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Matrix Ordered Operator Algebras.

Ekaterina Juschenko, Stanislav Popovych

Abstract

We study the question when a sequence of cones Cn ∈ Mn(A) for
a given ∗-algebra A can be realized as cones of positive operators in
a faithful ∗-representation of A in a Hilbert space. A characterization
of operator algebras which are completely boundedly isomorphic to
C∗-algebras is presented.

KEYWORDS: ∗-algebra, operator algebra, C∗-algebra, completely
bounded homomorphism, Kadison problem.

1 Introduction

Effros and Choi [2] gave an abstract characterization of the self-adjoint sub-
spaces S in C∗-algebras with hierarchy of cones of positive elements in Mn(S).
In s.1 of the present paper we are concerned with the same question for
∗-subalgebras of C∗-algebras. More precisely, let A be an associative ∗-
algebra with unit. We present a characterization of the collections of cones
Cn ⊆ Mn(A) such that there exist faithful ∗-representation π of A on Hilbert
space H such that Cn coincides with the cone of positive operators contained
in π(n)(Mn(A)). Here π(n) is a n-fold amplification of π. Note that we do not
assume that A has any faithful ∗-representation it follows from the require-
ments imposed on the cones. In terms close to Effros and Choi we give an
abstract characterizations of matrix ordered (not necessary closed) operator
∗-algebras up to complete order ∗-isomorphism.

Based on this characterization we study the question when an operator
algebra is similar to a C∗-algebra.

02000 Mathematics Subject Classification: 46L05, 46L07 (Primary) 47L55, 47L07,
47L30 (Secondary)
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Let B be a unital (closed) operator algebra in B(H). In [7] C. Le Merdy
presented necessary and sufficient conditions for B to be self-adjoint. These
conditions involve all completely isometric representations of B on Hilbert
space. Our characterization is different in following respect. If S is a bounded
invertible operator in B(H) and A is a C∗-algebra then the operator algebra
S−1AS is not necessarily self-adjoint but only isomorphic to a C∗-algebra via
completely bounded isomorphism with completely bounded inverse.

By Haagerup’s theorem every completely bounded isomorphism π from a
C∗-algebra A to a operator algebra B has the form π(a) = S−1ρ(a)S, a ∈ A,
for some ∗-homomorphism ρ : A → B(H) and invertible S ∈ B(H). Thus
the question whether an operator algebra B is c.b. isomorphic to a C∗-algebra
via isomorphism which has c.b. inverse is equivalent to the one if there is
bounded invertible operators S s.t. SBS−1 is a C∗-algebra. For instance in
case B is an image under bounded homomorphism of a C∗-algebra it is a
famous open problem raised by R. Kadison whether the answer to the above
question is affirmative.

We will present a criterion for an operator algebra B to be completely
boundedly isomorphic to a C∗-algebra in terms of the existence of a collection
of cones Cn ∈ Mn(B) satisfying certain axioms (see def. 3). The axioms are
derived from the properties of cones of positive elements of a C∗-algebra
preserved under completely bounded isomorphisms.

The main results are contained in s.2. We define a ∗-admissible sequence
of cones in an operator algebra and present a criterion Theorem 4 for an
operator algebra to be c.b. isomorphic to a C∗-algebra.

The last section we consider the operator algebras and a collection of
cones associated with Kadison similarity problem.

2 Operator realizations of matrix-ordered ∗-
algebras.

The aim of this section is to give necessary and sufficient conditions on a se-
quences of cones Cn ⊆ Mn(A)sa for unital ∗-algebra A such that Cn coincides
with cone Mn(A) ∩Mn(B(H))+ for some realization of A as a ∗-subalgebra
of B(H), where Mn(B(H))+ denotes the set of positive operators acting on
Hn = H ⊕ . . .⊕H.

In [10] it was proved that a ∗-algebra A with unit e is a ∗-subalgebra of

2



B(H) if and only if there is an algebraically admissible cone on A such that
e is an Archimedean order unit. Applying this result to some inductive limit
of M2n(A) we obtain the desired characterization in Theorem 2.

First we give necessary definitions and fix notations. Let Asa denote the
set of self-adjoint elements in A. A subset C ⊂ Asa containing unit e of A
is algebraically admissible cone, see [11], provided that

(i) C is a cone in Asa, i.e. λx + βy ∈ C for all x, y ∈ C and λ ≥ 0, β ≥ 0,
λ, β ∈ R;

(ii) C ∩ (−C) = {0};
(iii) xCx∗ ⊆ C for every x ∈ A;

We call e ∈ Asa an order unit if for every x ∈ Asa there exists r > 0 such
that re + x ∈ C. An order unit e is Archimedean if re + x ∈ C for all r > 0
implies that x ∈ C

In what follows we will use the following modification of Theorem 1 of
[10].

