation (67) we find the number of trucks of each type
while in equation (68) we find the total number of trucks that operate daily in the model. Through
equation (69) we determine the number of replacement trucksof each type that we may need daily
while through equation (70) the total number of replacementtrucks needed in the model per day is
computed.

Since it is linear, it can be solved to optimality by several modelling/solver packages on the
market like AMPL/CPLEX, LINGO/LINDO, GAMS/CPLEX, and MPL/CPLEX. The package,
AMPL/CPLEX, we intend to use is briefly described in Section 5. The formulation of this model
lies within the field of operations research that has been usefully applied to a wide variety of
environmental problem areas (see ReVelle [53]).

The benefits from waste in the third componentB of the objective function are measured in
terms of economic gain per unit of waste. In actual terms it should be measured in terms of sales
per litre of RDF produced, unit of SOM produced, unit of energyproduced, unit item produced
from recycling. To simplify the mathematics in the model, this precision was indirectly looked at
in terms of economic gain per unit of waste. Another point is that we do not yet have processing
plants in Uganda although it is under consideration. This explains why we do not have regulatory
and technical constraints (see Costi et al [18] and Fiorucci et al [22]) in the model. We also
have only one landfill. We have included economic gains from recycling in the benefits function;
according to Costi et al [18] and Fiorucci et al [22], recycling in reality produces net cost. It is
however encouraged because of environmental concerns and optimal use of limited resources.
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The fractionsρ of unrecovered waste at the plants, and the amountsµ of noxious substances
generated at the plants and landfills are assumed to be independent of the type of waste in both
models. It is more realistic to consider dependence on the type of waste in order to formulate more
precise environmental constraints, etc.

It is worth mentioning here that the current waste management trend in Uganda indicates that
we are likely to have private companies that only collect waste, companies that only treat waste,
and possibly companies that only manage sanitary landfills.The future waste models are likely to
have these three scenarios of waste management where regulatory and technical constraints will be
of major interest to companies running processing plants and landfills. Probably these companies
will later merge to form integrated waste management programs. The proposed model is a good
starting point upon which future variations can be built.

We shall also not go into a detailed description of environmental impacts as done by Costi
et al [18], with specific attention paid to incineration emissions and RDF chemical composition.
They consider pollutant content in the RDF, in the SOM, and incineration emissions. We measure
pollutant content through unit waste handled at the plants;this may not be precise but a good
illustration of how environmental impact can be considered. The consideration of the regulatory,
technical, and a detailed description of environmental constraints may be done without affecting
the linearity of the models. The biggest problem so far in Uganda with regard to waste pollution
springs from the fact that much of the waste generated in Ugandan towns is not actually collected.

We have mentioned landfill saturation constraints (16) in the model in Section 3.1; the daily
capacityQ̄k imposed on the landfillk will be determined according to our desire of keeping that
landfill active for a determined minimum number of years. Thequality of the technology in place
is very crucial here. That is to say, we shall determine the total amount of waste that saturates that
landfill and divide it with the number of days that constitutethe determined minimum number of
years we want the landfill to remain active.

The environmental constraints (11) have been presented in avery elementary form in order to
keep the mathematics simple; a detailed and precise description has been done by Costi et al [18].
A detailed description also requires a deep knowledge and analysis of all the processes involved.
These constraints regulate the pollutant emissions at the plants as well as the toxic composition of
the RDF and the SOM produced.

With constraint (18) we can, in theory, ensure that (it is presumed that these probabilities are
known by the waste managers) there is at least one depot for replacement trucks. This may be
ridiculous in practice in case of no breakdowns (especiallyif the trucks are new)! An alternative to
buying replacement trucks may be hiring them in case of breakdowns. This may be more practical
and can also keep the daily operational costs down. However,this constraint is not unreasonable
since specialized trucks may be used in the management programs, and consequently not easily
obtainable through hiring.

3.3 The Second Model of the Problem

In this section, a variant of the integer linear model described in Section 3.1 is presented with the
hope of getting better total cost estimates and waste amountmeasurements. Continuous variables
u’s andv’s have been introduced; they respectively measure the amount of waste collected everyday
from waste sources to plants and from plants to landfills. A mixed integer linear program is thus
obtained (see Wolsey [56]); the description of the new variablesu andv now follows.

1. ũl
i jg, ûl

img, ǔl
ihg, ŭl

isg, ul
ikg: respectively amount of waste (in tons) of typeg collected everyday
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by trucks of typel from a waste sourcei to an incinerator atj, an RDF plant atm, an SOM
plant ath, a recycling plant ats, and a landfill atk.

2. ṽl
jkg, v̂l

mkg, v̌l
hkg, v̆l

skg: respectively amount of waste (in tons) of typeg collected everyday
by trucks of typel from an incinerator atj, an RDF plant atm, an SOM plant ath, and a
recycling plant ats to a landfill atk.

The description of the rest of the variables and parameters in the model, remains the same as in
Section 3.1.

Let it be noted that the emergence of the mixed integer linearmodel nowhere undermines the
importance of the integer linear model; the choice between the two models from the practical
point of view depends on the user and the technology used. Oneuser may prefer to measure the
transportation costs in terms of costs per trip made from thewaste source, in which case the first
model is more appropriate. In this case we replace the coefficients of the variablesX andY in
the objective function with the total cost per trip from the waste collection point. At the same
time, instead of measuring the amount of waste using the number of trucks used multiplied by
their capacities, continuous variables can be introduced to measure directly the amount of waste
that goes to the plants and landfills. The integer linear problem is then transformed into a mixed
integer problem that gives better total cost estimates and more precise waste amount measurements.
For instance, at the moment the first model is more relevant tothe Ugandan situation, where the
technology to measure waste as it is carried away from the waste sources is not available. Another
user may prefer to measure the transportation costs in termsof costs per unit mass of waste picked
from the waste source, in which case the second model is more appropriate.

Objective Function

The objective function, like in Section 3.1, represents theoverall daily waste management costs;
the first component gives the investment and waste handling expenses as well as transportation
costs, the second component gives expenses owing to the use of replacement trucks, and the third
component the income from waste products like refuse derived fuel and energy.

The first componentF1 refers to the overall costs; the first part deals with the investment and
management expenses while the second is concerned with the transportation costs. The two parts
are separated by two sets of square brackets in (71). In this function we have the fixed cost parame-
tersδ, and the variable cost parametersγ. The variablesu andv have been defined at the beginning
of this section.

F1(z,w, u, v) = [
∑

j

(δ̃ jz̃ j + γ̃ jw̃ j) +
∑

m

(δ̂mẑm + γ̂mŵm)

+
∑

h

(δ̌hžh + γ̌hw̌h) +
∑

s

(δ̆sz̆s + γ̆sw̆s) +
∑

k

(δ̄kzk + γ̄ktk)]

+ [
∑

gli j

c̃l
i jũ

l
i jg +

∑

glim

ĉl
imûl

img +
∑

glih

čl
ihǔl

ihg +
∑

glis

c̆l
isŭ

l
isg +

∑

glik

cl
iku

l
ikg

+
∑

gl jk

d̃l
jkṽ

l
jkg +

∑

glmk

d̂l
mkv̂

l
mkg +

∑

glhk

ďl
hkv̌

l
hkg +

∑

glsk

d̆l
skv̆

l
skg] (71)
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ComponentF2 concerns the total costs owing to the presence of replacement trucks (or standby
trucks). ComponentF3 gives the total cost for buying all trucks required in the daily management
of waste. ComponentB gives the benefits at the plants owing to the production of electric energy,
compost, refuse derived fuel, and recycled material.

F2(n, z) =
∑

rkl

ēl
rkn̄

l
rk +

∑

r jl

ẽl
r jñ

l
r j +

∑

rml

êl
rmn̂l

rm +
∑

rhl

ěl
rhňl

rh

+
∑

rsl

ĕl
rsn̆

l
rs +

∑

ril

èl
rin

l
ri +

∑

r

δ́rźr (72)

F3(x, y, n) =
∑

l

fl(Tl + (RT )l) (73)

B(w) =
∑

j

c̃ j(1 − ρ̃ j)w̃ j +
∑

m

ĉm(1 − ρ̂m)ŵm +
∑

h

čh(1 − ρ̌h)w̌h

+
∑

s

c̆s(1 − ρ̆s)w̆s (74)

So we then obtain the objective functionF, to be minimized, defined as

F = F1 + F2 + F3 − B (75)

Constraints

In general, the constraints are the capacity, site selection, facility availability, environmental,
and landfill saturation constraints. In constraint (76) we make sure that the total waste moved from
each waste collection pointi is at least be equal to the amount of waste found at that point.

∑

gl j

ũl
i jg +

∑

glm

ûl
img +

∑

glh

ǔl
ihg +

∑

glh

ŭl
isg +

∑

glk

ul
ikg ≥ di, i = 1, . . . , I (76)

In constraints (77)-(80), we guarantee that the amount of waste carried away from every plant
to a landfill, is at least be equal to the amount of waste found at that plant.

ρ̃ jw̃ j ≤
∑

gkl

ṽl
jkg, j = 1, . . . , J (77)

ρ̂mŵm ≤
∑

gkl

v̂l
mkg, m = 1, . . . ,M (78)

ρ̌hw̌h ≤
∑

gkl

v̌l
hkg, h = 1, . . . ,H (79)

ρ̆sw̆s ≤
∑

gkl

v̆l
skg, s = 1, . . . , S (80)
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In constraint (81) the amount of noxious material must not exceed National Environmental
Management Authority or international levels,Ωe.

∑

j

µ̃e
j(1 − ρ̃ j)w̃ j +

∑

m

µ̂e
m(1 − ρ̂m)ŵm +

∑

h

µ̌e
h(1 − ρ̌h)w̌h

+
∑

s

µ̆e
s(1 − ρ̆s)w̆s +

∑

k

µ̄e
ktk ≤ Ωe, e = 1, . . . , E (81)

In constraints (82)-(85) the maximum capacities for the processing plants are determined. These
constraints mean that the amount of waste taken to these plants should not exceed the plant capac-
ities. In constraint (86) the same is done for sanitary landfills.

w̃ j ≤ Q̃ jz̃ j, j = 1, . . . , J (82)

ŵm ≤ Q̂mẑm, m = 1, . . . ,M (83)

w̌h ≤ Q̌hžh, h = 1, . . . ,H (84)

w̆s ≤ Q̆sz̆s, s = 1, . . . , S (85)

tk ≤ Q̄kzk, k = 1, 2, . . . ,K (86)

In constraint (87), the total number of replacement trucks of type l cannot be less than the
expected number of daily truck breakdowns of the typel. With constraint (88), we ensure that
there is at least one depot for the replacement trucks. In constraint (89) we codify that the number
of trucks in a depot cannot exceed its capacity. Constraint (90) guarantees that the total number of
replacement trucks is not too big compared to the total number of trucks used per day.

∑

rk

n̄l
rk +

∑

r j

ñl
r j +

∑

rm

n̂l
rm +

∑

rh

ňl
rh +

∑

rs

n̆l
rs +

∑

ri

nl
ri ≥ plTl,

l = 1, . . . , L (87)

R∑

r=1

źr ≥ 1 (88)

∑

lk

n̄l
rk +

∑

l j

ñl
r j +

∑

lm

n̂l
rm +

∑

lh

ňl
rh +

∑

ls

n̆l
rs +

∑

lri

nl
ri ≤ Q́rźr,

r = 1, . . . ,R (89)∑

r

Q́rźr ≤ T (90)

Constraints (91)-(99) mean that once the flow to either plant or sanitary landfill is positive, that
plant or landfill must actually exist.