Theorem 1. Let A be a ∗-algebra with unit e and C ⊆ Asa be a cone
containing e. If xCx∗ ⊆ C for every x ∈ A and e is an Archimedean
order unit then there is a unital ∗-representation π : A → B(H) such that
π(C) = π(Asa) ∩B(H)+. Moreover

1. ‖π(x)‖ = inf{r > 0 : r2 ± x∗x ∈ C}.
2. ker π = {x : x∗x ∈ C ∩ (−C)}.
3. If C∩(−C) = {0} then ker π = {0} and ‖π(a)‖ = inf{r > 0 : r±a ∈ C}

for all a = a∗ ∈ A. Moreover, π(C) = π(A) ∩B(H)+

Proof. Following the same lines as in [10] one obtain that the function ‖ · ‖ :
Asa → R+ defined as

‖a‖ = inf{r > 0 : re± a ∈ C}

is a seminorm on R-space Asa and |x| =
√
‖x∗x‖ for x ∈ A defines a pre-

C∗-norm on A. If N denote a null-space of | · | then the completion B =
A/N with respect to this norm is a C∗-algebra and canonical epimorphism
π : A → A/N extends to a unital ∗-homomorphism π : A → B. We can
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assume without loss of generality that B is a concrete C∗-algebra in some
B(H). Thus π : A → B(H) can be regarded as a unital ∗-representation.
Clearly,

‖π(x)‖ = |x| for all x ∈ A.

From this follows 1.
To show 2 take x ∈ ker π then ‖π(x)‖ = 0 and re ± x∗x ∈ C for all

r > 0. Since e is an Archimedean unit we have x∗x ∈ C ∩ (−C). Conversely
x∗x ∈ C ∩ (−C) then re ± x∗x ∈ C for all r > 0 hence ‖π(x)‖ = 0 and 2
holds.

We need to prove that π(C) = π(Asa) ∩ B(H)+. Let x ∈ Asa and
π(x) ≥ 0. Then there exists constant λ > 0 such that ‖λIH − π(x)‖ ≤ λ,
hence |λe−x| ≤ λ. Since ‖a‖ ≤ |a| for all self-adjoint a ∈ A, see Lemma 3.3 of
[10], we have ‖λe−x‖ ≤ λ. Thus given ε > 0 we have (λ+ε)e±(λe−x) ∈ C.
Hence εe + x ∈ C. Since e is Archimedean we have x ∈ C.

Conversely, let x ∈ C. To show that π(x) ≥ 0 it is sufficient to find λ > 0
such that ‖λIH − π(x)‖ ≤ λ. Since ‖λIH − π(x)‖ = |λe − x| we will prove
that |λe − x| ≤ λ for some λ > 0. From the definition of norm | · | we have
the following equivalences:

|λe− x| ≤ λ ⇔ (λ + ε)2e− (λe− x)2 ∈ C for all ε > 0 (1)

⇔ ε1e + x(2λe− x) ≥ 0, for all ε1 > 0. (2)

By condition (iii) of algebraically admissible cone we have that xyx ∈ C
and yxy ∈ C for every x, y ∈ C. If xy = yx then xy(x + y) ∈ C. Since e is
order unit we can choose r > 0 such that re−x ∈ C. Put y = re−x to obtain
rx(r− x) ∈ C. Hence (2) is satisfied with λ = r

2
. Thus ‖λe− π(x)‖ ≤ λ and

π(x) ≥ 0, which proves π(C) = π(Asa) ∩B(H)+.
In particular, for a = a∗ we have

‖π(a)‖ = inf{r > 0 : rIH ± π(a) ∈ π(C)}. (3)

We now in a position to prove 3. Suppose that C∩ (−C) = 0. Then ker π
is a ∗-ideal and ker π 6= 0 implies that there exists a self-adjoint 0 6= a ∈ ker π,
i.e. |a| = 0. Inequality ‖a‖ ≤ |a| implies re± a ∈ C for all r > 0. Since e is
Archimedean, ±a ∈ C, i.e. a ∈ C ∩ (−C) and, consequently, a = 0.