ũl
i jg ≤ Q̃ jz̃ j, l = 1, . . . , L, i, ( j) = 1, . . . , I, (J), g = 1, . . . , G (91)

ûl
img ≤ Q̂mẑm, l = 1, . . . , L, i, (m) = 1, . . . , I, (M), g = 1, . . . ,G (92)

ǔl
ihg ≤ Q̌hžh, l = 1, . . . , L, i, (h) = 1, . . . , I, (H), g = 1, . . . , G (93)
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ŭl
isg ≤ Q̆sz̆s, l = 1, . . . , L, i, (s) = 1, . . . , I, (S ), g = 1, . . . , G (94)

ul
ikg ≤ Q̄kzk, l = 1, . . . , L, i, (k) = 1, . . . , I, (K), g = 1, . . . , G (95)

ṽl
jkg ≤ Q̄kzk, l = 1, . . . , L, j, (k) = 1, . . . , J, (K), g = 1, . . . , G (96)

v̂l
mkg ≤ Q̄kzk, l = 1, . . . , L, m, (k) = 1, . . . , M, (K), g = 1, . . . , G (97)

v̌l
hkg ≤ Q̄kzk, l = 1, . . . , L, h, (k) = 1, . . . , H, (K), g = 1, . . . , G (98)

v̆l
skg ≤ Q̄kzk, l = 1, . . . , L, s, (k) = 1, . . . , S , (K), g = 1, . . . , G (99)

The constraints in (100)-(108) relate the amount of waste collected from any waste source per
day with the number of trucks used to collect that waste. Theymean that the waste carried by these
trucks from the waste collection points cannot exceed the amount of waste they can carry when
fully loaded.

ũl
i jg ≤ αlã

l
i j x̃

l
i jg, l = 1, . . . , L, i, ( j) = 1, . . . , I, (J), g = 1, . . . , G (100)

ûl
img ≤ αlâ

l
im x̂l

img, l = 1, . . . , L, i, (m) = 1, . . . , I, (M), g = 1, . . . , G (101)

ǔl
ihg ≤ αlǎ

l
ih x̌l

ihg, l = 1, . . . , L, i, (h) = 1, . . . , I, (H), g = 1, . . . , G (102)

ŭl
isg ≤ αlă

l
is x̆

l
isg, l = 1, . . . , L, i, (s) = 1, . . . , I, (S ), g = 1, . . . , G (103)

ul
ikg ≤ αla

l
ikxl

ikg, l = 1, . . . , L, i, (k) = 1, . . . , I, (K), g = 1, . . . , G (104)

ṽl
jkg ≤ αlb̃

l
jkỹ

l
jkg, l = 1, . . . , L, j, (k) = 1, . . . , J, (K), g = 1, . . . , G (105)

v̂l
mkg ≤ αlb̂

l
mkŷ

l
mkg, l = 1, . . . , L, m, (k) = 1, . . . , M, (K), g = 1, . . . , G (106)

v̌l
hkg ≤ αlb̌

l
hky̌

l
hkg, l = 1, . . . , L, h, (k) = 1, . . . , H, (K), g = 1, . . . , G (107)

v̆l
skg ≤ αlb̆

l
sky̆

l
skg, l = 1, . . . , L, s, (k) = 1, . . . , S , (K), g = 1, . . . , G (108)

Constraints (109)-(117) can be referred to as waste flow fixingconstraints. The reason is that
when there are benefits at some node there is a tendency to moveas much waste as possible to
that node as long as there is space on the truck. In such a case,what is “carried” on the truck, that
includes false waste, may go beyond the amount at a waste source; this is undesirable because the
interest is in the precise amount of waste picked from the source.

ũl
i jg ≤ di, l = 1, . . . , L, i, ( j) = 1, . . . , I, (J), g = 1, . . . , G (109)

ûl
img ≤ di, l = 1, . . . , L, i, (m) = 1, . . . , I, (M), g = 1, . . . ,G (110)

ǔl
ihg ≤ di, l = 1, . . . , L, i, (h) = 1, . . . , I, (H), g = 1, . . . , G (111)

ŭl
isg ≤ di, l = 1, . . . , L, i, (s) = 1, . . . , I, (S ), g = 1, . . . , G (112)

ul
ikg ≤ di, l = 1, . . . , L, i, (k) = 1, . . . , I, (K), g = 1, . . . , G (113)

ṽl
jkg ≤ ρ jw j, l = 1, . . . , L, j, (k) = 1, . . . , J, (K), g = 1, . . . , G (114)
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v̂l
mkg ≤ ρmwm, l = 1, . . . , L, m, (k) = 1, . . . , M, (K), g = 1, . . . , G (115)

v̌l
hkg ≤ ρhwh, l = 1, . . . , L, h, (k) = 1, . . . , H, (K), g = 1, . . . , G (116)

v̆l
skg ≤ ρsws, l = 1, . . . , L, s, (k) = 1, . . . , S , (K), g = 1, . . . , G (117)

Variable Conditions

The variables in constraints (118)-(126) are defined as non-negative; these give the amount of
waste that flows between various nodes.

ũl
i jg ≥ 0, i, ( j) = 1, . . . , I, (J), l = 1, . . . , L, g = 1, . . . , G (118)

ûl
img ≥ 0, i, (m) = 1, . . . , I, (M), l = 1, . . . , L, g = 1, . . . , G (119)

ǔl
ihg ≥ 0, i, (h) = 1, . . . , I, (H), l = 1, . . . , L, g = 1, . . . , G (120)

ŭl
isg ≥ 0, i, (s) = 1, . . . , I, (S ), l = 1, . . . , L, g = 1, . . . , G (121)

ul
ikg ≥ 0, i, (k) = 1, . . . , I, (K), l = 1, . . . , L, g = 1, . . . , G (122)

ṽl
jkg ≥ 0, j, (k) = 1, . . . , J, (K), l = 1, . . . , L, g = 1, . . . , G (123)

v̂l
mkg ≥ 0, m, (k) = 1, . . . ,M, (K), l = 1, . . . , L, g = 1, . . . , G (124)

v̌l
hkg ≥ 0, h, (k) = 1, . . . ,H, (K), l = 1, . . . , L, g = 1, . . . , G (125)

v̆l
skg ≥ 0, s, (k) = 1, . . . , S , (K), l = 1, . . . , L, g = 1, . . . , G (126)

The variables in constraints (127)-(135) are defined as non-negative integers; these give the
number of trucks used between any two nodes per day in the model, excluding replacement trucks.

x̃l
i jg, integer ≥ 0, i, ( j) = 1, . . . , I, (J), l = 1, . . . , L, g = 1, . . . , G (127)

x̂l
img, integer ≥ 0, i, (m) = 1, . . . , I, (M), l = 1, . . . , L, g = 1, . . . , G (128)

x̌l
ihg, integer ≥ 0, i, (h) = 1, . . . , I, (H), l = 1, . . . , L, g = 1, . . . , G (129)

x̆l
isg, integer ≥ 0, i, (s) = 1, . . . , I, (J), l = 1, . . . , L, g = 1, . . . , G (130)

xl
ikg, integer ≥ 0, i, (k) = 1, . . . , I, (K), l = 1, . . . , L, g = 1, . . . , G (131)

ỹl
jkg, integer ≥ 0, j, (k) = 1, . . . , J, (K), l = 1, . . . , L, g = 1, . . . , G (132)

ŷl
mkg, integer ≥ 0, m, (k) = 1, . . . ,M, (K), l = 1, . . . , L, g = 1, . . . , G (133)

y̌l
hkg, integer ≥ 0, h, (k) = 1, . . . ,H, (K), l = 1, . . . , L, g = 1, . . . , G (134)

y̆l
skg, integer ≥ 0, s, (k) = 1, . . . , S , (K), l = 1, . . . , L, g = 1, . . . , G (135)

The variables in constraints (136)-(141) are defined as non-negative integers. These give the
number of replacement trucks used in the daily waste management program. We note that the
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breakdown of a truck can occur anywhere in the road network followed by the trucks. For purposes
of locating the truck depots, it is assumed that these breakdowns occur at either a waste collection
point or at a plant or at a landfill.

n̄l
rk, integer ≥ 0, r, (k) = 1, . . . ,R, (K), l = 1, . . . , L (136)

ñl
r j, integer ≥ 0, r, ( j) = 1, . . . ,R, (J), l = 1, . . . , L (137)

n̂l
rm, integer ≥ 0, r, (m) = 1, . . . ,R, (M), l = 1, . . . , L (138)

ňl
rh, integer ≥ 0, r, (h) = 1, . . . ,R, (H), l = 1, . . . , L (139)

n̆l
rs, integer ≥ 0, r, (s) = 1, . . . ,R, (S ), l = 1, . . . , L (140)

nl
ri, integer ≥ 0, r, (i) = 1, . . . ,R, (I), l = 1, . . . , L (141)

The variables in (142)-(147) are defined as boolean; they areused to decide the existence of a
plant or a landfill.

z̃ j ∈ {0, 1}, j = 1, . . . , J (142)

ẑm ∈ {0, 1}, m = 1, . . . ,M (143)

žh ∈ {0, 1}, h = 1, . . . ,H (144)

z̆s ∈ {0, 1}, s = 1, . . . , S (145)

zk ∈ {0, 1}, k = 1, . . . ,K (146)

źr ∈ {0, 1}, r = 1, . . . ,R (147)

Definitions

Definitions (148)-(151), also mentioned at the beginning ofSection 3.1, give the amount of
waste transported to processing plants while definition (152) gives the amount of waste from all
waste sources to a landfillk. Similarly, definition (153) indicates the amount of waste disposed
of in a sanitary landfillk. Equation (154) gives the total amount of waste collected from all waste
sources per day; this excludes waste generated by the plants. In equation (155) the total number
of trucks of typel used per day is determined and, in definition (156) the total number of trucks
required per day for the transportation, treatment, and disposal of waste is determined. In definition
(157) the number of replacement trucks of typel in each depots is given, and in equation (158) the
total number of replacement trucks in all depots is given. Itis assumed that the trucks are fully
loaded as they leave the waste collection points.

w̃ j =
∑

gli

ũl
i jg, j = 1, . . . , J (148)

ŵm =
∑

gli

ûl
img, m = 1, . . . ,M (149)

w̌h =
∑

gli

ǔl
ihg, h = 1, . . . ,H (150)

w̆s =
∑

gli

ŭl
isg, s = 1, . . . , S (151)

wk =
∑

gli

ul
ikg, k = 1, . . . ,K (152)
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tk = wk +
∑

gl j

ṽl
jkg +

∑

glm

v̂l
mkg +

∑

glh

v̌l
hkg +

∑

gls

v̆l
skg, k = 1, . . . ,K (153)

W =
∑

j

w̃ j +
∑

m

ŵm +
∑

h

w̌h +
∑

s

w̆s +
∑

k

wk (154)

Tl =
∑

gi j

x̃l
i jg +

∑

gim

x̂l
img +

∑

gih

x̌l
ihg +

∑

gis

x̆l
isg +

∑

gik

xl
ikg +

∑

g jk

ỹl
jkg

+
∑

gmk

ŷl
mkg +

∑

ghk

y̌l
hkg +

∑

gsk

y̆l
skg, l = 1, . . . , L (155)

T =
∑

l

Tl (156)

(RT )l =
∑

rk

n̄l
rk +

∑

r j

ñl
r j +

∑

rm

n̂l
rm +

∑

rh

ňl
rh +

∑

rs

n̆l
rs +

∑

ri

nl
ri,

l = 1, . . . , L (157)

RT =
∑

l

(RT )l (158)

3.4 Analysis of the Second Model

The second model has been formulated as a mixed integer linear programming problem that is
similar to the first model which is formulated as an integer linear problem; the major difference
consists in the new variables introduced and which are continuous unlike in the first model where
all variables are integral. In the second model the waste is measured differently using continuous
variables and trucks are counted differently using integer variables. More exact values in totalcost,
waste amounts, and benefits are expected in the second model;the two models are, in general,
expected to give the same number of active and replacement trucks. However, the performance of
the first model can be enhanced if the transportation costs are measured by costing a trip made by
a truck, instead of using a waste mass unit.

3.5 Examples illustrating how the Model Problems can be solved

Two examples are presented in order to facilitate appreciating and understanding the solution
techniques to the two models, which have respectively been formulated as integer linear and mixed
integer linear programming problems.

3.5.1 An Integer Linear Model Example

Let

1: denote a waste source (collection point).

2: denote an incinerator.

3: denote a replacement trucks depot.

27



4: denote a landfill.

Figure 3 illustrates a simple model, where the waste source,the incinerator, the landfill, the
trucks depot are all known, and all trucks are of the same capacity.
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Figure 3: A simple model representation.

The figures along the arcs denote the costs which can be multiplied by 10,000 to get the actual
value in Ug Shs (SEK 1= Ug Shs 250).

Variables

u12, u14 : respectively represent the amount of waste (in tons) collected everyday by trucks of
capacity 7.51 tons from a waste source at 1 to an incinerator at 2, and a landfill at 4.

v24 : represents the amount of waste (in tons) collected everyday by trucks of capacity 7.51 tons
from an incinerator at 2 to a landfill at 4.

x12, x14 : respectively represent the number of trucks of capacity 7.51 tons used everyday to carry
waste from a waste source at 1 to an incinerator at 2, and to a landfill at 4.

y24 : number of trucks of capacity 7.51 tons used everyday to carry waste from an incinerator at 2
to a landfill at 4.

n31, n32, n34 : respectively represent the number of trucks of capacity 7.51 tons used everyday
from a replacement trucks bank at 3 to a waste source at 1, an incinerator at 2, and a landfill at 4.

w2 (= u12), t4 : respectively represent the amount of waste transported everyday to an incinerator
at 2, and a landfill at 4.

Input data /Parameters

14, 6 : respectively are the expected number of trips (single trips) a truck of capacity 7.51 tons can
make everyday from a waste source at 1 to an incinerator at 2, and a landfill at 4.

13 : is the expected number of trips a truck of capacity 7.51 tons can make everyday between and
incinerator at 2, and a landfill at 4.
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0.50, 0.80 : respectively are the transportation costs per ton of waste transported from a waste
source at 1 to an incinerator at 2, and a landfill at 4.

0.60 : is the transportation per ton of waste moved from an incinerator at 2 to a landfill at 4.

0.30, 0.40, 0.90 : respectively are the costs of moving a replacement truckof capacity 7.51 tons
from a replacement trucks depot at 3 to a waste source at 1, an incinerator at 2, and a landfill at 4.

3.78 : is the revenue per unit of waste from an incinerator at 2.

235 : is the amount of waste (in tons) at a waste source at 1.

0.30 : is the fraction (%) of unrecovered waste at an incinerator at 2.

1000.25, 3, 1850 : are the respective capacities for an incinerator at 2,a replacement trucks depot
at 3, and a landfill at 4.

1.73, 0.93 : are the respective costs of handling a ton of waste at an incinerator at 2, and a landfill
at 4.

5000 : cost of buying a new truck.

0.13 : probability that a truck breaks down in a day.

The Model

The first model is an integer program and we seek to minimize the total costF1 + F2 − B,
where

F1 = (0.50 × 7.51 × 14 × x12 + 0.80 × 7.51 × 6 × x14 + 0.60 × 7.51 ×

13 × y24) + (1.73 × 7.51 × 14 × x12 + 0.93 × t4) (159)

F2 = 5000× (T + RT ) (160)

B = 2.646 × 7.51 × 14 × x12 (161)

Constraints

7.51 × 14 × x12 + 7.51 × 6 × x14 ≥ 235 (162)

0.3 × 7.51 × 14 × x12 ≤ 7.51 × 13 × y24 (163)

n31 + n32 + n34 ≥ 0.13 × T (164)

7.51 × 14 × x12 ≤ 1000.25 (165)

t4 ≤ 1850 (166)

n31 + n32 + n34 ≤ 3 ≤ T (167)

Variable Conditions

x12, x14, y24 integer ≥ 0 (168)

n31, n32, n34 integer ≥ 0 (169)

29



Definitions

t4 = 7.51 × 6 × x14 + 7.51 × 13 × y24 (170)

T = x12 + x14 + y24 (171)

RT = n31 + n32 + n34 (172)

The Solution

We begin by generating a feasible solution by carrying all the waste from node 1 to node 2,
since there are benefits at node 2. From inequality (162),x12 = ⌈235/(7.51× 14)⌉ = 3. Also from
inequality (163),y24 = ⌈(0.9× 14)/13⌉ = 1. SoT = 3 + 1 = 4. Now RT = n31 + n32 + n34; from
inequalities (164) and (167), and definition (172),RT = ⌈0.52⌉ = 1. The feasible solutionx12 = 3,
x14 = 0, andy24 = 1 gives the total costF1 + F2 − B as

(0.50× 7.51× 14× 3+ 0+ 0.60× 7.51× 13× 1) + (1.73× 7.51× 14× 3+

0.93× 7.51× 13× 1)+ 5000× (4+ 1) − 2.646× 7.51× 14× 3 = 25,018.15918.

Since there are benefits at node 2 it is possible that an optimal solution has been obtained;
we check this claim by considering integral combinations of4 (sinceT = 4). We note that the
maximum number of trucks that can be used to move waste from node 1 to node 2 is 3, and no
more than 1 truck can be used to carry the waste from node 2 to node 4.

(i) If two trucks are used to carry the waste from node 1 to node2, and one truck is used to move
the waste from node 2 to node 4, some waste will remain at node 1and has to be moved
to node 4. The waste moved to node 2 is 7.51 × 14 × 2 = 210.8 tons leaving a balance
of 24.72 tons at node 1 that must be carried to node 4 usingx14 = ⌈24.72/(7.51 × 6)⌉ = 1
truck. T = 4 andRT = ⌈0.52⌉ = 1; thus the total costF1 + F2 − B is

(0.50× 7.51× 14× 2+ 0.80× 7.51× 6× 1+ 0.60× 13× 1)+ (1.73× 7.51× 14× 2

+ 0.93× (7.51×6×1+7.51×13×1))+5000× (4+1) −2.646×7.51×14×2= 25,089.07322.

(ii) If one truck is used to move the waste from node 1 to node 2,and one truck is used to carry
the waste from node 2 to node 4, some waste remains at node 1 andhas to be moved to node
4. With one truck from node 1 to node 2, the waste carried to node 2 is 7.51×14×1 = 105.14
tons leaving a balance of 129.86 tons at node 1 which must be moved to node 4 usingx14 =

⌈129.86/(7.51× 6)⌉ = 3 trucks.T = 5 andRT = ⌈0.65⌉ = 1; thus the total costF1 + F2 − B
is

(0.50 × 7.51 × 14 × 1 + 0.80 × 7.51 × 6 × 3 + 0.60 × 13 × 1)+ (1.73 × 7.51 × 14 × 1

+ 0.93 × (7.51 × 6 × 3 + 7.51 × 13 × 1))+ 5000× (5+ 1)− 2.646 × 7.51 × 14 × 1=

30,339.49706.

(iii) If all the waste at node 1 is now transported to node 4, then from inequality (162),x14 =

⌈235/(7.51 × 6)⌉ = 6. SoT = 6 andRT = ⌈0.78⌉ = 1. In this case the total costF1+ F2− B
is

0.80 × 7.51 × 6 × 6 + 0.93 × 7.51 × 6 × 6+ 5000× (6+ 1) = 35,467.7228.
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Hence, the claimed optimal solution is indeed an optimal solution to the problem. Note thatT ≤ 3
is not possible because in that case waste will remain at node1 which, is contrary to our desire.
Also, T ≥ 7 is obviously undesirable because some trucks will then be redundant. The optimal
solution has been validated using AMPL/CPLEX, and a Pentium IV 2.66 GHz computer in less
than two seconds.

Sensitivity Analysis

In order to demonstrate how sensitivity analysis can be conducted on the two models a parameter
ρ, which measures the quality of the incinerator at node 2, hasbeen chosen. A relationship between
ρ and the total costF1 + F2 − B is studied over the interval [0.0, 0.6]. The first three of thetotal
cost whenρ is respectively equal to 0.000,0.025,0.050 are computed by hand using a calculator
but the rest of the values over the interval are computed using the AMPL/CPLEX. The process and
the findings are described below.

We begin by generating a feasible solution by carrying all the waste from node 1 to node 2,
since there are benefits at node 2 (see Figure 4).
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Figure 4: Second representation of the model.

Forρ = 0.00, equation (161) becomes

B = 3.78 × 7.51 × 14 × x12 (173)

and inequality (163) becomes

0 × 7.51 × 14 × x12 ≤ 7.51 × 13 × y24 (174)

andy24 = 0. Thus, no waste will be moved from node 2 to node 4; alsox14 = 0. From inequality
(162),x12 = ⌈235/(7.51× 14)⌉ = 3. SoT = 3. NowRT = n31 + n32 + n34; from inequalities (164)
and (167),RT = ⌈0.39⌉ = 1. The feasible solutionx12 = 3, x14 = 0, andy24 = 0 gives the total cost
F1 + F2 − B as

0.50× 7.51× 14× 3+ 1.73× 7.51× 14× 3+ 5000× (3+ 1)− 3.78× 7,51× 14× 3 = 19,511.099.

Since there benefits at node 2 it is likely that an optimal solution has been obtained; we check
this claim by considering integral combinations of 3 (sinceT = 3). We note that the maximum
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number of trucks that can be used to move the waste from node 1 to node 2 is 3, andy24 = 0 since
ρ = 0.

(i) If two trucks are used to carry the waste from node 1 to node2, some waste will remain at
node 1 and has to be moved to node 4. The waste moved to node 2 is 7.51 × 14 × 2 =
210.8 tons leaving a balance of 24.72 tons that must be carried to node 4 usingx14 =

⌈24.72/(7.51× 6)⌉ = 1 truck.T = 3 andRT = ⌈0.39⌉ = 1; thus the total costF1 + F2 − B is

0.50× 7.51× 14× 2+ 0.80× 7.51× 6× 1+ 1.73× 7.51× 14× 2+ 0.93× 7.51× 6× 1+ 5000

× (3 + 1) − 3.78 × 7.51 × 14 × 2 = 19,752.0198.

(ii) If one truck is used to move the waste from node 1 to node 2 some waste remains at node 1
and has to be moved to node 4. With one truck from node 1 to node 2, the waste carried to
node 2 is 7.51× 14× 1 = 105.14 tons leaving a balance of 129.86 tons at node 1 which must
be moved to node 4 usingx14 = ⌈129.86/(7.51× 6)⌉ = 3 trucks.T = 4 andRT = ⌈0.52⌉ = 1;
thus the total costF1 + F2 − B is

0.50× 7.51× 14× 1+ 0.80× 7.51× 6× 3+ 1.73× 7.51× 14× 1+ 0.93× 7.51× 6× 3+ 5000

× (4 + 1) − 3.78 × 7.51 × 14 × 1 = 25,070.8944.

(iii) If all the waste at node 1 is now moved to node 4, then frominequality (162),x14 =

⌈235/(7.51× 6)⌉ = 6. SoT = 6 andRT = ⌈0.78⌉ = 1. In this case the totalF1 + F2 − B is

0.80 × 7.51 × 6 × 6 + 0.93 × 7.51 × 6 × 6 + 5000 × (6 + 1) = 35,467.7228.

We note theT ≤ 2 andT = 5 are not possible values since waste remains at node 1 or a truck is
redundant. Hence, the claimed optimal solution is indeed anoptimal solution to the problem.

We next try to find the optimal solution to the model if nowρ = 0.025. As in the previous case,
we begin by generating a feasible solution by carrying all the waste from node 1 to node 2, since
there are benefits at node 2 (see Figure 5).
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Figure 5: The third representation of the model.

Sinceρ = 0.025, equation (161) becomes

B = 3.78 × 0.975 × 7.51 × 14 × x12 (175)
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and inequality (163) becomes

0.025 × 7.51 × 14 × x12 ≤ 7.51 × 13 × y24 (176)

From inequality (162),x12 = ⌈235/(7.51× 14)⌉ = 3. Also from inequality (176),y24 =

⌈(0.075× 14)/13⌉ = 1. SoT = 3+ 1 = 4. NowRT = n31 + n32 + n34; from inequalities (164) and
(167),RT = ⌈0.52⌉ = 1. The feasible solutionx12 = 3, x14 = 0, andy24 = 1 gives the total cost
F1 + F2 − B as

0.50× 7.51× 14× 3+ 0+ 0.60× 7.51× 13× 1+ 1.73× 7.51× 14× 3× 0.93× 7.51× 13× 1+

5000 × (4 + 1) − 3.78 × 0.975 × 7,51 × 14 × 3 = 24,690.28009.