Since ker π = 0 the inclusion rIH±π(a) ∈ π(C) is equivalent to re±a ∈ C,
and by (3), ‖π(a)‖ = inf{r > 0 : re± a ∈ C}. Moreover if π(a) = π(a)∗ then
a = a∗. Thus we have π(C) = π(A) ∩B(H)+.
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We say that a ∗-algebra A with unit e is a matrix ordered if the following
conditions hold:

(a) for each n ≥ 1 we are given a cone Cn in Mn(A)sa and e ∈ C1,

(b) Cn ∩ (−Cn) = {0} for all n,

(c) for all n and m and all A ∈ Mn×m(A), we have that A∗CnA ⊆ Cm,

We call e ∈ Asa a matrix order unit provided that for every n ∈ N
and every x ∈ Mn(A)sa there exists r > 0 such that ren + x ∈ Cn, where
en = e ⊗ In. A matrix order unit is called Archimedean matrix order unit
provided that for all n ∈ N inclusion ren + x ∈ Cn for all r > 0 implies that
x ∈ Cn.

Let π : A → B(H) be a ∗-representation. Define π(n) : Mn(A) →
Mn(B(H)) by π(n)((aij)) = (π(aij)).

Theorem 2. If A is a matrix-ordered ∗-algebra with a unit e which is
Archimedean matrix order unit then there exists a Hilbert space H and a faith-
ful unital ∗-representation τ : A → B(H), such that τ (n)(Cn) = Mn(τ(A))+

for all n. Conversely, every unital ∗-subalgebra D of B(H) is matrix-ordered
by cones Mn(D)+ and unit of this algebra is an Archimedean order unit.

Proof. Consider an inductive system of ∗-algebras and a unital injective ∗-
homomorphisms:

φn : M2n(A) → M2n+1(A), φn(a) =

(
a 0
0 a

)
for all a ∈ A, n ≥ 0.

Let B = lim−→M2n(A) be an inductive limit of this system. By (c) in the

definition of the matrix ordered algebra we have φn(C2n) ⊆ C2n+1 . We will
identify M2n(A) with a subalgebra of B via canonical inclusions. Let C =⋃
n≥1

C2n ⊆ Bsa and e∞ be the unit of B.

Let us prove that C is an algebraically admissible cone. Clearly, C satisfies
conditions (i) and (ii) of definition of algebraically admissible cone. To prove
(iii) suppose that x ∈ B and a ∈ C, then for sufficiently large n we have a ∈
C2n and x ∈ M2n(A). Therefore, by (c), x∗ax ∈ C. Since e is an Archimedean
order unit of A we obviously have that e∞ is also an Archimedean order unit.
Thus ∗-algebra B satisfies assumptions of Theorem 1 and there is a faithful
∗-representation π : B → B(H) such that π(C) = π(B) ∩B(H)+.
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Let ξn : M2n(A) → B be canonical injections, n ≥ 0. Then τ = π ◦ ξ0 :
A → B(H) is a injective ∗-homomorphism.

We claim that τ (2n) is unitary equivalent to π◦ξn. By replacing π with πα,
where α is an infinite cardinal, we can assume that πα is unitary equivalent
to π. Then π ◦ ξn : M2n(A) → B(H) is a ∗-homomorphism. Thus there exist
unique Hilbert space Kn, ∗-homomorphism ρn : A → B(Kn) and unitary
Un : Kn ⊗ C2n → H such that

π ◦ ξn = Un(ρn ⊗ idM2n )U∗
n.

For a ∈ A we have

π ◦ ξ0(a) = π ◦ ξn(a⊗ E2n)

= Un(ρn(a)⊗ E2n)U∗
n,

where E2n is the identity matrix in M2n(C). Thus τ(a) = U0ρ0(a)U∗
0 =

Un(ρn(a)⊗ E2n)U∗
n. Let ∼ stands for the unitary equivalence of representa-

tions. Since π ◦ ξn ∼ ρn⊗ idM2n and πα ∼ π we have that ρα
n⊗ id ∼ πα ◦ ξn ∼

ρn ⊗ idM2n . Hence ρα
n ∼ ρn. Thus ρn ⊗ E2n ∼ ρ2nα ∼ ρn. Consequently

ρ0 ∼ ρn and π ◦ ξn ∼ ρ0 ⊗ idM2n ∼ τ ⊗ idM2n . Therefore τ (2n) = τ ⊗ idM2n is
unitary equivalent to π ◦ ξn.