Since there are benefits at node 2 it is possible that an optimal solution has been obtained;
we check this claim by considering integral combinations of4 (sinceT = 4). We note that the
maximum number of trucks that can be used to move the waste from node 1 to node 2 is 3, and no
more than one truck can be used to carry waste from node 2 to node 4.

(i) If two trucks are used to carry the waste from node 1 to node2 and one one truck is used
to move the waste from node 2 to node 4, some waste will remain at node 1 and has to be
moved to node 4. The waste moved to node 2 is 7.51× 14× 2 = 210.8 tons leaving a balance
of 24.72 tons that must be carried to node 4 usingx14 = ⌈24.72/(7.51× 6)⌉ = 1 truck.T = 4
andRT = ⌈0.52⌉ = 1; thus the total costF1 + F2 − B is

0.50× 7.51× 14× 2+ 0.80× 7.51× 6× 1+ 0.60× 7.51× 13× 1+ 1.73× 7.51× 14× 2+

0.93× (7.51× 6 × 1 + 7.51× 13× 1) + 5000× (4 + 1) − 3.78× 0.975× 7.51× 14× 2 =

24,921.26516.

(ii) If one truck is used to move the waste from node 1 to node 2,and one truck is used to carry
the waste from node 2 to node 4, some waste remains at node 1 andhas to be moved to node
4. With one truck from node 1 to node 2, the waste carried to node 2 is 7.51×14×1 = 105.14
tons leaving a balance of 129.86 tons at node 1 which must be moved to node 4 usingx14 =

⌈129.86/(7.51× 6)⌉ = 3 trucks.T = 5 andRT = ⌈0.65⌉ = 1; thus the total costF1 + F2 − B
is

0.50× 7.51× 14× 1+ 0.80× 7.51× 6× 3+ 0.60× 7.51× 13× 1+ 1.73× 7.51× 14× 1+

0.93× (7.51× 6 × 3 + 7.51× 13× 1) + 5000× (5 + 1) − 3.78× 0.975× 7.51× 14× 1 =

30,230.20403.

(iii) If all the waste at node 1 is now moved to node 4, then frominequality (162),x14 =

⌈235/(7.51× 6)⌉ = 6. SoT = 6 andRT = ⌈0.78⌉ = 1. In this case the totalF1 + F2 − B is

0.80 × 7.51 × 6 × 6 + 0.93 × 7.51 × 6 × 6 + 5000 × (6 + 1) = 35,467.7228.

SoT = 4 or 5 or 6. We note thatT ≤ 3 andT ≥ 7 are not possible values since waste remains at
node 1 or some trucks will be redundant. Hence, the claimed optimal solution is indeed an optimal
solution to the problem.
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Figure 6: The fourth representation of the model.

We further try to find the optimal solution to the model if nowρ = 0.05. As in the previous
cases, we begin by generating a feasible solution by carrying all the waste from node 1 to node 2,
since there are benefits at node 2 (see Figure 6).

Sinceρ = 0.05, equation (161) becomes

B = 3.78 × 0.95 × 7.51 × 14 × x12 (177)

and inequality (163) becomes

0.05 × 7.51 × 14 × x12 ≤ 7.51 × 13 × y24 (178)

From inequality (162),x12 = ⌈235/(7.51× 14)⌉ = 3. Also from inequality (178),y24 =

⌈(0.15× 14)/13⌉ = 1. SoT = 3+ 1 = 4. Now RT = n31 + n32 + n34; from inequalities (164) and
(167),RT = ⌈0.52⌉ = 1. The feasible solutionx12 = 3, x14 = 0, andy24 = 1 gives the total cost
F1 + F2 − B as

0.50× 7.51× 14× 3+ 0+ 0.60× 7.51× 13× 1+ 1.73× 7.51× 14× 3× 0.93× 7.51× 13× 1+

5000 × (4 + 1) − 3.78 × 0.975 × 7,51 × 14 × 3 = 24,720.08728.

As there are benefits at node 2 it is possible that an optimal solution has been attained; we check
this claim by considering integral combinations of 4 (sinceT = 4). We once more note that the
maximum number of trucks that can be used to move the waste from node 1 to node 2 is 3, and no
more than one truck can be used to carry the waste from node 2 tonode 4.

(i) If two trucks are used to carry the waste from node 1 to node2 and one one truck is used
to move the waste from node 2 to node 4, some waste will remain at node 1 and has to be
moved to node 4. The waste moved to node 2 is 7.51× 14× 2 = 210.8 tons leaving a balance
of 24.72 tons that must be carried to node 4 usingx14 = ⌈24.72/(7.51× 6)⌉ = 1 truck.T = 4
andRT = ⌈0.52⌉ = 1; thus the total costF1 + F2 − B is

0.50× 7.51× 14× 2+ 0.80× 7.51× 6× 1+ 0.60× 7.51× 13× 1+ 1.73× 7.51× 14× 2+

0.93× (7.51× 6 × 1 + 7.51× 13× 1) + 5000× (4 + 1) − 3.78× 0.95× 7.51× 14× 2 =

24,941.13662.
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(ii) If one truck is used to move the waste from node 1 to node 2,and one truck is used to carry
the waste from node 2 to node 4, some waste remains at node 1 andhas to be moved to node
4. With one truck from node 1 to node 2, the waste carried to node 2 is 7.51×14×1 = 105.14
tons leaving a balance of 129.86 tons at node 1 which must be moved to node 4 usingx14 =

⌈129.86/(7.51× 6)⌉ = 3 trucks.T = 5 andRT = ⌈0.65⌉ = 1; thus the total costF1 + F2 − B
is

0.50× 7.51× 14× 1+ 0.80× 7.51× 6× 3+ 0.60× 7.51× 13× 1+ 1.73× 7.51× 14× 1+

0.93× (7.51× 6 × 3 + 7.51× 13× 1) + 5000× (5 + 1) − 3.78× 0.95× 7.51× 14× 1 =

25,240.13976.

(iii) If all the waste at node 1 is now moved to node 4, then frominequality (162),x14 =

⌈235/(7.51× 6)⌉ = 6. SoT = 6 andRT = ⌈0.78⌉ = 1. In this case the totalF1 + F2 − B is

0.80 × 7.51 × 6 × 6 + 0.93 × 7.51 × 6 × 6 + 5000 × (6 + 1) = 35,467.7228.

SoT = 4 or 5 or 6. We note thatT ≤ 3 andT ≥ 7 are not possible values since waste remains at
node 1 or some trucks will be redundant. Hence, the claimed optimal solution is indeed an optimal
solution to the problem. The remaining values of the optimalsolution to the model asρ varies
over the interval [0.0, 0.6] have been computed using the AMPL/CPLEX, and they are displayed
in Table 1. The values found by hand and calculator also agreewith those computed using the
programs. A graphical illustration of the behaviour of the total cost function asρ varies over the
interval [0.0, 0.6] is given in Figure 7. It is observed that the total cost falls with lower values of
ρ; this is because the lowerρ is the more efficient the plant is, and consequently the more benefits
will be obtained.

Table 1: Total costs and fractions of unrecovered waste for the incinerator at node 2.

ρ ob j(F) T (tot) RT (tot) B W(tot)
0.000 19511.09900 3 1 1192.28760 315.42
0.025 24690.28010 4 1 1162.48041 315.42
0.050 24720.08730 4 1 1132.67322 315.42
0.100 24779.70170 4 1 1073.05884 315.42
0.150 24839.31600 4 1 1013.44446 315.42
0.200 24898.93040 4 1 953.83008 315.42
0.250 24958.54480 4 1 894.21570 315.42
0.300 25018.15920 4 1 834.60132 315.42
0.400 25219.33710 4 1 476.91504 255.34
0.500 30405.99060 5 1 596.14380 315.42
0.600 30458.72580 5 1 158.97168 240.32
0.700 30498.46870 5 1 119.22876 240.32
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Figure 7: Total costs plotted against the fractions of unrecovered waste

3.5.2 A Mixed Integer Linear Model Example

The Model

The second model is a mixed integer linear program and we seekto minimize the total cost
F1 + F2 − B,
where

F1 = (0.50u12 + 0.80u14 + 0.60v24) + (1.73u12 + 0.93t4) (179)

F2 = 5000× (T + RT ) (180)

B = 2.646u12 (181)

Constraints

u12 + u14 ≥ 235 (182)

0.3u12 ≤ v24 (183)

n31 + n32 + n34 ≥ 0.13T (184)

u12 ≤ 1000.25 (185)

t4 ≤ 1850 (186)

n31 + n32 + n34 ≤ 3 ≤ T (187)

u12 ≤ 105.14x12, u14 ≤ 45.06x14, v24 ≤ 97.63y24 (188)

u12 ≤ 235, u14 ≤ 235, v24 ≤ 70.5 (189)
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Variable Conditions

u12, u14, v24 ≥ 0 (190)

x12, x14, y24 integer ≥ 0 (191)

n31, n32, n34 integer ≥ 0 (192)

Definitions

t4 = u14 + v24 (193)

T = x12 + x14 + y24 (194)

RT = n31 + n32 + n34 (195)

The Solution

Let us first suppose that all the waste of 235 tons is carried from node 1 to node 2 (see Figure 8).
We determine the number of trucks required to carry this waste from node 1 to node 2 and then
from node 2 to node 4, using inequalities (188).
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Figure 8: The fourth representation of the model.

We note thatu12 = 235, u14 = 0, v24 = 0.3× 235= 70.5. Thereforex12 = ⌈235/105.14⌉ = 3 and
y24 = ⌈70.5/97.63⌉ = 1. So the the total number of trucks required to transport thewaste of 235
from node 1 to node 2, and then the waste of 0.3× 235 tons from node 2 to node 4, using equation
(194), isT = 4.

To obtain the required number of replacement trucks we use inequalities (184) and (187), and
obtain

0.52 ≤ n31 + n32 + n34 ≤ 4

Since, from equation (195),RT = n31+ n32+ n34, it is reasonable to takeRT = ⌈0.52⌉ = 1.
It is important to note that although an upper boundT on n31 + n32 + n34 is reasonable, it is not

the only one; the upper bound can be less or greater thanT .
Since the waste at node 1 is transported to the incinerator atnode 2, the transportation cost of

0.50 per ton and a handling fee of 1.73 per ton are incurred. There are benefits of 3.78 per ton; so
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the cost is

0.50 × 235 + 1.73 × 235 − 235 × 0.7 × 3.78 = − 97.76.

A proportion, 0.3 of the waste taken to the incinerator has to be moved to the landfill at 4 at a cost
of 0.60 per ton in addition to the handling charges at 4 of 0.93 per ton. The cost is therefore

0.3 × 235 × 0.60 + 0.3 × 235 × 0.93 = 107.865.

The cost for buying the trucks is 5000× (4+ 1) = 25,000. Thus the total cost is

25,000− 97.76 + 107.865 = 25,010.105.

Since there are benefits at node 2, the optimal cost is possibly 25,010.105; we check this claim
by considering integral combinations of 4 (sinceT = 4). We note that the maximum number of
trucks that can be used to move the waste from node 1 to node 2 is3, and no more than 1 truck can
be used to carry the waste from node 2 to node 4.

(i) If two trucks are used to carry the waste from node 1 to node2, and one truck is used to move
the waste from node 2 to node 4, some waste will remain at node 1and has to be moved
to node 4. The waste moved to node 2 is 7.51 × 14 × 2 = 210.8 tons leaving a balance
of 24.72 tons at node 1 that must be carried to node 4 usingx14 = ⌈24.72/(7.51 × 6)⌉ = 1
truck. T = 4 andRT = ⌈0.52⌉ = 1; thus the total costF1 + F2 − B is

0.50× 210.8 + 0.80× 24.72 + 1.73× 210.8− 0.7× 210.8× 3.78 + (0.3× 210.8× 0.6

+ 5000× (4+ 1) = 25,028.6172.

(ii) If one truck is used to move the waste from node 1 to node 2,and one truck is used to carry
the waste from node 2 to node 4, some waste remains at node 1 andhas to be moved to node
4. With one truck from node 1 to node 2, the waste carried to node 2 is 7.51 × 14 × 1 =
105.14 tons leaving a balance of 129.86 tons at node 1 which must be moved to node 4 using
x14 = ⌈129.86/(7.51 × 6)⌉ = 3 trucks. T = 5 andRT = ⌈0.65⌉ = 1; thus the total cost
F1 + F2 − B is

(0.50 × 105.14+ 0.80 × 129.86− 0.7 × 105.14× 3.78) + 0.3 × 105.14 × 0.60+ 0.3×

105.14× 0.93+ 5000× (5+ 1) = 29,926.51682.

(iii) If all the waste at node 1 is now transported to node 4, then from inequalities (188),x14 =

⌈235/(7.51 × 6)⌉ = 6. SoT = 6 andRT = ⌈0.78⌉ = 1. In this case the total costF1+ F2− B
is

0.80× 235+ 0.93× 235+ 5000× (6+ 1) = 35,406.55.

Hence, the claimed optimal solution is indeed an optimal solution to the problem. As noted at the
end of example1,T ≤ 3 is not possible because in this case waste will remain at node 1 which, is
contrary to the desired goal. Also,T ≥ 7 is obviously undesirable because some trucks will then
be redundant. The optimal solution has been validated usingAMPL/CPLEX, and a Pentium IV
2.66 GHz computer in less than two seconds.
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Sensitivity Analysis

The optimal solutions for the mixed integer model asρ varies over the interval [0.0, 0.6] can be
found in the same way as for the integer model. The reasoning is also similar to that used to find the
optimal solution for the mixed integer model just above; so only the optimal solutions are presented
for the mixed integer model. The hand computed optimal solutions whenρ is respectively equal
to 0.0,0.025, and 0.05 are stated just below. The remaining values found using AMPL/CPLEX
are presented in Table 2. A graphical illustration of the behaviour of the total cost function asρ
varies over the interval [0.0, 0.6] is given in Figure 9. It isobserved that the total cost falls with
lower values ofρ; this is because the lowerρ is the more efficient the incinerator at node 2 is, and
consequently the more benefits will be obtained. The performance of both models can as well be
compared from this figure. In general, the values of the objective functions are close to each other
except whenρ = 0.5; the big difference in values here is due to the fact that the integer modeluses
one more truck that costs more money to buy (see Tables 1 and 2).

The extra truck is “used” in transporting extra “waste” fromnode 2 to node 4 (see Table 1).
Whenρ = 5, there is increased “waste” from node 1 to node 2 which results in increased benefits
from node 2; this should not happen since the quality of the incinerator is getting worse. However
this strange behaviour consists in the fact that the waste carried is determined by the trucks used,
and since there may be some benefit (even if the incinerator isgetting worse) some pseudo waste
is likely to be transported on partially full trucks in orderto keep the total transportation costs
lower. Such strange isolated cases may not be many but they are likely to happen, and it is not
easy to put control constraints, because of the assumption that the trucks leave the waste collection
points when they are fully loaded. The best control may be to relax these assumptions by having
continuous variables to measure the amount of waste carried; in this case it may be easier to control
what is being transported as observed in the mixed integer linear model.

(i) We note that whenρ = 0.000 the equation (181) changes to

B = 3.78 × u12 (196)

and inequality (183) becomes

0 × u12 ≤ v24 (197)

The optimal solution is found to beu12 = 235, u14 = 0, v24 = 0, x12 = 3, x14 = 0, y24 = 0, and
the total cost is 19,635.75 with T = 3 andRT = 1.

(ii) If insteadρ = 0.025, the equation (181) changes to

B = 3.78 × 0.975 × u12 (198)

and inequality (183) becomes

0.025 × u12 ≤ v24 (199)

The optimal solution is found to beu12 = 235, u14 = 0, v24 = 5.875, x12 = 3, x14 = 0, y24 = 1,
and the total cost is 24,666.94625 withT = 4 andRT = 1.
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(iii) If now ρ = 0.05, the equation (181) changes to

B = 3.78 × 0.95 × u12 (200)

and inequality (183) becomes

0.05 × u12 ≤ v24 (201)

The optimal solution is found to beu12 = 235, u14 = 0, v24 = 11.75, x12 = 3, x14 = 0, y24 = 1,
and the total cost is 24,698.1425 withT = 4 andRT = 1.

Table 2: Total costs and fractions of unrecovered waste for the incinerator at node 2.

ρ ob j(F) T (tot) RT (tot) B W(tot)
0.000 19635.7500 3 1 888.30000 235
0.025 24666.9463 4 1 866.09250 235
0.050 24698.1425 4 1 843.88500 235
0.100 24760.5350 4 1 799.47000 235
0.150 24822.9275 4 1 755.05500 235
0.200 24885.3200 4 1 710.64000 235
0.250 24947.7125 4 1 666.22500 235
0.300 25010.1050 4 1 621.81000 235
0.400 25134.8900 4 1 532.98000 235
0.500 25284.5125 4 1 369.04140 235
0.600 30384.4600 5 1 355.32000 235
0.700 30450.1713 5 1 113.19588 235
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Figure 9: Total costs plotted against the fractions of unrecovered waste

4 Case Study

In order to illustrate how the models described in the above section may be useful in practice
to waste managers, a (hypothetical) case study has been chosen and the data of the parameters is
subjective. A hypothetical case study has been used becauseit has been difficult to get the ac-
tual data in time. The data of the parameters is chosen according to the situation in Kampala, the
capital city of Uganda. At the moment none of the waste management systems in the City has a
treatment plant; consequently the driving parameters are the transportation costs, waste amounts
at the sources, and possibly the waste handling fees at the landfills. We have decided to include
incinerator parameters because of the growing awareness inutilizing the waste to generate energy.
We have not included waste handling fees at landfills becausewe think they are in the same cate-
gory as transportation costs. In this hypothetical case study there are five waste source locations,
three sanitary landfill locations, three replacement trucks depots, and three incinerators all of the
same type. All trucks involved are all of the same type.

The names of landfills, waste source locations, replacementtruck depots, and incinerators have
been taken from regions or subdivisions of Kampala City. It isimportant to note that care has been
taken to choose transport cost parameter data that is as close to the reality in Kampala as possible.
The most difficult data to imagine has been that pertaining to incineratorparameters for instance,
the fixed costs of opening incinerators, and the waste handling charges. Landfill data has also been
hard to imagine because landfill charges do not directly go towaste managing systems.

At the moment it is the World Bank that is paying (per ton of waste deposited) the single landfill
managing company with an aim of helping this company to determine with time a reasonable fee
that can be paid by waste managing companies that transport waste to that landfill. At the same
time, the other waste managing systems have also in time to determine a reasonable fee that can
be paid by waste generators whose waste they handle. More than five hundred tons of waste are
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deposited everyday at the only landfill at Kiteezi; it is estimated that this is less than half of the
total amount of waste accumulated daily in the entire city.

4.1 Data used to test the Models

The data for the parameters is given in Tables 3-18, that are given below. This data has also been
used to study the validity and robustness of the models described in Section 3. Tables 19-22 and
Figures 10-13 give the findings from the sensitivity analysis tests conducted on total expenditure
against the amount of waste at the sources, transportation costs, the fractions of waste that remains
at the incinerators, and the benefits from the incinerators.In Table 3 the locations for waste sources,
sanitary landfills, replacement trucks depots, and incinerators are given. Table 4 gives waste source

Table 3: Node types and their locations

node type locations
waste sources (i) Kamwokya Kireka Ntinda Nalya Kiwatule
landfill (k) Kiteezi Namugongo Najeera
truck depot (r) Kyambogo Nakasero Lugogo
incinerator (j) Kawempe Kiwatule Kasubi

locations as well as the waste amounts (in tons) at these locations. Table 5 gives the incinerator

Table 4: Waste amounts at waste sources.

waste source location (i) waste amount, di (in tons)
Kamwokya 250.0
Kireka 350.0
Ntinda 400.0
Nalya 245.7
Kiwatule 268.5

locations j with their respective capacities̃Q j in tons, costs for treating a ton of waste ˜γ j, fixed
costs in opening these incineratorsδ̃ j, and revenues per ton of waste at these incinerators ˜c j. Table

Table 5: Capacities, costs of opening and waste handling, revenues from incinerators.

j Q̃ j δ̃ j γ̃ j c̃ j

Kawempe 1200.00 975 1.57 1.67
Kiwatule 1500.25 1079 1.73 6.78
Kasubi 1300.50 1354 1.96 1.89

6 gives the landfill locationsk as well as landfill capacities̄Qk, fixed costs̄δk incurred in opening
these landfills or tips, and costs ¯γk in handling a ton of waste at these landfills. Table 7 gives the
replacement trucks depots locationsr as well as fixed costśδr in opening them, and their capacities
Q́r in terms of the number of trucks that can be kept in them. For simplicity we only have one type
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of trucks. In Table 8 truck capacity in tonsαl, the probabilitypl of a truck breaking down in a day,
and the costfl of buying a new truck are given. Table 9 gives the incineratorlocations j, and the
proportions of wasteρ j that cannot be recovered by these incinerators. The waste that remains has
to be disposed of at landfills. In Table 10 waste source locationsi and sanitary landfill locationsk
are given. Transportations costs per tripcl

ik made by a truck from waste sources to landfills have
also been included. In Table 11 waste source locationsi and landfill locationsk are given. The
expected number of tripsal

ik a truck can make per day between a waste sourcei and a landfillk
are also given. Table 12 gives waste source locationsi and incinerator locationsj. Transportation

Table 6: Landfill locations, landfill capacities, costs of opening landfills, and unit waste handling
charges.

k Q̄k δ̄k γ̄k

Kiteezi 1850 1500 0.93
Namugongo 2500 1470 1.06
Najeera 3750 1575 1.10

Table 7: Replacement trucks depot locations as well as their capacities and fixed costs in opening
them.

r δ́r Q́r

Kyambogo 545.7 5
Nakasero 590.3 7
Lugogo 587.5 9

Table 8: Truck capacity, breakdown probability, and truck cost.

αl pl fl

7.51 0.13 5500

Table 9: Incinerator locations and waste proportions that remain at these incinerators.

j ρ j

Kawempe 0.3
Kiwatule 0.3
Kasubi 0.3

Table 10: Transportation costs between waste sources and landfills.

k\i Kamwokya Kireka Ntinda Nalya Kiwatule
Kiteezi 0.70 0.70 0.80 0.80 0.80
Namugongo 0.70 0.50 0.60 0.40 0.50
Najeera 0.60 0.70 0.80 0.60 0.60
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costscl
i j per ton of waste per day from a waste source to an incinerator are given as well. Table 13

gives waste source locationsi and incinerator locationsj. It also gives the expected number of trips
ãi j a truck can make per day between a waste sourcei and an incineratorj. Table 14 gives landfill
locationsk and incinerator locationsj. Transportation costscl

jk per ton of waste from incinerators
to landfills are also given. In Table 15 incineratorj and landfillk locations are provided. The
expected number of trips̃bl

jk a truck can make everyday between incineratorj and landfillk are
also given. Table 16 gives replacement trucks depotsr and landfillk locations. Transportation costs

Table 11: Expected number of trips a truck makes per day between a waste sources and a landfills.

k\i Kamwokya Kireka Ntinda Nalya Kiwatule
Kiteezi 8 9 6 5 5
Namugongo 9 14 12 15 14
Najeera 12 8 7 13 12

Table 12: Transportation costs between waste sources and incinerators.

j\i Kamwokya Kireka Ntinda Nalya Kiwatule
Kawempe 0.60 0.80 0.60 0.60 0.60
Kiwatule 0.50 0.70 0.50 0.50 0.40
Kasubi 0.70 0.90 0.70 0.70 0.70

Table 13: Expected number of trips a truck can make a day between a waste source and an incin-
erator.

j\i Kamwokya Kireka Ntinda Nalya Kiwatule
Kawempe 13 8 12 12 11
Kiwatule 14 10 14 14 17
Kasubi 10 4 4 8 8

Table 14: Transportation costs between incinerators and landfills.

j\k Kiteezi Namugongo Najeera
Kawempe 0.40 0.60 0.70
Kiwatule 0.60 0.70 0.60
Kasubi 0.60 0.80 0.70

Table 15: Expected number of trips a truck can make a day between an incinerator and a landfill.

j\k Kiteezi Namugongo Najeera
Kawempe 17 12 10
Kiwatule 13 10 13
Kasubi 11 7 6
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cl
rk from depots to landfills are also given. In Table 17 replacement trucks depotsr and incinerator

Table 16: Transportation costs between replacement trucksdepots and landfills.

r\k Kiteezi Namugongo Najeera
Kyambogo 0.90 0.70 0.70
Nakasero 0.80 0.70 0.80
Lugogo 0.90 0.70 0.90

j locations are provided. Transportation costs ¯cl
r j from a depotr to an incineratorj are also given.