What is left to show is that τ (n)(Cn) = Mn(τ(A))+. Note that π ◦
ξn(M2n(A))∩B(H)+ = π(C2n). Indeed, the inclusion π ◦ ξ(C2n) ⊆ M2n(A)∩
B(H)+ is obvious. To show the converse take x ∈ M2n(A) such that π(x) ≥ 0.
Then x ∈ C∩M2n(A). Using (c) one can easily show that C∩M2n(A) = C2n .
Hence π ◦ ξn(M2n(A)) ∩ B(H)+ = π(C2n). Since τ (2n) is unitary equivalent
to π ◦ ξn we have that τ (2n)(C2n) = M2n(τ(A)) ∩B(H2n

)+.
Let now show that τ (n)(Cn) = Mn(τ(A))+. For X ∈ Mn(A) denote

X̃ =

(
X 0n×(2n−n)

0(2n−n)×n 0(2n−n)×(2n−n)

)
∈ M2n(A).

Then, clearly, τ (n)(X) ≥ 0 if and only if τ (2n)(X̃) ≥ 0. Thus τ (n)(X) ≥ 0 is

equivalent to X̃ ∈ C2n which in turn is equivalent to X ∈ Cn by (c).

3 Operator Algebras c.b. isomorphic to C∗-
algebras.

The algebra Mn(B(H)) of n × n matrices with entries in B(H) has a norm
‖ · ‖n via the identification of Mn(B(H)) with B(Hn), where Hn is the direct
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sum of n copies of a Hilbert space H. If A is a subalgebra of B(H) then
Mn(A) inherits a norm ‖ · ‖n via natural inclusion into Mn(B(H)). The
sequence of norms {‖ · ‖n}n≥1 is called matrix norms on the operator algebra
A. In the sequel all operator algebras will be assumed to be norm closed.

Operator algebras A and B are called completely boundedly isomorphic
if there is a completely bounded isomorphism τ : A → B with completely
bounded inverse. The aim of this section is to give necessary and sufficient
conditions for an operator algebra to be completely boundedely isomorphic
to a C∗-algebra. To do this we introduce a concept of ∗-admissible cones
which reflect the properties of the cones of positive elements of a C∗-algebra
preserved under completely bounded isomorphism.

Definition 3. Let B be an operator algebra with unit e. A sequence Cn ⊆
Mn(B) of closed (in the norm ‖ · ‖n) cones will be called ∗-admissible if it
satisfies the following conditions:

1. e ∈ C1;

2. (i) Mn(B) = (Cn − Cn) + i(Cn − Cn), for all n ∈ N,

(ii) Cn ∩ (−Cn) = {0}, for all n ∈ N,

(iii) (Cn − Cn) ∩ i(Cn − Cn) = {0}, for all n ∈ N;

3. (i) for all c1, c2 ∈ Cn and c ∈ Cn, we have that (c1−c2)c(c1−c2) ∈ Cn,

(ii) for all n, m and B ∈ Mn×m we have that B∗CnB ⊆ Cm;

4. for every net cj ∈ Cnj
−Cnj

the condition sup
j
‖cj‖nj

< ∞ implies that

there exists r > 0 such that renj
+ cj ∈ Cnj

for all j,

5. there exists a constant K > 0 such that for all n ∈ N and a, b ∈ Cn−Cn

we have ‖a‖n ≤ K · ‖a + ib‖n.

Theorem 4. If an operator algebra B has a ∗-admissible sequence of cones
then there is a completely bounded homomorphism τ from B onto a C∗-algebra
A. In addition if one of the following condition holds

(1) for every two nets cα, dα ∈ Cnα such that lim
α
‖cα + dα‖ = 0 we have

lim
α
‖cα‖ = 0

(2) ‖(x− iy)(x + iy)‖ ≥ α‖x− iy‖‖x + iy‖ for all x, y ∈ Cn − Cn
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then the inverse τ−1 : A → B is also completely bounded.
Conversely, if such homomorphism τ exists then B possesses a ∗-admissible

sequence of cones and conditions (1) and (2) are satisfied.

The proof will be divided into 3 lemmas.

Let {Cn}n≥1 be a ∗-admissible sequence of cones of B. Let B2n = M2n(B),

φn : B2n → B2n+1 be unital homomorphisms given by φn(x) =

(
x 0
0 x

)
,

x ∈ B2n . Denote by B∞ = lim−→B2n the inductive limit of the system (B2n , φn).
As all inclusions φn are unital B∞ has a unit, denoted by e∞. Since B∞ can
be considered as a subalgebra of a C∗-algebra of the corresponding inductive
limit of M2n(B(H)) we can define the closure of B∞, B∞, in this C∗-algebra.