Table 18 provides transportation costs of moving replacement trucks between their depotsr and

Table 17: Transportation costs between replacement trucksdepots and incinerators.

r\ j Kawempe Kiwatule Kasubi
Kyambogo 0.70 0.40 0.80
Nakasero 0.60 0.60 0.70
Lugogo 0.70 0.50 0.80

waste sourcesi.

Table 18: Transportation costs between replacement trucksdepots and waste sources.

r\i Kamwokya Kireka Ntinda Nalya Kiwatule
Kyambogo 0.50 0.40 0.30 0.30 0.20
Nakasero 0.50 0.70 0.60 0.70 0.60
Lugogo 0.30 0.50 0.60 0.60 0.60

4.2 Solution, Validity and Robustness of the First Model

The solution to the model has been obtained using a Pentium IV2.66 GHz computer in less than
two seconds. All data from the previous section has been usedin the validity test; only some of it
has been used in the robustness tests. The reason is that in the robustness tests the attention has been
more on the sensitivity to changes in some of the most important parameters as far as the situation
of Kampala is concerned. Also, some of the data is in the same category like the transportation
costs between waste sources and incinerators, and the transportation costs between incinerators
and landfills, etc. In particular the following parameters and functions have been studied; revenue
from an incinerator at Kiwatulerev(kiw), total costsob j(F), total truck number used per day
T (tot), total replacement trucks number used per dayRT (tot), waste amount a sourcewaste(amt)
in Ntinda, total waste amount collected from all waste sources per dayW(tot), fractionsρ of waste
that remains per day at incinerators, and transportation costs from a waste source at Kamwokya
and a landfill (tip) at Najeera.

The changes in the parametersrev(kiw), waste(amt), ρ, and the transportation cost between
Kamwokya and Najeera have been studied against the total cost ob j(F). The findings are given in
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Tables (19)-(22), and graphically depicted in Figures (10)-(13). The graphs in these figures have
been plotted using matlab 6.5.

The validity of the model has been tested by doubling the values of the parameters except for
the values of waste fractions that remain at incinerators and the daily truck breakdown probability.
This has not affected the values of the decision variables; it has also indicated that the model has
been well formulated.

The robustness of the model described in Section 3.1 has beenstudied by looking at the changes
in some of the key parameters; revenues at an incinerator at Kiwatule, waste source amounts
at Ntinda, transportation costs between a waste source at Kamwokya and a landfill at Najeera,
changes in the fractions of wastes that is unrecovered at an incinerator at Kiwatule. The changes in
these parameters have specifically been observed with respect to total costs; changes in other data
like total waste amount from all waste sources every dayW(tot) have also been reflected as shown
in the tables below. The changes in these parameters have been significant and they have greatly
affected the total cost; small changes have induced small changes while big changes have caused
big changes in the total cost.

Part of the solution from the case study is shown in the fifth row from the top of Table 19.
Since our decision variables measure truck numbers, the sharpness of this solution can be studied
by looking at the total amount of waste collected per day fromall sources; the actual total waste
amount from all waste sources is 1514.2 tons. From Table 19 itis given as 1659.71 tons when
rev(kiw) is 6.78, giving a deviation of 145.51 tons from the actual value. In general, the biggest
deviation has been observed to be 243.14 tons in Table 22 whenthe total waste from all sources
is given as 1757.34 tons. This inflation in waste amounts is also observed in the total costob j(F)
and the benefitsB.

The observed inflation consists in the assumption that the trucks leave the waste collection
points when they are fully loaded. Some of these trucks may actually be partially full; so there is an
overestimation if the truck number is simply multiplied by the truck capacity to obtain the amount
of waste collected. This problem has been overcome by using the modified model described in
Section 3.3. The results from using that model are given in Tables 23-26, and Figures 14-17.

Table 19 represents the relationship between the total costob j(F) and the income per ton of
wasterev(kis) from the incinerator at Kiwatule. As the revenue in the interval [4.78, 9.98] in-
creases, the total costob j(F) decreases. The change in the revenue affects also the benefitsB;
there are no benefits if the value ofrev(kiw) is at most equal to 6.28. The relationship between
ob j(F) andrev(kiw) is shown in Figure 10; this figure shows that as the revenue increases, the total
cost reduces. The total cost does not change when the benefitsare at most 6.28 per ton of waste;
in this case no waste is taken for incineration because it is not economically profitable.

Table 20 shows a variation in the total costob j(F) with the variation in the waste amount
waste(amt) at a source in Ntinda over the interval [300, 500]. The totalcost increases with an
increase in waste amount. The variation inwaste(amt) also affectsT (TOT ) butRT (TOT ) remains
stable. However, small changes in the values ofwaste(amt) cause small changes in the values ofF
andT (TOT ) over this interval. The relationship betweenF andwaste(amt) is depicted in Figure
11; it is clear from the graph that the values ofob j(F) are increasing with the values ofwaste(amt).

Table 21 shows a variation in the values ofob j(F) with respect to changes in the transportation
costc(soti) between a waste source at Kamwokya and a landfill at Najeera over the interval [0.10,
21.00]. It is clear from the table that the higher the transportation costs the higher the total costs.
There are slight changes in the values ofT (TOT ) andB. The values ofRT (TOT ) do not change
while the values ofW(tot) change slightly. The relationship betweenF and c(soti) is given in
Figure 12; it is evident from the graph that when eventually the cost to Najeera landfill is very high
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Table 19: Total costs and benefits from Kiwatule.

rev(kiw) ob j(F) T (tot) RT (tot) B W(tot)
4.78 121803.010 18 3 0000.00000 1667.22
5.28 121803.010 18 3 0000.00000 1667.22
5.78 121803.010 18 3 0000.00000 1667.22
6.28 121803.010 18 3 0000.00000 1667.22
6.78 121705.704 18 3 1496.98332 1659.71
7.28 121595.307 18 3 1607.38032 1659.71
7.78 121484.910 18 3 1717.77732 1659.71
8.28 121374.513 18 3 1828.17432 1659.71
8.78 121264.116 18 3 1938.57132 1659.71
9.28 121153.719 18 3 2048.96832 1659.71
9.98 120999.163 18 3 2203.52412 1659.71
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Figure 10: Total cost plotted against benefits from incineration
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Table 20: Total costs and waste amounts at Ntinda.

waste(amt) ob j(F) T (tot) RT (tot) B W(tot)
300 116018.254 17 3 1496.98332 1547.060
320 116153.411 17 3 0000.00000 1577.100
340 116203.127 17 3 0000.00000 1614.650
360 116203.127 17 3 0000.00000 1614.650
380 121667.853 18 3 1496.98332 1637.180
400 121705.704 18 3 1496.98332 1659.710
420 121852.726 18 3 0000.00000 1704.770
440 121852.726 18 3 0000.00000 1704.770
460 127136.186 19 3 1496.98332 1697.260
480 127317.452 19 3 1496.98332 1727.300
500 127452.609 19 3 0000.00000 1754.340
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Figure 11: Total cost plotted against waste amount at Ntinda
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no waste will deposited there and consequently any further increments in the cost will not affect
the total cost.

Table 21: Total costs and transportation costs from Kiwatule waste source to Kiteezi landfill.

c(soti) ob j(F) T (tot) RT (tot) B W(tot)
0.10 121570.524 18 3 1496.98332 1659.710
0.30 121624.596 18 3 1496.98332 1659.710
0.60 121705.704 18 3 1496.98332 1659.710
0.80 121759.776 18 3 1496.98332 1659.710
1.00 121813.848 18 3 1496.98332 1659.710

10.00 124247.088 18 3 1496.98332 1659.710
15.00 125598.888 18 3 1496.98332 1659.710
17.00 125878.697 19 3 2993.96664 1629.670
19.00 125878.697 19 3 2993.96664 1629.670
21.00 125878.697 19 3 2993.96664 1629.670
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Figure 12: Total cost plotted against transportation costsfrom Kiwatule to Kiteezi

Table 22 shows the variation in the values ofob j(F) with respect to changes in the values ofρ
in the interval [0.0, 0.6]. It is clear from the table that thelower the value ofρ, the lower the total
costs. There are slight changes in the values ofT (tot) but RT (tot) remains stable. There may be
no benefits if the value ofρ is at least equal to 0.4; this is shown in the table and in Figure 13. A
graphical relationship betweenob j(T ) andρ is given in Figure 13; it is evident from the graph that
the lowerρ is the lower the total cost. This means that the better the quality of the incinerators the
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Table 22: Total costs and fractions of unrecovered waste at incinerators

ρ ob j(F) T (tot) RT (tot) B W(tot)
0.000 106803.046 17 3 10030.80660 1757.34
0.025 112685.992 18 3 9780.03643 1757.34
0.050 112936.762 18 3 9529.26627 1757.34
0.100 117459.517 18 3 4490.94996 1742.32
0.150 119587.758 18 3 3635.53092 1629.67
0.200 120769.988 18 3 2525.52288 1644.69
0.250 121291.242 18 3 1985.79420 1674.73
0.300 121705.704 18 3 1496.98332 1659.71
0.400 121803.010 18 3 0000.00000 1667.22
0.500 121803.010 18 3 0000.00000 1667.22
0.600 121803.010 18 3 0000.00000 1667.22
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Figure 13: Total costs plotted against fractions of unrecovered waste
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lower the expenditure; eventually if the quality of the incinerators is very bad then there will be no
gain at all.

These tests and the graphical observations have indicated that the model is satisfactorily robust.
The nature of the graphs in figures 10, 11, 12, and 13 is not surprising since the objective function
of the model described in Section 3.1 is a linear combinationof convex functions defined over
convex sets. The variables in the model are integer; if they were to be continuous then a piecewise
linear appearance would be depicted in the graphs. This would be so because of the piecewise
linearity of the functions involved (see Murty [50]) in the objective function. The graphs in Figures
(10)-(13) are composed of discrete points that have been joined by lines in order to show the trend
of the plots.

4.3 Solution, Validity, and Robustness of the Second Model

In this section we present the solution to the second model, as well as the findings from the
sensitivity analysis tests conducted on the first model described in Section 3.1 and the second
model described in Section 3.3.

The solution to the model has been obtained using a Pentium IV2.66 GHz computer in less
than five seconds. Sensitivity analysis tests have been conducted on the second model over the
same intervals of data like in the case of the first model. The findings are summarized in Tables
23-26; the number of trucks given in these tables is, in general, the same as that given in Tables
19-22 for the first model. The graphical comparison of the twomodels is given in Figures 14-17.
The second model gives superior values of the total cost and the amount of waste at the collection
points.

Table 23 gives the variation of the total cost with respect tothe change in the revenue from the
incinerator at Kiwatule, over the interval [4.78, 9.78]. The total cost falls with an increase in the
revenue; this is also the case for the first model. Figure 14 compares the differences in the total
cost for the two models; the second model gives much better total cost values.

Table 23: Total costs and benefits from Kiwatule.

rev(kiw) ob j(F) T (tot) RT (tot) B W(tot)
4.78 121504.482 18 3 0000.00000 1514.2
5.28 121504.482 18 3 0000.00000 1514.2
5.78 121504.482 18 3 0000.00000 1514.2
6.28 121504.482 18 3 0000.00000 1514.2
6.78 121427.152 18 3 1496.98332 1514.2
7.28 121316.755 18 3 1607.38032 1514.2
7.78 121206.358 18 3 1717.77732 1514.2
8.28 121095.961 18 3 1838.17432 1514.2
8.78 120985.564 18 3 1938.57132 1514.2
9.28 120875.167 18 3 2048.96832 1514.2
9.78 120764.770 18 3 2159.36532 1514.2

Table 24 gives the relationship between the total cost and the waste amount at Ntinda, as the
waste amount is varied over the interval [300, 500]. It is evident from the table and Figure 15 that
the total cost increases with the waste amount. It is clear from the Figure that the two models have
very close total cost values.
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Figure 14: Total cost plotted against benefits from incineration

Table 24: Total costs and waste amounts at Ntinda.

waste(amt) ob j(F) T (tot) RT (tot) B W(tot)
300 115724.443 17 3 1544.50660 1414.2
320 115871.682 17 3 0000.00000 1434.2
340 115904.882 17 3 0000.00000 1454.2
360 115938.082 17 3 0000.00000 1474.2
380 121357.118 18 3 1544.50660 1494.2
400 121427.152 18 3 1496.98332 1514.2
420 121537.682 18 3 0000.00000 1534.2
440 121570.882 18 3 0000.00000 1554.2
460 126896.975 19 3 1544.50660 1574.2
480 127023.243 19 3 1544.50660 1594.2
500 127170.482 19 3 0000.00000 1614.2

52



300 320 340 360 380 400 420 440 460 480 500
1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28
x 10

5

waste(amt)

ob
j(F

)

first model curve
second model curve

Figure 15: Total cost plotted against waste amount at Ntinda

Table 25 gives the relationship between the total cost and the changes in the transportation cost
between a waste source at Kamwokya and a landfill at Najeera, over the interval [0.10, 21.00].
The table and Figure 16 show that the total cost increases with the transport cost. Again in this
case, the second model gives much better total cost values than the first model. The gap between
the total costs of the two models increases with the transportation cost. This is because the waste
amounts are steadily inflated in the integer model (see Tables 21 and 25) so that as the transporta-
tion cost increases the gap between the two objective functions inevitably increases. The realistic
transportation cost values lie between 0 and 1.5; the values of the interval between 10 and 21 were
only considered to check whether the model does what is expected of it as the cost grows.

Table 25: Total costs and transportation costs from Kiwatule waste source to Kiteezi landfill.

c(soti) ob j(F) T (tot) RT (tot) B W(tot)
0.10 121302.152 18 3 1496.98332 1514.2
0.30 121352.152 18 3 1496.98332 1514.2
0.60 121427.152 18 3 1496.98332 1514.2
0.80 121477.152 18 3 1496.98332 1514.2
1.00 121527.152 18 3 1496.98332 1514.2

10.00 123777.152 18 3 1496.98332 1514.2
15.00 124677.971 19 3 2376.16400 1514.2
17.00 124677.971 19 3 2376.16400 1514.2
19.00 124677.971 19 3 2376.16400 1514.2
21.00 124677.971 19 3 2376.16400 1514.2
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Figure 16: Total cost plotted against transportation costsfrom Kiwatule to Kiteezi

Tables 26 relates the total cost and the fractionρ of waste that remains at the incinerator at
Kiwatule over the interval [0.0, 0.6]. As the value ofρ increases in this interval, the value of the
total cost grows; this means that the total cost is lowered with high quality incinerators. This is
also the case for the first model. The two model solutions are compared in Figure 17; in general
they are seen to be close. The integer model appears to do better than the mixed integer model for
the first three values ofρ. This is false; the reason is that when there are benefits at some node
there is a tendency to move as much waste as possible to that node as long as there is space on the
truck. This is a weakness owing to the fact that all variablesare integer; this weakness is reduced
in the mixed integer model.

Table 26: Total costs and fractions of unrecovered waste at the incinerators

ρ ob j(F) T (tot) RT (tot) B W(tot)
0.000 107430.258 17 3 8911.63200 1514.2
0.025 113210.882 18 3 8688.84120 1514.2
0.050 113491.507 18 3 8466.05040 1514.2
0.100 116976.126 18 3 4582.60200 1514.2
0.150 118536.617 18 3 2885.34200 1514.2
0.200 120372.842 18 3 2647.72560 1514.2
0.250 120983.030 18 3 1985.79420 1514.2
0.300 121427.152 18 3 1496.98332 1514.2
0.400 121504.482 18 3 0000.00000 1514.2
0.500 121504.482 18 3 0000.00000 1514.2
0.600 121504.482 18 3 0000.00000 1514.2
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Figure 17: Total costs plotted against fractions of unrecovered waste

55



5 AMPL and CPLEX

The AMPL modelling system is a comprehensive, powerful, algebraic modelling language for
problems in linear, non-linear, and integer programming. With AMPL models with maximum
productivity can be created, and by using AMPL’s natural algebraic notation, very large, complex
models can be stated in a concise, understandable form. Since its models are easy to understand,
debug, and modify, AMPL also makes model maintenance easy (see Fourer et al [23]). AMPL-
compatible solvers include CPLEX, FortMP, MINOS, MINLP and others (see AMPL website:
http://www.ampl.com). CPLEX is designed to solve linear programs, integer programs, mixed
integer programs, and quadratic programs.

5.1 Linear Programming

CPLEX employs either a simplex or a barrier method to solve linear programming problems.
Four distinct methods of optimization are incorporated in the CPLEX package:

• A primal simplex algorithm that first finds a solution feasible in constraints (Phase I), then
iterates towards optimality (Phase II).

• A dual simplex algorithm that finds a solution that satisfies the optimality conditions (Phase
I), then iterates towards feasibility (Phase II).

• A network primal simplex algorithm that uses logic and data structures tailored to the class
of pure network linear programs.

• A primal-dual-barrier (or interior point) algorithm that simultaneously iterates toward feasi-
bility and optimality, optionally followed by a primal or dual crossover routine that produces
a basic optimal solution.

CPLEX normally chooses one of these algorithms, but its choice can be overridden by the
directives described in the ILOG AMPL CPLEX system [41], pp 30-32. These directives (or spe-
cific options) apply to the solution of linear programs, including network linear programs. There
are also directives for processing, controlling the simplex algorithm, controlling the barrier algo-
rithm, improving stability, starting and stopping, controlling output described in the ILOG AMPL
CPLEX system [41], pp 32-44.

CPLEX is highly robust and has been designed to avoid problemssuch as degenerate stalling
and numerical inaccuracy that occur in the simplex algorithm. However, some linear programs can
benefit from the adjustments to the stability directives if difficulties arise.

5.2 Integer Programming

For programs that contain integer variables, CPLEX uses a branch and bound approach. Be-
cause a single integer program generates many integer program sub problems, even small instances
can be very computation-intensive and require significant amounts of memory. In contrast to solv-
ing linear programming problems, where little user intervention is required to obtain optimal re-
sults, some of the directives for preprocessing (see the ILOG AMPL CPLEX system, pp 47-50)
may have to be set to get satisfactory results on integer programs. Either the way that the branch
and bound algorithm works can be changed, or the conditions for optimality can be relaxed.
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Other directives (see the ILOG AMPL CPLEX system [41], pp 50-60) include those for algo-
rithmic control, relaxing optimality, halting and resuming the search, and controlling output. All
processing directives that apply to linear programming arealso applicable to problems that specify
integer-valued variables. The directives on pp 47-50 control additional preprocessing steps that are
applicable to certain mixed integer program only.

In dealing with a difficult integer program, it may be better to settle for a “good” solution rather
than a provably one. Directives for relaxing optimality, described on pages 56-57, offer various
ways of weakening the optimality criterion for CPLEX’s branch and bound algorithm.

The most common problems faced in solving mixed integer programs with CPLEX are due to
running out of memory, failure to reach optimality, difficult mixed integer program sub problems.
The problems and the ways to overcome them are described in the ILOG AMPL CPLEX system
[41], pp 60-63.

6 Conclusions and future developments

An integer linear programming model and a mixed integer linear programming model have
been proposed, and confirmed to be valid and robust. Their performance has been studied using a
hypothetical case study, and other smaller models using AMPL/CPLEX. The mixed integer linear
model has been found to be more precise in measuring waste flowamounts among various nodes
in the model and total daily costs incurred in the managementof waste. However, the integer linear
model cannot be discarded because the choice between the twomodels depends on the interest of
the user. One user prefers to measure transportation costs in terms of costs per trip from a waste
source while another user wants to measure the transportation costs in terms of costs per unit mass
of waste moved from a waste source. The technology in place can as well influence the choice of
the model to apply. For example in the Ugandan situation, where it is not possible at the moment
to measure waste from waste sources, the integer linear model is more appropriate. In this case we
replace the coefficients of the variablesX andY in the objective function with the total costs per trip
from the waste collection point. At the same time, instead ofmeasuring the amount of waste using
the number of trucks used multiplied by their capacities, continuous variables can be introduced
to measure directly the amount of waste that goes to the plants and landfills. The integer linear
problem is then transformed into a mixed integer problem that gives better total cost estimates and
more precise waste amount measurements.

Through these models it is not only possible to obtain waste amounts transported to various
facilities, but also obtain the number of trucks as well as replacement trucks used in doing so. The
main pitfall of the integer linear model is due to the use of the number of trucks used to measure
the amount of waste transported; the values of the waste amounts, the total cost, and the values of
the benefits from the plants may be inflated, since the trucks are assumed to be fully loaded upon
leaving the waste collection points. Some of the trucks may in reality be partially full, and this
unexploited capacity leads to errors in computing the totalcosts, measuring waste amounts, and the
benefit values. The weakness common to both models is that theestimated values of the parameters
may not reflect the true behaviour of the parameters at the time of estimation. The findings indicate
that both models can be useful decision support tools in the planning and management of municipal
solid waste collection, transportation, incineration, recycling, composting, and disposal programs.
They can as well be used as design tools for setting up plants,truck depots, and landfills.

The models may be useful in other areas of application. For instance, suppose an investor is
opening an industry to produce various products. He also wants to open warehouses and find
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agents for his products in some potential areas. He intends to use trucks of various capacity to
transport the goods to the warehouses and to his agents. The problem may be that of opening and
running warehouses, and distributing the goods among the agents at minimum transportation costs.
The first model can be adapted by considering collection points as the industry and its branches,
the plants can be taken for the warehouses, and the landfills can be the agents.

In the order of importance, the work is to be extended or modified in the following ways;

1. Robustness issues are to be examined more globally by studying the performance of the
models, under the changes in all key parameters. For instance we have studied the changes
in the total costs with respect to the changes in the fractionof waste that remains at the
incinerators, and these fractions have been assumed to be dependent on the incinerators
only. We have not considered the dependence of these fractions on the type of waste.

2. Another consideration is that of extending the deterministic models to stochastic ones by
treating the data as a random variable because of random fluctuations in some of the key
parameters, like the amounts of waste at the collections points. In many real world problems,
the yield or total expenditure, etc. is almost never known with certainty. It is a random
variable that is subject to many random fluctuations that arenot under our control. For
example the daily total expenses depend on transportation costs per unit waste, the quality of
the plants, the amount of waste at the collection points, etc. To analyse the problem treating
the yield as a random variable requires the use of stochasticprogramming models (Murty
[51]). The construction of stochastic models can be done by making assumptions about the
nature of the probability distributions of the random data elements, or by estimating these
distributions from the past data. The challenge is that the closeness of the optimum solution
obtained from the model may depend on how close the selected probability distributions are
to the true ones (Murty [51]).

3. The element of time (dynamic element) is to be introduced into the general models; for
instance we can consider daily activities within time period t = 1, . . . , T0, where some
parameters can change with timet. Planning involves time, and if an application is concerned
with a situation that lasts for days or months or years, the same types of decisions may have
to be made everyday, for example (Murty [51]).

When planning a multi-period horizon (sayT0), and there is no change in the data at all from
one period to the next, then the optimum solution for the firstperiod found from the static
model for that period , will remain optimal for each period inthe planning horizon.