Now we will define an involution on B∞. Let ξn : M2n(B) → B∞ be
canonical morphisms. By (3ii), φn(C2n) ⊆ C2n+1 . Hence C =

⋃
n

ξn(C2n) is a

well defined cone in B∞. Denote by C its completion. By (2i) and (2iii) for
every x ∈ B2n we have x = x1 + ix2 for unique x1, x2 ∈ C2n − C2n . By (3ii)

we have

(
xi 0
0 xi

)
∈ C2n+1 − C2n+1 , i = 1, 2. Thus for every x ∈ B∞ we

have unique decomposition x = x1 + ix2, x1 ∈ C − C, x2 ∈ C − C. Hence
the mapping x 7→ x] = x1 − ix2 is a well defined involution on B∞.

Lemma 5. Involution on B∞ is compatible with the one on B, i.e. for all
A = (aij)i,j ∈ M2n(B)

A] = (a]
ji)i,j.

Proof. Assignment A◦ = (a]
ji)i,j, clearly, defines an involution on M2n(B).

We need to prove that A] = A◦.
Let A = (aij)i,j ∈ M2n(B) be self-adjoint A◦ = A. Then A =

∑
i

aii ⊗
Eii +

∑
i<j

(aij ⊗ Eij + a]
ij ⊗ Eji) and a]

ii = aii, for all i. By (3ii) we have
∑
i

aii ⊗ Eii ∈ C2n − C2n . Since aij = a′ij + ia′′ij for some a′ij, a′′ij ∈ C2n − C2n
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we have

aij ⊗ Eij + a]
ij ⊗ Eji = (a′ij + ia′′ij)⊗ Eij + (a′ij − ia′′ij)⊗ Eji

= (a′ij ⊗ Eij + a′ij ⊗ Eji) + (ia′′ij ⊗ Eij − ia′′ij ⊗ Eji)

= (Eii + Eji)(a
′
ij ⊗ Eii + a′ij ⊗ Ejj)(Eii + Eij)

− (a′ij ⊗ Eii + a′ij ⊗ Ejj)

+ (Eii − iEji)(a
′′
ij ⊗ Eii + a′′ij ⊗ Ejj)(Eii + iEij)

− (a′′ij ⊗ Eii + a′′ij ⊗ Ejj) ∈ C2n − C2n .

Thus A ∈ C2n − C2n and A] = A. Since for every x ∈ M2n(B) there exist
unique x1 = x◦1 and x2 = x◦2 in M2n(B), such that x = x1 + ix2, and unique
x′1 = x′]1 and x′2 = x′]2 , such that x = x′1 + ix′2, we have that x1 = x]

1 = x′1,
x2 = x]

2 = x′2 and involutions ] and ◦ coincide.

Lemma 6. Involution x → x] is continuous on B∞ and extends to the in-
volution on B∞. With respect to this involution C ⊆ (B∞)sa and x]Cx ⊆ C
for every x ∈ B∞.

Proof. Consider a convergent net {xi} ⊆ B∞ with the limit x ∈ B∞. Decom-
pose xi = x′i + ix′′i . By (5) the nets {x′i} and {x′′i } are also convergent. Thus
x = a + ib, where a = lim x′i ∈ C, b = lim x′′i ∈ C. Therefore the involution
defined on B∞ can be extended by continuity to B∞.

Under this involution C ⊆ (B∞)sa = {x ∈ B∞ : x = x]}.
Let us show that for every x ∈ B∞ and c ∈ C we have that x]cx ∈ C. Take

firstly c ∈ C2n and x ∈ B2n . Then x = x1 + ix2 for some x1, x2 ∈ C2n − C2n

and

(x1 + ix2)
]c(x1 + ix2) = (x1 − ix2)c(x1 + ix2)

=
1

2

(
1 1

) ( −x1 −ix2

ix2 x1

)(
c 0
0 c

)( −x1 −ix2

ix2 x1

)(
1
1

)

By (3i), Lemma 5 and (3ii) x]cx ∈ C2n .
We let now c ∈ C and x ∈ B∞. Suppose that ci → c and xi → x, where

ci ∈ C, xi ∈ B∞. We can assume that ci, xi ∈ B2ni . Then x]
icixi ∈ C2ni for

all i and since it is convergent we have x]cx ∈ C.

Lemma 7. The unit of B∞ is an Archimedean order unit and (B∞)sa =
C − C.
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Proof. Firstly let show that e∞ is an order unit. Clearly, (B∞)sa = C − C.
For every a ∈ C − C there is a net ai ∈ C2ni − C2ni convergent to a. Since
sup

i
‖ai‖ < ∞ there exists r1 > 0 such that r1eni

− ai ∈ C2ni , i.e. r1e∞− ai ∈
C. Passing to the limit we get r1e∞ − a ∈ C. Replacing a by −a we can
find r2 > 0 such that r2e∞ + a ∈ C. If r = max(r1, r2) then re∞ ± a ∈ C.
This proves that e∞ is an order unit and that for all a ∈ C − C we have
a = re∞ − c for some c ∈ C. Thus C − C ∈ C − C. The converse inclusion,
clearly, holds. Thus C − C = C − C.

Let show now that e∞ is Archimedean unit. Take x ∈ (B∞)sa such that
for every r > 0 we have r+x ∈ C. Consider a net {xi}i ⊆ (B∞)sa converging
to x. Then lim

i
(r + xi) = lim

i
ci,r for some ci,r ∈ C and lim

i
(ci,r − xi) = r.

Taking r := 1
n

we have for every s there exists Ns such that for all i ≥ Ns we

have that ‖ci, 1
s
− xi‖ < 1

s
, therefore lim

s
cNs, 1

s
= x and x ∈ C.

Lemma 8. B∞ ∩ C = C.

Proof. Denote by D = lim−→M2n(B(H)) the C∗-algebra inductive limit cor-
responding to inductive system φn and denote φn,m = φm−1 ◦ . . . ◦ φn :
M2n(B(H)) → M2m(B(H)). For n < m we identify M2m−n(M2n(B(H)))
with M2m(B(H)) by omitting superfluous parentheses in a block matrix
B = [Bij]ij with Bij ∈ M2n(B(H)).

Denote by Pn,m the operator diag(I, 0, . . . , 0) ∈ M2m−n(M2n(B(H))) and

by Vn,m =
∑2m−n

k=1 Ek,k−1. Here I is the identity matrix in M2n(B(H)) and
Ek,k−1 is 2n×2n block matrix with identity operator at (k, k−1)-entry and all
other entries being zero. Define an operator ψn,m([Bij]) = diag(B11, . . . , B11).
It is easy to see that

ψn,m([Bij]) =
2m−n−1∑

k=0

(V k
n,mPn,m)B(V k

n,mPn,m)∗.

Hence by (3ii)

ψn,m(C2m) ⊆ φ(C2n) ⊆ C2m . (4)

Clearly, ψn,m is linear contraction and

ψn,m+k ◦ φm,m+k = φm,m+k ◦ ψn,m

10



Hence there is a well defined contraction ψn = lim
m

ψn,m : D → D such that

ψn|M2n (B(H)) = idM2n(B(H)),

where M2n(B(H)) is considered as a subalgebra in D. Clearly, ψn(B∞) ⊆ B∞
and ψn|B2n = id. Consider C and C2n as subalgebras in B∞, by (4) we have
ψn : C → C2n .

To prove that B∞ ∩C = C take c ∈ B∞ ∩C. Then there is a net cj in C
such that ‖cj − c‖ → 0. Since c ∈ B∞, c ∈ B2n for some n and, consequently,
ψn(c) = c. Thus

‖ψn(cj)− c‖ = ‖ψn(cj − c)‖ ≤ ‖cj − c‖.
Hence ψn(cj) → c. But ψn(cj) ∈ C2n and the letter is closed. Thus c ∈ C.
The converse inclusion is obvious.

Remark 9. Note that for every x ∈ D
lim

n
ψn(x) = x. (5)

Indeed, for every ε > 0 there is x ∈ B2n such that ‖x− xn‖ < ε. Since ψn is
a contraction and ψn(xn) = xn we have

‖ψn(x)− x‖ ≤ ‖ψn(x)− xn‖+ ‖xn − x‖
= ‖ψn(x− xn)‖+ ‖xn − x‖ ≤ 2ε.

Since xn ∈ B2n also belong to B2m for all m ≥ n we have that ‖ψm(x)−x‖ ≤
2ε. Thus lim

n
ψn(x) = x.

Proof of the Theorem 4. By Lemma 6 and 7 the cone C and the unit
e∞ satisfies all assumptions of Theorem 1. Thus there is a homomorphism
τ : B∞ → B(H̃) such that τ(a]) = τ(a)∗ for all a ∈ B∞. Since the image

of τ is a ∗-subalgebra of B(H̃) we have that τ is bounded by [3, (23.11),
p. 81]. The arguments at the end of the proof of Theorem 2 show that the
restriction of τ to B2n is unitary equivalent to the 2n-amplification of τ |B.
Thus τ |B is completely bounded.