In most multi-period problems, data changes from period to the next are significant, and the
optimum decisions for the various periods may be different, and the sequence of decisions
will be interrelated. Designing a dynamic model with the aimof finding a sequence of
decisions (one for every period) that is optimal for the planning horizon as a whole, requires
reasonably accurate estimates of data for every period of the planning horizon. This is a
challenge, but if such data is available, a dynamic model tries to find the entire sequence of
interrelated decisions that is optimal for the model over the entire planning horizon (Murty
[51]).

58



References

[1] Alidi, A.S., 1992. An Integer Goal Programming Model forHazardous Waste Treatment and
Disposal. Appl. Math. Modelling Vol. 16, 645-651.

[2] Amouzegar, M.A., Moshirvaziri, K., 2001. Strategic management decision support system:
An analysis of the environmental policy issues. Environmental Modeling and Assessment 6,
297-306.

[3] Badran, M.F. and El-Haggar, S.M., 2006. Optimization of Municipal Solid Waste Manage-
ment in Port Said - Egypt. Waste Management 26, 534-545.

[4] Bloemhof-Ruwaard, J.M., Salomon, M., Wassenhove, L.N.V., 1996. The Capacitated Distri-
bution and Waste Disposal Problem. European Journal of Operational Research 88, 490-503.

[5] Caruso, C., Colorni, A., Paruccini, M., 1993. The regional urban solid waste management
system: A modelling approach. European Journal of Operational Research 70, 16-30.

[6] Chang, Y.H., Chang, N.B., 1998. Optimization Analysis for the Development of Short-
term Solid Waste Management Strategies using Presorting Process prior to Incinerators. Re-
sources, Conservation and Recycling 24, 7-32.

[7] Chang, N.B., Chen, Y.L., Wang, S.F., 1997. A Fuzzy Interval Multi objective Mixed Inte-
ger Programming Approach for the Optimal Planning of Solid Waste Management Systems.
Fuzzy Sets and Systems 89, 35-60.

[8] Chang, N.B., Davila, E., Dyson, B., Brown, B., 2005. Optimal Design for Sustainable Devel-
opment of Material Recovery Facility in a Fast-Growing UrbanSetting. Waste Management.
Article in Press.

[9] Chang, N.B and Davila, E., 2006. Minimax regret optimization analysis for a regional solid
waste management system. Waste Management. Article in Press.

[10] Chang, N.B., Schuler, R.E. and Shoemaker, C.A. 1993. Environmental and Economic Op-
timization of an Integrated Solid Waste Management System.Journal of Resource Manage-
ment and Technology 21(2), 87-100.

[11] Chang, N.B., Shoemaker, C.A., Schuler, R.E., 1996. Solid Waste Management System Anal-
ysis with Air Pollution and Leachate Impact Limitations. Waste Management & Research 14,
463-481.

[12] Chang, N.B., Yang, Y.C., Wang, S.F., 1996. Solid-Waste Management System Analysis with
Noise Control and Traffic Congestion Limitations. Journal of Environmental Engineering,
Vol. 122, No. 2, 122-131.

[13] Chang, N.B., Wang, S.F., 1994. A Locational Model for the Site Selection of Solid Waste
Management Facilities with Traffic Congestion Constraints. Civil. Eng. syst., Vol. 11, 287-
306.

[14] Chang, N.B., Wang, S.F., 1996. Solid Waste Management System Analysis by Multi objective
Mixed Integer Programming Model. Journal of EnvironmentalManagement 48, 17-43.

59



[15] Chang, N.B., Wang, S.F., 1996. Comparative Risk Analysis for Metropolitan Solid Waste
Management Systems. Journal of Environmental Management 20(1), 65-80.

[16] Chang, N.B., Wang, S.F., 1996. Managerial Fuzzy Optimal Planning for Solid-Waste Man-
agement Systems. Journal of Environmental Engineering, Vol. 122, No. 7, 649-658.

[17] Chang, N.B., Wang, S.F., 1997. A Fuzzy Goal Programming Approach for the Optimal Plan-
ning of Metropolitan Solid Waste Management Systems. European Journal of Operational
Research 99, 303-321.

[18] Costi, P., Minciardi, R., Robba, M., Rovatti, M., Sacile, R.,2004. An environmentally sus-
tainable decision model for urban solid waste management. Waste Management 24, 277-295.

[19] Daskalopoulos, E., Badr, O., Probert, S.D., 1998. An Integrated Approach to Solid Waste
Management. Resources, Conservation and Recycling 24, 33-50.

[20] Davila, E and Chang, N.B., 2005. Sustainable pattern analysis of a publicly owned material
recovery facility in a fast-growing urban setting under uncertainty. Journal of Environmental
Management 75, 337-251.

[21] Everett, J.W., Modak, A.R., 1996. Optimal Regional Scheduling of Solid Waste Systems. I:
Model Development. Journal of Environmental Engineering,Vol. 122, No. 9, 785-792.

[22] Fiorucci, P., Minciardi, R., Robba, M., Sacile, R., 2003. Solid waste management in urban
areas development and application of a decision support system. Resources, Conservation
and Recycling 37, 301-328.

[23] Fourer, R, Gay, D.M., Kernigham, B.W., 2003. AMPL: A Modeling Language for Mathe-
matical Programming. Second Edition, Duxbury, Toronto, Canada.

[24] Ghose, M.K., Dikshit, A.K., Sharma, S.K., 2006. A GIS based transportation model for solid
waste disposal - A case study on Asansol municipality. WasteManagement 26, 1287-1293.

[25] Gottinger, H.W., 1986. A Computational Model for Solid Waste Management with Applica-
tions. Appl. Math. Modelling, Vol. 10, 330-338.

[26] Gottinger, H.W., 1988. A Computational Model for Solid Waste Management with Applica-
tions. European Journal of Operational Research 35, 350-364.

[27] Hasit, Y., Warner, D.B., 1981. Regional Solid Waste Planning with WRAP. Journal of Envi-
ronmental Engineering Division, ASCE, Vol. 107, No. EE3, 511-525.

[28] Huang, Y.F., Baetz, B.W., Huang, G.H., Liu, L., 2002. Violation Analysis for Solid Waste
Management Systems: An interval fuzzy programming approach. Journal of Environmental
Management 65, 431-446.

[29] Huang, G., Baetz, B.W., Patry, G.G., 1992. A Grey Linear Programming Approach for Mu-
nicipal Solid Waste Management Planning under Uncertainty. Civil. Eng. Syst., Vol. 9, 319-
335.

[30] Huang, G.H., Baetz, B.W., Patry, G.G., 1993. A Grey Fuzzy Linear Programming Approach
for Municipal Solid Waste Management Planning under Uncertainty. Civil. Eng. Syst., Vol.
10, 123-146.

60



[31] Huang, G.H., Baetz, B.W., Patry, G.G., 1994. Waste Allocation Planning through a Grey
Fuzzy Quadratic Programming Approach. Civil. Eng. Syst., Vol. 11, 209-243.

[32] Huang, G.H., Baetz, B.W., Patry, G.G., 1994. Grey DynamicProgramming for Waste-
Management Planning under Uncertainty. Journal of Urban Planning and Development,
ASCE, 132-157.

[33] Huang, G.H., Baetz, B.W., Patry, G.G., 1994. Grey Chance-Constrained Programming: Ap-
plication to Regional Solid Waste Management Planning. Stochastic and Statistical Methods
in Hydrology and Environmental Engineering, Vol. 4, 267-280.

[34] Huang, G.H., Baetz, B.W., Patry, G.G., 1994. Grey Fuzzy Dynamic Programming: Appli-
cation to Municipal Solid Waste Management Planning Problems. Civil. Eng. Syst., Vol. 11,
43-73.

[35] Huang, G.H., Baetz, B.W., Patry, G.G., 1995. Grey integerprogramming: An application to
waste management planning under uncertainty. European Journal of Operational Research
83, 594-620.

[36] Huang, G.H., Baetz, B.W., Patry, G.G., 1995. Grey Quadratic Programming and its Ap-
plications to Municipal Solid Waste Management Planning under Uncertainty. Engineering
Optimization, Vol. 23, 201-223.

[37] Huang, G.H., Baetz, B.W., Patry, G.G., Terluk, V., 1997. Capacity Planning for an Integrated
Waste Management System under Uncertainty: A North American Case Study. Waste Man-
agement & Research 15, 523-546.

[38] Huang, G.K., Sae-Lim, N., Liu, L., Chen, Z., 2001. An interval-parametric fuzzy-stochastic
programming approach for municipal solid waste managementand planning. Environmental
Modeling and Assessment 6, 271-283.

[39] Huang, G.H., Sae-Lim, N., Liu, L., Chen, Z., 2001. Long-term planning of waste manage-
ment system in the City of Regina - An integrated inexact optimization approach. Environ-
mental Modeling and Assessment 6, 285-296.

[40] Hsin-Neng, H., Kuo-hua, H., 1993. Optimization of Solid Waste Disposal System by Linear
Programming Technique. Journal of Resource Management and Technology, VOL. 21, NO.
4, 194-201.

[41] ILOG AMPL CPLEX System, Version 8.0, 2002. User’s Guide.
www.netlib.no/ampl/solvers/cplex/ampl80.pdf

[42] Kühner, J., Harrington, J.J., 1975. Mathematical Models forDeveloping Regional Solid
Waste Management Policies. Engineering Optimization Vol.1, 237-256.

[43] Kulcar, T., 1996. Optimizing Solid Waste Collection in Brussels. European Journal of Oper-
ational Research 90, 71-77.

[44] Li, Y.P. and Huang, G.H., 2005. An inexact two-stage mixed integer linear programming
method for solid waste management in the City of Regina. Journal of Environmental Man-
agement. Article in Press.

61



[45] Li, Y.P., Huang, G.H., Nie, S.L., Qin, X.S., 2006. ITCLP:An inexact two-stage chance-
constrained program for planning waste management systems. Resources, Conservation and
Recycling. Article in Press.

[46] Maqsood, I., Huang, G.H., 2003. A Two-Stage Interval-Stochastic Programming Model for
Waste Management under Uncertainty. Journal of the Air & Waste Management Association
53, 540-552.

[47] Marks, D.H., Liebman, J.C., 1971. Location Models: Solid Waste Collection Example. Jour-
nal of the Urban Planning and Development Division, ASCE, Vol.97, No. UP1, 15-30.

[48] Minciardi, R., Paolucci, M., Robba, M., Sacile, R., 2002. Amulti objective Approach for
Solid Waste Management. iEMSs 2002 Congress, Lugano, Switzerland, June 24-27, 3, pp.
205-210.

[49] Morrissey, A.J. and Browne, J., 2004. Waste management models and their application to
sustainable waste management. Waste Management 24, 297-308.

[50] Murty G. Katta, 1983. Linear Programming. John Wiley & Sons, Inc.

[51] Murty G. Katta, 1995. Operations Research: Deterministic Optimization Models. Prentice-
Hall, Inc.

[52] Nie, X.H., Huang, G.H., Li, Y.P., Liu, L., 2006 IFRP: A hybrid interval-parameter fuzzy
robust programming approach for waste management planningunder uncertainty. Journal of
Environmental Management. Article in Press.

[53] ReVelle, C., 2000. Research challenges in environmental management. European Journal of
Operational Research 121, 218-231.

[54] Solano, E., Ranjithan, S.R., Barlaz, M.A., Brill, E.D., 2002. Life-Cycle-based Solid Waste
Management I: Model Development. Journal of EnvironmentalEngineering, Vol.128, No.10,
981-992.

[55] Solano, E., Dumas, R.D., Harrison, K.W., Ranjithan, S.R.,Barlaz, M.A., Brill, E.D., 2002.
Life-Cycle-based solid waste management. II: Illustrativeapplications. Journal of Environ-
mental Engineering, Vol. 128, No.10, 993-1005.

[56] Wolsey, L.A., 1998. Integer Programming. John Wiley &,Inc., New York.

[57] Wu, X.Y., Huang, G.H., Liu, L., Li, J.B., 2006. An interval non-linear Program for the Plan-
ning of waste management systems with economies-of-scale effects - A case study for the
region of Hamilton, Ontario, Canada. European Journal of Operations Research 171, 349-
372.

62