Let prove that ker(τ) = {0}. By Theorem 2.3 it is sufficient to show that
C ∩ (−C) = 0. If c, d ∈ C such that c + d = 0 then c = d = 0. Indeed, for
every n ≥ 1, ψn(c) + ψn(d) = 0. By Lemma 8 we have

ψn(C) ⊆ C ∩ B2n = C2n .
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Therefore ψn(c), ψn(d) ∈ C2n . Hence ψn(c) = −ψn(d) ∈ C2n ∩ (−C2n) and,
consequently, ψn(c) = ψn(d) = 0. Since ‖ψn(c)−c‖ → 0 and ‖ψn(d)−d‖ → 0
by Remark 9 we have that c = d = 0. If x ∈ C ∩ (−C) then x + (−x) = 0,
x,−x ∈ C and x = 0. Thus τ is injective.

We will show that image of τ is closed if one of the conditions (1) of the
statement holds.

Assume firstly that operator algebra B satisfies first condition. Since
τ(B∞) = τ(C)−τ(C)+ i(τ(C)−τ(C)) and τ(C) is exactly the set of positive
operators in the image of τ it is suffices to prove that τ(C) is closed. By
Theorem 1.3 for self-adjoint (under involution ]) elements x ∈ B∞ we have

‖τ(x)‖B( eH) = inf{r > 0 : re∞ ± x ∈ C}.

If τ(cα) ∈ τ(C) is a Cauchy net in B(H̃) then for every ε > 0, ε±(cα−cβ) ∈ C
for all α ≥ γ and β ≥ γ and some γ. Since C ∩ B∞ = C, ε± (cα − cβ) ∈ C.
Let us denote cαβ = ε + (cα − cβ) and dαβ = ε − (cα − cβ). The set of
pairs (α, β) is directed if (α, β) ≥ (α1, β1) iff α ≥ α1 and β ≥ β1. Since
cαβ + dαβ = 2ε this net converges to zero in the topology of norm of B∞.
Thus by (∗), ‖cαβ‖B∞ → 0. This implies that cα is a Cauchy net in B∞. Let

c = lim cα. Clearly, c ∈ C. Since τ is continuous ‖τ(cα) − τ(c)‖B∞ → 0.

Hence the closure τ(C) is contained in τ(C). Since τ is continuous we have

τ(C) ⊆ τ(C). Hence τ(C) ⊆ τ(C) and τ(C) is closed.
Let now B satisfies condition (2) of the Theorem. Then for every x ∈ B∞

we have ‖x]x‖ ≥ α‖x‖‖x]‖. By [3, theorem 34.3] B∞ admits an equivalent
C∗-norm |·|. Since τ is a faithful ∗-representation of the C∗-algebra (B∞, |·|)
it is isometric. Therefore τ(B∞) is closed.

Let us show that (τ |B)−1 : τ(B) → B is completely bounded. The image

A = τ(B∞) is a C∗-algebra in B(H̃) isomorphic to B∞. By Johnson’s theorem
two Banach algebra norms on a semi-simple algebra are equivalent, hence,
τ−1 : A → B∞ is bounded homomorphism, say ‖τ−1‖ = R. Let us show that
‖(τ |B)−1‖cb = R. Since

τ |B2n = Un(ρ⊗ idM2n )U∗
n,

where representation ρ : B → B(K) is unitary equivalent to τ |B and Un :

K ⊗ C2n → H̃ is unitary operator.
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We have for any B = [bij] ∈ M2n(B)

‖
∑

bij ⊗ Eij‖ ≤ R‖Un(
∑

ρ(bij)⊗ Eij)U
∗
n‖

= R‖
∑

ρ(bij)⊗ Eij‖.

This is equivalent to

‖
∑

ρ−1(bij)⊗ eij‖ ≤ R‖
∑

bij ⊗ Eij‖,

hence ‖(ρ−1)2n(B)‖ ≤ R‖B‖. This proves that ‖(τ |B)−1‖cb = R. 2

4 Operator Algebra associated with Kadison’s

similarity problem.

In 1955 R. Kadison raised the following problem. Is any bounded homomor-
phism π of a C∗-algebra A into B(H) similar to a ∗-representation? The
similarity above means that there exists invertible operator T ∈ B(H) such
that x → T−1π(x)T is a ∗-representation of A.

The following criterium due to Haagerup (see [4]) is widely used in refor-
mulations of Kadison’s problem: non-degenerate homomorphism π is similar
to a ∗-representation iff π is completely bounded. Moreover the similarity S
can be chosen such that ‖S−1‖‖S‖ = ‖π‖cb.

The affirmative answer to the Kadison’s problem is obtain in many im-
portant cases. In particular, for nuclear A, π is automatically completely
bounded with ‖π‖cb ≤ ‖π‖2 (see [1]).

About recent state of the problem we refer the reader to [8, 5].
We can associate an operator algebra π(B) for every bounded homomor-

phism π of a C∗-algebra A. That fact that π(B) is closed can be seen by
restricting π to a nuclear C∗-algebra C∗(x∗x). This restriction is similar to ∗-
homomorphism for every x ∈ A which gives the estimate ‖x‖ ≤ ‖π‖3‖π(x)‖
(for details see [9, p. 4]). Denote Cn = π(n)(Mn(A)+).

Let J be involution in B(H), i.e. self-adjoint operator such that J2 = I.
Clearly, J is also a unitary operator. A representation π : A → B(H) of a
∗-algebra A is called J-symmetric if π(a∗) = Jπ(a)∗J . Such representations
are natural analogs of ∗-representations for Krein space with indefinite metric
[x, y] = 〈Jx, y〉.
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We will need the following observation due to V. Shulman [12] (see also
[6, lemma 9.3, p.131]). If π is arbitrary representations of A in B(H) then the
representation ρ : A → B(H ⊕H), a 7→ π(a) ⊕ π(a∗)∗ is J-symmetric with
J(x⊕ y) = y⊕x and representation π is a restriction ρ|K⊕{0}. Moreover, if ρ
is similar to ∗-representation then so is π. Clearly the converse is also true,
thus π and ρ are simultaneously similar to ∗-representations or not. In sequel
for an operator algebra D ∈ B(H) the algebra lim−→M2n(D) will denote the

closure of the algebraic direct limit of of M2n(D) in the C∗-algebra direct limit

of inductive system M2n(B(H)) with standard inclusions x →
(

x 0
0 x

)
.

Theorem 10. If π : A → B(H) is bounded unital J-symmmetric isomor-
phism of a C∗-algebra A. Denote B = π(A). Then π−1 is completely bounded

homomorphism. Its extension π̃−1 to the homomorphism between the induc-
tive limits B∞ = lim−→M2n(B) and A∞ = lim−→M2n(A) is injective.

Proof. Let us show that {Cn}n≥1 is a ∗-admissible sequence of cones. It
is routine to verify that conditions (1)-(3) in the definition of ∗-admissible
cones is satisfied for {Cn}. To see that condition (4) is also satisfied take
Bj ∈ Cnj

− Cnj
such that ‖Bj‖ ≤ r for some constant r > 0. Take Dj ∈

Mnj
(A)sa such that Bj = π(nj)(Dj). Since π(n) : Mn(A) → Mn(B) is algebraic

isomorphism it preserve spectra σMn(A)(x) = σMn(B)(π
(n)(x)). Since ‖Bj‖ ≤ r

we have the following estimate for the spectral radius spr(Bj) ≤ r and,
consequently, spr(Dj) ≤ r. Since Dj is self-adjoint renj

+ Dj ∈ Mnj
(A)+.

Applying π(nj) we get renj
+ Bj ∈ Cnj

.

Since π is J-symmetric ‖π(n)(a)‖ = ‖(J⊗En)π(n)(a)∗(J⊗En)‖ = ‖π(n)(a∗)‖
for every a ∈ Mn(A) and

‖π(n)(h1)‖ ≤ 1/2(‖π(n)(h1) + iπ(n)(h2)‖+ ‖π(n)(h1)− iπ(n)(h2)‖)
= 1/2‖π(n)(h1)− iπ(n)(h2)‖

for all h1, h2 ∈ Cn − Cn. Thus condition (5) is satisfied and {Cn} is ∗-
admissible. By Theorem 4 there is an injective bounded homomorphism
τ : B∞ → B(H̃) such that its restriction to B is completely bounded, τ(b]) =
τ(b)∗ and τn(Cn) = τn(Mn(B))+.

Denote ρ = τ ◦ π : A → B(H̃). Since ρ is positive homomorphism then
it is a ∗-representation. Moreover, ker ρ = {0} because both π and τ are

injective. Therefore ρ−1 is ∗-isomorphism. Since τ : B → B(H̃) extends

14



to an injective homomorphism of inductive limit B∞ and ρ−1 is completely
isometric we have that π−1 = ρ−1 ◦ τ extends to injective homomorphism of
B∞. It is also clear that π−1 is completely bounded as a superposition of two
c.b. maps.

Remark 11. The fact that π−1 is c.b. also follows from [9, Theorem 2.6]

Remark 12. Note that condition 1 in Theorem 4 for cones Cn from the proof
of theorem 10 is obviously equivalent to π being completely bounded.

Remark 13. It can be easily proved that for every free ultrafilter ω on N
the natural extension of π̃−1 to the ultrapowers: π̃−1

ω : (B∞)ω → (A∞)ω will
necessarily be non-injective for non completely bounded homomorphism π.
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